United States Department of Agriculture

Natural
Resources Conservation
Service

In cooperation with
United States Department of the Interior, Bureau of Land Management, U.S. Fish and Wildlife Service, and Bureau of Indian Affairs; and Oregon Agricultural Experiment Station

Soil Survey of Harney County Area, Oregon

How To Use This Soil Survey

General Soil Map

The general soil map, which is a color map, shows the survey area divided into groups of associated soils called general soil map units. This map is useful in planning the use and management of large areas.

To find information about your area of interest, locate that area on the map, identify the name of the map unit in the area on the color-coded map legend, then refer to the section General Soil Map Units for a general description of the soils in your area.

Detailed Soil Maps

The detailed soil maps can be useful in planning the use and management of small areas.

To find information about your area of interest, locate that area on the Index to Map
Sheets. Note the number of the map sheet and turn to that sheet.

Locate your area of interest on the map sheet. Note the map unit symbols that are in that area.Turn to the Contents which lists the

map
units by symbol and name and shows the page where each map unit is described.
The Contents shows which table has data on a specific land use for each detailed soil map unit. Also see the Contents for sections of this publication that may address your specific needs.

This soil survey is a publication of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (formerly the Soil Conservation Service) has leadership for the Federal part of the National Cooperative Soil Survey.

Major fieldwork for this soil survey was completed in 1996. Soil names and descriptions were approved in 1997. Unless otherwise indicated, statements in this publication refer to conditions in the survey area in 1997. This survey was made cooperatively by the Natural Resources Conservation Service and the Bureau of Land Management, U.S. Fish and Wildlife Service, Bureau of Indian Affairs, and Oregon Agricultural Experiment Station. The survey is part of the technical assistance furnished to the Harney Soil and Water Conservation District.

Soil maps in this survey may be copied without permission. Enlargement of these maps, however, could cause misunderstanding of the detail of mapping. If enlarged, maps do not show the small areas of contrasting soils that could have been shown at a larger scale.

The most current soil information and interpretations for this survey area are available either through the Soil Data Mart or in the Field Office Technical Guide (FOTG) at the local field office of the Natural Resources Conservation Service. The Soil Data Mart is the Natural Resources Conservation Service data storage site for the official soil survey information. The FOTG is linked to the Soil Data Mart; therefore, the same information is available from both sources. Soil survey maps and tabular data can be accessed through the Soil Data Mart at http://soildatamart.nrcs.usda.gov. The official soil survey information stored at the Soil Data Mart and this soil survey report are also available through Web Soil Survey at http://soills.usda.gov/survey,

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or the fact that all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Cover: Typical area of Alvodest silty clay loam, 0 to 3 percent slopes. Steens Mountain in background.

Additional information about the Nation's natural resources is available online from the Natural Resources Conservation Service a http://www.nrcs.usda.gov.

Contents

How To Use This Soil Survey i
Contents iii
Foreword xvii
General Nature of the Survey Area 1
Physiography, Relief, and Drainage 2
History and Development 2
General Information 2
History of the Northern Paiutes 3
Climate 4
How This Survey Was Made 6
Soil Survey Procedures 7
General Soil Map Units 9
Warm Soils on Lake Plains, Lake Terraces, and Low Hills 9

