

Federal CHP Market and Fuel Cells

Patrick Hughes

FEMP Interagency DER Working Group

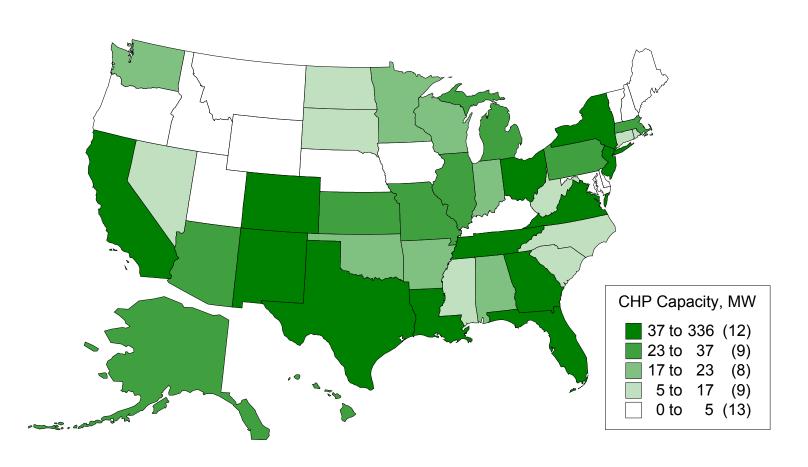
Washington, D.C. May 1, 2002

(note: NTRC case study slides updated 3/03)

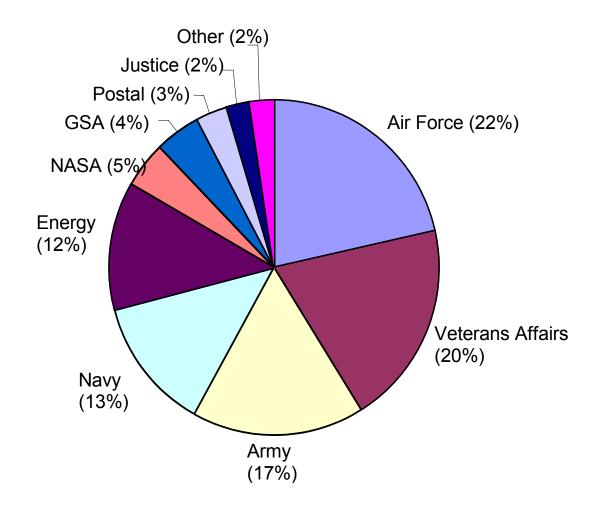
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Topics

Assessment of federal market potential for CHP Same methodology assessed PAFCs (phosphoric acid fuel cells)—commercially available now FEMP team is available to help



Estimating CHP Potential


- "Analysis of CHP Potential at Federal Sites" (Feb. 2002) on web site
- Based on:
 - GSA federal building database
 - EIA-CBECS energy intensities
 - EIA Year 2000 industrial energy rates
 - CHP system cost and O&M data
 - Application-specific assumptions
 - Maximum simple payback of 10 years

Federal CHP Potential 1500-1600 MW (Base case for engines or turbines with payback <10 yrs)

Federal CHP potential by agency

Market Assessment Estimates CHP Impacts 1500 MW Federal CHP Potential =

- \$170 million/year in energy cost savings
- Average simple payback <8 years
- 50 trillion Btu/yr of source energy savings
- 4 million metric tons/yr of avoided CO2
- Increase reliability/security representing 13% of total federal electricity purchased

—this is significant!

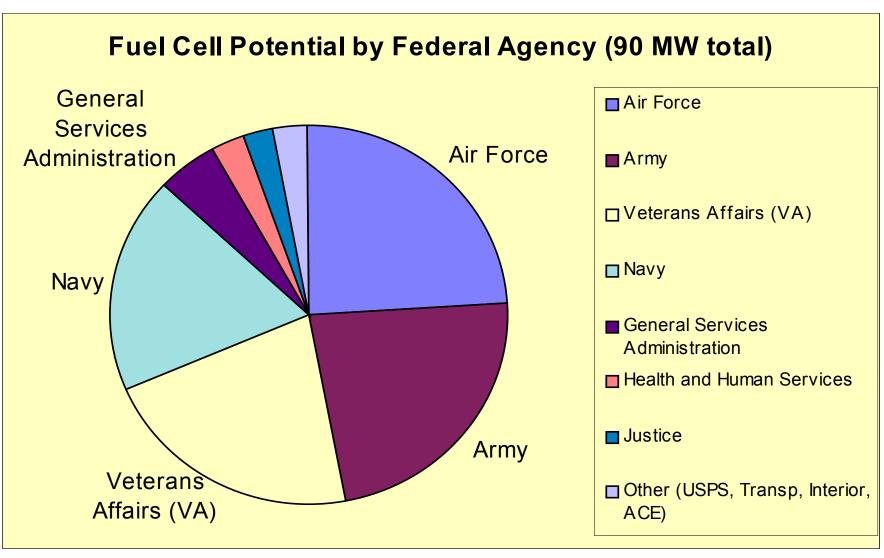
Why CHP potential may be relevant to the future of hydrogen/fuel cells

- Developing CHP can finance and catalyze:
 - "Hydrogen/fuel-cell-ready" infrastructure
 - Essential human knowledge base for operating DG
- Infrastructure + knowledge
 - Keys to attracting private capital for commercialization

