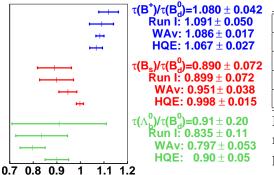

CDF/PUB/BOTTOM/PUBLIC/7019

B Physics at CDF

Jonas Rademacker on behalf of the CDF Collaboration Department of Physics, 1 Keble Road, Oxford OX1 3RH, UK


Due to the large $b\bar{b}$ cross section at 1.96 TeV p $-\bar{p}$ collisions, the Tevatron is currently the most copious source of B hadrons. Recent detector upgrades for Run II have made these more accessible, allowing for a wide range of B and Q^{\prime} physics with B hadrons of all flavours. In this paper we present B-physics results, and, using the versatile hadronic Two Track Trigger, a search for $\Xi(1860)$, from up to 240 pb⁻¹ of data.

1 Introduction

CDF has been taking data at Tevatron Run IIa for about two years. For $p\bar{p}$ collisions at 1.96 TeV, the $b\bar{b}$ production cross section is $\sigma_{b\bar{b}} \sim 0.1$ mb. CDF has undergone major upgrades for Run II, optimising its B physics potential. The upgrades most relevant for CDF's B physics program include a new tracking system with a new, faster drift chamber, and new Silicon vertex trackers providing excellent proper time resolution, sufficient to resolve the expected fast oscillations in the B_s^0 system. The excellent impact parameter resolution is used for triggering on B-events. The muon coverage has been increased. A di-muon trigger efficiently finds $B \rightarrow J/\psi X$ decays.

Here we present some of the wide range of analyses of the current CDF B physics program, which includes a wide range of studies, involving all types of B-hadrons, including leptonic as well as fully hadronic decays of $B_d, B^+, B_s, B_c, \Lambda_b$. The impact-parameter based trigger also provides a very large sample of long-lived Ξ^- . This has been used for a sensitive search for $\Xi^0(1860) \rightarrow \Xi^- \pi^+$ and $\Xi^{--} \rightarrow \Xi^- \pi^-$, which have been observed at NA49¹ and are often interpreted as pentaquark states.

Table 1: Lifetimes and lifetime ratios in Run II from $B_u^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$ (240 pb⁻¹), $B_d^0 \rightarrow J/\psi(\mu^+\mu^-)K^{(*)0}$ (240 pb⁻¹), $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi$ (240 pb⁻¹), $\Lambda_b \rightarrow J/\psi(\mu^+\mu^-)\Lambda$ (65 pb⁻¹) compared with world average (HFAG⁴, results for PDG 04, and, for Λ_b , results for PDG 02), Run I results ⁵ and HQE predictions ⁶. Run I results are from all channels combined, Run II results from fully reconstructed $J/\psi(\mu\mu)X$ only.

Channel	Result (ps)
$B_u^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$	$1.662 \pm 0.022 \pm 0.008$
$B_d^0 \rightarrow J/\psi(\mu^+\mu^-)K^{(*)0}$	$1.539 \pm 0.051 \pm 0.008$
$B_s^0 \to J/\psi(\mu^+\mu^-)\phi$	$1.369 \pm 0.100^{+0.008}_{-0.010}$
$\Lambda_{\rm b}^0 \to {\rm J}/\psi(\mu^+\mu^-)\Lambda$	$1.25 \pm 0.25 \pm 0.10$

Note that the Run II result for $B_s \rightarrow J/\psi \phi$ is dominated by the (shorter) lifetime of the CP-even component.

2 Results from the Di-Muon Trigger

2.1 b Production Cross Section

The inclusive b-hadron production cross-section is measured from the b-fraction in the reconstructed J/ψ sample up to February 2002 (37 pb⁻¹). Combining this number with the inclusive $J/\psi X$ cross section, and the appropriate branching fractions, allows to calculate the absolute b production cross section. The long lifetime of B-hadrons is used to discriminate between prompt J/ψ and J/ψ from B-hadron decays. The total single b-quark cross-section integrated over one unit of rapidity is

$$\sigma(p\bar{p} \rightarrow \bar{b}X: |y| < 1.0) = 29.4 \pm 0.6(\text{stat}) \pm 6.2(\text{sys}) \,\mu b$$

where the largest contributions to the systematic error come from uncertainties in the acceptance and the inclusive B-hadron to J/ψ branching ratio.