1. Alvodest-Droval-Playas 9
2. Spangenburg-Enko-Catlow 9
3. Atlow-Tumtum-Deppy 10
Warm Soils on Hills, Plateaus, and Mountains 10
4. Gumble-Risley-Mahoon 10
5. Felcher-Skedaddle 11
Cool Soils on Lake Terraces, Lake Plains, and Fans 11
6. Fury-Skunkfarm-Housefield 11
7. Poujade-Ausmus-Swalesilver 11
8. Reallis-Vergas-Lawen 12
Cold Soils on Mountains 12
9. Baconcamp-Clamp-Rock outcrop 12
Cool Soils on Shrub- and Grass-Covered Plateaus, Hills, and Mountains that Receive 8 to 16 Inches of Precipitation 13
10. Raz-Brace-Anawalt 13
11. Ninemile-Westbutte-Carryback 14
Cool Soils on Forested and Shrub- and Grass-Covered Hills and Mountains that Receive 12 to 18 Inches of Precipitation 14
12. Merlin-Observation-Lambring 14
13. Gaib-Anatone-Royst 14
Detailed Soil Map Units 17
1-Actem cobbly loam, 2 to 20 percent slopes 18
2—Actem extremely cobbly loam, low precipitation, 2 to 15 percent slopes 19
3-Actem-Robson complex, 2 to 20 percent slopes 20
4-Alvodest silty clay loam, 0 to 3 percent slopes 22
5—Alvodest-Playas complex, 0 to 2 percent slopes 23
6-Alyan gravelly sandy loam, 3 to 15 percent slopes 25
7-Anatone very stony loam, 2 to 12 percent slopes 26
8-Anatone complex, 2 to 30 percent slopes 27
9—Anatone-Teguro-Observation complex, 2 to 20 percent slopes 28
10-Anatone-Egyptcreek-Rock outcrop association, 20 to 50 percent slopes 30
11-Anatone-Minam-Rock outcrop association, 2 to 50 percent slopes 32
12-Anatone-Teguro-Rock outcrop association, 2 to 40 percent slopes 34
13-Anatone-Westbutte-Rock outcrop association, 20 to 60 percent slopes 36
14-Anawalt gravelly clay loam, 0 to 12 percent slopes 37
15-Anawalt-Lonely complex, 5 to 30 percent slopes 38
16-Anawalt-Oreneva complex, 0 to 12 percent slopes 40
17-Anawalt-Raz complex, 2 to 10 percent slopes 42
18-Ateron gravelly loam, 2 to 20 percent slopes 43
19-Ateron-Rubble land complex, 2 to 35 percent slopes 44
20-Ateron-Observation association, 5 to 30 percent slopes 45
21-Atlow very stony loam, 5 to 30 percent slopes 47
22—Atlow-Rock outcrop complex, 5 to 30 percent slopes 48
23—Atlow-Rock outcrop complex, 30 to 50 percent slopes 49
24-Atlow-Skedaddle complex, 5 to 30 percent slopes 50
25-Ausmus fine sandy loam, 0 to 1 percent slopes 52
26-Ausmus fine sandy loam, 0 to 1 percent slopes, flooded 53
27-Baconcamp stony clay loam, 15 to 30 percent north slopes 55
28-Baconcamp-Clamp complex, 5 to 20 percent slopes 56
29-Baconcamp-Clamp complex, 30 to 50 percent north slopes 57
30-Baconcamp-Clamp-Rock outcrop complex, 50 to 70 percent north slopes 59
31-Baconcamp-Rock outcrop complex, 3 to 30 percent slopes 61
32-Baconcamp-Rock outcrop complex, 30 to 70 percent north slopes 62
33-Baconcamp-Rock outcrop-Hackwood complex, 30 to 80 percent slopes 63
34-Baconcamp-Hapgood-Rock outcrop association, 15 to 50 percent slopes 64
35-Baconcamp-Krackle-Rock outcrop association, 25 to 65 percent slopes 66
36-Berdugo silt loam, 0 to 3 percent slopes 67
37-Berdugo-Catlow complex, 0 to 5 percent slopes 68
38-Bigfrog-Brock complex, 8 to 40 percent slopes 70
39—Bocker-Westbutte complex, 5 to 25 percent slopes 72
40-Boravall-Playas complex, 0 to 3 percent slopes 73
41-Borobey sandy loam, 2 to 15 percent slopes 75
42-Boulder Lake clay, 0 to 2 percent slopes 76
43-Boulder Lake-Merlin complex, 0 to 3 percent slopes 77
44-Boulder Lake-Spangenburg complex, 0 to 2 percent slopes 79
45-Brabble-Calderwood complex, 5 to 25 percent slopes 81
46-Brace-Coztur-Rock outcrop complex, 2 to 20 percent slopes 82
47-Brace-Vergas complex, 2 to 20 percent slopes 84
48-Bruncan complex, 0 to 5 percent slopes 86
49-Brunzell gravelly loam, 0 to 2 percent slopes 87
50-Bucklake very stony clay loam, 20 to 50 percent north slopes 88
51-Bucklake-Mahoon-Rubble land complex, 20 to 40 percent slopes 89
52-Calderwood very gravelly loam, 5 to 25 percent slopes 91
53-Calderwood-McConnel complex, 0 to 20 percent slopes 92
54-Carryback silty clay loam, 2 to 20 percent slopes 93
55-Carryback cobbly clay loam, 5 to 20 percent slopes 94
56-Carryback very stony clay loam, 2 to 20 percent slopes 95
57-Carryback very gravelly loam, low elevation, 3 to 20 percent slopes 97
58-Carryback complex, 2 to 20 percent slopes 98
59-Carryback complex, 20 to 40 percent slopes 99
60-Carryback complex, low elevation, 20 to 40 percent slopes 101
61-Carryback-Pearlwise complex, 3 to 15 percent slopes 103
62-Carryback-Pearlwise-Rock outcrop complex, 25 to 50 percent north slopes 104
63-Carryback-Dickle association, 12 to 35 percent north slopes 106
64-Carvix silt loam, 0 to 5 percent slopes 107
65-Clamp-Baconcamp-Hackwood complex, 20 to 35 percent north slopes 108
66-Coztur sandy loam, 2 to 15 percent slopes 111
67-Crowcamp loam, 0 to 1 percent slopes 112
68-Crowcamp-Ausmus-Poujade complex, 0 to 5 percent slopes 113
69-Davey sandy loam, 0 to 8 percent slopes 116
70—Davey-Oreanna complex, 0 to 8 percent slopes 117
71—Defenbaugh loam, 0 to 2 percent slopes 118
72—Deppy very gravelly loam, 5 to 15 percent slopes 120
73-Deppy-Tumtum complex, 5 to 15 percent slopes 121
74 -Dickle very cobbly clay loam, 3 to 12 percent slopes 122
75-Dixon gravelly fine sandy loam, 0 to 5 percent slopes 123
76-Dixon gravelly fine sandy loam, alkali, 0 to 2 percent slopes 125
77-Dixon gravelly sandy clay loam, 3 to 15 percent slopes 126
78-Dixon-Droval complex, 0 to 2 percent slopes 127
79—Dogmountain gravelly loam, 4 to 20 percent slopes 130
80—Doyn very stony loam, 2 to 20 percent slopes 131
81-Doyn-Merlin complex, 2 to 20 percent slopes 132
82-Doyn-Arcia association, 2 to 30 percent slopes 133
83—Drewsey very fine sandy loam, 1 to 5 percent slopes 135
84-Drewsey very fine sandy loam, 2 to 20 percent slopes 136
85-Drewsey-Torriorthents-Gumble complex, 2 to 40 percent slopes 137
86-Droval loam, 0 to 3 percent slopes 139
87-Duff loam, 3 to 12 percent slopes 140
88—Duff-Clamp complex, 5 to 20 percent slopes 141
89—Duff-Clamp complex, 20 to 40 percent north slopes 143
90—Duff-Hackwood complex, 2 to 30 percent slopes 144
91-Edemaps loam, 5 to 20 percent slopes 145
92-Edemaps-Carryback association, 2 to 10 percent slopes 146
93-Enko loamy sand, 2 to 8 percent slopes 148
94-Enko-Catlow complex, 1 to 7 percent slopes 149
95-Enko-Catlow complex, 7 to 15 percent slopes 151
96-Enko-Catlow association, 2 to 20 percent slopes 153
97-Erakatak extremely stony silty clay loam, 50 to 80 percent north slopes 154
98-Erakatak-Lambring-Rock outcrop complex, 20 to 60 percent north slopes 155
99-Erakatak-Merlin-Westbutte complex, 10 to 60 percent slopes 157
100-Erakatak-Rock outcrop complex, 20 to 60 percent slopes 159
101-Erakatak-Ninemile-Hapgood association, 5 to 40 percent slopes 160
102—Felcher extremely stony clay loam, 20 to 40 percent south slopes 163
103-Felcher-Rock outcrop complex, 40 to 70 percent south slopes 164
104-Felcher-Rock outcrop-Brezniak complex, 30 to 65 percent south slopes 165
105—Felcher-Rock outcrop-Westbutte complex, 20 to 40 percent slopes 166
106-Felcher-Sagehen complex, 5 to 30 percent slopes 168
