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0B0BEXECUTIVE SUMMARY 
Petascale computing systems will soon be available to the DOE science community. Recent studies in 

the productivity of HPC platforms point to better software environments as a key enabler to science on 
these systems. To prepare for the deployment and productive use of these petascale platforms, the DOE 
science and general HPC community must have the software development tools, such as performance 
analyzers and debuggers that meet application requirements for scalability, functionality, reliability, and 
ease of use. In this report, we identify and prioritize the research opportunities in the area of software 
development tools for high performance computing. To facilitate this effort, DOE hosted a group of 55 
leading international experts in this area at the Software Development Tools for PetaScale Computing 
(SDTPC) Workshop, which was held in Washington, D.C. on August 1 and 2, 2007. 

Software development tools serve as an important interface between the application teams and the 
target HPC architectures. Broadly speaking, these roles can be decomposed into three categories: 
performance tools, correctness tools, and development environments. Accordingly, this SDTPC report has 
four technical thrusts: performance tools, correctness tools, development environment infrastructures, and 
scalable tool infrastructures. The last thrust primarily targets tool developers per se, rather than end users. 
Finally, this report identifies non-technical strategic challenges that impact most tool development. The 
organizing committee emphasizes that many critical areas are outside the scope of this charter; these 
important areas include system software, compilers, and I/O. 

Overall, the DOE platform roadmap shows that platforms are growing more complex and scaling to 
hundreds of thousands of processors. The increase in architectural complexity is rooted in multimode 
parallelism and heterogeneity. Taken together, these trends create a critical need for tools that can help 
application teams bridge these complexity and scalability challenges. 

Meanwhile, applications are becoming much more multifaceted as teams include a variety of languages, 
libraries, programming models, data structures, and algorithms in a single application. In fact, application 
teams are listing scalable tools for debugging, memory correctness, thread correctness, and multimode 
performance analysis as key factors in their productivity.  

In performance tools, emerging heterogeneous, hierarchical architectures will render static, manual 
approaches to diagnosing performance problems insufficient.  Rather, online measurement and adaptivity 
in performance monitoring are becoming important techniques to dynamically optimize choices of 
application performance instrumentation and analysis at large system scale and complexity.  Furthermore, 
the architectures and system software must make the necessary performance and reliability information 
available to these tools so that they can perform root-cause analysis with greater accuracy. 

In correctness tools, as in performance tools, the availability of scalable tools is particularly critical. 
Application teams specifically requested lightweight tools to diagnose memory, threading, and message 
passing errors that are easy to use and scale from their desktop system to their petaflop platform. 

Both performance and correctness tools rely on scalable infrastructures to provide tool communication, 
data management, binary manipulation of application executables, execution management for batch 
schedulers and operating systems, and a variety of other capabilities. Tool infrastructures must be 
efficient, modular, fault tolerant, and flexible. In addition, these infrastructures can speed the development 
of and reduce the cost of performance and correctness tools by providing standard, portable mechanisms 
for common capabilities. 
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In a similar manner, application teams need infrastructures for development environments, where this 
area includes tools for managing application builds and configurations, mixed language support, dynamic 
linking, program configurations, remote access, compiler infrastructures for application-specific analysis 
and transformations, and integrated development environments.  

Finally, an array of crosscutting, non-technical issues that can accelerate or inhibit the success of 
software development tools must be addressed. These challenges extend far beyond solving technical 
issues into areas that require strategic coordination among industry, government, and academia. Such 
issues include a well-defined mechanism for sustaining and hardening successful research tools; 
engagement with application teams, particularly for tool training; access to system testbeds and details 
about the system architecture and software; modular design and implementation of tool components that 
could be leveraged across many tools; and, support for international collaboration.  
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1 INTRODUCTION 
Petascale computing systems will soon be available to the DOE science community. To prepare for the 

deployment and productive use of these platforms, the DOE science community must have the software 
development tools, such as performance analyzers and debuggers, surpass application requirements for 
scalability, functionality, reliability, and ease of use. In this whitepaper, we identify and prioritize the 
research opportunities in the area of software development tools for high performance computing. 

Recent studies in the productivity of HPC platforms point to better software environments as a key 
enabler to science on these platforms. Not surprisingly, application scientists consistently indicate that 
they need software development tools that can function not only at small scales for initial development 
but also at the size of the largest runs (e.g., software that scales from the desktop to the petaflop). Clearly, 
understanding performance and correctness problems of applications requires running, analyzing, and 
drawing insight into these issues at the largest scale.  

Although the architecture of petascale systems is yet to be determined, the largest existing systems can 
help guide our expectations for those machines. The largest of these systems, the IBM BlueGene/L 
machine at Lawrence Livermore National Laboratory (LLNL), has 131,072 processors while the second 
largest system, the Cray XT4/XT3 system at Oak Ridge National Laboratory (ORNL) has 23,016. In fact, 
the five largest existing systems have over twenty thousand processors each. Further, current technology 
trends indicate that processor counts will continue to increase as we move towards petascale systems and 
beyond. 

Consequently, research for software development tools for petascale systems must address a number of 
dimensions. First, it must include elements that directly address extremely large task and thread counts. 
Such a strategy is likely to use mechanisms that reduce the number of tasks or threads that must be 
monitored. Second, less clear but equally daunting, is the fact that several planned systems will be 
composed of heterogeneous computing devices. Performance and correctness tools for these systems are 
very immature. Third, requires a scalable and modular infrastructure that allows rapid creation of new 
tools that respond to the unique needs that may arise as petascale systems evolve. Further, successful tools 
research must enable productive use of systems that are by definition unique. Thus, it must provide the 
full range of traditional software development tools, from debuggers and other code correctness tools 
such as memory analyzers, performance analysis tools and tools that support the requirements of building 
applications that rely on a diverse and rapidly changing set of support libraries. 

1.1 Workshop 
The remainder of this paper details the findings generated at the Software Development Tools for 

PetaScale Computing (SDTPC) Workshop held in Washington, D.C. on August 1 and 2, 2007. During the 
workshop, attendees participated in two separate sessions of two concurrent working groups. On the first 
day, the Performance Tools and Correctness Tools working groups met. On the second day, the Scalable 
Infrastructures and Development Environment Infrastructures assembled. The organizing committee 
emphasized that many critical areas were outside the scope of this charter; these important areas include 
system software, compilers, and I/O. 

The chairs of each working group were chartered with delivering a prioritized list of challenges for their 
specific topics as rated by the attendees. Although the scheme for rating priorities varied across working 
groups, in general, they ranked each specific challenge on two dimensions: likelihood and impact. 
Likelihood is the probability that the technology will not be available in the given timeframe. That is, 
given current trends, do you expect the target technology to be ready for petascale computing? Impact is 
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the severity of damage this item will inflict on the goals of petascale computing if the challenge is not 
addressed. Said differently, how important will the lack of a solution for this challenge be for applications 
targeting petascale systems. Taken together, these two dimensions were used to rate each technical item, 
and generate a specific rank.  

1.2 Report Outline 
We begin in the following section with a short summary of expected petascale hardware directions. We 

then review the requirements of software development tools for petascale systems as presented by 
application scientists in Section 3. The next sections examine four technical thrusts: performance tools; 
debugging and correctness tools; scalable infrastructures; and code development environment 
infrastructures. For each technical thrust, we review the current state of the art and the requirements for 
petascale systems, after which, we detail the challenges and our recommendations for addressing these 
requirements. Finally, we summarize the overall recommendations that emerged from the workshop in 
Section 8. 

2 DOE PLATFORM ROADMAP 
DOE is pursuing an aggressive path to capability computing with its leadership class systems. Table 1 

lists current and some planned leadership class systems. These systems are notable in their size, from tens 
of thousands to hundreds of thousand of processors, running a variety of operating systems, runtimes, 
schedulers, and processor architectures. 

Table 1: Present and Future DOE Platforms1. 
System Date Site Peak  

TFLOPS 
Processor Cores per 

Chip 
Cores 

Cray Red Storm 2004 SNL 124 AMD Opteron 2 ~25,000 
IBM BlueGene/L 2005 LLNL 360 PowerPC 440 2 ~131,000 
IBM Purple 2005 LLNL 93 Power5 2 ~10,000 
IBM BlueGene/L 2005 ANL 6 PowerPC 440 2 ~2,000 
Cray XT3/4 2007 ORNL 119 AMD Opteron 2 ~23,000 
Cray XT4 2007 NERSC ~100 AMD Opteron 2 ~20,000 
IBM BlueGene/P 2007 ANL ~100 PowerPC 450 4 ~32,000 
Cray XT4+ 2007 ORNL ~250 AMD Opteron 4 ~24,000 
Cray XT4+ 2008 NERSC ~300 AMD Opteron 4 ~40,000 
IBM BlueGene/P 2008 ANL 250-500 PowerPC 450 4 >100,000 
Cray Baker 2008 ORNL ~1,000 AMD Opteron 4 ~96,000 
IBM RoadRunner 2008 LANL ~1,700 AMD Opteron 

IBM Cell 
4 
9 

~200,000 

Sequoia Dawn RFP 2008 LLNL ~500 TBD TBD TBD 

 
From this existing roadmap, looking just two years hence, we can make several observations. While the 

complexity and scale of these systems are major challenges, the trends in these new systems make the 
challenges even more complex. Some of these trends include the following. 

