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1 SSMIS BEAM LOCATION ALGORITHM 

This appendix discusses the mathematical approach for the SSMIS beam location algorithm.   

1.1 Introduction and summary 

The requirements for the SSMIS state that atmospheric profiles from the 1000 mb level to the 10 mb level 
shall be referenced to a height of 11 km and shall be located with an accuracy of 12.5 km.  The earth 
location of upper air temperature profiles from the 7 mb level to the 0.03 mb level shall be referenced to a 
height of 60 km, and shall be accurate to 12.5 killometers.  The other environmental parameters shall be 
Earth located to within 7 km (at the Earth’s surface).   

The SSMIS is a 24-channel instrument which, for purposes of a location algorithm, may be described in 
terms of 180 basic beam positions forming a swath generated by scanning the radiometer antenna.  With 
respect to a satellite fixed coordinate system, the basic beams lie on the surface of a cone with a 45° half 
angle whose axis is in the direction of the subsatellite Earth normal vector.  The centers of the beams are 
separated by an azimuthal angle of exactly 0.8°. 

For those channels whose frequencies exceed 91 GHz, all 180 beam positions are used to generate fine 
resolution imagery.   Inputs into the atmospheric profiling algorithms for levels up to 10 mb are formed 
by averaging 9 of the basic beams, 3 along the scan direction x 3 successive scans.  This results in 60 
beams per scan (starting from basic beam position 2 and separated from each other by an azimuthal angle 
of 2.4°) every third scan line. To form input to the upper air temperature profiling algorithm, six along-
scan samples are averaged resulting in 30 samples (spaced 4.8° apart) every 6th scan.  For the channels 
used for retrieving non-sounding parameters with frequencies in the 19 to 37 GHz range, the required 
integration time is twice that of the basic beam integration time so that a total of 90 of these beams, with 
centers separated by an azimuthal angle of 1.6°, are formed per scan. 

The preceding description shows that three categories of locations are required.  The first is the location 
of the 180 basic beams per scan at the Earth’s surface.  The second is the location of 60 beams every third 
scan at a height of 11 km.  And the third is the location of 30 beams every 6th scan at a height of 60 km.  
The locations of the low frequency (19 to 37 GHz) beams are found simply by averaging the coordinates 
of the two basic beams that cover a single low frequency beam.   

Since well over one-half million beams will be located per orbit if every beam is processed, it is clear that 
care must be exercised in constructing an efficient algorithm.  The exact location of every beam in a scan 
requires a large number of computer operations and, hence, is not a desirable procedure.  Thus, following 
the method used for the SSM/I, only certain points (referred to as base points), are located exactly.  The 
others are located by means of third degree interpolatory polynomials.  However, the SSM/I algorithm 
cannot be assumed to apply directly to the SSMIS because 

 
a. The SSMIS swath width is much larger.  Thus, the number of base points required to 

achieve the specified accuracy must be redetermined. 
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b. The SSM/I algorithm references beams to the surface only.  It must be re-worked to 

include other reference heights. 

In view of the fact that changes were required in the SSM/I location algorithm, it was decided to make a 
thorough revision.  This resulted in accuracy improvements in locating the base points by use of concepts 
developed for the SSM/T-2.  An improvement in the interpolatory accuracy between the base points was 
achieved by exploiting the fact that the base points do not have to be equally spaced in azimuth.  Savings 
were made in the number of operations (evaluations of transcendental functions, multiplication, division, 
etc.) needed to locate the base points by using techniques developed for the SSM/T-2.  Further, great 
savings were made in the operations count for determining the interpolated beam positions by developing 
a new algorithm that does not explicitly calculate the coefficients of the interpolatory polynomials but 
fully exploits the fact that the beams are equally spaced in azimuthal angle. 

The resulting SSMIS beam location algorithm, like that used for the SSM/I, determines a full scan of 
beam positions once a given scan is targeted for location.  Even though considerably more than the 128 
beam positions per scan applicable to the SSM/I are located, the SSMIS algorithm is faster due to the 
improvements made. The accuracy is superior.  Ignoring deviations from non-ideal behavior such as 
radiometer mounting misalignment, spacecraft attitude misalignment, and possible errors in predicted 
ephemeris data, the maximum beam location error found using the SSMIS algorithm is less than 2.7 km 
for a nominal 833 km (450 nm) orbit.  This occurs at high latitudes.  Considerably smaller errors are 
found in tropic and temperate regions.  As for the effects of non-ideal behavior, provision is made in the 
algorithm to accommodate alignment effects as they are discovered.  Only analyzing the final mechanical 
design and/or using in-flight data, of course, can make these. 

