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1. Introduction 9 

Public health is an approach to protect and improve the health of community members by 10 

preventive medicine, health education, control of communicable diseases, application of sanitary 11 

measures, and monitoring of environmental hazards (http://www.answers.com/topic/public-12 

health?cat=health).  This overall task is achieved by assessing and monitoring populations at risk 13 

to identify health problems and establishing priorities, to formulate policies to solve identified 14 

problems and to ensure populations have access to appropriate care, including health promotion, 15 

disease prevention, and evaluation of care.  During the past century, the notable public health 16 

achievements as identified by the US Centers for Disease Control and Prevention (CDC) include 17 

vaccinations and treatments against infectious diseases, injury prevention strategies, reduced 18 

occupational exposures to toxins, improved food and water safety, decreases in childhood and 19 

maternal mortality, and safer water sources.  Thus, many of the key issues related to public health 20 

are incorporated in previous chapters in this report, though they may not be characterized as public 21 

health.  Regardless, public health may represent a key factor in problem solving under climate 22 

change situations.  Many of the anticipated public health consequences of climate change are due 23 

to the influences of temperature and precipitation patterns, as well as land cover with 24 

consequences for the affected human communities.  For example, changes in the availability of 25 

food resources and the quality of drinking water are anticipated to directly affect nutritional status, 26 

the spread of communicable infectious agents, and the impacts of poor air quality on vulnerable 27 
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populations and in extreme situations the creation of “environmental refugees” (Huntingford et al., 28 

2007).  29 

Because public health is an important outcome component of decision support tools (DST) 30 

involving air quality, water management, energy management and agricultural efficiency issues, it 31 

was decided to focus on a unique public health aspect of DST/DSS by examining infectious 32 

disease systems.  Infectious diseases remain a significant burden to populations both globally, as 33 

well as within the US.  Some of these, such as syphilis and measles involve a relatively simple 34 

dynamic of the human host population and the parasite—be it a virus,  bacterium, or other micro-35 

organism.  These diseases, therefore, tend to be influenced by social behavior and the ability to 36 

provide resources and of health education to significantly alter human behavior.  However, other 37 

disease systems include additional species for their successful transmission—either wildlife 38 

species that maintain the micro-organism (zoonoses) or there are insect or arthropod vectors that 39 

serve to transmit the parasites either among people or from the wildlife to people (vector-borne 40 

diseases).  41 

Some of the most significant diseases globally are vector-borne or zoonotic diseases.  42 

Examples include malaria and dengue.  In addition, many newly recognized (i.e., emerging) 43 

diseases either are zoonoses, such as SARS, or appear to have been derived from zoonoses that 44 

became established in human populations (e.g., HIV).  Changes in rates of contact between 45 

component populations of these disease systems alter the rates of infectious disease (Glass 2007).  46 

Many of these changes come about through activities involving the movement of human 47 

populations into areas where these pathogen systems normally occur or they can occur because 48 

people introduce materials with infectious agents into areas where they were not known previously 49 

(Gubler et al. 2001).  The introduction of West Nile virus from its endemic area in Africa, the 50 

Middle East, and Eastern Europe into North America and its subsequent spread across the 51 

continent is a recent example.  The impacts of the virus on wildlife, human, and agricultural 52 

production are an excellent example of the economic consequence of such emergent disease 53 

systems. 54 
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More recently, attention has focused on the potential impact that climate change could have 55 

on infectious disease systems, especially those with vector or zoonotic components (e.g., Gubler et 56 

al., 2001).  Alterations in climate could impact the abundances or interactions of vector and 57 

reservoir populations, or the way in which human populations interact with them (Gubler, 2004).  58 

In addition, there is speculation that climate change will alter the locations where disease systems 59 

are established, shifting the human population that is at risk from these infectious diseases (e.g., 60 

Brownstein et al., 2005a; Fox, 2007) 61 

Unlike many of the other applications in this report where Earth observations and modeling 62 

are of growing importance, the use of Earth observations by the public health community has been 63 

sporadic and incomplete.  Although early demonstrations showed their utility for identifying 64 

locations and times that vector-borne diseases were likely to occur (e.g., Linthicum et al., 1987; 65 

Beck et al.,1997), growth of their application has been comparatively slow.  Details of the barriers 66 

to implementation include the need to “scavenge” data from Earth observation platforms, as none 67 

of these are designed for monitoring disease risk. This is not an insurmountable problem and in 68 

fact, only few applications for Earth observations have dedicated sensors. However, disease 69 

monitoring requires a long history of recorded data to provide information concerning the changes 70 

in population distribution and the environmental conditions associated with outbreaks of disease. 71 

