IMPACT OF THE BUILT ENVIRONMENT ON YOUTH PHYISCAL ACTIVITY AND OBESTIY

Gregory J. Norman, PhD

Department of Family and Preventive Medicine University of California, San Diego

What is the 'Built Environment'?

- Built Environment Community Design
 - Land Use
 - Transportation system connectivity
 - Design aesthetic qualities
- Physical Environment = built + natural landscape

How does the built environment affect weight status?

Conceptual Model

Built Environment and Diet

Evidence for Adults

- Community design variables related to adult moderate activity levels (Frank et al., 2005).
- County sprawl index associated with minutes walked, obesity, and hypertension (Ewing et al., 2003).
- Transportation and recreational activity related to neighborhood aesthetics (Hoehner et al., 2005).

Gathering Evidence for Youth

- Kligerman, M, Sallis, JF, Ryan, S, Frank, LD, & Nader, PR. Association of neighborhood design and recreational environment variables with physical activity and body mass index in adolescents
- Norman, GJ, Nutter, SK, Ryan, S, Sallis, JF, Calfas, KJ & Patrick, K. Community design and recreational environment correlates of adolescent physical activity and body mass index

Common Methods

- Accelerometer measures of physical activity (worn for 7-days)
- Geographic Information Systems used to create environmental variables

Neighborhood Buffer

Figure 1. Disconnected and connected community environments.

From: Frank, LD, Andresen, MA, Schmid. (2004) American Journal of Preventive Medicine.

Walkability Index

- How walkable is a neighborhood?
 - Land use mix
 - Retail floor area ratio (retail density)
 - Intersection density
 - Residential density

Study 1

- Cross-sectional design
- San Diego County
- 98 participants (mean age 16.3)
- .5 mile buffer

Variables

- Physical Activity
 - Minutes of moderate to vigorous activity
- BMI (weight to height ratio)
- Built Environment (12 variables)

Results

- Walkability index related to physical activity
 - r = .29 (p = .004)
 - Adjusting for gender and ethnicity (beta = .278, partial correlation = .268)
- No relationships found for BMI

Study 2

- Cross-sectional design
- San Diego County
- 799 participants (425 girls, 374 boys, 11-15, mean age 12.8, 43% ethnic minority)
- 1 mile buffer

Variables

- Physical Activity
 - Minutes of moderate to vigorous activity
- BMI percentile (age and gender normed)
- Built Environment
 - Residential density, intersection density, Retail-FAR, Land use mix, Walkability index
 - # private recreation facilities, # schools, # parks

Results

Physical Activity*	Beta	p-value
Girls		1
Number of private rec facilities	.110	.016
Intersection density	127	.006
Boys Retail floor area ratio	.135	.007

Weight Status

No relationships found for BMI

^{*} Multiple regression models controlling for age, ethnicity (non-white), highest household education level.

Summary

- Some evidence that built environment related to youth physical activity
- Variables explained small amounts of variance in physical activity
- Inverse relationship between girls' activity levels and street connectivity
- No evidence of relationship between built environment and weight status

Study Limitations

- Cross-sectional designs
- Did not separate transportation activity from leisure activity
- Relatively wide age range of adolescents
- Limited variation of environments

Implications

- Studies represent early investigations of a complex issue
- Further refinement of measures needed
- Only looked at proximity of environment factors
- Need to consider other environment factors
- Need to consider relationship between built environment and perceived environment