2.2 Lifetimes

Life time measurements in the heavy quark sector gain specific significance due to the precise predictions of Heavy Quark Expansion²³ thus providing a testing ground for this theoretical tool that is frequently used, for example to relate experimental measurements to CKM parameters like Γ_d to $|V_{cb}|$ or $\Delta m_s/\Delta m_d$ to $|V_{ts}/V_{td}|$.

Fully reconstructed hadronic $B \rightarrow J/\psi X$ decays, found with CDF's di-muon trigger, provide a clean method for measuring B lifetimes, free from the systematic uncertainties associated with semileptonic decays due to the missing momentum of the ν , and free from the lifetime bias in impact parameter-based trigger samples. Of specific interest at CDF are the lifetimes of the B_s and Λ_b , which are currently produced in large quantities only at the Tevatron. Lifetime results, and lifetime ratios, compared to theory predictions, Run I results, and world averages, are summarised in Table 1.

2.3 CP content of $B_s \to J/\psi \phi$

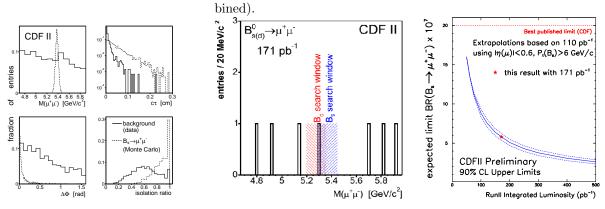

The measurement of the average lifetime in $B_s \rightarrow J/\psi\phi$ constitutes a first step towards a measurement of $\Delta\Gamma_s$, the width difference between the long and short lived CP eigenstates, which has some sensitivity to new physics, especially when compared to the mass difference, Δm_s , which is also going to be measured at the Tevatron. The CP-even and odd contribution in $B_s \rightarrow J/\psi\phi$ can be disentangled by analysing the decay in terms of transversity angles, leading

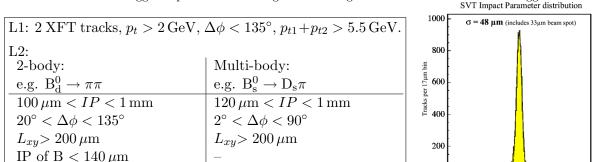
Table 2: Transversity-angle analysis in $B_s \to J/\psi \phi$ and $B_d \to J/\psi K^{*0}$. A_0 and A_{\parallel} are CP even decay amplitudes, A_{\perp} is CP-odd, normalised such that $|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2 \equiv 1$.

$B_s \to J/\psi \phi$	${ m B_d} ightarrow { m J}/\psi { m K^{*0}}$	
$\begin{array}{r} A_0 = 0.762 \pm 0.044 \pm 0.07 \\ A_{\parallel} = (0.433 \pm 0.199 \pm 0.011) \ e^{i(2.08 \pm 0.51 \pm 0.06)} \\ A_{\perp} = 0.481 \pm 0.104 \pm 0.025 \end{array}$	$A_0 = 0.796 \pm 0.022 \pm 0.012$ $A_{\parallel} = (0.433 \pm 0.037 \pm 0.014) \ e^{i(3.10 \pm 0.50 \pm 0.06)}$ $A_{\perp} = (0.422 \pm 0.050 \pm 0.027) \ e^{i(0.18 \pm 0.26 \pm 0.02)}$	