1.2 Basic equations 

For an ellipsoidal model Earth, the Earth’s surface may be described by the equation 
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Eq. 1 

where Ae = 6378.165 km is the equatorial radius and Ap = 6356.788 km is the polar radius (see Figure 1).  
By taking the gradient of (Eq. 1), it is readily found that the unit normal to the surface at the point (x, y, z) 
is given by the vector 
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A point on the surface is often described by means of its longitude defined as 
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Eq. 4 

and latitude λ defined as 

( )22
z

1- nn/n  tanλ yx +=  

Eq. 5 

Notice that the latitude does not coincide with the angle θ of the radius vector from the center of the Earth 
(Figure 1).  The rectangular coordinates of a point are expressed in terms of these parameters as 

 
Figure 1. Ellipsoidal Earth Geometry 
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where 

[ ]-1/222
p
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e

2
pz  sin A cos A A  )(F λλλ +=  

Eq. 7 

Here the z-axis points from the center of the Earth to the north pole and the x-axis from the center of the 
Earth to the equator at 0° longitude. 

In order to use these equations to locate a beam, it is necessary to know the location of the satellite, its 
orientation, and the beam vector.  It may be assumed that the subsatellite latitude and longitude and the 
satellite height are known at two distinct times t1 and t2 where t1 is typically one minute less than t2.  
Because the Earth rotates, one must be careful to express all quantities in the same coordinate system 
fixed in space which, in this note, will be taken to be the Earth fixed frame at time t2.  Thus, the vector to 
the subsatellite point at time t2 is 

)z,y ,(x  r 2222 =  

Eq. 8 

where x2, y2 and z2 are given by (Eq. 6) using subsatellite latitude and longitude values λ2 and φ2.  If the 
subsatellite latitude and longitude are λss and φss at time t1, then the vector to the subsatellite point at time 
t1 is expressed in the space fixed frame as 

)z,y ,(x  r 1111 =  

Eq. 9 

where equations (Eq. 6) are used again, but with latitude and longitude values 

Error! Objects cannot be created from editing field codes. 

Error! Objects cannot be created from editing field codes. 
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Eq. 10 

substituted for λ and φ.  Here Ω is the angular speed of the Earth  (= 7.2921159 x 10-5 rad/sec).  Since the 
satellite height is measured along the normal from the surface, the satellite position is given as 

2222s  n̂ ) h(t    r   r +=  

1111s  n̂ ) h(t    r   r +=  

Eq. 11 

where h(t) is the height, 12 r and r  are given by (Eq. 8) and (Eq. 9), and n , are given by (Eq. 2) 
with subscript either 2 or 1 on the coordinates.  A unit vector perpendicular to the orbit plane between 
times t

1ˆˆ n and2

1 and t2 is 

s1s2 s1s2 s  r    r /r   r  x̂ ××=  

Eq. 12 

Given the above data, it is possible to find approximate equations for the satellite and beam (in the space 
fixed reference frame) at some time t in the interval t1 ≤ t ≤ t2.  First, one can show that if it is assumed 
that the Earth is a sphere instead of an ellipsoid and that the satellite angular speed � is constant between 
the times t2 and t1, then the sub-satellite vector at time t is 
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Eq. 13 

In reality, the Earth is not a sphere and the angular speed is not necessarily a constant.  However, (Eq. 13) 
may be applied with ω representing the average speed.  This is generally a very good approximation for t2 
- t1 of the order of a minute.  Further, (Eq. 13) is exact at times t1 and t2 for the true ellipsoid Earth and 
introduces only a small error for other times t if t2 - t1 is small.  This same approximation is also very 
suitable for the unit normal n as is evident from (Eq. 2) and (Eq. 3).  Notice, in this connection, that F(t)ˆ n 
is nearly a constant over a small time interval because z will not change much.  Thus, the equation 
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Eq. 14 

is obtained.  Further, since the satellite orbit is assumed to be nearly circular, the same arguments lead to 
the equation 
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for the vector to the satellite at time t in the space fixed frame. 

The preceding equations must be supplemented by data on the beam direction in order to compute the 
beam location on the Earth.  Beam directions are defined with respect to spacecraft coordinates.  Taking 
the vectors and as defining two spacecraft fixed vectors, a third vector is (t)n̂ (t)x̂

ss x̂  (t) n̂   (t)ŷ ×=  

Eq. 16 

Eq. 17 was omitted in original document. (Note that  would be parallel to the velocity if the orbit 
were exactly circular and the difference between and a unit vector from the center of the Earth to the 
spacecraft could be ignored).  Since  is a constant, (Eq. 14) shows that  may be expressed as 
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)t-(tsin
)t-(tsin- (t)ŷ
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Eq. 18 

where the constant vectors and are defined as s1ŷ s2ŷ

s1 s1  x̂   )(t n̂  ŷ ×=   

Eq. 19 

s2 s2 x̂  )(t n̂   ŷ ×=  

Eq. 20 

For a conical scan, the unit vector  along the beam direction is ŝ

( ) ( ) ( ) ( )tntytinxt ss ˆcosˆ ssinˆ cossin     ŝ ss ψφψφψ −+=  

Eq. 21 

where ψ is the cone angle and φs(t) the azimuthal angle of the beam as is illustrated in Figure 2. For the 
SSMIS, the scan rate is 31.6 rpm and the initial basic beam position in a scan is at 198.4°.  Thus, at the 
time t in a scan beginning at time ts, 