Detailed spectral and spatial data need to be of sufficient resolution and the frequency of 72 

observations must be high enough to enable identification of changing conditions (Glass 2007).  73 

As a consequence, many DSTs undergoing development have substantial integration of Earth 74 

observations but lack an end-to-end public health outcome, particularly when focusing on 75 

infectious diseases.  Therefore, the Decision Support System to Prevent Lyme Disease (DDSPL) 76 

supported by the CDC and Yale University was selected to demonstrate the potential utility of 77 

these systems within the context of climate change science.  Lyme disease is a vector-borne, 78 

zoonotic bacterial disease.  In the US it is caused by the spirochete, Borrelia burgdorferi, and it is 79 

the most common vector-borne disease with tens of thousands of reported cases annually (Piesman 80 

and Gern 2004).  Most human cases occur in the Eastern and upper Mid-West portions of the US, 81 

although there is a secondary focus along the West Coast of the country. In the primary focus, the 82 



CCSP SAP 5.1  September 13, 2007 

Do Not Cite or Quote Page 4 of 9 Public Review Document 

 

 

black-legged tick (or deer tick), of the genus Ixodes, is most often found infected with B. 83 

burgdorferi.  84 

 85 

 86 

2. Description of DDSPL 87 

The diverse ways in which Lyme disease presents itself in different people has made it a 88 

public health challenge to ensure that proper priorities are established, to formulate policies to 89 

solve the problem, and to ensure that populations have access to appropriate care.  The CDC uses 90 

DDSPL to address questions related to the likely distribution of Lyme disease east of the 100
th

 91 

meridian, where most cases occur (Brownstein et al., 2003).  This is done by identifying the likely 92 

geographic distribution of the primary tick vector (the black-legged) tick in this region.  DDSPL 93 

uses field reports of the known distribution of collected tick vectors, as well as sites with repeated 94 

sampling without ticks as the outcome space.  DDSPL uses satellite data, and derived products 95 

such as land cover characteristics, and census boundary files and meteorological data files to 96 

identify the best statistical predictor of the presence of black-legged ticks within the region.  Land 97 

cover is derived from multi-date Landsat TM imagery and 10-m panchromatic imagery.   98 

DDSPL combines the satellite and climate data with the field survey data of Ixodes ticks 99 

sampled at locally sampled sites throughout the region (Brownstein et al., 2003) or from rates of 100 

reported cases of Lyme disease (Brownstein et al.,2005b) in spatially explicit statistical models to 101 

generate assessment products of the distribution of the tick vector or human disease risk, 102 

respectively.  These models are validated by field surveys in additional areas and the sensitivity 103 

and specificity of the results determined (figure 1).  Thus, the DDSPL is primarily a DST for 104 

prioritizing the likely geographic extent of the primary vector of Lyme disease in this region 105 

(figures 1 and 2).  It currently stops short of characterizing the risk of disease in the human 106 

population but is intended to delimit the area within which Lyme disease (and other diseases 107 

caused by additional pathogens carried by the ticks) might occur (Figure 2).  Researchers at Yale 108 

University are responsible for developing and validating appropriate analytical methods to develop 109 

interpretations that can deal with many of the challenges of spatially structured data, as well as the 110 
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acquisition of Earth science data that are used for model DDSPL predictions.  The distinction 111 

between the presence/abundance of the tick vector and actual human risk relies on the effects of 112 

human population abundance and behavioral heterogeneity (e.g., work or recreational activity) that 113 

can alter the contact rate between the tick vector and susceptible humans.  However, such detailed 114 

human studies (especially behavioral heterogeneity) are typically not available (Malouin et al., 115 

2003).  In Brownstein et al. (2005b) analysis, they found that although the entomological risk (the 116 

abundance of infected ticks) increased with landscape fragmentation, the human incidence of 117 