107-Felcher-Sagehen complex, 40 to 70 percent south slopes 169
108—Felcher-Fitzwater-Rock outcrop association, 20 to 60 percent slopes 171
109-Felcher-Pernty-Ninemile association, 10 to 35 percent slopes 172
110—Felcher-Westbutte association, 20 to 40 percent slopes 174
111-Final silt loam, 0 to 2 percent slopes 176
112—Fitzwater-Hapgood association, 20 to 40 percent slopes 177
113—Fitzwater-Rock outcrop complex, 20 to 60 percent north slopes 179
114—Flank-Lava flows complex, 1 to 40 percent slopes 180
115—Fourwheel stony loam, 3 to 12 percent slopes 181
116-Fourwheel extremely cobbly loam, 20 to 40 percent north slopes 182
117-Freznik very stony silt loam, 2 to 15 percent slopes 183
118-Fury silt loam, 0 to 1 percent slopes 184
119—Fury silt loam, 0 to 1 percent slopes, ponded 186
120-Fury-Degarmo complex, 0 to 2 percent slopes 187
121-Fury-Housefield complex, 0 to 1 percent slopes 189
122—Fury-Housefield-Skidoosprings complex, 0 to 2 percent slopes 191
123-Fury-Opie complex, 0 to 1 percent slopes 193
124—Fury-Skidoosprings-Opie complex, 0 to 2 percent slopes 195
125-Fury-Widowspring complex, 0 to 2 percent slopes 198
126-Gaib gravelly loam, 2 to 20 percent slopes 200
127-Gaib-Ateron complex, 2 to 15 percent slopes 202
128-Gaib-Rock outcrop complex, 20 to 60 percent slopes 203
129—Gilispie-Noname complex, 3 to 15 percent slopes 205
130-Gochea sandy loam, 0 to 2 percent slopes 206
131-Goldrun-Alvodest complex, 0 to 12 percent slopes 207
132-Gradon gravelly fine sandy loam, 0 to 8 percent slopes 209
133-Guano gravelly sandy loam, 2 to 15 percent slopes 210
134-Gumble very gravelly silt loam, 2 to 20 percent slopes 211
135-Gumble very stony loam, 20 to 40 percent south slopes 212
136-Gumble-Mahoon-Cagle complex, 2 to 40 percent slopes 214
137-Hackwood gravelly loam, 20 to 35 percent slopes 216
138—Hackwood-Baconcamp complex, 20 to 35 percent north slopes 217
139—Hapgood very cobbly loam, 2 to 12 percent slopes 219
140—Hart Camp cobbly loam, 5 to 15 percent slopes 220
141-Hart Camp cobbly loam, 15 to 30 percent slopes 221
142—Helphenstein-Goldrun complex, 0 to 15 percent slopes 222
143—Homefield mucky silt loam, 0 to 1 percent slopes 223
144—Housefield mucky silt loam, 0 to 1 percent slopes 224
145-Housefield-Doubleo complex, 0 to 1 percent slopes 226
146-Icene-Playas complex, 0 to 1 percent slopes 228
147-Icene-Playas complex, slightly alkaline, 0 to 1 percent slopes 229
148—Jesse Camp silt loam, 2 to 5 percent slopes 231
149-Jimgreen muck, 0 to 1 percent slopes 232
150-Jimgreen-Housefield complex, 0 to 1 percent slopes 233
151—Kegler fine sandy loam, 2 to 5 percent slopes 235
152—Kerrfield loam, 3 to 20 percent slopes 236
153—Klicker very gravelly loam, 35 to 60 percent north slopes 237
154—Klicker extremely cobbly loam, 15 to 35 percent north slopes 238
155—Krackle complex, 20 to 40 percent slopes 240
156—Krackle-Baconcamp-Rock outcrop complex, 3 to 30 percent slopes 241
157—Krackle-Baconcamp-Rock outcrop complex, high precipitation, 3 to 30 percent slopes 243
158—Krackle-Rock outcrop complex, 25 to 50 percent south slopes 244
159—Krackle-Baconcamp-Hackwood association, 20 to 35 percent slopes 245
160—Ladycomb cobbly clay loam, 8 to 25 percent slopes 247
161-Lambranch gravelly loam, 2 to 8 percent slopes 248
162—Lambring-Egyptcreek-Rock outcrop complex, 20 to 60 percent slopes 249
163—Lambring-Rock outcrop complex, 30 to 70 percent north slopes 251
164—Lambring-Rubble land complex, 30 to 50 percent slopes 252
165—Langslet silty clay, 0 to 2 percent slopes 253
166-Lava flows 254
167-Lava flows-Flank complex, 1 to 40 percent slopes 254
168-Lawen fine sandy loam, 2 to 5 percent slopes 255
169—Leathers silt loam, 0 to 2 percent slopes 256
170-Leathers silt loam, 1 to 3 percent slopes 257
171-Leemorris-Buckwilder complex, 3 to 15 percent slopes 259
172—Leemorris-Buckwilder complex, 15 to 35 percent slopes 260
173—Legler silty clay loam, 0 to 3 percent slopes 263
174-Locane very cobbly loam, 5 to 25 percent slopes 264
175-Lolak very fine sandy loam, 0 to 1 percent slopes 265
176-Lolak-Ausmus complex, 0 to 1 percent slopes 266
177-Lonely-Doyn association, 2 to 20 percent slopes 268
178-Lonely-Robson association, 5 to 25 percent slopes 269
179—Longcreek-Cleavage complex, 20 to 50 percent slopes 271
180—Longcreek-Rock outcrop complex, 40 to 70 percent south slopes 272
181—Loupence silt loam, 0 to 2 percent slopes 273
182-Madeline very stony loam, 15 to 40 percent south slopes 275
183-Madeline very stony loam, 20 to 60 percent north slopes 276
184-Madeline-Ninemile complex, 15 to 35 percent slopes 277
185-Madeline-Rock outcrop complex, 40 to 70 percent slopes 279
186-Mahoon very cobbly loam, 2 to 20 percent slopes 280
187-Mahoon-Brezniak-Longcreek complex, 2 to 20 percent slopes 281
188-Mahoon-Cagle complex, 10 to 40 percent slopes 283
189—Mahoon-Risley complex, 2 to 20 percent slopes 285
190-Mahoon-Cotant association, 15 to 30 percent slopes 287
191-Mcbain-Ausmus complex, 0 to 2 percent slopes 288
192—McConnel cobbly sandy loam, 3 to 8 percent slopes 290
193-Merlin very stony loam, 2 to 15 percent slopes 291
194-Merlin complex, 2 to 20 percent slopes 292
195-Merlin-Ateron complex, 2 to 20 percent slopes 294
196-Merlin-Ateron-Rubble land complex, 2 to 20 percent slopes 295
197-Merlin-Ateron-Ticino complex, 2 to 20 percent slopes 297
198-Merlin-Erakatak-Teguro complex, 2 to 20 percent slopes 299
199-Merlin-Observation complex, 2 to 20 percent slopes 301
200-Merlin-Observation complex, 20 to 40 percent north slopes 303
201-Merlin-Rubble land complex, 2 to 15 percent slopes 305
202-Merlin-Teguro complex, 2 to 15 percent slopes 306
203-Merlin-Teguro complex, very stony, 2 to 20 percent slopes 308
204-Mesman loamy fine sand, 0 to 5 percent slopes 309
205-Mesman fine sandy loam, 0 to 5 percent slopes 311
206-Mesman-Norad complex, 0 to 2 percent slopes 312
207-Middlebox gravelly sandy loam, 5 to 20 percent slopes 313
208-Middlebox complex, 15 to 40 percent slopes 314
209—Minam silt loam, 0 to 2 percent slopes 315
210-Minam-Welch complex, 0 to 3 percent slopes 316
211-Modoc gravelly sandy loam, 2 to 15 percent slopes 318
212—Morfitt loam, 0 to 2 percent slopes 319
213-Morganhills sandy loam, 2 to 12 percent slopes 320
214-Morganhills complex, 2 to 35 percent slopes 321
215-Mound stony loam, 2 to 20 percent slopes 322
216-Nevador very gravelly sandy loam, 3 to 12 percent slopes 323
217-Ninemile gravelly loam, hummocky, 0 to 8 percent slopes 324
218—Ninemile very cobbly clay loam, low precipitation, 2 to 30 percent slopes 325
219—Ninemile very stony clay loam, 0 to 20 percent slopes 327
220—Ninemile-Carvix complex, 0 to 8 percent slopes 328
221—Ninemile-Doyn complex, 2 to 20 percent slopes 330
222—Ninemile-Edemaps complex, 2 to 10 percent slopes 331
223-Ninemile-Madeline complex, 2 to 15 percent slopes 333
224—Ninemile-Pearlwise complex, 20 to 35 percent slopes 335
225-Ninemile-Reluctan complex, 0 to 15 percent slopes 336