)(6.1894.198)( ss ttt −+=φ  

Eq. 22 
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Figure 2. Beam Direction Geometry 

where t and ts are in seconds and φs(t) in degrees. 

If the slant range to the Earth is s, as shown in Figure 3,  
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Figure 3. Beam Location Geometry 

then the beam intersects the Earth at the point 

  ŝ s  (t) r   (t)r sb +=  

Eq. 23 

The range s is determined by the condition that the components of (t)r b must satisfy (Eq. 1).  This leads 
to a quadratic equation for s.  Choosing the solution that lies on the side of the Earth which is visible from 
the satellite yields 
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Eq. 24 
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and a is the constant [Ae
2 -AP 2]½/AP = 8.207943 x 10-2.  Here zs and sz are the z components of (t)r s and 

, respectively. ŝ

With s computed as above, the beam latitude and longitude are immediately found from (Eq. 22) and (Eq. 
6) as 
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These equations, of course, refer to the space fixed coordinate frame.  A transformation to the standard 
Earth fixed frame at time t yields 
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Eq. 30 
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Eq. 31 

This completes the derivation of the equations for locating a beam at the Earth’s surface. 

If the beam is referenced to a height hR, then (Eq. 23) must be replaced by 

bRsb  n̂h  -  ŝ  s  r   r +=  

Eq. 32 

where n is the unit Earth normal at the beam position bˆ br  (see Figure 4).  By use of (Eq. 2), (Eq. 32) and 
(Eq. 1) becomes a set of four scalar equations for the four unknowns xb, yb, zb, and s.  This set of non-
linear equations must be solved numerically.  While this procedure is exact, it is not practical for an 
operational algorithm and is mainly of interest for checking approximations.  Later, a simple modification 
to (Eq. 24) will be shown to lead to an accurate and practical numerical procedure for operational use. 

 
Figure 4. Beam Location for Non-Zero Reference Height - hR 

1.3 Numerical considerations 

A computer program using the basic equations discussed in Section 1.2, while accurate, would result in a 
very computational intensive procedure for locating the SSMIS beams.  In this section, a number of 
approximations that will allow a fast computation of beam locations will be considered.  It will be 
assumed that ephemeris data (subsatellite latitude and longitude and satellite altitude at a known time) 
will be available in approximately one-minute intervals.  Further, the assumption is made that, if a given 
scan is targeted for analysis, all beam locations in that scan will be found. 
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Section 1.3.1 discusses the computation of quantities depending only on the ephemeris data.  To locate a 
beam, the beam direction (including angles describing possible misalignment) must be specified.  Section 
1.3.2 discusses equations for the beam direction.  This is followed in Section 1.3.3 by a discussion of a 
simple, accurate method for treating the problem of the variable reference heights that will be specified 
for beam locations. 

Even with the simplifications introduced in these sections, the location of every beam in a scan would 
lead to a massive computational problem without further approximation.  For this reason, only certain 
base points (not necessarily coinciding with real beam centers, as described below) are located precisely.  
The location of these base points is treated in Section 1.3.4.  An interpolation method for locating the 
beams using these base points is discussed in Section 1.3.5 where it is shown that increased location 
accuracy is achieved by a non-uniform spacing of the base points without incurring any computational 
penalties.  The interpolating scheme for locating the beam passes two third-degree polynomials (one for 
the latitude and one for the longitude) between sets of four successive base point coordinates.  These 
polynomials, however, are not defined explicitly.  Instead, a very efficient recursive method, which after 
initializing some auxiliary variables, requires only three additions per polynomial evaluation, is possible 
because of the equal azimuthal angle spacing between beams in a given scan line. 

1.3.1 Ephemeris computations 

The starting point for a beam location is the subsatellite latitude and longitude at two times t1 and t2.  This 
information must be converted to rectangular coordinate data for use in (Eq. 11), which defines the 
vectors to the satellite.  It is not possible to bypass the computations of the trigonometric functions 
occurring in (Eq. 6) for the subsatellite vector.  However, the remainder of the computation involving the 
functions Fn and Fz (see (Eq. 3) and (Eq. 7)) can be simplified considerably.  An expansion in Chebychev 
polynomials and subsequent truncation of the series show that 

km  cos 21.305 - 6356.775   )( F 2
z λλ =  

Eq. 33 

with an error less than 0.014 km while 
-12-14-4

n km  z1.3004x10 - 101.5678457x   )( F =z  

Eq. 34 

(where z is expressed in km) with an error less than 3.32 x 10-10 km-1 if the values for Ae and Ap given in 
connection with (Eq. 1) are used. 

