Supplementary Information

TAGster: Efficient Selection of LD Tag SNP in Single or Multiple Populations ---Algorithms implemented in TAGster

Consider a set S which contains M bi-allelic SNP markers $a_1, a_2, ..., a_M$ in K populations

$$S = \bigcup_{i=1}^{K} S_i$$
 and S_i contains M_i SNP markers $s_{i1}, s_{i2}, \dots, s_{iM_i}$ in population *i*. First, we

estimated pairwise LD measure r^2 for each SNP pair within each population. Two markers s_{im} and s_{in} are said to be in strong LD if the $r^2(s_{im}, s_{in})$ is greater than or equal to a pre-specified threshold value r_0 . Both are considered tag SNP for each other, in that s_{im} can be used as a surrogate for s_{in} , or vice versa.

Our aim is to find a tag SNP set, denoted by T, such that for

 $\forall s_{im} \in S_i, i = 1,..., K, \quad \exists a_j \in T \text{ that satisfies } r^2(a_j, s_{im}) \ge r_0.$ In our presentation, we introduce intermediate SNP sets, $P \text{ and } Q_i, i = 1,..., K \cdot P = \bigcup_{i=1}^{K} P_i$, where, P_i is called the candidate set which contains all the SNPs in population *i* that are eligible to be chosen as a tag SNP, Q_i contains SNPs in population *i* that are already tagged by at least one of tag

SNPs in T, i.e. $\forall s_{im} \in Q_i, i = 1, ..., K$, $\exists a_j \in T$ that satisfies $r^2(a_j, s_{im}) \ge r_0$. We

implemented several algorithms in TAGster to select tag SNP set T.

Algorithm 1: A greedy algorithm for single or multiple populations

(1) Set
$$T = \emptyset$$
, $P_i = S_i$ and $Q_i = \emptyset$, for any $i = 1, ..., K$;

(2) For each SNP a_j in P, calculate

$$C_i(a_j) = \begin{cases} \sum_{m=1, s_{im} \notin Q_i}^{M_i} 1(r^2(a_j, s_{im}) \ge r_0) & \text{if } a_j \in P_i \\ 0 & \text{if } a_j \notin P_i \end{cases}$$

(3) Find the SNP a_{\max} that has the highest $\sum_{i=1}^{K} C_i(a_j)$, and add a_{\max} to T. If

 $a_{\max} \in P_i$, add any SNP s_{im} in P_i with $r^2(a_{\max}, s_{im}) \ge r_0$ to Q_i and then exclude a_{\max} from P_i ;

(4) Repeat Steps 2-3 until $Q_i = S_i$ for any i = 1, ..., K;

Algorithm 2: An optimal solution for single population tag SNP

An exhaustive Search is performed within each population to find minimal number of population specific tag SNPs T_i for i = 1, ..., K.

- (1) Set $T_i = \emptyset$ and $P_i = S_i$, for i = 1, ..., K;
- (2) Within population *i*, partition SNPs in P_i into disjoint precinct P_{ij} , j = 1,...,n, so

that $r^2(s_{im}, s_{in}) < r_0$ for any two SNPs s_{im} and s_{in} that belong to different

precincts.

- (3) Within a precinct P_{ij} ,
 - i. For any two SNPs s_{im} and s_{in} in precinct P_{ij} , if

$$\sum_{l,s_{il} \in P_{ij}} abs((1(r^2(s_{im}, s_{il}) \ge r_0) - 1(r^2(s_{in}, s_{il}) \ge r_0)) = 0, \text{ we exclude}$$

one with smaller
$$\sum_{l,r^2(s_{ih},s_{il}) \ge r_0, h=m \text{ or } n} r^2(s_{ih},s_{il})$$
 from precinct P_{ij} .

- ii. Conduct an exhaustive search to find a set of minimum number of tag SNPs for SNPs in precinct P_{ij} and add these tag SNPs into T_i ;
- (4) Repeat step (3) for each precinct.

Algorithm 3: Two-stage solution for multi-populations

- (1) Conduct Algorithm 2 within each population to select a set of population specific tag SNPs T_i for i = 1, ..., K;
- (2) Set $T = \emptyset$, $P_i = S_i$ for i = 1, ..., K;
- (3) For each SNP t_{ij} in T_i , find any SNP s_{im} ($s_{im} \in P_i$ and $s_{im} \notin T_i$) that satisfy

 $r^{2}(t_{ij}, s_{im}) \ge r_{0}$, and then add them as well as t_{ij} into LD bin B_{ij} and exclude them from P_{i} ;

(4) With each LD bin B_{ij} , set $T_{ij} = \emptyset$. Find any SNP s_{im} in B_{ij} that satisfy

 $r^{2}(s_{im}, s_{in}) \ge r_{0}$ for any SNP s_{in} in B_{ij} , and then add s_{im} to T_{ij} ;

(5) Set $P = \bigcup_{i=1}^{K} P_i$, $P_i = \bigcup_{j} T_{ij}$. For each SNP τ_l in P, l = 1, ..., |P|, construct a one

dimensional array A_i with K elements, where

$$\begin{cases} A_{li} = j & \text{if } \tau_l \in T_{ij} \\ A_{li} = 0 & \text{if } \tau_l \notin P_i \end{cases}$$

(6) Cluster SNPs in *P* so that any two SNPs τ_m and τ_n in a cluster satisfy

$$\sum_{i=1,A_{mi}\neq 0,A_{ni}\neq 0}^{K} abs(A_{mi}-A_{ni}) = 0;$$

(7) Set $\Psi = \emptyset$. Find one SNP τ_i in each cluster with maximum $\sum_{i=1}^{K} 1(A_{ii} \neq 0)$ and add

it to
$$\Psi$$
.

(8) Cluster SNPs in Ψ so that any two SNPs τ_m and τ_n in a cluster satisfy

$$\sum_{i=1,A_{mi}\neq 0,A_{ni}\neq 0}^{K} 1(A_{mi} - A_{ni} = 0) > 0;$$

(9) For each cluster, set LD bin set B = Ø, record the LD bins in each population that can be tagged by any SNP in the cluster to B, and then conduct an exhaustive search to find a minimum set of tag SNPs in the cluster that can tag all LD bins in B. Add this set of SNPs to T.