Why CHP potential may be relevant to the future of hydrogen/fuel cells

- Developing CHP can finance and catalyze:
 - "Hydrogen/fuel-cell-ready" infrastructure
 - Essential human knowledge base for operating DG
- Infrastructure + knowledge
 - Keys to attracting private capital for commercialization

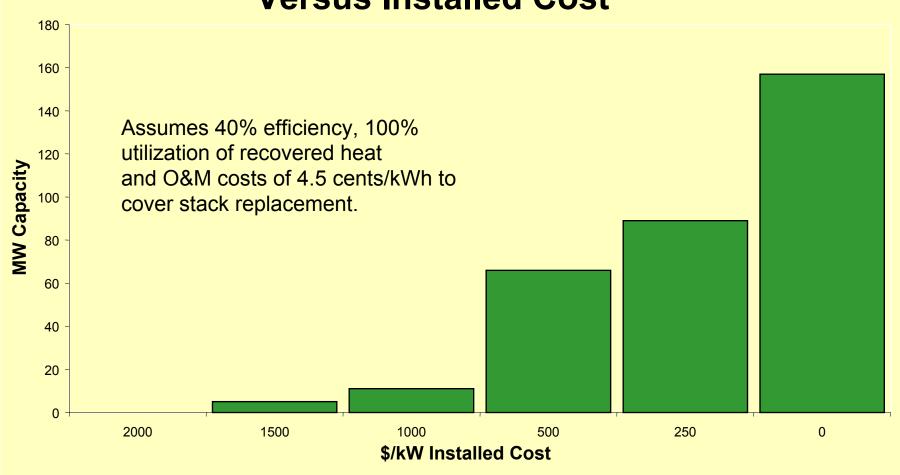
Federal PAFC Potential (Assumptions/Scenarios)


- Base case—today's costs: \$5000/kW, 4.5 cent/kWh O&M, 40% efficient = no projects with payback periods less than 10 years
- Optimistic/future scenario: \$1500/kW,
 1.5 cent/kWh O&M, 50% efficiency =
 - 90 MW of potential with payback <10 yrs (mostly in Hawaii and Alaska)

Federal PAFC Potential (Assumptions/Scenarios)

- Base case—today's costs: \$5000/kW,
 4.5 cent/kWh O&M, 40% efficient =
 - no projects with payback periods less than 10 years
- Optimistic/future scenario: \$1500/kW,
 1.5 cent/kWh O&M, 50% efficiency =
 - 90 MW of potential with payback <10 yrs (mostly in Hawaii and Alaska)

Federal Fuel Cell Potential— Future/Optimistic Scenario



"What if" funding is available to buy-down costs? Assuming:

- Efficiency = 40%
- O&M including stack replacement is
 4.5 cents/kWh
- Gas fuel
- All waste heat can be utilized
- Installed cost is \$5000/kW, but resources are available to buy-down part of cost...

MW of Economic PAFC Potential in Federal Sector Versus Installed Cost

Key parameters

- Installed cost
- Stack replacement intervals & cost
- Reliability of reformers & periphery equip
- O&M costs including stack replacement
- Electric generation efficiency
- Temperature/rate of waste heat
- Fuel considerations (costs, supply management and storage)

Case Study: Nat'l Transportation Research Center Fuel Cell Retrofit

- Commercially available UTC PAFC
 - -Consumes 2,050 cft/hr gas to generate 200 kW electricity
 - -Generates 450,000 Btu/hr hot water @ 140 and 250°F
 - -Quiet—conversational level

-59% efficiency in Summer using 250°F water for

temperature control

- SEMCO desiccant system
 - recovers enthalpy
 - controls humidity from exhaust

Case Study: NTRC Costs/Benefits—barely break even

- Fuel Cell installed cost \$1,250,000 (\$6250/kW)
- Stack replacement \$375,000 (\$0.045/kWh)
- O&M \$35k/yr contracted
- Electricity ~\$0.08/kWh
 - Scheduled rate increase in Fall 2003
- Heat recovery offsets gas consumption by ~25% (winter months)

Operating costs are sensitive to gas rate

Gas price	Projected
is variable (\$/decatherm)	Savings/yr
4.00	(\$) 10,000
5.00	1,000
6.00	Net loss

Gas utility approved special commercial rate structure

FEMP—available to help

- Find least cost host sites
 - Assessment methodology for likely states, agencies, and building types
 - Screenings with site-specific data
- Support sites to plan, implement
- Share federal experiences/manage expectations
- Ensure informed next steps

FEMP CHP Contacts

- DER/CHP Programs at FEMP HQ: Shawn.Herrera@ee.doe.gov
 (202) 586-1511
- ORNL FEMP Program Leader: Patrick Hughespj1@ornl.gov (865) 574-9337
- Keith Kline, ORNL FEMP CHP coordinator (865) 574-4230 Klinekl@ornl.gov

Web-based Info:

 Call for Projects (funding) and upcoming DER Workshops for federal facilities: http://www.eren.doe.gov/femp/techassist/der_resources.html

Full CHP Market Assessment Report:

www.ornl.gov/femp/pdfs/chp market assess.pdf

DOE Websites:

FEMP http://www.eren.doe.gov/femp/

Power Technologies http://www.eren.doe.gov/power/