Figure 1: Search for $B_{d,s} \to \mu^+ \mu^-$

(a) Discriminating Variables: Mass, lifetime, $\Delta \phi$ and isolation $(p_t(\mu) \text{ divided by all } p_t \text{ in a cone} around the <math>\mu$). (b) 1 event found in overlap of (c) Projected and current sensisearch windows - consistent with bgk estimate of 1.05 ± 0.30 (B_d), including expected improvements 1.07 ± 0.31 (B_s), 1.75 ± 0.34 (com-

to the measurement of two CP even amplitudes A_0 and A_{\parallel} , and one CP-odd amplitude, $A_{\perp}{}^7$. The CDF Run II results for 192 pb⁻¹ are shown in Table 2, for both $B_s \rightarrow J/\psi \phi$ and, as a cross check, $B_d \rightarrow J/\psi K^{*0}$. The B_d results are consistent with those from BaBar⁸ and CLEO⁹. The phases of the amplitudes provide an interesting test of factorisation, which predicts the relative phases to be either 0 or π^{10} . The amplitude measurements imply a CP-even content in $B_s \rightarrow J/\psi \phi$ of 77% \pm 10%. Work is in progress to combine this technique with the lifetime analysis for a $\Delta \Gamma_s$ measurement.


2.4 Search for New Physics with $B_{d,s} \rightarrow \mu^+ \mu^-$

While in the Standard Model, the branching ratio of $B_{d,s} \rightarrow \mu^+ \mu^-$ is $\mathcal{O}(10^{-9})$, which is below the sensitivity of the Tevatron, many New Physics models predict enhancements of this mode by several orders of magnitude, for example mSUGRA¹¹ and SO(10) Symmetry Breaking models¹². In mSUGRA, the $B_{d,s} \rightarrow \mu^+ \mu^-$ branching ratio is approximately¹¹

$$\mathrm{BR}_{\mathrm{mSUGRA}} \left(\mathrm{B}_{\mathrm{s}} \to \mu \mu \right) \approx 10^{-6} \cdot \tan^{6} \beta \frac{M_{1/2}^{2} \mathrm{GeV}^{4}}{(M_{1/2}^{2} + M_{0}^{2})^{3}}$$

which increases rapidly with large $\tan \beta$.

The search for $B_{d,s} \rightarrow \mu^+ \mu^-$ was performed as a blind analysis. The cuts were optimised using Monte-Carlo generated signal events and background events from real data. Signal and background distributions for the most important cuts are shown in Figure 1 (a). After all cuts are applied, 1.05 ± 0.30 background events are expected in the B_d mass window and 1.07 ± 0.31 Figure 2: The CDF hadronic 2-Track-Trigger. $\Delta \phi$ is the angle between the tracks in the transverse plane. IP is the 2-D impact parameter of each of the two tracks. L_{xy} is the decay length in the transverse plane. The table

on the left lists the trigger requirements. The figure on the right shows the IP resolution at trigger level.

 B_s mass window, both are 200 MeV wide, and overlap. The number of background events predicted for the combined mass window is 1.75 ± 0.34 . Several cross checks in real data have been performed before unblinding, for example using wrong-sign di-muon events ($\mu^+\mu^+$ and $\mu^{-}\mu^{-}$), which yielded consistent results. The total number of events found after unblinding is 1 event in the overlap region of the two mass windows, as shown in Figure 1 (b), resulting in the following 90% confidence limits:

-0.1

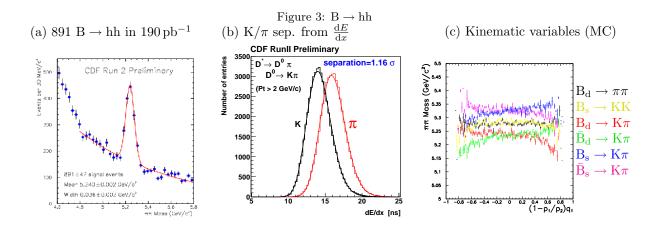
-0.05

ß d₀ (cm) 0.05 0.1

$$BR(B_d \to \mu^+ \mu^-) < 1.5 \cdot 10^{-7} (90\% CL) \qquad BR(B_s \to \mu^+ \mu^-) < 5.8 \cdot 10^{-7} (90\% CL)$$

which is, for the B_d, similar to the results from BaBar and BELLE, and more than a factor of 3 better than the previous best limit for $B_s \rightarrow \mu\mu$, which was provided by CDF Run I. The projected performance as a function of integrated luminosity, ignoring future improvements due to the expected increase in muon coverage, is shown in Figure 1 (c).