226-Ninemile-Reluctan-Rubble land complex, 2 to 30 percent slopes 338
227-Ninemile-Rock outcrop complex, 40 to 70 percent south slopes 340
228-Ninemile-Rubble land complex, 5 to 20 percent slopes 341
229—Ninemile-Westbutte complex, 2 to 15 percent slopes 342
230-Ninemile-Westbutte-Ninemile complex, 2 to 30 percent slopes 344
231-Ninemile association, 2 to 12 percent slopes 346
232-Ninemile-Felcher association, 5 to 30 percent slopes 347
233-Noname-Dickle complex, 3 to 12 percent slopes 349
234-Noname-Duff-Rock outcrop complex, 20 to 80 percent slopes 350
235-Norad silt loam, 0 to 1 percent slopes 352
236-Norad-Spangenburg complex, 0 to 2 percent slopes 353
237-Nuss stony loam, 20 to 40 percent south slopes 354
238-Nuss-Merlin complex, 20 to 40 percent north slopes 355
239-Nuss-Rock outcrop complex, 20 to 40 percent south slopes 357
240—Observation stony loam, 2 to 20 percent slopes 358
241—Observation-Rock outcrop complex, 5 to 20 percent slopes 359
242—Observation-Royst-Merlin complex, 2 to 30 percent slopes 360
243-Observation-Teguro complex, 2 to 20 percent slopes 363
244-Observation-Lambring-Rock outcrop association, 20 to 50 percent slopes 364
245-Olac-Atlow complex, 2 to 10 percent slopes 366
246-Opie silt loam, 0 to 1 percent slopes 368
247-Oreneva gravelly loam, 0 to 12 percent slopes 369
248-Outerkirk sandy loam, 1 to 4 percent slopes 370
249—Outerkirk sandy loam, silty substratum, 2 to 6 percent slopes 371
250—Outerkirk-Defenbaugh association, 1 to 4 percent slopes 372
251-Ozamis silt loam, 0 to 1 percent slopes 373
252—Pearlwise stony loam, 30 to 65 percent north slopes 375
253—Pernty gravelly silt loam, 3 to 15 percent slopes 376
254-Pernty gravelly silt loam, 15 to 40 percent south slopes 377
255-Pernty cobbly loam, 30 to 50 percent north slopes 378
256—Pernty-Rock outcrop complex, 30 to 70 percent south slopes 379
257-Pernty-Westbutte-Ninemile association, 5 to 50 percent slopes 380
258-Pits 382
259-Playas 382
260—Playas-Thenarrows complex, 0 to 2 percent slopes 384
261—Poall silt loam, 2 to 20 percent slopes 386
262—Poall-Gumble complex, 2 to 20 percent slopes 387
263-Pomerening very gravelly loamy sand, 2 to 20 percent slopes 388
264-Pomerening-Flank-Lava flows complex, 2 to 20 percent slopes 390
265—Porterfield loam, 2 to 20 percent slopes 391
266-Porterfield very stony loam, 20 to 40 percent south slopes 392
267-Porterfield-Tincan-Rock outcrop association, 20 to 60 percent slopes 393
268-Poujade very fine sandy loam, 0 to 2 percent slopes 395
269—Poujade very fine sandy loam, 2 to 5 percent slopes 396
270—Poujade-Ausmus complex, 0 to 2 percent slopes 398
271—Raz cobbly fine sandy loam, 1 to 10 percent slopes 399
272—Raz-Brace complex, 2 to 20 percent slopes 400
273—Raz-Brace complex, low precipitation, 2 to 20 percent slopes 402
274—Reallis sandy loam, 3 to 8 percent slopes 404
275—Reallis fine sandy loam, 0 to 3 percent slopes 405
276—Reese loam, 0 to 1 percent slopes 406
277—Reluctan loam, 2 to 20 percent slopes 407
278-Reluctan very stony silt loam, 2 to 20 percent slopes 408
279—Riddleranch-Lambring-Rock outcrop complex, 20 to 50 percent slopes 409
280—Riddleranch-Rock outcrop complex, 20 to 70 percent south slopes 411
281—Rinconflat stony loam, 3 to 10 percent slopes 412
282—Rio King loam, 1 to 6 percent slopes 413
283—Rio King-Droval complex, 0 to 2 percent slopes 414
284—Risley-Gumble complex, 2 to 20 percent slopes 416
285—Risley-Gumble-Torriorthents complex, 2 to 25 percent slopes 418
286—Risley-Rock outcrop complex, 5 to 20 percent slopes 420
287—Robson-Anawalt complex, 2 to 15 percent slopes 421
288—Robson-Fourwheel complex, 3 to 30 percent slopes 423
289—Robson-Felcher association, 3 to 70 percent slopes 424
290—Roca very cobbly clay loam, 15 to 40 percent south slopes 426
291—Rock outcrop and Rubble land, 20 to 60 percent slopes 427
292—Rock outcrop-Baconcamp complex, 30 to 80 percent slopes 428
293—Royst-Merlin complex, 2 to 20 percent slopes 429
294—Rubble land-Nuss-Ateron association, 20 to 60 percent slopes 431
295-Sagehen-Rock outcrop complex, 5 to 30 percent slopes 433
296-Sagehen-Rock outcrop complex, 30 to 70 percent slopes 434
297-Sandgap sand, 3 to 8 percent slopes 435
298-Sandgap sand, 1 to 4 percent slopes, flooded 436
299-Seharney cobbly silt loam, 3 to 12 percent slopes 437
300—Skedaddle-Atlow-Rock outcrop complex, 5 to 30 percent slopes 438
301—Skedaddle-Atlow-Rock outcrop complex, 30 to 50 percent slopes 440
302—Skedaddle-Rock outcrop complex, 40 to 70 percent slopes 441
303-Skedaddle association, 30 to 50 percent slopes 442
304—Skidoosprings sandy loam, 0 to 3 percent slopes 444
305-Skidoosprings sandy loam, 0 to 1 percent slopes, flooded 445
306-Skunkfarm-Cumulic Haploxerolls complex, 0 to 2 percent slopes 446
307-Skunkfarm-Doubleo complex, 0 to 1 percent slopes 448
308-Skunkfarm-Mcbain-Doubleo complex, 0 to 2 percent slopes 450
309—Skunkfarm-Skidoosprings complex, 0 to 2 percent slopes 452
310-Spangenburg silty clay loam, 0 to 1 percent slopes 454
311-Spangenburg silty clay loam, moist, 0 to 1 percent slopes 455
312—Spangenburg silty clay loam, thick surface, 0 to 2 percent slopes 456
313—Srednic-Aval complex, 2 to 20 percent slopes 458
314—Stampede loam, 1 to 5 percent slopes 459
315—Swaler silt loam, 0 to 1 percent slopes 460
316-Swaler-Swalesilver association, 0 to 2 percent slopes 461
317-Swalesilver silt loam, 0 to 2 percent slopes 463
318-Swalesilver silt loam, dry, 0 to 2 percent slopes 464
319—Swalesilver silt loam, 0 to 1 percent slopes, flooded 465
320-Teguro gravelly loam, 5 to 20 percent slopes 467
321-Teguro very cobbly loam, 2 to 20 percent slopes 468
322-Teguro very stony loam, thin surface, 2 to 20 percent slopes 469
323-Teguro-Anatone complex, 2 to 20 percent slopes 470
324-Teguro-Ateron complex, 2 to 20 percent slopes 471
325-Thenarrows-Duckclub complex, 0 to 1 percent slopes 473
326-Thenarrows-Duckclub-Dentdraw complex, 0 to 2 percent slopes 474
327-Thenarrows-Duckclub-Sandgap complex, 0 to 4 percent slopes 477
328-Ticino-Merlin complex, 2 to 10 percent slopes 479
329—Ticino-Observation complex, 2 to 20 percent slopes 481
330-Ticino-Rock outcrop complex, 2 to 20 percent slopes 482
331-Toll sand, 2 to 15 percent slopes 483
332-Toll-Nevador complex, 0 to 15 percent slopes 484
333-Torriorthents-Gumble complex, 2 to 35 percent slopes 485
334-Tumtum cobbly loam, 4 to 15 percent slopes 487
335-Tumtum cobbly loam, high precipitation, 2 to 8 percent slopes 488
336-Turpin sandy clay loam, 0 to 1 percent slopes 489
337-Vanwyper-Rock outcrop complex, 45 to 80 percent north slopes 491
338-Vergas gravelly loam, 0 to 3 percent slopes 492
339—Vil silt loam, 2 to 20 percent slopes 493
340—Vining loam, 2 to 20 percent slopes 494
341—Vining-Tuffo complex, 5 to 30 percent slopes 495
342—Vitale very stony loam, 5 to 20 percent slopes 496
343-Vitale-Merlin complex, 2 to 20 percent slopes 497
344—Vitale-Merlin-Doyn complex, 2 to 20 percent slopes 499