 

                                                      
1 This table provides illustrative information about the existing and future DOE platforms. Future 
platforms are subject to budget approval, system and component availability, and other changes.  
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1. Increased scale: As the number of cores per chip increase, the number of total cores per system 
will increase. This increase in scale of hardware will challenge every aspect of software design, 
including the application, the programming environment, the libraries, the operating systems, the 
job schedulers, and the storage systems. At the large scale planned for future systems, the failure 
rate for system components used by the tools as well as the applications they are used on is going 
to increase significantly. Thus, innovative fault tolerance mechanisms, both in the applications 
and the software development tools will be particularly needed. 

2. Multi-mode parallelism: With single and dual core processors, users could almost ignore the 
combination of shared-memory and message passing in the same system. As processors grow to 
four cores and more, the programming models, tools, system software, and applications are going 
to have to incorporate support and specific optimizations for these cores explicitly.  

3. Reduced memory per core: A side effect of the multi-core trend is that there is a proportional 
reduction in the amount of RAM per core (holding platform memory size constant) that will be 
available to the application. This reduced memory size could add significant complexity to 
software design and performance optimization. 

4. Heterogeneity: Several new designs are starting to incorporate multiple processor devices in the 
same system. For instance, the IBM Roadrunner, currently under development for LANL, will 
combine a traditional AMD node design with several Cell processors per node. The complexity of 
the Cell processor, with its radical departure from the conventional design of general-purpose 
processors, presents significant programming challenges to the application community. In other 
examples, the Cray Cascade system for DARPA will introduce a variety of processor types, from 
scalar to multi-core to vector, in the same system. 

 
Taken together, the combination of the existing challenge of scale with these emerging challenges, such 

as heterogeneity, will require increased activity in the area of development tools if the DOE science 
community plans to benefit from the petascale platforms. 
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3 APPLICATION REQUIREMENTS FOR SOFTWARE DEVELOPMENT TOOLS 
A rational process for planning future directions for software development tools for petascale 

computing must reflect both the anticipated directions for petascale architectures and the requirements of 
applications that will run on them. For this reason, the SDTPC Workshop included presentations from 
three application team leads: Brian Pudliner from Lawrence Livermore National Laboratory; Robert J. 
Harrison from Oak Ridge National Laboratory; and John T. Daly from Los Alamos National Laboratory. 
These user talks provided direct requirements in three of the four technical thrusts addressed by the 
workshop’s working groups -- requirements were implied for scalable infrastructures but the users were 
concerned with functionality and not the underlying mechanism to provide it at scale. In this section we 
summarize and synthesize the user requirements. 

The user requirements are heavily shaped by the length of the life cycle of the applications. All three 
talks discussed applications that have both long development cycles and long periods during which the 
application is in "production." An important aspect of this life cycle is that "code is always in 
development -- even 'production' code." Thus, the users require assurances of stable support for a 
programming model, including the development tools that enable its use. Further, "new" applications are 
almost never entirely new -- they almost always take some existing code base to provide key underlying 
physics or mathematics functionality from an existing application. As a result, users are not open to tools 
that only target "new" applications or require significant changes to the established workflow of the 
application team. 

The tool support required can vary with the life cycle stage. Initial code developers need full featured 
debuggers and performance analysis tools and are willing to work with tools with relatively high 
overheads, such as some memory correctness tools. Similar functionality is also needed for code being 
maintained. In addition, support for version tracking, code coverage and regression testing (both 
correctness and performance) are useful at this stage. Supporting code ready to run at large scales requires 
yet different tools. Lightweight debugging functionality is essential at these scales, as are low overhead 
mechanisms for performance profiling and analysis. Codes in production use stress aspects of working 
with scripts or other mechanisms to interact with applications and large scale systems. In particular, many 
scientific applications increasingly rely on Python to provide a framework for steering application runs. 
Another key aspect of this life cycle stage that will become increasingly important with petascale systems 
is that GUI-based tools must provide a mechanism for fast and secure remote operation. Finally, tools to 
support fault tolerance, with a focus on data integrity, are expected to become even more important during 
this life cycle stage as the number of cores will increase dramatically in petascale architectures. 

Other aspects of the code development process also can shape tool requirements.  Developers use tools 
to make their code correct and performant.  However, different developers use tools differently, whether 
due to personal preferences, time constraints, or level of expertise. Requirements for tool architecture, 
interoperation, and training should take into account usage aspects if tools are to be accepted and applied 
effectively in general development practice.  For instance, tool refactoring to decompose specific 
functionality into individual components could allow for targeted use of a tool component with a smaller 
learning curve.  On the other hand, a tool framework that integrates functionality might better support 
automation of multi-step operations.  In either case, it is important to emphasize training to raise the level 
of tool competency and expected return on tool investment.  
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One common aspect of the code development paradigm for scientific applications merits specific 
mention. Applications often rely on many third party libraries. For a variety of reasons, the source of the 
libraries is generally integrated into the application build infrastructure. However, this integration cannot 
be complete in order to allow updates of that source and support for using third party libraries in this way 
is inadequate. As a result, it can represent a significant cost to developers. Further, they anticipate this 
cost will increase in systems that require cross-compilation, as are commonly proposed for petascale 
architectures. Simply put, this cost must be reduced, particularly in light of programs like SciDAC that 
are creating significant support software in the form of libraries for a variety of common needs including 
solvers and meshing packages. 

The increasing prevalence of coupled multi-disciplinary codes has combined with the long life cycle of 
scientific applications and the use of third party libraries to make codes larger and more complex. As a 
result, tools must handle larger executables. Tool developers are already seeing demand for tools to 
handle codes of several hundred mega-bytes to giga-bytes of executables. In addition, the rise of 
component based programming is resulting in applications that have hundreds if not thousands of shared 
libraries. 

The dominant programming model of DOE Science applications is currently MPI although Harrison 
noted that computational chemistry codes make heavy use of one-sided communication mechanisms other 
than that available in MPI-2. This leads to a clear requirement for tools that facilitate the use of MPI, both 
in performance and correctness, as well as the ability to accommodate alternative communication 
mechanisms. In addition, application programmers anticipate needing to use multi-level parallelism for 
expected petascale architectures. These models would include the existing MPI or one-sided 
parallelization as one level. Harrison mentioned coarse grain task level parallelism (similar to the 
component model in the Community Climate System Model), as another possible level. More 
importantly, most application teams expect that efficient exploitation of fine grain parallelism through 
shared memory threading will be essential on future architectures, petascale and beyond. 

The expected addition of thread level 
parallelism drives many user requirements. 
Users strongly desire portable tools that 
provide automatic analysis of the correctness 
of threaded applications (e.g., freedom from 
race conditions). The robustness of the 
support for threads in traditional debuggers 
and performance analysis tools also concerns 
them. 

In general, users do not perceive existing 
debuggers as scaling beyond about 1024 MPI 
tasks when applied to real applications. 
Further work to improve their scaling is 
needed. However, application developers 
particularly want lightweight debugging tools 
that scale to the full size of the platform and 
provide information that assists in narrowing the problem. Particularly of interest are tools that identify 
commonalities between MPI tasks or that limit issues to specific aspects of the application or even 
identify when the issue is due to some underlying hardware problem. These tools can allow effective use 
of traditional debuggers on subsets of the large job. In addition, users often find print statements are an 

 

Figure 1: Visualizing Memory Usage over Time. 
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effective debugging mechanism although it is easy to see how it can break down at very large task counts. 
Thus, some mechanism to support this paradigm at large scale is desirable. Tools that monitor application 
progress and determine if a job is hung or otherwise failing could save significant wasted resources. 
Pudliner noted that a scalable Python debugger would be nice but was not a priority since the existing 
tools are adequate in this respect. Likewise, tools must work with applications that use common OS 
features, such as dynamic libraries.  

All of the users noted needs for support for many aspects of memory usage. Since we anticipate reduced 
main memory per core in petascale architectures, developers need tools that help them understand the 
scaling behavior of memory allocations and usage. Tools to detect correct memory semantics employed 
remain important. However, new tools that monitor how often memory regions are touched would 
support optimizations that simply recompute quantities rather than using significant memory to store 
them. Even tools that monitor how much memory is being used in a parallel job over time would be 
useful, as shown in Figure 1. To be applied on petascale application runs, all of these tools must have 
little overhead, a criteria that many existing memory correctness tools fail to meet.  

 Several performance issues are anticipated to become of increasing importance. Perhaps at the top of 
the list is load balancing. Tools are needed to detect load balance problems and to assist application 
dynamic load balancing algorithms. Other significant performance concerns include mapping application 
communication topologies to scalable network architectures such as tori. 