The next quantity that is used is defined in (Eq. 12).  In evaluating the vector cross product, it is useful 

to observe that 
sx̂

S1r  and S2r  are nearly parallel.  Thus S2r  X S1r  will be a small quantity.  In order to 
avoid multiplying large numbers and relying on cancellation as subtractions are performed in computing 

S2r  X S1r , it is numerically preferable to evaluate this as 
 

( ) s2 s1s2 s1 s2 r     r  -  r   r    r ×=×  

Eq. 35 
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The bracket in (Eq. 35) is already small (and nearly perpendicular to S2r ) so that numerical accuracy is 
preserved.  After  is found, the two constant vectors and  may also be calculated since 

and n  have already been found for use in defining 
sx̂ S1ŷ S2ŷ

)ˆ 1(tn )ˆ 2(t S1r and S2r . 

The final quantity involving ephemeris data is the satellite angular speed ω arising in (Eq. 13), (Eq. 14), 
(Eq. 15), and (Eq. 18).  As will be seen in Section 1.3.4, it is more convenient to concentrate on the 
expression ω⋅(t2 - t1).  Notice that, since the typical orbit period is approximately 100 minutes and (t2 - t1) 
≈ 1 minute, ω⋅(t2 - t1)≈6x10-2 so that the small angle approximation 

( ) ( )1212sin tttt −≈− ωω  

Eq. 36 

may be used to evaluate ω⋅(t2 - t1).  Also observe that 

( ) s2s112s1s2          t- tsin        rrrr ω=×  

Eq. 37 

Thus, it is found that 
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12

     

    

rr

rr
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×
≈−ω  

Eq. 38 

1.3.2 Alignment adjustments 

For perfect alignment, a beam direction is specified by (Eq. 21) and (Eq. 22) where ψ= 45°.  There are 
several types of errors that require these equations to be modified.  First, the satellite may yaw, pitch, or 
roll so that a satellite fixed reference frame may deviate from the directions of the vectors ,  and .  
Second, the radiometer may not be perfectly aligned with the satellite frame so that even the satellite fixed 
frame is not adequate.  These two kinds of errors may be combined to yield an effective yaw, pitch, and 
roll that will describe the instrument frame with respect to ,  and n .  Another class of errors arises 
from deviations from nominal values within the radiometer itself.  Thus, the cone angle may be off-set by 
δψ from its nominal value.  Also, the nominal start angle of 198.4° (see (Eq. 22)) may be shifted. 

sx̂ sŷ n̂

sx̂ sŷ ˆ

It will be assumed here that all of these errors are small so that the small angle (first order) approximation 
may be made in computing trigonometric functions.  This assumption has the consequence that yaw, 
pitch, and roll are commuting motions.  Further, a fixed error in the nominal start angle will not be 
distinguishable from a yawing motion of the satellite. Hence, it will be combined with the yaw error.  
Thus, there will be four alignment parameters to be found from pre-launch measurements and/or analysis 
of in-flight data.  These are the cone angle offset δψ and the yaw (φE), pitch (θE), and roll (ψE).  The latter 
three angles are shown in Figure 5. 
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Figure 5. Yaw, Pitch,  and Roll Angles 

A yaw is described in terms of the matrix 
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which transforms the components of a vector in the ,  and n  coordinate system to the components 
in a coordinate system fixed within the instrument.  Similarly, a pitching motion is described by 
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 Eq. 40 

while a roll is described 
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A compound motion is described by 

A = BCD 

Eq. 42 

where second and higher order terms in the angles are to be ignored. 

In the instrument fixed coordinate system, the vector gives the beam direction 

( )
( )

( ) 















+−
+
+

≈
















+−
+
+

ψδψψ
φψδψφψ
φψδψφψ

δψψ
φδψψ
φδψψ

sincos
sincossinsin
coscoscossin

cos
sinsin
cossin

ss

ss

s

s

 

Eq. 43 

Transforming to the x ,  and  coordinate frame by means of the matrix Asˆ sŷ n̂ -1, it is found that 

( )[ ] )(ˆsinsincoscoscos1 tnssEsE φψθφψψψδψ +−−−+
( )[ ] )(ˆcoscoscossinsin1 tysEsEs ψθφψφφψδψ −+++
( )[ ] sEsEs xs ˆcossinsincoscos1ˆ ψψφψφφψδψ −−+=  

Eq. 44 

where use has been made of the fact that cosψ = sinψ for ψ = 45°. 