345-Vitale-Observation complex, 2 to 20 percent slopes 501
346—Vitale-Rock outcrop complex, 20 to 60 percent south slopes 502
347-Voltage silt loam, 0 to 2 percent slopes 503
348-Voltage-Crowcamp complex, 0 to 2 percent slopes 505
349-Voltage-Crowcamp complex, 0 to 2 percent slopes, flooded 507
350-Voltage-Widowspring complex, 0 to 2 percent slopes 508
351-Wagontire gravelly clay loam, 2 to 20 percent slopes 510
352-Wagontire-Vil complex, 2 to 20 percent slopes 511
353-Waspo-Poall complex, 2 to 8 percent slopes 513
354-Water 514
355-Welch silt loam, cold, 0 to 5 percent slopes 514
356-Welch silt loam, cool, 0 to 5 percent slopes 516
357-Welch-Roschene-Cumulic Haploxerolls complex, 0 to 3 percent slopes 517
358-Wenas-Loupence-Cumulic Haploxerolls complex, 0 to 3 percent slopes 519
359-Westbutte very stony loam, 20 to 50 percent north slopes 521
360-Westbutte extremely stony loam, 5 to 25 percent slopes 522
361-Westbutte-Bocker complex, 20 to 60 percent slopes 523
362—Westbutte-Lambring-Rock outcrop complex, 35 to 65 percent north slopes 525
363-Westbutte-Rock outcrop complex, 20 to 60 percent north slopes 526
364-Westbutte-Rock outcrop complex, 20 to 60 percent south slopes 527
365-Westbutte-Lambring-Rock outcrop association, 20 to 60 percent slopes 528
366-Westbutte-Lambring-Rock outcrop association, cool, 20 to 60 percent slopes 530
367—Westbutte-Lambring-Rock outcrop association, moist, 20 to 60 percent slopes 531
368-Westbutte-Observation association, 5 to 40 percent slopes 533
369-Westbutte-Rock outcrop-Pernty association, 20 to 40 percent slopes 534
370—Widowspring silt loam, 0 to 2 percent slopes 536
371—Windybutte silt loam, 2 to 5 percent slopes 537
372—Wolverine fine sand, 2 to 15 percent slopes 538
373—Denied Access 539
Use and Management of the Soils 541
Interpretive Ratings 541
Rating Class Terms 541
Numerical Ratings 541
Crops and Pasture 542
Yields per Acre 543
Land Capability Classification 543
Prime Farmland 544
Rangeland 545
Rangeland Ecological Sites and Forestland Plant Associations 546
Rangeland Plant Community Dynamics 547
Prescribed Grazing Systems 547
Management Interpretations for Uses of Rangeland 549
General Plant Association Map 550
Riparian Areas 554
Ecological Sites, Plant Associations, and Characteristic Plant Communities 555
Forestland Management and Productivity 555
Forestland Management 556
Forestland Productivity 562
Recreation 562
Wildlife Habitat 564
Engineering 564
Building Site Development 565
Sanitary Facilities 566
Construction Materials 567
Water Management 568
Soil Properties 571
Engineering Index Properties 571
Physical Properties 572
Chemical Properties 574
Water Features 574
Soil Features 576
Classification of the Soils 577
Taxonomic Units and Their Morphology 577
Actem Series 578
Alvodest Series 578
Alyan Series 580
Anatone Series 581
Anawalt Series 581
Arcia Series 582
Ateron Series 583
Atlow Series 584
Ausmus Series 584
Aval Series 587
Baconcamp Series 588
Berdugo Series 588
Bigfrog Series 589
Bocker Series 590
Boravall Series 591
Borobey Series 592
Boulder Lake Series 593
Brabble Series 594
Brace Series 595
Brezniak Series 596
Brock Series 596
Bruncan Series 597
Brunzell Series 598
Bucklake Series 599
Buckwilder Series 600
Cagle Series 601
Calderwood Series 601
Carryback Series 602
Carvix Series 603
Catlow Series 604
Clamp Series 605
Cleavage Series 606
Cotant Series 606
Coztur Series 607
Crowcamp Series 608
Cumulic Haploxerolls 609
Davey Series 609
Defenbaugh Series 610
Degarmo Series 611
Dentdraw Series 612
Deppy Series 613
Dickle Series 614
Dixon Series 615
Dogmountain Series 616
Doubleo Series 617
Doyn Series 618
Drewsey Series 619
Droval Series 620
Duckclub Series 621
Duff Series 622
Edemaps Series 623
Egyptcreek Series 625
Enko Series 626
Erakatak Series 627
Felcher Series 627
Final Series 628
Fitzwater Series 629
Flank Series 630
Fourwheel Series 631
Freznik Series 632
Fury Series 633
Gaib Series 634
Gilispie Series 635
Gochea Series 635
Goldrun Series 636
Gradon Series 637
Guano Series 638
Gumble Series 639
Hackwood Series 639
Hapgood Series 640
Hart Camp Series 641
Helphenstein Series 642
Homefield Series 643
Housefield Series 644
Icene Series 645
Jesse Camp Series 646
Jimgreen Series 647
Kegler Series 648
Kerrfield Series 649
Klicker Series 650
Krackle Series 651
Ladycomb Series 651
Lambranch Series 652
Lambring Series 653
Langslet Series 654
Lawen Series 655
Leathers Series 655
Leemorris Series 657
Legler Series 658
Locane Series 658
Lolak Series 659
Lonely Series 660
Longcreek Series 661
Loupence Series 662
Madeline Series 662
Mahoon Series 663
Mcbain Series 664
McConnel Series 666
Merlin Series 667
Mesman Series 667
Middlebox Series 668
Minam Series 669
Modoc Series 670
Morfitt Series 671
Morganhills Series 672
Mound Series 672
Nevador Series 674
Ninemile Series 675
Noname Series 675
Norad Series 677
Nuss Series 678
Observation Series 679
Olac Series 680
Opie Series 680
Oreanna Series 681
Oreneva Series 682
Outerkirk Series 683
Ozamis Series 684
Pearlwise Series 685
Pernty Series 686
Poall Series 687
Pomerening Series 688
Porterfield Series 688
Poujade Series 689
Raz Series 690
Reallis Series 691
Reese Series 692
Reluctan Series 693
Riddleranch Series 694
Rinconflat Series 695
Rio King Series 696
Risley Series 697
Robson Series 698
Roca Series 699
Roschene Series 699
Royst Series 700
Sagehen Series 701
Sandgap Series 702
Seharney Series 703
Skedaddle Series 704
Skidoosprings Series 704
Skunkfarm Series 705
Spangenburg Series 707
Srednic Series 708
Stampede Series 709
Swaler Series 711
Swalesilver Series 712
Teguro Series 713
Thenarrows Series 714
Ticino Series 715
Tincan Series 716
Toll Series 716
Torriorthents 717
Tuffo Series 717
Tumtum Series 718
Turpin Series 718
Vanwyper Series 720
Vergas Series 720
Vil Series 721
Vining Series 722
Vitale Series 723
Voltage Series 724
Wagontire Series 725
Waspo Series 726
Welch Series 727
Wenas Series 727
Westbutte Series 728
Widowspring Series 729
Windybutte Series 730
Wolverine Series 731
Formation of the Soils 733
References 739
Glossary 741
Tables 755
Table 1.-Temperature and Precipitation 756
Table 2.-Freeze Dates in Spring and Fall 759
Table 3.-Growing Season 761
Table 4.-Acreage and Proportionate Extent of the Soils 762
Table 5.-Land Capability and Yields per Acre of Crops and Pasture 768
Table 6.-Ecological Sites, Plant Associations, and Characteristic Plant Communities 794
Table 7a.-Forestland Management (Part 1) 858
Table 7b.-Forestland Management (Part 2) 860
Table 8.-Forestland Productivity 862
Table 9.-Recreation 864
Table 10.—Building Site Development 928
Table 11.—Sanitary Facilities 1004
Table 12.-Construction Materials 1068
Table 13.-Water Management 1158
Table 14.-Engineering Index Properties 1211
Table 15.—Physical Properties of the Soils 1315
Table 16.—Chemical Properties of the Soils 1367
Table 17.-Water Features 1419
Table 18.-Soil Features 1463
Table 19.-Classification of the Soils 1490