Pudliner concluded his talk with a list of priorities that he anticipates for software development tools for 
petascale computing, roughly in priority order: 

1. A means of debugging at scale; 
2. Memory debugging; 
3. Performance analysis tools: serial; parallel (at scale); and thread; 
4. Memory characterization tool; 
5. Thread correctness tool if necessary; 
6. A means of characterizing/optimizing for topology if necessary; 

He stated that the top four were close in priority. The sixth was further off in that it depends on 
petascale architecture directions. However, the major platform directions discussed in the previous section 
all employ networks that reward communication locality so it is likely to be an important issue. Both 
Harrison and Daly indicated general concurrence with the points that Pudliner raised. 

4 TECHNICAL THRUST – PERFORMANCE TOOLS 
Chairs:  Bernd Mohr (Forschungszentrum Jülich) 

Daniel Reed (Renaissance Computing Institute) 
 

The performance tools working group was charged to explore the following topics related to software 
support and infrastructure for performance analysis, related to future petascale systems: 

1. Analysis, modeling, and optimization; 
2. Interactive and automatic approaches; 
3. Data management and instrumentation; 
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4. Hardware and operating system support; 
5. Visualization and presentation. 

This group, like the other working groups, was asked to assess the current state of the art in each of 
these areas, identify the needs and requirements for performance tools at petascale and present a set of 
focused findings and recommendations. The latter were to be ordered based on priority and challenge type 
(technical, finding, policy or training) and the impact (high, medium or low) and risk associated with the 
challenge (high, medium or low). 

The group began the discussion with the sobering realization that the software tool developer 
community is small, though tightly knit, with members of academia, industry, national laboratories and 
government. Relatively few academic groups conduct research on scalable performance analysis and, in 
consequence, the pool of new researchers, particularly those who can obtain a national security clearance 
and work directly with classified codes, is very small. However, this has led to deep collaborations not 
only across the academic, laboratory and industry communities but also between groups in the U.S. and in 
Europe. Collectively, the workshop attendees have long and deep working relationships and shared 
experiences that quickly focused the discussion on old and new challenges. 

The group also acknowledged that it has been debating these challenges and making community policy 
recommendations for over twenty years. This conundrum is a consequence of the rapidly changing nature 
of high-performance computing and performance tool dependence on a long chain of hardware and 
software attributes. Powerful, effective performance tools depend on hardware, operating system, runtime 
library and compiler infrastructure. Because all of these elements are themselves in flux, particularly early 
in a product lifecycle, robust performance tools are rarely available when they may most be needed – for 
early use on new systems. Finally, performance tools are often a loss leader for vendors, dictated by 
contract specifications but rarely the proximate cause for system purchase. All of these technical, 
economic and political attributes exacerbate performance tool research, development and deployment.  

4.1 Performance Tool Status 
There is general agreement that the basic elements of performance tuning (i.e., instrumentation, 

measurement and analysis) are well understood and effective when applied judiciously. During the past 
twenty years, the performance tool substrate has been well defined and basic infrastructure support has 
improved. High-resolution, global clocks (for event ordering), hardware performance counters, and basic 
performance measurement libraries are now standard on (almost) all platforms. 

There are standard software instrumentation techniques for FORTRAN and C, although C++ 
instrumentation with templates is more problematic. Analysis of message passing applications based on 
MPI is well supported, as is instrumentation of user code regions and functions, but there is less effective 
support for OpenMP and thread-level parallelism. This missing support is rising in importance as 
multicore processors, particularly heterogeneous multicore, become more common. 

The standard measurement techniques, based on statistical sampling, profiling and event tracing are 
well known and are supported by a diverse tool base. However, few of these tools are truly scalable to 
systems with tens or hundreds of thousands of processors. As this suggests, analysis techniques are the 
weakest of the three elements of the performance tool chain, as most measurement techniques produce too 
much data, and the analysis tools are rarely able to identify root performance bottlenecks and suggest 
effective remediation. Simply put, deep analysis is largely a user function, rather than a tool capability.  

We need a new generation of performance tools that automate a larger fraction of data analysis, 
emphasizing key code segments and execution threads. The visualization techniques of the 1980s, which 
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showed each thread of control or message interaction, will not scale to 500K parallelism. We lack both 
the screen real-estate and pattern recognition skills to recognize rare events in a sea of data. 

This highlights the fact that performance tool research and development, like that for debugging tools, 
spans both technical (measurement and analysis) and usability issues. Effective performance tools must 
not only capture and present relevant performance data with low overhead, they must do so in ways that 
application developers find intuitive and useful within the standard software development and support life 
cycle. Given the rapid flux in machine architectures and the long lifetime of scientific and weapons codes, 
this is a daunting human-computer interaction (HCI) challenge.  

Similarly, current analysis tools support only homogeneous systems (i.e., those with little differentiation 
among processors). The rise of multicore processors, particularly heterogeneous multicore processors, and 
systems with specialized co-processors (GPUs, FPGAs, Cell and others), poses new challenges, and no 
extant tools are effective in analyzing any but the most trivial codes.  

The working group also believes current tools focus excessively on time as a metric, ignoring the rising 
importance of memory analysis, particularly as new and emerging systems have ever deeper memory 
hierarchies. While time-to-solution is the most important metric in HPC, it can be difficult to diagnose 
and correct performance problems without other metrics, such as locality and reuse of data. In this sense, 
memory can also be construed to include I/O systems, a limitation for checkpointing and recovery on 
failure-prone petascale systems.  

Finally, although the group devoted little time to discussing performance modeling as an enabling tool 
for performance optimization, the group did believe modeling is important, both for system 
characterization and for performance prediction. With this backdrop, Table 2 summarizes the working 
group’s assessment of current performance tool capabilities and techniques. 

As the table suggests, we have 
effective tools and techniques for 
smaller, extant systems, but new 
approaches (both research and 
development) will be needed for 
emerging heterogeneous 
petascale systems. Substantially 
greater research will be needed 
for automated and semi-
automated code optimization if 
we are to reduce the already large 
cognitive burdens based by scientific application developers. We discuss this topic in greater detail below. 

4.2 Petascale Requirements 
Petascale systems bring new challenges and not simply from the larger number of processor cores.  

Increasingly complex applications with code coupling, multiple programming models and distributed data 
sources will exacerbate already complex performance analysis and optimization problems. When coupled 
with dynamic adaptivity and hardware heterogeneity, new tool approaches will be required. 

Specifically, the working group believed performance analysis tools must include greater automation 
for detecting anomalies, correlating and clustering performance data and behavior and for reducing data 
to avoid excessive execution perturbation and user confusion. This will also require new support for 
programming model abstractions and the ability to elide detail and complexity and to reveal them only 

Table 2: Performance Tool Assessment 
Capability Assessment 

Measurement/analysis WIP 
Modeling WIP 
Optimization LI 
Interactive/manual WIP 
Automatic WIP/Challenge 
Data management WIP 
Instrumentation WIP 
Hardware and OS support WIP 
Visualization/presentation WIP 

 Legend: WIP (work in progress), LI (little insight), IH (in hand)
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when required. The rise of programming model heterogeneity (i.e., both implicit and explicit parallelism), 
together with hardware diversity and deep parallelism hierarchies, will necessitate new tool approaches. 

Petascale systems (hardware, system software, libraries and applications) must be resilient to the 
inevitable faults expected with million way parallelism and large numbers of commodity components. 
This suggests that performability (i.e., hybrid assessment of performance and reliability) will be one of 
the major new frontiers for petascale performance analysis tool research and development. In turn, this 
will demand new multi-level instrumentation and metrics and scalable presentation metaphors and models 
that can highlight both performance and reliability problems for computing elements, memory systems 
and I/O systems. 

One immediate consequence of performability analysis and optimization is the fusion of offline and 
online techniques. In particular, runtime optimization must maximize performance in the face of hardware 
and software failures, allowing applications to continue execution, albeit perhaps by shifting elements of 
the computation to other resources, ensuring accuracy given transient failures (e.g., memory or processor 
bit errors) and balancing on-chip and off-chip parallelism for multicore processors. The working group 
also believed that additional training and education will be required to create a new generation of 
application scientists and performance tool developers. As noted earlier, performance optimization 
complexity is rising rapidly, yet the pool of performance tool researchers and developers has not grown 
substantially. 

Finally, there was strong agreement among the working group members that petascale performance 
analysis is not simply a scaling of terascale problems. New approaches will be required, dictated by code 
heterogeneity, hardware and software reliability and system scale. This is in striking contrast to terascale 
experiences, where approaches used with 10-100 way parallelism were scaled to 1000 way parallelism, 
albeit not without difficulty. 

4.3 Findings 
As noted above, petascale systems will be of higher complexity and greater heterogeneity than terascale 

systems. Consequently, petascale performance analysis is qualitatively more complex than that on 
terascale systems.  Today, we rely primarily on manual, labor intensive methods using static and offline 
approaches.  We instrument applications, capture performance data during application execution and then 
analyze the data after the execution completes.  In the petascale regime, the current performance tool 
practice will be increasingly challenged as the amount of performance information increases.  Petascale 
tools must be complemented with online, adaptive methods that measure and optimize application 
behavior automatically during execution, rather than solely relying on post-mortem user assessment and 
adjustment. 