3 **Results from the Impact Parameter-Based Hadronic B Trigger**


CDF's Two Track Trigger 3.1

L3: Same with refined tracks & mass cuts.

One of the most innovative improvements for B physics at CDF is the large-bandwidth hadron trigger, which triggers on the impact parameters of tracks at Level 2. The trigger requirements for the two scenarios, 2-body and multi-body B decays, are given in Figure 2. CDF's Two Track Trigger provides a unique sample of hadronic bottom and charm decays, that would otherwise be inaccessible, for example $B^0 \to \pi\pi$ and $B_s \to D_s\pi$.

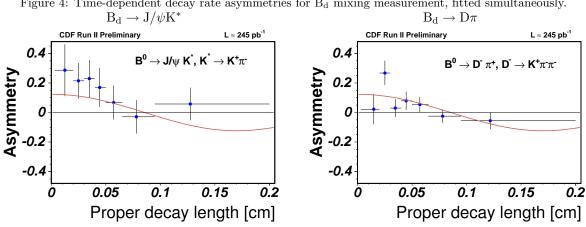
$B \rightarrow hh$ 3.2

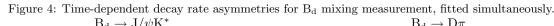
Figure 3 (a) shows the invariant mass of reconstructed B to two-hadron events (assuming the hadrons are pions). About 900 events are found. In order to discriminate the different decay modes, pions and kaons are separated using their specific energy loss, $\frac{dE}{dx}$. The π/K discrimination using $\frac{dE}{dx}$ has been measured using D^{*} decays and has been found to be 1.16 σ , as shown in figure 3 (b). Further discrimination between the different $B \rightarrow hh$ decay modes is achieved using decay kinematics, as shown in 3 (c). The plot shows the reconstructed B mass in Monte Carlo simulated B \rightarrow hh events vs $(1 - p_1/p_2) \cdot q_1$ for different decay modes. Here, p_1 is the smaller of the two momenta, q_1 is the charge of the particle with momentum p_1 , and the mass is calculated assuming the decay products are pions. This led to the first observation of the decay

 $B_s \to K^+K^-.~A$ summary of the results from analysing $B \to hh$ events in $65\,pb^{-1}$ of data are given below:

- First observation of $B_s \rightarrow KK$: 90 ± 24 out of 300 B \rightarrow hh events.
- Search for $Q \not P$ in time-integrated rates $A_{CP} = \frac{\Gamma(\bar{B}_{d}^{0} \rightarrow K^{-} \pi^{+}) - \Gamma(\bar{B}_{d}^{0} \rightarrow K^{+} \pi^{-})}{\Gamma(\bar{B}_{d}^{0} \rightarrow K^{-} \pi^{+}) + \Gamma(\bar{B}_{d}^{0} \rightarrow K^{+} \pi^{-})} = 0.02 \pm 0.15 \pm 0.017$
- Ratios of B.R.: $\frac{\Gamma(\mathrm{B}^0_{\mathrm{d}} \to \pi^+ \pi^-)}{\Gamma(\mathrm{B}^0_{\mathrm{d}} \to \mathrm{K}^\pm \pi^\mp)} = 0.26 \pm 0.11 \pm 0.06 , \quad \frac{\Gamma(\mathrm{B}^0_{\mathrm{s}} \to \mathrm{K}^\pm \mathrm{K}^-)}{\Gamma(\mathrm{B}^0_{\mathrm{s}} \to \mathrm{K}^\pm \pi^\mp)} = 2.71 \pm 0.73 \pm 0.35 (\mathrm{f_s}/\mathrm{f_d}) \pm 0.81 ,$ where (f_s/f_d) refers to the uncertainty due to the $\mathrm{B_s}/\mathrm{B_d}$ production ratio.

Results for 195 pb⁻¹ should follow, soon. In the long term, these methods can be used to extract the CP-violating phase γ from a combined analysis of time-dependent decay rate asymmetries in $B_d \rightarrow \pi\pi$ and $B_s \rightarrow KK^{13}$.