Numerically since φs is a known function of t-ts (see (Eq. 22)), the fastest procedure for evaluating (Eq. 
44) is to make use of a stored table of values for cosψcosφs and sinψsinφs at times of interest relative to 
the scan start time ts.  Each of the square brackets in (Eq. 44) can be reevaluated any time the alignment 
parameters are updated. 

1.3.3 Reference height correction 

Certain of the SSMIS beams are to be referenced to heights other than the Earth’s surface.  As was shown 
in Section 1.2, an exact solution of the problem is too complicated to be used in an operational algorithm.  
However, a very simple correction results if the Earth is treated as flat in the immediate vicinity of the 
point where the beam intersects the Earth. For a flat Earth, as is evident from Figure 6,  
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Figure 6. Approximate Calculation of Reduction in Slant Range 

the slant range for a beam referenced to a height hR is reduced compared to that for a beam intersecting 
the surface by an amount 

θ/cosh  s R=∆  

Eq. 45 

where θ is the angle of incidence.  An approximate determination of cosθ will be discussed below.  But 
first, assuming that it is known, the derivation of the beam latitude and longitude equations will be 
completed.  Using (Eq. 45), (Eq. 32) becomes 

bRsb  n̂ h -  ŝ  s)-(s  r  r ∆+=  

Eq. 46 

where s is the slant range to the surface given by (Eq. 24).  A simplification of (Eq. 46) results if the unit 
normal nb is approximated as 

|r|/rn̂ bbb ≈  

Eq. 47 

With this expression, it is found that 

( )[ ] [ ]|r|/1/ˆrrb bs Rhsss +∆−+≈  

Eq. 48 
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The remaining computation now reverts to the ellipsoidal Earth model. Recalling (Eq. 28) and (Eq. 29), it 
is seen that the factor |]r| / h br+[1 in (Eq. 48) will cancel in computing the beam latitude and longitude.  
It may be ignored.  Thus, simply by reducing the slant range to the surface by (Eq. 45), the computation 
of latitude and longitude for a reference height hR is achieved. 

The reference height correction procedure will be completed when a rule for calculating cosθ in (Eq. 45) 
is specified.  For this computation, one may approximate the Earth by a sphere with radius R.  Then, the 
law of sines implies (see Figure 7) that 

ψθ sin  
R

R h   sin +
=  

Eq. 49 

 
Figure 7. Approximate Angle of Incidence Calculation 

This equation shows that θ depends on the satellite altitude h (which has a nominal value ho = 833 km, but 
may vary) and the angle ψ (which is nominally ψo = 45° but, as discussed in Section 1.3.2, may be 
perturbed).  Differentiating (Eq. 49) shows that 

ψψψθθ dcos 
R

R  h dh  
R

sin  d cos 0
00

0
+

+=  

Eq. 50 

Thus 

ψψθψθθθθθθ d
R

Rhdh
R

d 00
000

000 costansintancossincoscos +
−−=−≈  
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Eq. 51 

Now (Eq. 44) shows how to calculate cosψodψ: 

ψψψψ d00n sincos cos  )ŝ(- −≈=  

Eq. 52 

or 

0

n0
0 tan

) ŝ (  cos  dcos
ψ

ψψψ +
=  

Eq. 53 

Also dh = h-833 km.   If the Earth radius in (Eq. 51) is approximated by the true radius at 45° latitude (R= 
6367.521 km) and h is approximated as the average of the heights at the two ephemeris times t1 and t2 (see 
(Eq. 11)), then it is found that 

[ ]{ } ]) ŝ (  [cos45 1.50572 -  833 - 2 / )(th   )(th  10  1.47865 - .600519  cos n21
-4 ++×=θ  

Eq. 54 

1.3.4 Base point location 

Base point latitudes and longitudes are given by (Eq. 28) - (Eq. 31) with br  given by (Eq. 23).  In (Eq. 
23), s is either the range to the surface (see (Eq. 24)) or the range reduced by (Eq. 45) if the reference 
height is greater than zero.  The computation of the components of s has been discussed in Section 1.3.2 
assuming ,  and n  were known.  The ephemeris data determine  (Section 1.3.1).  Thus, 
only the evaluation of (Eq. 14), (Eq. 15), and (Eq. 18) need be considered. 

sx̂ (t)ysˆ (t)ˆ sx̂

The form is the same in each case and involves the functions [sinω(t-t2)]/[(sinω(t2-t1)] and [sinω(t-
t1)]/(sinω(t2-t1)].  For a fast algorithm, it is not desirable to calculate these transcendental functions 
directly.  Instead, making use of the observation, already made in Section 1.3.1, that the maximum 
argument of the trigonometric functions is small, these functions may be expanded as 
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and 
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where quadratic and higher powers of ω are ignored.  (Eq. 38) shows that 