Online, adaptive optimization will require greater integration of tool components. It will also place 
greater stress on system software and runtime libraries for performance tool support, the subject of the 
infrastructure working group. Intuitively, we need a new set of tool building blocks than can serve as the 
basis of a diverse suite of experimental performance tools via component reuse. This is the software 
analog of the flattened hardware hierarchy, where old abstractions are being replaced by end-to-end 
hardware optimization – so-called holistic design. Finally, we need better mechanisms for hardening, 
documentation, support and user training. The “valley of death” between research prototypes and robust, 
easily usable tools must be bridged if we are to identify those ideas that are both intellectually interesting 
and practically useful. This may require new and more flexible funding approaches, together with longer-
term support and transition mechanisms. 
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Table 3: Performance Tool Challenges. 
Challenge Type Risk Impact 

User engagement and training Training High High 
Additional information sources (e.g. I/O, memory) Technical High Medium 
Long-term maintenance and support Funding and policy High High 
Funds for technology transfer and deployment Funding and policy Medium Medium 
Application-driven development of tools  Medium Medium 
Substantial advances in automation of diagnosis, optimization and 
anomaly detection 

Technical High High 

Developing live techniques to extend post-mortem Technical Medium Medium 
Integrated, persistent monitoring components Technical Medium Medium 
Support for multi-component and multi-disciplinary applications Technical High Medium 
Detection of load imbalance Technical High High 
Support for heterogeneous and hierarchical hardware  Technical High High 
Support for new and hybrid programming models Technical, funding, 

policy and training 
Medium Medium 

Add performance analysis to CS curriculum Training and policy Low Low 
 

4.4 Recommendations 
Based on the working group’s status assessment and findings, the group classified a set of performance 

tool challenges based on the risk of failure and the potential impact (benefit) of success. Table 2 
summarizes these challenges and recommendations. Each of these is broadly connected to the findings 
discussed above.  

Of these, the most important, based on perceived risk and benefit, are as follows. 
• User engagement and training.  Long experience in developing performance tools has 

demonstrated the need for tighter integration between tool and application development teams, 
from the standpoints both of understanding requirements and of providing adequate training. We 
discuss details of this cross cutting challenge in Section 8. 

• Long-term maintenance and support. Productization was also identified as particular concern by 
the performance tool working group. It again actually applies across the areas considered at the 
workshop and is discussed in more detail in Section 8. 

• Automated diagnosis and remediation. As noted earlier, the scale and complexity of petascale 
systems will necessitate new approaches to performance optimization, shifting from offline, 
manual analysis to greater automation.  This is a major technical challenge that will require new 
research funding and technical insights.  Failure to address this challenge will increase the 
probability that emerging petascale systems are used inefficiently. 

• Load imbalance detection. The petascale manifestation of Amdahl’s law, load imbalance 
becomes increasingly critical when a single thread can delay hundreds of thousands of others.  
Current tools focus largely on metrics, rather than causes.  New approaches are needed for 
analysis and presentation. 

• Heterogeneous, hierarchical architecture support. Finally, the multicore revolution will bring 
100-way parallelism on each chip, albeit with diverse cores and capabilities. For almost all 
systems, this architectural direction will necessitate the use of multilevel parallelism, in general, 
and threading in particular. Thus, performance tools will need to target multilevel paradigms, 
including hybrid OpenMP/MPI programs. The Los Alamos Roadrunner system, with Opteron 
SMPs and Cell accelerators is a forerunner of heterogeneous architectures. Performance tools 
must capture and relate performance and reliability problems to source code in ways that make 
multilevel performance optimization possible and practical. 
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5 TECHNICAL THRUST – CORRECTNESS TOOLS 
Chairs:  Susan Coughlan (Argonne National Laboratory) 

Curtis Janssen (Sandia National Laboratories) 

5.1 Topics 
The primary goal of correctness tools is to provide confidence in application code correctness and to 

potentially suggest recommendations on repairs to users. The correctness tools working group was 
charged with exploring the following topics: 

1. Instrumentation; 
2. Data collection; 
3. Data management; 
4. Attribution; 
5. Automatic correctness recommendations; 
6. Visualization; 
7. Data mining; 
8. Hardware and operating systems support for correctness. 

Ensuring that programs run to completion and produce a correct result remains a challenging and 
expensive problem in all areas of software development. This is no less true for parallel applications that 
are intended to scale to petascale-class architectures and beyond, which present unique challenges for 
these goals. Developing applications that run as multiple processes on multiple machines, typically with 
data communication patterns that tightly couple the processes together, is exceedingly difficult. Petascale 
machines will layer on top of this the challenge of dealing with additional parallelism models such as 
threading, or heterogeneous computing resources. It is even likely that many applications will need to 
reduce interprocess synchronization to run efficiently at such scales by relying on global address space 
methods and active messages, as is already done in several quantum chemistry applications, for example. 
Furthermore, by making so much computing power available, petascale machines will change the nature 
of applications, allowing more detailed coupled multi-scale, multi-physics computations. While 
developers look for bugs by attempting to reproduce errors with small inputs at small scales, this is not 
always possible, and it will be necessary to give developers the capability to debug and to analyze 
programs running at full scale. These multiple dimensions of complexity require that providers of 
petascale-class machine carefully review the available correctness tools, find their deficiencies in a 
petascale environment, and chart a direction to resolve these deficiencies. This report will review classes 
of tools that are required by developers to ensure code correctness and give an initial estimate of the 
priority of each gap and difficulty in closing the gaps. 

5.2 Scope 
We will restrict our attention to tools that developers will use to ensure that programs run to completion 

and give the expected result. We will not discuss validation tools, tools for ensuring that a program's 
results agree with experiment. Validation is an important area and could not be given adequate attention 
within the scope of the Correctness Tools Working Group. Also, performance regression in a program can 
indicate a bug, even if the correct answer is obtained. Since another working group was dedicated to 
performance tools, we do not discuss performance regression testing here. 
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Tools that are included are the traditional debuggers that allow programmers to set breakpoints, to run, 
to step though, and to examine and to modify data in a running program. At large scales, lightweight 
versions of these tools that provide critical debugging capabilities, while providing more scalability than 
traditional debuggers, are needed. Other debugging tools include tools that check for incorrect memory 
references and for efficient memory usage. Also, because of the additional complexity caused by 
parallelism, tools are needed to enable users to detect incorrect use of parallel programming techniques. 
Such tools include thread correctness checkers and Message Passing Interface (MPI) usage checkers. A 
complicating factor is that as machines became larger, and the average time between hardware errors 
decreases, it will be more and more important for developers to be able to distinguish between application 
software errors, library errors, middleware errors, and hardware errors. Finally, detecting potential at-
scale errors before running at scale could save a great deal of effort. Tools examining trends for a series of 
small-scale runs, static analysis tools, and formal verification tools could play a role in this regard. 

5.3 Debugging Tools 
Traditional debuggers allow programmers to manipulate an application by actions that include setting 

breakpoints, stepping though source lines, and examining and changing data in a running program. 
Currently, a job running on four thousand processors is the largest supported use of a traditional 
debugger, and it is expected that the practical upper bound for the number of processors is in the range of 
one to eight thousand in the best case scenario. On most current systems the practical upper limit is on the 
order of several hundred processes. Beyond that developers will need a combination of lightweight 
debugger techniques, becoming progressively lighter and more autonomous in analyzing the application 
to isolate the problem. 

Because of the complexity of petascale applications and the large number of code and hardware groups 
that are either directly or indirectly involved in an application, it is highly desirable to isolate the cause of 
bugs as precisely and definitively as possible. Such root cause analysis must also consider possible 
hardware sources for the error, incorporating information from the machine's Reliability Availability and 
Serviceability (RAS) system about the health of the hardware. 

5.4 Memory Usage Tools 
Memory usage tools fall into two broad categories: tools for monitoring memory utilization, including 

memory leaks and overall memory consumption. and tools to find programming errors in the way 
memory is accessed. The second category of memory tool includes lightweight tools that identify simple 
array overruns, as well as heavyweight tools that instrument the running application to monitor all loads 
and stores while tracking which memory locations contain valid data. All of these tools can locate 
programming errors before the error manifests itself as an incorrect answer or job interrupt. The 
heavyweight memory tools are the most informative, as they are the only tools that can detect incorrect 
memory accesses into incorrectly or correctly allocated memory at the very instruction that caused the 
problem. Portable tools for monitoring memory utilization are missing and this is a specific issue with 
developers. Other memory tools are currently believed not to have particular issues, except for the open-
source business model and scalable infrastructure issues that were discussed above.  

5.5 Tools Specifically for Parallelism Correctness Checking 
Users need several tools in order to detect incorrect use of parallel programming techniques. Such tools 

include thread correctness checkers and MPI usage checkers. Thread correctness checkers are very similar 
to memory tools. However, instead of being concerned with the validity of memory references, they 
verify properties including that no potential race condition exists. No threading tool that runs on all 
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processors of interest to DOE currently exists. Further, no existing threading correctness checker supports 
the hybrid threading/MPI paradigm, even at small scales, that will be relevant for petascale systems due to 
slowdown incurred when using existing tools. 