Foreword

This soil survey contains information that affects land use planning in this survey area. It contains predictions of soil behavior for selected land uses. The survey also highlights soil limitations, improvements needed to overcome the limitations, and the impact of selected land uses on the environment.

This soil survey is designed for many different users. Farmers, ranchers, foresters, and agronomists can use it to evaluate the potential of the soil and the management needed for maximum food and fiber production. Planners, community officials, engineers, developers, builders, and home buyers can use the survey to plan land use, select sites for construction, and identify special practices needed to ensure proper performance. Conservationists, teachers, students, and specialists in recreation, wildlife management, waste disposal, and pollution control can use the survey to help them understand, protect, and enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. The information in this report is intended to identify soil properties that are used in making various land use or land treatment decisions. Statements made in this report are intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are shallow to bedrock. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

These and many other soil properties that affect land use are described in this soil survey. Broad areas of soils are shown on the general soil map. The location of each soil is shown on the detailed soil maps. Each soil in the survey area is described. Information on specific uses is given for each soil. Help in using this publication and additional information are available at the local office of the Natural Resources Conservation Service or the Cooperative Extension Service.

Bob Graham
State Conservationist
Natural Resources Conservation Service

Soil Survey of Harney County Area, Oregon

By Mark Keller, Natural Resources Conservation Service, and Ed Horn, Bureau of Land Management

Fieldwork by Richard Hosler, Tom Clark, Allen Makinson, Mark Keller, and Michael Schramm, Natural Resources Conservation Service, and Chuck Leonard, Ralph Klein, Ed Horn, Marylin Kastens, Curt Leet, Gerhard Gareis, Tom Champa, Paula Reid, and John Barber, Bureau of Land Management

United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with
United States Department of the Interior, Bureau of Land Management, U.S. Fish and Wildlife Service, and Bureau of Indian Affairs; and Oregon Agricultural Experiment Station

Harney County Area is in the southeastern part of Oregon, adjoining Nevada to the south. The survey area has a total area of about 6,032,528 acres, or about 9,425 square miles. About 4,010,000 acres is administered by the Bureau of Land Management, 180,000 acres is administered by the U.S. Fish and Wildlife Service, $1,830,000$ acres is State and private land, and 12,000 acres is administered by the Bureau of Indian Affairs. The National forestland in Harney County is not included in the survey area. Burns, the county seat, is north of Malheur and Harney Lakes. More than one-half of the total county population of about 7,000 lives in or around Burns and Hines. Most of the economy is directly or indirectly dependent upon ranching and farming. Manufacturing, including wood products manufacturing; timber harvesting; and tourism are also important to the local economy.

Soil scientists have identified about 170 different soil types in the survey area. Each soil may have several different slopes, textures, aspects, or other phases. The survey includes 373 detailed soil map units.

The areas of irrigated cropland were mapped at a higher level of detail than were the areas of rangeland. The specifications and intensity of soil mapping used in the survey area are discussed in the section "Soil Survey Procedures."

Further assistance for landowners or operators interested in planning the use and management of the resources in a particular area is provided by the local office of the Natural Resources Conservation Service. Technical guides maintained in the local office contain specific information for common conservation practices. The County Extension Service also provides soil-related information on crop management, crop varieties, fertilizers, pest control, and other agricultural concerns.

General Nature of the Survey Area

This section gives general information about the physiography, relief, and drainage; history and development; and climate of the survey area.

Physiography, Relief, and Drainage

Most of the survey area lies within the Basin and Range Physiographic Province. Harney Basin is the northernmost extent of this physiographic province. The northern part of the survey is in the Blue Mountains Province. The Malheur River drains into the Snake River from the Blue Mountains. The northwestern part of the survey area is in the High Lava Plains Province (Orr and Ewart, 1992). The uplands of the survey area are mostly Tertiary tuff, basalt, and andesite with a few islands of older igneous rock. The valleys consist of Quaternary alluvium. Steens Mountain is dominantly Miocene basalt flows, which were dramatically uplifted in a fault block. During the Pleistocene, Steens Mountain was sculpted by alpine glaciation.

The Basin and Range Province is characterized by basins that have closed or partially closed drainage systems and are separated by north-south trending fault-block mountain ranges. Harney Basin, Pueblo Valley, Alvord Desert, and Catlow Valley are the major basins in the survey area. In the lowest part of these basins are dry salt flats and shallow saline playa lakes. The soils on lakebeds and terraces adjacent to these lowest areas are those of the Alvodest, Boravall, Icene, and Mesman series. During the Ice Age, large lakes filled these basins. The shorelines from these lakes are as much as 200 feet above the present floor of the basins (Snyder and Zdenek, 1964). Many of the nearly level lake terraces in the basins are now being farmed. The soils on these ancient lake terraces include those of the Lawen, Outerkirk, Kegler, Reallis, Enko, and Windybutte series. The floor of the basins is at an elevation of about 4,000 to 4,500 feet. The mean annual precipitation in Harney Basin and Catlow Valley is 8 to 11 inches. The frost-free period is 50 to 100 days. The mean annual precipitation of the Alvord Desert and Pueblo Valley is 7 to 10 inches, and the frost-free period is 80 to 100 days. Catlow Rim, Steens Mountain, Pueblo Mountains, and Trout Creek Mountains are the major fault-block escarpments or ranges that separate the basins. Elevation of these ranges is about 5,000 to 9,700 feet. The mean annual precipitation is 10 to 50 inches, and the frost-free period is 30 to 80 days.

The moderately sloping plateaus to the west of Catlow Valley and Harney Basin are dotted by cinder cones and lava buttes. Common soils on the plateaus are those of the Ninemile, Raz, and Brace soils. Beatys Butte, Juniper Mountain, and Wagontire Mountain are the most prominent volcanic features. Common soils on these mountains are those of the Ninemile, Westbutte, Carryback, Pernty, Reluctan, Doyn, Edemaps, and Baconcamp series. Elevation of this volcanic area is about 5,000 to 7,900 feet. Over most of this area, the mean annual precipitation is 10 to 16 inches and the frost-free period is 50 to 80 days. At the highest elevations, the mean annual precipitation ranges to as much as 25 inches and the frost-free period ranges to as little as 30 days.