Lyme disease decreased, thus indicating there is a complex relationship between the landscape, the 118 

population of ticks, and the human response resulting in the health outcome. 119 

 120 

3. Potential Future Use and Limits 121 

Future use of DDSPL depends to a great extent on public health policy decisions exterior to 122 

the DST.  The perspective of the role that Lyme disease prevention rather than treatment of 123 

diseased individuals will play is a key aspect of the importance that DDSPL will experience.  For 124 

example, studies have shown that even in Lyme disease endemic regions, risk communication 125 

often fails to reduce the likelihood of infection (Malouin, et al., 2003).  In principle, policy makers 126 

may decide that it is more cost effective to provide improved treatment modalities rather than 127 

investing in educational programs that fail to reduce disease burden.  Alternatively, the 128 

development of vaccines is time consuming, costly, and may have additional risks of unacceptable 129 

side effects that affect the likelihood that this would be a policy choice.  Thus, depending on 130 

policy decisions and the effects of alternative interventions, the DDSPL might be used to forecast 131 

risk areas for educational interventions, to inform health care providers in making diagnoses, or to 132 

plan mass vaccination campaigns.   133 

Currently, the removal of the licensed Lyme disease vaccine from the general public has 134 

eliminated this as a strategy to reduce the disease burden.  The apparent lack of impact of targeted 135 

education also makes this a less likely strategy. Thus, the extent to which treatment modalities 136 

rather than prevention of infection will drive the public health response in the near future will play 137 

a major role in the use of DDSPL.  However, even if the decision is made to focus on treatment of 138 
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potentially infected individuals, DDSPL may still be useful by identifying regions where disease 139 

risk may be low, helping health care workers to focus clinical diagnoses on alternate causes. 140 

Presuming that the DST continues to be used, the need for alternative/improved Earth 141 

science data to clarify environmental data for DDSPL such as land cover, temperature, and 142 

moisture regimes is currently uncertain.  The present system reports a sensitivity of 88 percent and 143 

specificity of 89 percent—generally considered a highly satisfactory result. Sensitivity and 144 

specificity are considered the two primary measures of a method’s validity in public health 145 

analyses.  Sensitivity in the DDSPL model refers the to expected proportion of times (88 percent) 146 

that ticks would be found when field surveys were conducted at sites that the DDSPL predicted 147 

they should occur.  Specificity refers to the proportion of times (89 percent) that a survey would 148 

not be able to find times at sites where the DDSPL excluded them from occurring.  These two 149 

measures provide an estimate of the “confidence” the user can have in the DST prediction (Selvin 150 

1991).  These analyses extended geographically from the East Coast to the 100
th

 meridian and 151 

were validated by field sampling for the presence of Ixodes ticks at sites throughout the region. 152 

 Typically, patterns of weather regimes appear to have a greater impact on distribution than 153 

more detailed information on land cover patterns.  However, some studies indicate that 154 

fragmentation of forest cover and landscape distribution at fairly fine spatial resolution can 155 

substantially alter patterns of human disease risk (Brownstein et al., 2005b).  These results also 156 

suggest that human incidence of disease may, in some areas of high transmission, be decoupled 157 

from the model constructed for vector abundance, reemphasizing the distinction between a key 158 

component (the vector) and actual human risk.  When coupled with the stated accuracy of the 159 

DDSPL in identifying vector distribution, this would suggest that future efforts will probably 160 

require an additional model structure that includes sociological/behavioral factors of the human 161 

population that puts it at varying degrees of risk.  An additional limit of the DDSPL is that it does 162 

not explicitly incorporate human health outcomes in its analyses.  In part, this reflects a public 163 

health infrastructure issue that limits detailed information on the distribution of human disease to 164 

(typically) local and state health agencies.  For example, confidentiality of health records, 165 

including detailed locational data, such as home addresses, are often shielded in the absence of 166 
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explicit permission.  This makes establishing the relationship between monitored environmental 167 

conditions and human health outcomes difficult.  One solution is to aggregate data to some 168 

jurisdictional level.  However, this produces the well know “ecological fallacy” in establishing 169 

relationships between environmental factors and health outcomes (Selvin 1991).  With appropriate 170 

planning or the movement of the technology into local public health agencies, these challenges 171 

could be overcome. Some localized data (e.g., Brownstein et al., 2005b) of human health 172 

outcomes have been used to evaluate the utility of DDSPL and indicate that there is good potential 173 

for the DSS to provide important information on local risk factors. 174 

 175 

 176 

4. Uncertainty 177 

Uncertainty in decision making from DDSPL is based on the results of statistical analyses 178 

in which standard statistical models with spatially explicit components, such as autologistic 179 

intercepts of logistic models, are used to account for spatial autocorrelation in outcomes.  The 180 

statistical analyses are well-supported theoretically.  Typical calibration approaches involve model 181 

construction followed by in-field validation.  Accuracy of classification is then assessed in a 182 

sensitivity-specificity paradigm.   183 

However, little attention is paid in the current model to assessing uncertainty in the 184 

environmental data obtained from remotely sensed (or even in situ) monitors of the environment.  185 