Tools for checking MPI parallelism exist, however the full potential of this category of tools has yet be 
realized. For example, trends recorded by tools from a series of runs at small scale could be used to 
predict potential undesirable behaviors that would arise at large scale. 

5.6 Static Analysis and Formal Verification 
The best time to find a bug is before the application is executed. Static analysis tools to check program 

style and find certain programmer errors have been available for some time. In fact, compilers continue to 
have more and more static analysis capability built into them. However, from a petascale tools 
perspective, additional checks could be done that are outside the scope of ordinary static analysis tools. 
An example of such checks include locating integer operations that could overflow at scale and checking 
parallel programming constructs for correctness. 

It is also possible to detect flaws in algorithms before the programming stage by using formal 
verification techniques. Such techniques would permit parallel programming constructs to be rigorously 
verified for guaranteed correctness, eliminating the need for a trial and error approach to implementing 
and debugging a faulty algorithm. 

Table 4: Correctness Tool Challenges. 
Challenges Priority Difficulty 

Scalability of traditional debuggers being able to do the same things on more nodes is too limited 8 Med/High 
Memory leak/high water mark tool to instrument libraries is needed 7 Medium 
Existing thread correctness checkers are neither multi-platform nor designed for multilevel parallelism 6 High 
Need lightweight tools to perform root cause analysis 4 Med/High 
Interface between traditional debugger to light-weight debugging tools (tool collaboration interface) is needed 
provide to a smooth transition from super light-weight to super heavy tools 

4 Med/High 

Not enough extreme scale lightweight debugging tools 4 Med/High 
Missing lightweight tools to debug core files at large scale 4 Medium 
Missing the ability for RAS systems that applications and system software can use to learn about hardware 
causes for program faults and to allow the fault to be handled 

3 Medium 

Open source support model needs to be elucidated, as well as the role of vendors 3 Medium 
Compiler infrastructure needed to build the static analysis tools is missing 3 Med/High 
New ways to represent the output of debuggers, pre-analyzed for users, are needed 3 Med/High 
Operating system support (overriding issue for pretty much everything) remains an issue for many tools 3 Med/High 
User education efforts insufficient for many tools 2 Med/Low 
Hardware/system software coverage test suites are not exhaustive 2 Medium 
Common open infrastructure (with performance expectations that are documented) is missing 2 Med/High 
Many static analysis tools are still needed, particularly for Fortran 2 Medium 
Ease of use often missing for many tools 2 Med/High 
Tools that use formal verification methods to identify deadlocks, livelocks, race conditions, and other errors in 
parallel software are missing 

2 Med/High 

Need MPI usage trend tools that run at small scale could be (but are not) used to predict issues that could 
occur at large scale 

1 Med/High 

Build related failures are not identified, including software that are not built consistently (different flags, 
different compilers) 

1 Medium 

Extensibility of the debuggers for more user-driven analysis capability is needed 1 Med/High 
Impossible to develop tools for scale without access 1 Medium 
No standardized test harness for regression testing exists 1 Medium 
Design by contract, assertions, parallel assertions are at best poorly supported 1 Med/High 
 

5.7 Miscellaneous Issues 
Other issues, some of which are not represented in the gaps below, are worth discussing. First, no 

standardized test harness for regression testing is widely used. In addition, over time, the performance of 
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a system can degrade and hardware components (such as memory) can start to fail. Pre-emptive 
performance and correctness regression testing on a system should be done at regular intervals to ensure 
that jobs accomplish useful science rather than debug system problems. An exhaustive regression test 
suite as well as research to determine when and what to test to minimize testing time and to maximize the 
system's protection, is needed. Second, consistency in software builds becomes an issue in complex 
applications involving many libraries. Using different compiler flags for different parts of the application 
can result in errors, or limit the functionality of tools. Finally, there is no formal support for design by 
contract in languages typically used by the parallel computing community, and scalable support for 
assertion checking (and the subsequent error reporting) is nonexistent. Assertion checking involving 
explicit parallelism (say, ensuring that a variable has the same value on all nodes) is also lacking. 

5.8 Correctness Tool Working Group Findings 
Table 4 lists a number of gaps in correctness tools for petascale computing that the correctness tools 

working group identified. However, a tool or requirement not being listed as a gap does not mean that the 
tool is not essential. Failure to support existing, successful capabilities, or not addressing the gaps 
affecting all correctness tools could result in additional gaps. 

Working group participants were asked to prioritize the gaps by distributing a maximum of seventy 
points among all the gaps, with more points being allocated to higher priority gaps (the higher the 
priority, the greater the impact of addressing the gap). Everyone was also asked to rate the difficulty of 
closing the gap as low, medium, or high. Table 4 gives the averaged priorities. The difficulties were 
averaged over just those responses that rated the difficulty of each particular gap. 

The ratings exhibited considerable variability. For nearly all gaps, the standard deviation of the 
priorities was greater than the average priority. The only exception was for the thread-correctness tool 
gap, which had a smaller standard deviation and, hence, for which there was a greater degree of 
consensus. The highest priority needs are 1) improvement of the scalability of traditional debuggers, 2) 
memory usage tools, and 3) thread-correctness tools. The total average number of priority points assigned 
to these three were twenty-one out of seventy. Just below that was a cluster of four gaps that totaled to 
sixteen points. These gaps all related to lightweight debugging capabilities. Beyond that, a number of 
gaps were identified for a total of twenty-four in all. 

6 TECHNICAL THRUST – SCALABLE INFRASTRUCTURES 
Chairs:  Al Geist (Oak Ridge National Laboratory) 

Jeffrey Hollingsworth (University of Maryland) 
 
The area of scalable infrastructures is defined as software and hardware that are used primarily by tool 

builders in creating tools. However, many types of infrastructure may also be useful by applications teams 
in building internal tools and even for directly instrumenting their programs. For example, the PAPI 
performance counter library would be considered tool infrastructure since it is used to build other tools. 
However, many applications groups also directly use PAPI. 

The goal of tool infrastructure is the development of useful bits of software that make it easier to create 
new tools. By packaging commonly needed features, tool innovation can be encouraged by allowing a 
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tool developer to concentrate on the new aspects of their tool rather than re-creating commonly needed 
infrastructure. 

6.1 Topics  
Tool infrastructure complexity can range from a relatively simple library with a few hundred lines of 

code to complex systems with dozens of functions and hundreds of thousands of lines of code. 
Developing the infrastructure described here can sometimes be done by tool developers working alone. 
However, frequently tool infrastructure is at the edge of tools and other disciplines, such as architectures, 
operating systems, compilers, and execution environments. We try to note where there are interactions 
required from other areas. In this report, we group tool infrastructure into six thematic areas: 
 

1) Tool Communication includes the areas of communicating information within a tool when tool 
components are located on different nodes in a parallel system. It also includes the need of tools 
to get information from external sources such as the hardware, operating system, compiler, 
scheduler, and runtime system (libraries and scheduler). Another important aspect of tool 
communication is the ability of tools to exchange information between tools. An important aspect 
of communication is reuse. Reuse can include both tool components (code) and information about 
applications (data). 

2) Data Management includes all aspects of gathering, reducting, and storing information about 
applications. It includes not only directly measured information (e.g., trace of operations, or 
sampling of counters), but also metadata about the execution environment in which the data was 
gathered (e.g., machine configuration, library versions). Data reduction techniques include any 
ways in which the collected performance data can be aggregated, distilled, or otherwise 
condensed to reduce the volume of data resulting from long running programs executing on 
leadership class machines. Since leadership class machines are national assets with a 
geographically distributed user base, an important aspect of data management is ensuring tools 
work well when there are large latencies between users and the machines. 

3) Scheduler Issues involve the relationship of tools to the batch scheduler on the system. Tools 
must closely coordinate with the scheduler on issues such as: tool deployment (launching the tool 
onto nodes of the system) and tool composability (the coordination of multiple tools that may 
wish to run at the same time on the same application). Tools also need to be able to make requests 
of the scheduler for additional resources (e.g., extra nodes or memory) for either the tools 
themselves or for tool functionally such as fault tolerance. In addition, tools need information 
from the scheduler about the network topology and other attributes of the assigned nodes. 

4) Operating System Issues for tools include the availability of process control interfaces (e.g., 
/proc or ptrace), access to thread information including thread creation and dispatch, and low 
overhead access to hardware counters. In addition, the underlying operating system must include 
sufficient support for the scale of the machine (e.g., maximum number of open file descriptors). 

5) Binary Manipulation is the ability to gather data from compiled programs and to insert code into 
binaries to create new modified binaries. Related issues include compiler hooks to provide 
information about transformations and optimizations. Other challenges include binary analysis of 
optimized and stripped programs, and the need to generate new binaries with instrumentation. In 
addition, other information such as a stack un-winder is required to allow the creation of runtime 
tools. 
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6) Miscellaneous Issues include the ability of tools to survive (or at least not crash the application) 
when a machine fault occurs, and scalable support for tracing such as parallel file I/O support. 
Additional issues include the need for tools to work with applications that are partially written in 
scripting languages. 