2
s1

2
s2

2
s1s2 2

12

2

t  | r| | r| 6
 | r  r|  ) t- (t 

6
  ×

==
ωω  

Eq. 57 

so that, defining 
1+=′ tt ωω  

Eq. 58 

) t- (t / ) t-(t   t 121m1 =  

Eq. 59 

1 - t ) t- (t / ) t-(t   t m1122m2 ==  

Eq. 60 

it is found that 

2
2

2rl )( -  s mmtt ttωω −′=  

Eq. 61 

1
2

1r2 )(   s mmtt ttωω −′=  

Eq. 62 

Thus, the algebraic approximations 

s2r2s1r1s  r s   r s  (t)  r +=  

Eq. 63 

2r21r1 n s  n s  (t)n ))) +=  

Eq. 64 

s2r2s1r1s y s  y s  (t)y ))) +=  

Eq. 65 

are found for (Eq. 15), (Eq. 14) and (Eq. 18) respectively.  Of course t in (Eq. 59)-(Eq. 65) must 
correspond to one of the times defining a base point. 

1.3.5 Interpolation between basepoints 

In order to save computation time, only a few base points will be located precisely.  Thus, an interpolation 
scheme is required to locate the remainder of the beams.  If interpolation is accomplished by polynomials, 
as will be done here, it is desirable to keep the degree of the polynomials as low as possible for speed in 
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evaluation.  Unfortunately, acceptable accuracy over the full range of scan angles cannot be achieved in 
this fashion if only a single polynomial is used.  By dividing the range of antenna scan angles into a 
number of sections, each containing only four base points, it is possible to meet accuracy requirements 
while confining our attention to third degree polynomials.  This is a good compromise between accuracy 
and speed requirements and was used in the SSM/I location algorithm. 

Thus, consider the problem of approximating a function f(x) in the interval -1≤x≤1 by the third degree 
polynomial 

 xp  xp x p  p  P(x) 3
3

2
21o +++=  

Eq. 66 

where P(x) agrees with f(x) at the four points x1, x2, x3, and x4 .  For the problem at hand, x represents the 
normalized antenna scan angle φs (scaled, of course, so that x is in the prescribed interval), the points x1, 
x2, x3, and x4 are the normalized scan angles corresponding to the positions of the base points, and f(x) 
with its corresponding P(x) is either the beam latitude or longitude.  The connection between the physical 
antenna scan angle φs and the normalized variable x is given by the relations 

( ) 12 x −−
−

= sas
sasb

φφ
φφ

 

Eq. 67 

22
sasbsasb

s x φφφφφ +
+

−
=  

Eq. 68 

where it is assumed that the angle φs lies in the interval φsa ≤ φs ≤ φsb. 

1.3.5.1 Choice of base points 

A question arises concerning the best choice of the points xi (i=1,...4). A simple strategy is the choice of 
equally spaced points.  However, this may not be optimal.  It is shown in many texts on numerical 
analysis that the error in the approximation (Eq. 66) may be expressed as 

 (x)
4!

) (x)  ( f  (x) P - f(x)
(4)

Π=
ξ

 

Eq. 69 

Where 

))()()(()( 4321 xxxxxxxxx −−−−=Π  

Eq. 70 

Here f(4) is the fourth derivative of f evaluated at some point ξ (which depends on x) in the interval (-
1<ξ<1).  Since the function f is not under our control, the best strategy for achieving high accuracy is to 
minimize the maximum (over x) of the function |Π(x)|.  It is well known that the solution of this problem 
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is to choose xi (i=1,...,4) as the roots of the fourth degree Chebychev polynomial of the first kind.  
Unfortunately, all of these roots lie in the interior of the interval 1)  x (-1 ≤≤  so that four base points will 
have to be computed in each section.  Since a base point computation is expensive in terms of computer 
time, it would be desirable to make multiple use of at least some of the base points.  This is accomplished 
by demanding that the two extreme points in each section lie at the extremes of the interval; i.e., x1 = -1 
and x4 = 1.  In this way, these two base points may be used for two separate sections.  Thus, only the two 
points x2 and x3 remain to be chosen.  Clearly, there is symmetry about the point x=0 so that x3 = -x2 .  
Thus, the problem becomes one of choosing x2 so as to minimize the function max(x){|(x2-1)(x2-x2

2)|} with 
respect to x2.  It may be shown that the solution is 

83
1....41421356283

3

2

−=

−=−−=

x
x  

Eq. 71 

With these choices for xi (i=1...4), max(x){|Π(x)|} = .17157 over the interval -1≤x≤1.  This is roughly 15% 
smaller than would be achieved if the equal spacing choice x2= -1/3, x3 = 1/3 were made.  Of course, the 
full 15% will not necessarily be realized in the reduction of the error of the approximation for f because 
the factor f(4) in (Eq. 69) may vary with x.  Nevertheless, as will be shown later, a worthwhile 
improvement is achieved with no additional calculations in an operational computer program if the choice 
(Eq. 71) is made. 