For example, most of the derivative data, such as land cover, may change with population growth 186 

and development.  In addition, the use of average environmental conditions provide an 187 

approximate characterization of local edaphic conditions that may affect the abundance of the the 188 

tick vectors. 189 

Whether these are the primary sources of “error” in the sensitivity and specificity results 190 

(although these are considered excellent results) of the DDSPL is not addressed and is an area the 191 

public health applications need to consider in future applications.  Alternatively, there are 192 

biological reasons for the errors in the model, including the interaction of climatic factors and tick 193 
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activity that may be responsible for sites predicted to have ticks that were not found to have them.  194 

To resolve some of the biological/environmental issues, validation is ongoing.   195 

There also are a number of public health issues that affect the certainty of the DDSPL (and 196 

any DST) that are extrinsic to the system or tool.  Accuracy in clinical diagnoses (both false 197 

positives and negatives), as well as reporting accuracy can affect the evaluation of the tool’s 198 

utility.  Currently, this is an issue of serious contention and forms part of the rationale for focusing 199 

on accurately identifying the distribution of the primary tick vector, as an integral step in 200 

delimiting the distribution of the disease and evaluating needs for the community. 201 

 202 

5. Global Change Information and DDSPL 203 

The relationship between climate and public health outcomes is complex.  It is affected 204 

both by the direction and strength of the relationship between climatic variability and the 205 

component populations that make up a disease system, as well as the human response to changes 206 

in disease risk (Gubler 2004).   207 

The DDSPL is one of the few public health DSTs that has explicitly evaluated the potential 208 

impact of climate change scenarios on this infectious disease system.  Assuming that evolutionary 209 

responses of the black-legged tick, B. burgdoferi and the reservoir zoonotic species remains little 210 

changed under rapid climate change, Brownstein et al., (2005a) evaluated anticipated changes in 211 

the distribution and extent of disease risk.   212 

This analysis used the basic climate-land cover suitability model developed for DDSPL and 213 

selected the Canadian Global Coupled Model (CGCM1) under two historically forced 214 

integrations.  The first with a 1 percent per year increase in greenhouse gas emissions and the 215 

second with greenhouse gas and sulfate aerosol changes, resulted in a 4.9 and 3.8° Celsius 216 

increase in global mean temperature by the year 2080.  Near (2020), mid (2050) and farpoint 217 

(2080) outcomes were evaluated (Figure 3).  The choice of CGCM1 was based on the 218 

Intergovernmental Panel on Climate Change criteria for vintage, resolution, and validity 219 

(Brownstein et al., 2005a).   220 
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Extrapolation of the analyses suggest that the tick vector will experience a significant range 221 

expansion into Canada but will also experience a likely loss of habitat range in the current 222 

southern portion of its range (figure 3).  This loss of range is thought to be due to impact of 223 

increased temperatures causing decreased survival in ticks when they are off their feeding hosts. It 224 

also is anticipated that its range will shift in the central region of North America – where it is 225 

currently absent.  When coupled with the anticipated continued human movement to more 226 

southern portions of the country, the numbers of human cases are expected to show an overall 227 

small decrease. 228 

These long-range forecasts disguise a more dynamic process with ranges initially 229 

decreasing during near and mid-term timeframes.  This range reduction is later reversed in the 230 

long-term producing the overall pattern described by the authors.  The impact in range distribution 231 

also produces an overall decrease in human disease risk as suitable areas move from areas of 232 

primary human concentration to areas that are anticipated to be less well populated.   233 

Thus, DSS similar to those developed for Lyme disease have the potential for providing 234 

both near- and far-term forecasts of potential infectious disease risk that are so important for 235 

public health planning.  In addition, detailed studies (e.g. Brownstein et al., 2005b) provide public 236 

health agencies with important information on drivers of human risk that have been difficult to 237 

obtain by other means.  As a consequence, DSS using remotely sensed data sources either in part 238 

or whole have the potential to significantly improve the health of communities.   239 

The primary challenges for the Earth science community involve understanding the needs 240 

of the public health community for the appropriate data at the appropriate spatial, temporal, and 241 

spectral scales.  This will involve understanding a historically entrenched set of methodologies for 242 

interpreting health data and establishing causal relationships between inputs (environmental data) 243 

and outputs (health outcomes).  In addition, there is the challenge of performing these tasks in the 244 

presence of limited resources for a community that has little cultural understanding of both the 245 

strengths and limitations of the data derived from these sources. 246 

 247 

 248 