6.2 Current Status  
Before looking at the future tool needs, we briefly review the status of tool infrastructure in the six 

areas outlined above. 
In the area of tool communication, many tools develop their own styles of communications. The major 

two common infrastructure components are PAPI for hardware counters, and MRNet for inter-tool 
communications and data reduction. At the lower level, OS specific counter libraries such as perfmon2 
(Linux) and hpm (AIX) are available, but not on all platforms. Data management tools consist of the 
research projects PerfDB, PerfDMF, and PerfTrack. There are SciDAC efforts in the SDM and PERI 
projects to develop interoperation between these data management frameworks. 

Operating system and scheduler interfaces are available in various forms. While there is diversity in 
implementation, functionality is generally available on machines using traditional operating systems (e.g. 
Linux and AIX). However, a major limitation for tool builders currently is the limited OS support for tool 
functionality on node micro-kernels such as the Catamount and BlueGene kernels. Process control, 
sampling, and memory information are all inadequate on these micro-kernel systems today. Scheduler 
support for co-allocation of nodes for tools remains limited. Support for getting network topology 
information has been limited at best. Some thread information is available for MPI via the threadDB 
interface, or for openMP via the performance interface detailed in an OpenMP ARB white paper. 

A variety of research has been done in the area of binary manipulation. For online binary editing, tools 
such as Dyninst have provided multi-platform support. In the area of static binary re-writers, a collection 
of platform specific tools such as Atom, Pin, and Valgrind are (or have been) available. Many tool groups 
have built their own binary analysis tools to meet their needs, but sharing analyses between tools has been 
limited to date. Compiler hooks to support analysis and instrumentation have been included in gcc and the 
ROSE source-to-source translator. However, to date well documented interfaces to this type of 
information are not available from compiler vendors. To support open tracing of programs, the Open 
Trace Format (OTF) standard has been developed. To date, several tools can read and write this format, 
but additional adoption and standardization of information in the traces is still needed. 

6.3 Infrastructure Findings 
Today, tool infrastructure reuse is uncommon. The emphasis on research prototypes rather than 

production tools has limited reuse. The lack of reuse has limited tool innovation since the effort required 
to explore a new tool idea is unduly large when vast amounts of code must be written to explore an idea.  

Due to the growing complexity of petascale systems, applications and systems will be more 
dynamically adaptable. Runtime support for fault tolerance, adaptive load balancing, and varied compute 
models will all require additional tool support, and the need for tools to measure and respond to changes 
during program execution. 

Tools need communication abstractions beyond TCP/IP sockets. With the increased use of micro-
kernels and high-speed networks, having communications between tool components rely on TCP/IP 
networks is no longer adequate (or even possible in some cases). To promote reuse and integration, these 
tool communication abstractions must be standardized 
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The cost of supporting tools for multiple platforms and operating systems is straining tool developers, 
both commercial and academic. The diversity of platforms and operating systems has made this worse. 
Additional operating systems such as Cray’s Compute Node Linux and Linux on Power systems has only 
made the situation more complex by adding additional OS choices to existing hardware platforms. 

Going to petascale will increase the need for anomaly detection and (dynamic) data reduction. 
Anomalous performance of nodes (due to either hardware or system software) will become the norm at 
the large node counts expected. Likewise, the volumes of data that can be generated from these larger 
numbers of cores will require new techniques in dynamic (during program execution) reduction and 
processing. 

Table 5: Tool infrastructure challenges. 
# Challenge Risk if nothing done Impact if challenge 

solved 
Tool Communication 
  Within a single tool Medium/High High 
  Interfaces to the OS/machine data Medium Medium 
  Lack of reuse High High 
  Tool interop/data exchange High Medium 
Data Management 
  Measurement data and meta data from runs Medium Medium 
  Data reduction & presentation tools – graph tools High High* 
  Availability of Additional Hardware Data – memory, etc. Medium High 
  Distance between user and machine – latency and data volume Medium Medium 
Scheduler Issues 
 Tool Deployment – launch High High 
 Co-scheduled jobs or “spare” nodes in a job request for tools or fault 

tolerance 
High High/Medium 

 Topology map info, control of placement of “spare” nodes Medium Medium 
 Tool composability – all fighting for same hooks High High 
OS Issues 
 OS scaling issues for tools – enough sockets High High 
 Process control High Medium 
 Threading issues Medium Medium 
 Low overhead access to performance data Medium High 
Binary Manipulation 
 Binary re-writing High High 
 Compiler hooks High Medium 
 Binary analysis Medium Medium 
 Stack un-winder Low High 
Miscellaneaous Issues 
 Tools survive machine faults High High/Medium 
 Tools for scripting languages Medium/Low Low 
 Perf. data I/O support: parallel file system, avoiding I/O via reduction Medium High 
 Sampling support for signals/interrupts Medium High 
 Clock synchronization High Medium 
 Scripting languages for tools Medium Medium/Low 
 

6.4 Recommendations 
Funding for petascale tools infrastructure is important to the success of an overall scalable tools effort 

in order to: 
• Supply the scalable, dynamic, capabilities needed by next generation tools; 
• Reduce redundancy of having each tools group develop their own infrastructure capabilities; 
• Promote integration of developed tools by standardizing infrastructure APIs; 
• Reduce cost of life-cycle tools support by having the infrastructure handle much of the diversity 

of platforms and operating systems. 
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A second major recommendation is to fund the full tool life cycle from design, hardening, support, and 
long term maintenance. While, this can’t be done for every tool idea, it needs to be done for those tools 
and infrastructure capabilities that are the most popular and useful. 

Table 5 shows the workshop assessments of various challenges to the tools infrastructure at petascale. It 
is divided into the categories given in the Topics sub-section. For each item the risk to the success of 
future tools if nothing is done is scored as high, medium, or low. With a similar scale the impact if the 
challenge would be solved was assessed by the workshop attendees. The highest scoring item with a 
unanimous vote was data reduction and presentation capabilities supplied by the infrastructure. Several 
other items scored high in both in risk and impact. These include: lack of tool reuse, coordinated tool 
launch, tool composability, scalability of OS features needed by tools, and binary rewriting. 

7 TECHNICAL THRUST – DEVELOPMENT ENVIRONMENT 

INFRASTRUCTURES 
Chairs:  Rod Oldehoeft (Krell Institute) 

Craig Rasmussen (Los Alamos National Laboratory) 

7.1 Topics 
This group has been assigned the task of identifying the requirements and gaps in the development 

environment necessary to meet the petascale challenge. The working group considered the following 
topics: 

1. Integrated development environments; 
2. Build environments (e.g., make, libtool); 
3. Compiler support for development environments; 
4. Mixed language support; 
5. Refactoring; 
6. Automatic interface generation and validation. 

7.2 Scope 
Programming models (and the languages and libraries implementing these models) are a very important 

component of the development environment. Like developer tools, the programming models will need to 
adapt to the growing levels of on-chip parallelism and the increasing depth of memory hierarchies. It is 
important that programming models be considered in meeting the challenges of petascale computing, in 
particular in those areas related to the placement, movement, and access to memory. However, 
programming models are outside the scope of this working group and we restrict our attention to tools 
that aid the developer in designing, creating, modifying, building, and running applications. 

Tools specifically related to program correctness, debugging, and performance are in the purview of 
other working groups and are not considered here. However, development architectures supporting the 
integration of the full range of tools affecting application development are within the scope of this 
working group and are considered. In addition, it should be noted that compiler infrastructures, while they 
may lie outside the scope of other working groups, are an important component in tools considered by 
these groups, in particular those tools related to program correctness and performance. 
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There are many classes of tools used by the scientific community in the development of scientific 
applications. These include: UML tools used for software design and modeling; tools that support a group 
of geographically distributed developers and tools that support remote development (isolated from the 
petascale computer); revision control tools; configuration and build tools and libraries and runtime 
environments; tools supporting development in mixed languages; tools providing program 
transformations and refactorings; and compiler infrastructure support for general tool development. These 
tools and tool classes were all discussed by the working group, although some were excluded from 
detailed consideration early on, as described below. In addition, we considered integrated development 
environments that provide an infrastructure to integrate a broad range of development tools. 

7.3 Tools and Issues Not Considered, and Considered 
After our preliminary discussions developed an extensive list of tool categories and issues, we excluded 

several that we felt were present in the current computing environment and did not have a direct affect on 
petascale computing, or that were well on their way to being handled at this scale. These include software 
design tools, systems for source code control and bug tracking, database services, and project 
management issues. 

Two areas of software development were recognized as important and relevant to petascale computing, 
but we did not consider them owing to time constraints. These are fault tolerant methods in software 
design, and software design that is informed by the hardware systems’ inter-processor and processor-
memory topologies. We recommend that these not be ignored, because both can greatly affect the 
performance of petascale applications. These topics should be included in future discussions. 