The question of choosing the appropriate number of sections and their end points remains to be discussed.  
The simplest scheme is to divide the full scan into Nsect sections, each occupying equally sized azimuthal 
angle intervals and whose end points coincide with one of the basic beam positions.  Since there will be 
four base points per section, a total of Nbse = 3 Nsect + 1 base points will be necessary (recall that base 
points bounding sections will be common to two sections, except for the first and last).  Since a full scan 
contains 180 basic beam positions, the choice 
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is made for the number of points Npts  in each section (including end points, thus counting bounding 
points twice). The increment in the normalized azimuthal angle change ∆u between basic beam positions 
is 
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Eq. 73 
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Because Npts is an integer, the possibilities shown in Table I occur. 
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Table I. Possible Divisions of a Scan into Sections 

Nsect Nbse Npts ∆u 

 2  7 90,91 2/89 , 2/90 

 3 10 60,61 2/59 , 2/60 

 4 13 45,46 2/44 , 2/45 

 5 16 36,37 2/35 , 2/36 

 6 19 30,31 2/29 , 2/30 

 9 28 20,21 2/19 , 2/20 

10 31 18,19 2/17 , 2/18 

12 37 15,16 2/14 , 2/15 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
 

The trade-off between these possibilities is accuracy vs computer time. Later, it will be seen that it is 
useful to choose a different number of sections for the polar regions than for the remainder of the Earth.  
The choices Nsect = 9 for the polar regions and Nsect = 3 elsewhere are suitable for the SSMIS. 

1.3.5.2 Computation of interpolated latitude and longitude 

Consider the evaluation of (Eq. 66) for x = u1, u2 = u1 + ∆u, u3 = u1 +2∆u, . . . where u1 = -1.  Substituting 
ui+1 = ui + ∆u in (Eq. 66) shows that  

)Q(u  )P(u  )P(u ii1i +=+  

Eq. 74 

where 

[ ] [ ] [ ] u p   u)( p   u)( p  u u2p   u)( 3p   uu 3p     Q(u) 1
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2
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3 2
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3
2

3 ∆+∆+∆+∆+∆+∆=  

Eq. 75 

Similarly, it is found that 
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)R(u    )Q(u  )Q(u ii1i +=+  

Eq. 76 

where 

[ ] [ ]  u)( 2p   u)(  6p  u   u)(6p    R(u) 2
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3
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2
3 ∆+∆+∆=  

Eq. 77 

likewise 

A    )R(u    )R(u i1i +=+  

Eq. 78 

where 
3

3  u)( 6p A ∆=  

Eq. 79 

(Eq. 74), (Eq. 76), and (Eq. 78) form a recursive set of equations where each new value of P is found by 
only three additions after initial values P(u1), Q(u1) and R(u1) are specified.  This is substantially better 
than the three multiplications and three additions necessary for a straightforward evaluation of (Eq. 66). 

Suppose that the function f(x) that is approximated by P(x) has known values y1, y2, y3, and y4 (the base 
point values) when x= x1, x2, x3, and x4 respectively.  Then 

u6q  -u  2q     u)( 6q    )R(u
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Eq. 80 

where 
1,2,3)(iu        p    q ii =∆=  

Eq. 81 

and 

233 2q  -u  3q - 3q    B ∆=  

Eq. 82 

 

To complete the specifications, a rule for calculating pi or, equivalently, qi for i= 1,2,3 must be given in 
terms of the function values yi (i=1…4) at the points xi (i=1…4).  The standard representation of P(x) in 
terms of the Lagrange polynomials may be expanded to yield 
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Thus, defining 
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Eq. 84 

it is found that 
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Eq. 85 

1.4 Accuracy 

A beam location algorithm based on the discussion in Section 1.3 has been developed for the SSMIS 
software package.  It is implemented by a driver subroutine named LOCATE, a subroutine EPHEM to 
calculate quantities that do not change between the two ephemeris times t1 and t2, a subroutine BASEPT 
to perform the base point location calculations, and a subroutine INTERP to perform the polynomial 
interpolations.  A number of tests have been performed using these routines to verify that performance 
specifications will be met.  These tests were performed for an assumed circular orbit with an inclination 
angle of 98.7°.  In most of the cases, the satellite altitude was chosen to be 833 km above the Earth at 45° 
latitude. Of course, the flattening of the Earth towards the poles implies that the height above the surface 
will vary with latitude.  Unless explicitly stated below, this is the orbit that is being considered.  A plot of 
the subsatellite track showing beam coverage is presented in Figure 8.  In all cases to be discussed below, 
"errors" refer to differences between exact computations, (performed with the equations in Section 1.2 
using the exact circular orbit location at a time of interest and involving none of the approximations 
discussed in Section 1.3), and the use of the approximations discussed in Section 1.3. 
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Figure 8. Sample Subsatellite Track and SSMIS Beam Coverage 