 $3.3 \quad D^0 \to hh$


The Two Track Trigger also provides a huge charm signal, where the same methods can be applied. In the analysis presented here, only D^0 mesons from D^* decays are used, which has two advantages: a very clean signal due to the highly effective cut on the difference between the reconstructed D^* and D^0 mass, and the flavour of the D^0 is known from the charge of the D^* . This allows a precise measurement of time-integrated CP asymmetries, which are expected to vanish in the Standard Model:

- $A_{CP\ KK} = \frac{\Gamma(\bar{D}^0 \to K^+K^-) \Gamma(D^0 \to K^+K^-)}{\Gamma(\bar{D}^0 \to K^-K^+) + \Gamma(D^0 \to K^+K^-)} = 2.0\% \pm 1.2\% \pm 0.6\%$
- $A_{CP \ \pi\pi} = \frac{\Gamma(\bar{D}^0 \to \pi^+\pi^-) \Gamma(D^0 \to \pi^+\pi^-)}{\Gamma(\bar{D}^0 \to \pi^-\pi^+) + \Gamma(D^0 \to \pi^+\pi^-)} = 1.0\% \pm 1.2\% \pm 0.6\%$

Branching ratios of D⁰ mesons are also of some interest, for example $\frac{\Gamma(D^0 \to K^+K^-)}{\Gamma(D^0 \to \pi^+\pi^-)}$, which is consistently larger experimentally, than theoretically predicted. The following summarises the ratios of B.R. results:

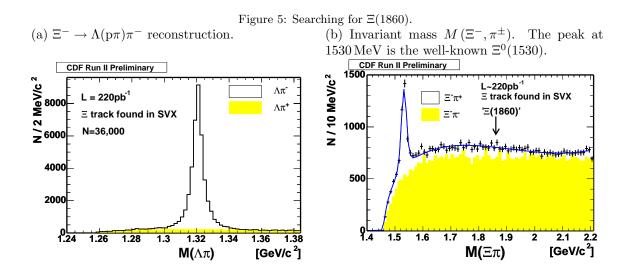
- $\frac{\Gamma(D^0 \to K^+ K^-)}{\Gamma(D^0 \to K^{\pm} \pi^{\mp})} = 9.96\% \pm 0.11\% \pm 0.12\%$
- $\frac{\Gamma(D^0 \to \pi^+ \pi^-)}{\Gamma(D^0 \to K^{\pm} \pi^{\mp})} = 3.608\% \pm 0.054\% \pm 0.12\%$
- $\frac{\Gamma(D^0 \to K^+K^-)}{\Gamma(D^0 \to \pi^+\pi^-)} = 2.762\% \pm 0.040\% \pm 0.034\%$

3.4 $B_s \rightarrow D_s \pi$

The decay of B_s to the flavour-eigenstate $D_s\pi$ is the "flagship mode" for B_s mixing at CDF. Being fully reconstructible (no missing ν), it provides for excellent time resolution - in topologically similar decays, CDF currently achieves ~ 67 fs, and hopes to improve once the innermost Si layer has been fully commissioned and aligned. In $119 \,\mathrm{pb}^{-1}$, $84 \pm 11 \,\mathrm{B_s} \rightarrow \mathrm{D_s}\pi$ have been reconstructed with a signal to background ratio of ~ 2 . The reconstruction efficiency has been increased since data taking has started and is now at ~ 1.6 events per pb^{-1} . These data can be used to calculate the relative production \times B.R. in $B_s \rightarrow D_s \pi$ and $B_d \rightarrow D\pi$:

$$\frac{f_s \cdot BR({\rm B}^0_{\rm s} \to {\rm D}^-_{\rm s} \pi^+)}{f_d \cdot BR({\rm B}^0_{\rm d} \to {\rm D}^- \pi^+)} = 0.35 \pm 0.05 \pm 0.04 \pm 0.09 (BR)$$

where the last error is due to the uncertainty in the B.R. of the charm mesons.