On the other hand, we included one class of problems that some felt were not directly related to 
petascale computing, but that nevertheless currently cause significant difficulties for application 
programmers. In particular, program building and configuration, including library ordering during 
linking, continue to take too much effort during application development. 

7.4 Application Build Tools 
The current state of tools for program configuration and construction is deplorable. Applications must 

be built for multiple systems, including perhaps one or more petascale machines. We found that too much 
complexity results from multiple compilers, operating systems, libraries (and their versions). Common 
option sets and command-line interfaces are missing. We are concerned that the lack of shared libraries 
and dynamic linking capabilities on petascale systems currently in development will contribute more 
difficulties. We recommend consideration of new tools (make is still broken), improved tools (e.g., for 
managing linking order), and more attention to interoperability of program build tools. 

7.5 Mixed Language Environments 
Because of the complexity of petascale applications and the large number of code teams that are either 

directly or indirectly involved in developing an application, mixed-language programming becomes 
increasingly important in petascale application development. For example, as the number of physics 
packages and libraries rises, the likelihood increases that different components of an application will be 
written in different languages. In addition, programming paradigm changes will be required to handle the 
increased levels of parallelism associated with leadership-class machines. User feedback clearly indicates 
that this will include the hybrid OpenMP/MPI paradigm as well as a likely increase in usage of PGAS 
languages such as UPC and Co-array Fortran. 
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We found that developers are using Python to script application runs and to prototype algorithmic ideas. 
We recommend that language interoperability efforts continue at both the tool and language-standards 
level and that increased automation be used to decrease the level of programmer effort. It is a concern that 
tools that require the ability to load libraries dynamically, like Python, will not be able to be used with 
some operating systems on petascale computers. 

7.6 Compiler Infrastructure 
Several tools are needed to enable petascale computing. Many of the tools discussed here, and in the 

context of other working groups, require, or could use the benefit of, static analysis capabilities provided 
by a compiler infrastructure. For example, static analysis is used to instrument codes for performance 
measurements automatically, is used in source-to-source transformations to enhance performance (e.g., 
loop transformations), and is used in tools to aid programmers in ensuring that applications perform 
correctly (e.g., lint tools). 

We found that both developers and tools would benefit from a compiler infrastructure. In particular, 
knowledge of estimated performance at the source-code level (cost estimates are routinely a part of an 
optimizing compiler) should be provided. This is particularly important with regards to IO costs and 
memory usage, as memory latency dominates the performance of most scientific applications. 

We recommend that a flexible (easily adaptable), portable, and open-source compiler infrastructure be 
supported to provide for the tooling needs of petascale computing. Vendors should also be encouraged to 
open up portions of their compilers to provide users and tools with as much information as possible. 

7.7 Program Transformations 
Currently, scientific applications must use a variety of hardware architectures in distinct runs. Even 

today it is a challenge to achieve performance across multiple architectures and this challenge will only be 
exacerbated as petascale platforms are delivered. We found that source-to-source transformations have 
successfully adapted existing codes automatically to new computer architectures. We recommend that 
projects be supported that explore the usage of program transformation tools in achieving architecture 
independence for scientific applications. 

7.8 Software Development for Remote Systems 
Because of the substantial costs associated with leadership class facilities, most users will likely be 

located at a site that is remote from the petascale computing resource. Even if a user is at the same 
institution as the computer, the user will likely be isolated from the machine itself. The file system, 
compilers, libraries, tools, and other resources will always be remote from a user’s desktop and will 
probably not be the environment under which a user’s application was developed. 

A remote environment provides challenges for a user as files must be transferred, differences in 
environments taken into consideration, and often several different levels of authentication negotiated. 
Perhaps most importantly, it complicates the use of software development tools. Overall, these issues 
imply that we must provide mechanisms so that application programmers can effectively work remotely. 
In particular, we need high performance support for secure remote GUI operation. It would also be 
beneficial if the development environment hid many of the details of remote operation so that the user 
need not substantially modify their usual workflow. We recommend investment in a client-server-based 
shared infrastructure for remote development, including improved communication efficiency. 
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7.9 Integrated Development Environments (IDEs) 
Petascale applications will have much larger and more complex requirements for program control, data 

management, and visualization, in addition to the normal developer activities of designing, coding, 
building, debugging, and performance optimization. IDEs are designed to increase developer productivity 
in all these areas by providing an integrated workbench of tools, sharing data between tools, and 
automating many common tool operations. However, they also tend to have steep learning curves and 
must not interfere with desire for a set of lightweight tools, as was clearly expressed in the user talks at 
the start of the workshop. Further, most scientific application developers have existing workflows that 
would require any petascale IDEs to support the use of their components in stand-alone mode. Thus, we 
found that although IDEs are widely used outside of scientific computing, they have had little impact in 
HPC. Projects sometimes put together specialized environments for a single application, which do not 
generalize to future use. Single stand-alone tools are much more common. While IDEs are unlikely to 
gain adoption in HPC easily, they might provide productivity gains. For this reason, we recommend 
limited investment in IDEs that focuses on pilot projects to explore their possible advantages and to 
establish their ability to support existing workflows as well as the revamped integrated workflow for 
which they are known.  

7.10 Findings of the Development Environment Infrastructures Working Group 
The working group identified a number of gaps in application development tools and environments for 

petascale computing and these gaps are listed in the Table 6. However, we should note that a tool or 
requirement not being listed as a gap does not mean that the tool is not essential. For example, vendor-
supplied optimizing compilers are essential in developing high-performing applications. Failure to 
support existing, successful capabilities, could result in additional gaps.  

Working group participants were asked to prioritize the gaps by providing a rating of high, medium, or 
low to indicate the priority of addressing the challenge. The ratings were normalized to a scale of one to 
ten and entered in the table. Each participant was also asked to indicate the impact on the ability to reach 
petascale computing goals if a gap were not closed, again on a scale of high, medium, and low. Both 
priorities and impact in the table are averages of participant responses. 

It should be stressed that all of the gaps listed below received a medium to high priority and impact 
rating. Areas found to have a lower priority were not considered fully by the group and are not listed here. 

Table 6: Development environment infrastructure challenges. 
Challenges Priority Impact 

Application build and configuration issues are a continuing problem. 10 High 
Compiler infrastructure is needed to support a wide variety of development of tools. 9 High/Med 
Tools are required to facilitate the development of applications from remote sites. 9 High/Med 
Mixed language support needed for migration to new programming models. 8 High/Med 
Scalable dynamic linking support is needed from vendors and static linking a continuing problem. 8 High/Med 
Program transformations required for portability across hardware architectures 6 Medium 
Lack of an integrated development environment for the integration of tools.  5 Medium 

8 STRATEGIC NON‐TECHNICAL CHALLENGES 
The working groups all agreed on a set of important non-technical challenges: policy, funding, 

business, intellectual property, or training/education. We collate and highlight these crosscutting issues in 
this section. In most cases, a solution to each of these issues would have significant and immediate impact 
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on the success of software development tools for HPC. Steps beyond technical research should be taken 
to eliminate these challenges.  

 
1. Funding and model for sustaining/hardening tools. Software development tools are a financial 

burden for HPC vendors, as their features rarely if ever determine acquisition outcomes. 
Similarly, academic and laboratory performance tools researchers and developers rarely possess 
either the skills or the desire to transition research ideas to production code, with concomitant 
support. Nonetheless, many of today’s successful research tools could benefit from sustained 
funding to transition the tools to production software. However, the government rarely funds 
long-term maintenance and tools support. The pathway from research prototype to a software tool 
that is widely available, production quality and actively supported is not clear. In most cases, the 
funding researchers receive is targeted toward specific research goals, and not necessarily to 
provide tool porting, testing, documentation, standardization, or user support. A new model of 
software tool support is needed if we are to address current and future needs. 

2. System diversity. Architectures and software systems for HPC are quite diverse when compared 
to just a decade ago. In many cases, existing tools must be ported and validated against these new 
systems. This task is made much more difficult if the new systems use novel architectural 
features, or non-compliant or proprietary software.   

3. System testbeds and development access to target platforms. Access to system testbeds for 
software development and testing continues to be a challenge for development of software tools. 
In particular, software development tools must be able to run at production scale and in the same 
environments as production users. In some cases, these developers must be able to modify the 
system software, such as the operating system, to perform their tests. 

4. Access to and engagement with applications and domain experts. All too often, performance 
tools are developed in the absence of detailed understanding of user and application challenges. 
Conversely, users are often unaware of the technical difficulties underlying tool design and 
support. Bridging this gap with a collaborative tool development and extension process, where 
promising ideas are identified and tested early, then enhanced and supported across the 
application development and support cycle, would ameliorate the expectations gap. Recent 
experiences in both the Office of Science and NNSA affirm the distinct advantages of having 
computer science experts engaged with applications and domain experts. Working together, these 
two groups can best map the applications to the architectures. 

5. User training. Software development tools can be very flexible and powerful in their own right. 
The developers of these tools should make it a priority to train the user community on tool 
capabilities and usage. Furthermore, usability should be a major requirement included in any 
funding focusing on transition to production software.   