The first test performed was a check on the accuracy of the base point locations.  Calculations showed 
that the maximum base point location error was less than 0.2 km.  If, as in the SSM/I algorithm, a linear 
approximation (equivalent to setting ωt = 0 instead of using (Eq. 57)) had been made, the maximum error 
in the base point location would have been 4 km.  This order of magnitude improvement, obtained at little 
cost, helps reduce the subsequent interpolation errors considerably. 

The extremely low base point location errors cannot be maintained when interpolating with only a few 
base points.  The shapes of the scan lines shown in Figure 8 indicate that, for a fixed number of base 
points, the interpolation error should grow towards the polar regions.  Further, because of the larger 
azimuthal scan range for the SSMIS compared to the SSM/I, the interpolation error problem should be 
expected to be more severe.  This is indeed the case.  Computations showed a maximum location error of 
7.3 km when using Nsect = 6 sections (Nbse = 19 base points) for locating a beam at the Earth’s surface.  
This occurred near the South Pole.  The next possible value for Nsect is 9 (see Table I in Section 1.3.5.1) 
which implies Nbse = 28.  With this choice, the maximum beam location error is 2.7 km at the surface and 
is well within the required 7-km accuracy.  The error decreases rapidly towards lower latitudes. 

In order to reduce computation time, it is not desirable to use 28 base points at all latitudes.  For this 
reason, the cases Nsect = 2 and Nsect = 3 were investigated.  Nsect = 2 yielded a maximum beam location 
error at the surface of 4 km below 60° latitude but this error increased rapidly between 60 and 70° 
latitude.  To obtain a more balanced error curve, the choice Nsect = 3 was made.  It was found that with 
Nsect = 3, the maximum location error was 2.6 km below 72° latitude.  Thus, the choice Nsect = 9 
polewards of 72° and Nsect = 3 otherwise was made.  The resultant maximum error curve for locating the 
beam at the surface is shown in Figure 9.  It shows that the maximum location error depends on whether 
the satellite is approaching or departing the polar regions.  This is not surprising in view of the shapes of 
the scan line shown in Figure 8. The discontinuity near 72° is the result of the change in the number of 
sections used.  Its precise location will vary slightly from orbit to orbit since the changeover point is 
keyed to the bounding subsatellite latitudes at the times t1 and t2 used in the algorithm.  This transition is 
chosen so that if any subsatellite points between the ephemeris times t1 and t2 is polewards of 72° latitude, 
the 9-section division of a scan is used.  Thus, in some cases, the maximum immediately to the equator 
side of 72° will be considerably less than the 2.6 km shown because the 9-section curve will be followed. 
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Figure 9. Maximum SSMIS Beam Location Error at Earth's Surface (Nominal 833 Km Orbit) 

A test was made to compare the accuracy of using the recommended base point azimuthal spacing versus 
an equal spacing choice (see Section 1.3.5.1).  For the Nsect = 3 region, it was found that the maximum 
error in each scan using equal spacing was typically 8-10% larger than the recommended algorithm.  In 
the Nsect = 9 region, the worst case errors near the orbit extremes were also increased by this amount 
although closer to the transition point at 72°, where the errors are order of magnitude smaller, the equal 
spacing choice yielded smaller errors than the recommended algorithm. 

The tests of the algorithm for a reference height of 11 km revealed that the maximum beam location error 
would be less than 2.1 km.  This is less than the error for the surface location and is to be expected on the 
basis of the curves shown in Figure 9.  Locating a beam at 11 km near the poles implies that the scan 
curves will have a truncated range.  Hence, third degree polynomials will not have to cover such a wide 
variation in position. 

Tests for non-ideal orbital heights showed that location errors decrease compared to the maximum of less 
than 2.7 km if the orbit height is decreased from the nominal 833 km.  For a 770-km orbit, the maximum 
location error at the surface is less than 1.5 km.  This is due to the truncated range of the scan curves 
caused by the lower orbit.  In the other direction, location errors are increased due to the extended range 
of the scan lines.  Maximum errors for the surface location increase to 2.72 km for an 860-km orbit and to 
4.98 km for an 880-km orbit. Of course, it is expected that these extreme orbital altitude excursions will 
not occur in practice. 
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