The Stinkingwater Mountains are steep to rolling hills at an elevation of 3,400 feet at Warm Springs Reservoir to 6,000 feet at Otis Mountain. These mountains drain into the Malheur River. The mean annual precipitation is 10 to 16 inches, and the frost-free period is 50 to 100 days.

The Blue Mountains are steep to rolling forested hills and mountains at an elevation of 5,000 to 5,800 feet. The mean annual precipitation is 18 to 25 inches, and the frost-free period is 50 to 80 days.

History and Development

General Information

The first white men recorded to visit Harney County were a splinter party from Peter Skene Ogden's Snake River exploratory trip in 1826 (Ferguson, 1978). This
six-man party, led by Antoine Sylvaille, was dispatched up the Malheur River into what is now Harvey County. In 1827 Jed S. Smith of the Missouri Fur Company passed through Harney Basin (Harney County Chamber of Commerce Centennial Committee, 1989).

The Oregon Trail migration mostly bypassed Harney County to the north. One famous exception was the 1845 Stephen Meek wagon train, dubbed the "Lost Wagon Train." Meek led a group of 200 wagons and 800 people that split off from a larger wagon train. He charged one dollar per wagon and led the party on a southerly route into present-day Harney County (Brimlow, 1951). When Meek had previously seen this area, Malheur Lake was very large and water was easily available. In 1845, however, he led the wagon train through the desert country during a drought (Wojcik, 1976). It was a disastrous trip. After reaching Harney Lake, they traveled the next 35 miles without water. The wagon train finally reached The Dallas, Oregon, weeks after the original train had arrived in the Willamette Valley. Seventy-five people died along the route. The mysterious "Blue Bucket" gold was discovered on this trek when some settlers unknowingly collected nuggets of gold. No one since has been able to locate the fabled source.

The U.S. Army moved into Harney County in 1859. Several forts were established to protect the settlers. The first permanent settler in the county was cattleman John Devine. In 1869 he established the Whitehorse Ranch on the east side of Steens Mountain, 26 years after the Oregon Trail migration began.

The settlers began to take over areas used by the Northern Paiute Indians for gathering roots and seeds; therefore, some of the Paiutes joined in the Bannock War of 1878. After the war, the Indians were restricted from the 2,285-square-mile Malheur Indian Reservation. The men were shackled and taken on foot to the Yakima Indian Reservation.

Large ranches flourished late in the 19th century. Several ranches, including the Peter French and Miller-Lux Ranches, consolidated their holdings.

Burns, the most populous community in Harney County, was named after a Scottish poet. It was incorporated in 1889.

In 1908 President Theodore Roosevelt established the Malheur National Wildlife Refuge in response to a public outcry over plume hunters shooting the waterfowl on Malheur Lake. Later acquisitions expanded the refuge to about 181,000 acres.

In 1928 the Forest Service asked Edward Hines to establish a lumber mill in Harney County. The world's largest sawmill under cover cut its first log in January 1930. At its peak, the Edward Hines Lumber Company employed thousands of workers. The sawmill was sold in 1983, and it was "parted out" in the 1990's. Other manufacturers now occupy the site.

Natural resource concerns of private land managers in the county led to the establishment of the Harney Soil and Water Conservation District in October 1972.

In the early 1980's, the high runoff from several years of high precipitation and deep snowpack on Steens Mountain caused Malheur Lake to inundate a vast area. Malheur and Harney Lakes coalesced and became the largest inland body of water in Oregon. Thirty ranches flooded, including some third generation ranches. Many roads also flooded, and the railroad ceased to operate. As a result of several years of drought beginning in the late 1980's, Malheur Lake shrank to just a few hundred acres by 1992.

History of the Northern Paiutes

By Minerva Soucie, Burns Paiute historian.
The Northern Paiutes were the dominant group of people in Harney County prior to the Europeans. The Paiutes were hunters and gatherers. The area provided many resources to sustain them during harsh winter months. They traveled great distances each year, from the first signs of onions pushing through the soil in spring until the
last chokecherry had been picked in fall. Their yearly cycles enabled them to harvest camas, biscuitroot, bitter root, and seeds from wildrye to wada, hence they were called "wada seed eaters." Salmon were plentiful in the streams and rivers that drained into the mighty Snake River, which connected to the Columbia River and the Pacific Ocean. Mussels, crayfish, and trout, which could be mixed with the roots and bulbs, abounded in the fresh water. Elk, deer, groundhog, buffalo, and antelope meat was dried and stored for the cold winters.

The Paiutes gathered in seasonal cycles, traveling from Steens Mountain to the Blue Mountains, west to the Cascade Mountains, and east to the Payette Valley in Idaho. These travels not only allowed them to hunt and gather, but they also allowed them to trade for items that perhaps were in short supply back home. Fur trappers were the first white people the Paiutes encountered. Later came the military and then wagonloads of settlers.

In 1872 the Malheur Indian Reservation was created by executive order for all the "roving" Paiutes in southeast Oregon. The Paiutes settled on the reservation until the Bannock War in 1878. As a result of the skirmish with the U.S. Calvary, the entire Paiute Tribe was moved in the winter of 1879 to Fort Simcoe in Yakima, Washington. This move became known as the Paiute Trail of Tears. The women and children rode in military wagons, and the men were shackled and walked together. The Paiutes lived at Fort Simcoe for about 5 years.

After the Paiutes were moved, Malheur Indian Reservation was opened up to Public Domain. Settlers moved onto the prime camas fields and constructed fences. In 1895 the Allotment Act provided land to 115 adult members of Paiute households who had returned from Fort Simcoe. The land allotted to the Paiutes was alkaline, and because they were not familiar with farming, they could not sustain a living. They had learned carpentry skills, however, so they constructed many one-room houses. Some lived in these houses until they were moved in the 1920's to "Old Camp," which was a 10 -acre tract of land donated to the Paiute people. In 1936 many of the people moved to this "new village" site. People who were knowledgeable in growing hay and alfalfa farmed the 300 acres of land adjacent to the homesites. In 1972 Congress created the present Burns Paiute Reservation. Today, the tribe continues to grow alfalfa that is sold to dairies in western Oregon.

Climate

Prepared by the Natural Resources Conservation Service, National Water and Climate Center, Portland, Oregon.

Data for the climate tables were recorded at Denio Junction, Nevada, and at P Ranch Refuge and Northern Great Basin Range Experiment Station, Oregon. Thunderstorm days, relative humidity, percent sunshine, and wind information were estimated from data recorded at the First Order station at Winnemucca, Nevada.

Table 1 gives data on temperature and precipitation for the survey area in the period 1961 to 1990. Table 2 shows probable dates of the first freeze in fall and the last freeze in spring. Table 3 provides data on the length of the growing season.

In winter, the average temperature is 32.7 degrees F at Denio Junction and P Ranch Refuge and 29.1 degrees at Northern Great Basin Range Experiment Station. The average daily minimum temperature is 21.5 degrees at Denio Junction, 21.7 degrees at P Ranch Refuge, and 20.2 degrees at Northern Great Basin Range Experiment Station. The lowest temperatures on record are -25 degrees at Denio Junction on February 4, 1985; -32 degrees at P Ranch Refuge on January 22, 1962; and -24 degrees at Northern Great Basin Range Experiment Station on January 31, 1950.