6. Interactions with vendors. Successful software tools require intimate knowledge of the target 
architecture and software system. Vendors must provide this knowledge to external developers in 
some form, either by adhering to standards or by providing specifications, documentation, 
software, and early access to systems. 

7. Standardization. Aside from standardization of target system architecture and system software 
components, developers of software tools could benefit from standardization within their own 
community. For example, APIs, tracefile formats, and user interfaces could all benefit from 
standardization. This standardization would promote tool interoperability among other benefits.  
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8. Modular infrastructure development. Modular tool infrastructures that allow the development 
and composition of a set of tool components emerged in multiple sessions. This infrastructure 
could provide components using a variety of mechanisms that include libraries, runtime systems, 
software source code, user interfaces, and standard APIs.  

9. International collaboration. A large number of software developers reside outside the USA. In 
order to facilitate collaborations across these communities, the employers and funding agencies 
must embrace and facilitate these collaborations by providing joint funding opportunities and 
bridging gaps in policy.  

10. Education and workforce. As is the case in other areas of HPC and computer science, there is a 
specific need to educate new students and workers in order to ensure a sufficiently large and 
capable workforce.  

 
In many cases, these cross cutting issues are symptoms are consequences of larger topics. First of all, 

the HPC market is relatively small when compared to the consumer and enterprise computing markets.  
As a result, finding a business model for the development, porting, and support of the tools is a challenge. 
Proprietary products are only feasible through a combination of licensing agreements and engineering 
contracts and expose the labs to the risk of the product becoming unavailable due changes in the business 
case for the company's support of petascale machines, including changes due to the transfer of ownership 
of the intellectual property involved. Open-source software gives the labs the opportunity to fix bugs and 
add features through internal efforts and external contracts. Communities can develop around open-source 
software resulting in a spread of the cost; however, we must recognize that the community of leadership 
class facilities is, by definition, small. Also, we must find ways to ensure open-source research projects 
evolve into robust, easy to use, well-documented software. Whether we chose open-source software or 
proprietary software, the community must be engaged in software development tools and their underlying 
infrastructure. 

A second issue is that we find similar underlying functionality is needed for a variety of tools, and this 
functionality is often repeated. Open tool infrastructure that can, say, start tools on nodes and collect and 
filter data are needed, so that more time can be spent on developing the required tool capabilities. Some 
tools require an interface to hardware features, and some may need a detailed knowledge of the operating 
system/application interface. 
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2B2BAPPENDIX 1 – SDTPC WORKSHOP AGENDA 

8.1 Wednesday, August 1 
Start Time Activity Speaker/Chair 

7:30 Continental Breakfast  
8:30 Welcome, Introductions, Goals Jeffrey Vetter, ORNL 

Fred Johnson, DOE 
9:00 Applications Experiences #1 Brian Pudliner, LLNL 
9:30 Applications Experiences #2 Robert Harrison, ORNL 

10:00 Break  
10:30 Applications Experiences #3 John Daly, LANL 
11:00 DOE Platform Futures Fred Johnson, DOE ASCR 

Bob Meisner, DOE NNSA 
11:30 Tools Futures Bart Miller, Wisconsin 
12:00 Working Group charter Jeffrey Vetter, ORNL 
12:15 Lunch on your own  

1:15 Poster Session  
2:00 Working Groups convene 

(1) Performance Tools 
(2) Correctness Tools 

 
 

3:20 Break  
3:30 Working Groups continue  
5:00 Working Groups formulate findings  
5:30 Adjourn  

8.2 Thursday, August 2 
Start Time Activity Speaker/Organizer 

7:30 Continental Breakfast  
8:30 Working Groups convene  

(1) Scalable Infrastructures 
(2) Development Environment Infrastructures 

 
 

10:00 Break: 15 min  
10:10 Working Groups continue  
11:15 Working Groups formulate findings  
12:00 Lunch on your own  

1:00 WG report #1 WG Chair 
1:30 WG report #2 WG Chair 
2:00 WG report #3 WG Chair 
2:30 WG report #4 WG Chair 
3:00 Closing comments and action items Steering committee 
3:30 Adjourn  
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3B3BAPPENDIX 2 – SDTPC WORKSHOP ATTENDEES 
The following people participated in the SDTPC workshop in Washington, DC on 1-2 August 2007. 

Table 7: SDTPC Workshop attendees. 
First/Middle 

Name 
Last Name Organization Email 

Dong H. Ahn Lawrence Livermore National Laboratory ahn1@llnl.gov 
Sadaf R. Alam Oak Ridge National Laboratory alamsr@ornl.gov 
Ron Brightwell Sandia National Laboratories rbbrigh@sandia.gov 
Cary D. Butler US Army Corps of Engineers, ITL hopkint@wes.army.mil 
Susan Coghlan Argonne National Lab. smc@alcf.anl.gov 
David Cronk University of Tennessee cronk@cs.utk.edu 
John Thomas Daly Los Alamos National Laboratory jtd@lanl.gov 
Larry Paul Davis DoD High Performance Computing Modernization Program larryd@hpcmo.hpc.mil 
Bronis R. de Supinski Lawrence Livermore National Laboratory bronis@llnl.gov 
John V. DelSignore TotalView Technologies jdelsign@totalviewtech.com 
Luiz DeRose Cray Inc. ldr@cray.com 
Douglas W. Doerfler Sandia National Laboratories dwdoerf@sandia.gov 
Thomas  Epperly Lawrence Livermore National Laboratory epperly2@llnl.gov 
David A. Fisher HPCMO dfisher@ieee.org 
Robert J. Fowler RENCI/University of North Carolina rjf@renci.org 
Jim Galarowicz Krell Institute - Open|SpeedShop jeg@krellinst.org 
George A. Geist Oak Ridge National Laboratory sonewaldc@ornl.gov 
Howard Gordon NSA flash@super.org 
Richard Leigh Graham ORNL rlgraham@ornl.gov 
Robert Harrison ORNL harrisonrj@ornl.gov 
Thuc Hoang DOE NNSA thuc.hoang@nnsa.doe.gov 
Adolfy Hoisie Los Alamos National Laboratory hoisie@lanl.gov 
Jeff Hollingsworth University of Maryland hollings@cs.umd.edu 
Marty Itzkowitz Sun Microsystems marty.itzkowitz@sun.com 
Curtis Janssen Sandia National Laboratories cljanss@sandia.gov 
Fred Johnson DOE fjohnson@sc.doe.gov 
Karen L. Karavanic Portland State University karavan@cs.pdx.edu 
Darren J. Kerbyson Los Alamos National Laboratory djk@lanl.gov 
Allen Davis Malony University of Oregon malony@cs.uoregon.edu 
Bob Meisner NNSA bob.meisner@nnsa.doe.gov 
Barton Miller University of Wisconsin bart@cs.wisc.edu 
Bernd Mohr Forschungszentrum Juelich b.mohr@fz-juelich.de 
David R. Montoya Los Alamos National Laboratory dmont@lanl.gov 
Shirley Victoria Moore University of Tennessee shirley@cs.utk.edu 
Jose L. Munoz NSF jmunoz@nsf.gov 
Wolfgang E. Nagel TU Dresden / Center for Information Services and High 

Performance Computing 
wolfgang.nagel@tu-
dresden.de 

Rod Oldehoeft Krell Institute rro@krellinst.org 
Avneesh Pant NCSA apant@ncsa.uiuc.edu 
Abani Kumar Patra NSF apatra@nsf.gov 
Douglass 
Edmund 

Post DoD High Performance Computing Modernization Program post@hpcmo.hpc.mil 

Brian Scott Pudliner Lawrence Livermore National Laboratory pudliner1@llnl.gov 
Craig E. Rasmussen Los Alamos National Laboratory crasmussen@lanl.gov 
Daniel A. Reed University of North Carolina at Chapel Hill dan_reed@unc.edu 
Rolf Riesen Sandia National Laboratories rolf@sandia.gov 
Philip Charles Roth Oak Ridge National Laboratory rothpc@ornl.gov 
Martin Schulz Lawrence Livermore National Laboratory schulzm@llnl.gov 
Dolores Shaffer DARPA/Science and Technology Associates dshaffer@stassociates.com 
John Shalf Lawrence Berkeley National Laboratory jshalf@lbl.gov 
David Eugene Skinner LBL deskinner@lbl.gov 
Lauren L. Smith High Performance Computing, NSA llsmit1@nsa.gov 
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Valerie Taylor Texas A&M University taylor@cs.tamu.edu 
Rajeev S. Thakur Argonne National Laboratory thakur@mcs.anl.gov 
Jeffrey S. Vetter ORNL vetter@computer.org 
Greg Watson IBM Research grw@us.ibm.com 
Mary Zosel LLNL zosel1@llnl.gov 

3B3BAPPENDIX 3 – OTHER SDTPC CONTRIBUTORS 
The following people contributed to this final report but were unable to participate in the workshop. 
 

First/Middle Name Last Name Organization Email 

Bob Lucas USC/ISI rflucas@isi.edu 
John  Mellor-Crummey Rice University johnmc@cs.rice.edu 

 