B_d mixing 3.5

A further step towards measuring B_s mixing is to make the somewhat easier measurement in the B_d system and check for consistency with the well-established results from the B factories, and Run 1. About $1k \ B_d \rightarrow J/\psi K^*$ and $5k \ B_d \rightarrow D\pi$ events from $270 \ pb^{-1}$ were used for this measurement. The mass difference is extracted by measuring the oscillation frequency in timedependent decay rate asymmetries. The asymmetries are between B decays that did not change flavour (e.g. $B^0 \to \overline{D}{}^0\pi^-$, neglecting Cabbibo suppressed decays)), and those that did (e.g. $B^0 \rightarrow D^0 \pi^+$). In the measurement presented here, the flavour of the B^0 at birth was determined using same-side tagging only, which is based on the correlation of the B^0_d or \bar{B}^0_d flavour at birth, and the charge of the pion produced alongside, picking up the "left over" \bar{d} or d quark. (The same principle can be applied to B_s mesons, using Kaon tags.) The tagging efficiency and dilution are measured using charged B decays. The tagging power for same-side pion tagging is

$$\varepsilon D^2 = (1.0 \pm 0.5 \pm 0.1) \%$$

where $\varepsilon = (63 \pm 0.6)\%$ is the tagging efficiency (fraction of tagged events) and $D = (12.4 \pm 3.3)\%$ the "dilution" defined as $D \equiv (1-2\omega)$, where ω is the mis-tag fraction. Note that a large "dilution", according to this definition, is a good thing. The tagging power εD^2 describes the statistical power of the tag: N events before tagging are statistically equivalent $\varepsilon D^2 \times N$ perfectly tagged events. A simultaneous fit to the time-dependent decay rate asymmetries in $B_d \rightarrow J/\psi K$ and $B_d \rightarrow D\pi$, shown in Figure 4 yields for the mass difference in the B_d system:

$$\Delta m_d = (0.55 \pm 0.10 \pm 0.01) \text{ ps}^{-1}$$

Opposite side tagging In independent studies, other tagging methods have been investigated. Opposite side muon tagging yields a tagging power of $\varepsilon D^2 = (0.660 \pm 0.093)$ %, jet charge tagging $\varepsilon D^2 = (0.419 \pm 0.024(stat))$ %. Further taggers are under investigation.

3.6 Pentaquarks

The impact-parameter based trigger does not only provide large numbers of bottom and charm mesons, but of all long lived particles, including the Ξ^- . Combining this with a pion allows to search for the $\Xi^0(1860)$ and Ξ^{--} observed at NA49¹, which is often interpreted as a pentaquark.

CDF searches for the $\Xi^0(1860)$ and Ξ^{--} in the decay modes $\Xi^0(1860) \to \Xi^-\pi^+$ and $\Xi^{--} \to \Xi^-\pi^-$ with $\Xi^- \to \Lambda(p\pi)\pi^-$. The Ξ^- lives long enough to leave hits in the Si detector before decaying. Requiring hits from the Ξ^- in the Si provides a very efficient cut. Figure 5 (a) shows the mass distribution a sample of 36,000 Ξ^- . The tiny background contribution, estimated from wrong-charge combinations, is superimposed as the shaded histogram.

In a second step, the Ξ^- is combined with a π^{\pm} . Figure 5 (b) shows the invariant mass distribution for same charge (shaded histogram) and opposite charge (black crosses) combinations of Ξ^- and pions. The line represents a fit to the opposite charge mass distribution. There is a clear peak at the well-known $\Xi^0(1530)$ resonance, that is used as a reference in this analysis. However, neither the same sign nor the opposite sign combination show any evidence of a resonance at 1860 MeV. As a cross check, the analysis was repeated using the Jet20 trigger sample, that is not affected by an impact parameter cut. For $4k \Xi^-$ in the Jet20 sample, no evidence of a $\Xi(1860)$ was found. The 95% upper confidence limits for the *ratio* of $\Xi(1860)$ to the known $\Xi^0(1530)$ are:

$\Xi^{-}\pi^{+}$ (search) / $\Xi(1530)$ (control)	0.07
$\Xi^{-}\pi^{-}$ (search) / $\Xi(1530)$ (control)	0.04

4 Conclusion

Large numbers of B hadrons of all flavours are produced at the Tevatron. CDF has measured the b production cross section in $b \rightarrow J/\psi X$ events. Fully reconstructed $B \rightarrow J/\psi X$ events have been used for precise lifetime measurements of B_d, B_s and Λ_b hadrons, which will provide a test of Heavy Quark Expansion. The CP content of $B_s \rightarrow J/\psi \phi$ has been measured using a transversity angle analysis, which will be combined with the lifetime measurement to extract $\Delta\Gamma_s$. Data from the leptonic B trigger were also used to obtain the best current limit on the B.R. of $B_s \rightarrow \mu \mu$, one of the most sensitive probes of new physics at the Tevatron.

CDF's high bandwidth Two Track Trigger provides a unique sample of hadronic B and Charm decays, including $B \to hh$, which led to the first observation of $B_s \to KK$, and will be used for CP violation studies as more data become available. First steps towards a B_s mixing measurement have been taken with the reconstruction of $B_s \to D_s \pi$ events, and mixing measurements in the B_d system.

The huge sample of Ξ^- found in the Two Track Trigger has been used for a sensitive search for $\Xi(1860)$, which was not found. The B triggers will be used for many more pentaquark searches, especially those decaying to J/ψ or D and baryons.

References

- 1. C. Alt *et al.* [NA49 Collaboration], Phys. Rev. Lett. **92**, 042003 (2004) [arXiv:hep-ex/0310014].
- 2. N. Uraltsev, [arXiv:hep-ph/9804275].
- 3. M. A. Shifman, [arXiv:hep-ph/0009131].
- 4. Heavy Flavour Averaging Group. Method:
- Abbaneo D. et al.ALEPH, CDF, DELPHI, L3, OPAL, SLD], June 2001,CERN-EP/2001-050, [arXiv:hep-ex/0112028]. Results for PDG-2004: http://www.slac.stanford.edu/xorg/hfag/osc/PDG_2004/index.html Results for PDG-2002: http://lepbosc.web.cern.ch/LEPBOSC/combined_results/PDG_2002/
- F. Abe *et al.* [CDF] Phys. Rev. D 57 (1998) 5382 Phys. Rev. D57, 5382; Phys. Rev. Lett. 76, (1996) 4462; Phys. Rev. D 58 (1998) 092002; Phys. Rev. Lett. 77, (1996) 1945; Phys. Rev. D 57, (1998) 5382; Phys. Rev. Lett. 77 (1996) 1439; See also: http://www-cdf.fnal.gov/physics/new/bottom/blife_summary/blife_summary.html
- M Battaglia, AJ Buras, P Gambino and A Stocchi, eds. Proceedings of the First Workshop on the CKM Unitarity Triangle, CERN, Feb 2002, [arXiv:hep-ph/0304132].
- A. S. Dighe, I. Dunietz, H. J. Lipkin and J. L. Rosner, Phys. Lett. B 369, 144 (1996) [arXiv:hep-ph/9511363].
- B. Aubert *et al.* [BABAR Collaboration], Phys. Rev. Lett. 87 (2001) 241801 [arXiv:hepex/0107049].
- C. P. Jessop *et al.* [CLEO Collaboration], Phys. Rev. Lett. **79** (1997) 4533 [arXiv:hepex/9702013].
- 10. T. W. Yeh and H. n. Li, Phys. Rev. D 56 (1997) 1615 [arXiv:hep-ph/9701233].
- A. Dedes, H. K. Dreiner and U. Nierste, Phys. Rev. Lett. 87 (2001) 251804 [arXiv:hep-ph/0108037].
- R. Dermisek, S. Raby, L. Roszkowski and R. Ruiz De Austri, JHEP 0304 (2003) 037 [arXiv:hep-ph/0304101].
- 13. R. Fleischer, Phys. Lett. B **459** (1999) 306 [arXiv:hep-ph/9903456].