In summer, the average temperature is 68.7 degrees at Denio Junction, 63.8 degrees at P Ranch Refuge, and 63.9 degrees at Northern Great Basin Range

Experiment Station. The average daily maximum temperature is 87.8 degrees at Denio Junction, 82.5 degrees at P Ranch Refuge, and 79.9 degrees at Northern Great Basin Range Experiment Station. The highest temperatures on record are 107 degrees at Denio Junction on August 8, 1981; 103 degrees at P Ranch Refuge on August 3, 1961; and 104 degrees at Northern Great Basin Range Experiment Station on August 4, 1961.

Growing degree days are shown in table 1. They are equivalent to "heat units." During the month, growing degree days accumulate by the amount that the average temperature each day exceeds a base temperature (40 degrees F). The normal monthly accumulation is used to schedule single or successive plantings of a crop between the last freeze in spring and the first freeze in fall.

The average annual precipitation is 9.10 inches at Denio Junction, 11.90 inches at P Ranch Refuge, and 10.56 inches at Northern Great Basin Range Experiment Station. The average annual precipitation of the survey area generally is 9 to 13 inches, with the exception of the Steens Mountain area. The highest elevations in this area, which are above 7,000 feet, receive 40 to 50 inches of precipitation annually. The upper part of the Trout Creek drainageway, in the southeastern portion of the survey area, receives as much as 24 inches of precipitation annually. The growing season for most of the survey area is quite short, generally only June through September. Normally, only about 2 to 3 inches of precipitation falls during this period, which is less than 25 percent of the total annual precipitation.

The heaviest amount of precipitation received in 1 day during the period of record was 2.00 inches at Denio Junction on November 7, 1973; 1.97 inches at P Ranch Refuge on June 16, 1987; and 2.23 inches at Northern Great Basin Range Experiment Station on August 23, 1941. Thunderstorms generally occur on about 15 days each year, but the frequency is slightly higher at the higher elevations. Most thunderstorms occur in June through August.

The average seasonal snowfall is 22.5 inches at Denio Junction, 15.9 inches at P Ranch Refuge, and 39.7 inches at Northern Great Basin Range Experiment Station. The greatest snow depth at any one time during the period of record was 12 inches at Denio Junction on January 7, 1993; 10 inches at P Ranch Refuge on December 28, 1983; and 29 inches at Northern Great Basin Range Experiment Station on March 4, 1993. Snow measurements and other data were not available from Denio Junction and Northern Great Basin Range Experiment Station during the period of heavy snow in February and March 1993; the snow depth during this time may have been greater than the previously reported extremes. On an average, 12 days per year at Denio Junction, 10 days at P Ranch Refuge, and 48 days at Northern Great Basin Range Experiment Station have at least 1 inch of snow on the ground. The Steens Mountain area has a snow cover for much of the year; the higher elevations generally are covered with snow from late in October through June or July. At the Fish Creek SNOTEL site on Steens Mountain at an elevation of 7,900 feet, the average date of the total meltoff is July 10 and the snow cover is at its maximum depth in mid-April, when about 30 inches of water is in the snowpack. The heaviest 1-day snowfall on record was 10 inches at Denio Junction on November 26, 1979; 9 inches at P Ranch Refuge on November 21, 1977; and 13 inches at Northern Great Basin Range Experiment Station on January 17, 1951.

The average relative humidity in midafternoon generally is about 35 percent. Humidity is higher at night, and the average at dawn is usually about 70 percent. There are significant differences in humidity between winter and summer. The lowest midafternoon humidity generally is about 70 percent in winter, but it is only about 15 percent in summer. The sun shines 82 percent of the time possible in summer and 48 percent of the time possible in winter. The prevailing wind generally is from the west, but the direction of the wind is closely related to the local topography. Average
windspeed is highest, 8 to 9 miles per hour, at the lower elevations in spring. Windspeed generally increases with elevation throughout the year.

How This Survey Was Made

This survey was made to provide information about the soils and miscellaneous areas in the survey area. The information includes a description of the soils and miscellaneous areas and their location and a discussion of their suitability, limitations, and management for specified uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They dug many holes to study the soil profile, which is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

The soils and miscellaneous areas in the survey area are in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept or model of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the fieldobserved characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are
assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Survey Procedures

The guidelines followed in making this survey are described in the National Soil Survey Handbook (http://soils.usda.gov/technical/handbookh). References used in the development of this survey include geologic maps published by the U.S. Geological Survey (Greene and others, 1972; Greene, 1972; Walker, 1979; Walker and Repenning, 1965).

The survey area was mapped on orthophotography quadrangles at a scale of $1: 24,000$. The photo imagery used in mapping was dated 1974. The imagery used in the map compilation was dated 1975 to 1977 . The imagery used for the soil maps in the publication was dated 1988, 1989, 1994, and 2001, but a high percentage was dated 1994. Imagery dated 1975 was used in placing map unit lines. Because the boundary between water and soil can fluctuate dramatically as a result of differences in the amount of runoff, using imagery from a different year will affect the placement of a map unit line between water and soil. If the digital map unit lines as based on the 1975 to 1977 imagery are superimposed over imagery from a different year, the lines between soil and water may not coincide.

The Bureau of Land Management had lead responsibility for mapping all land in the survey area that is managed by the Bureau. The Natural Resources Conservation Service had lead responsibility for mapping all other land in the survey area. In some areas, access was denied by landowners. These areas are included in detailed soil map unit 373.

Slopes on the hills and mountains were determined by use of contour intervals on topographic maps and by stereoscopic study. Transects were used to map soils in level areas that did not have easily predictable patterns, such as those on flood plains. Tonal patterns on aerial photographs were used to predict some preliminary map unit delineations, although the extent and composition of each map unit was determined by the use of line-intercept transects. The transect lines and field samples were taken at regular intervals, commonly crossing several map unit delineations on a single geomorphic surface. Where predictable soil patterns exist, such as on terraces and plateaus, landform traverses were used to correlate soils with a particular geomorphic surface. Preliminary map unit delineations were drawn using soil-landform models. Field sampling was used to support the particular soil-landform model established for each area. Traverses were planned by using topographic maps and photo-interpretation of tonal patterns, slope, and aspect. The traverses crossed typical geomorphic surfaces and varying slopes in the area. Potential plant communities were correlated with specific soil characteristics. Some soil features that influence potential plant communities include a clayey subsoil, drainage, and salt content. A soil-potential plant community model was used to support the soil-landform model. Tonal patterns on aerial photographs were used to predict the presence of wet, droughty, or shallow soils, patterns of cobbles or stones, eroded areas, saline
soils, and soils that have a duripan. Aspect contrasts also are evident on aerial photographs. The type and density of vegetation commonly reflect the depth and available water capacity of soils.

This survey was mapped at two levels of detail. Order 2 mapping was used for the more intensively managed irrigated areas, and Order 3 mapping was used for the less intensively managed areas of rangeland and forestland. The minimum size of the delineations was divided into three categories-similar soils, contrasting soils, and strongly contrasting soils. Similar soils have the same potential plant communities as the dominant soil or soils in the map unit, are suited to similar management practices, and can be identified only by use of soil sampling and landform traverses. Contrasting soils have different potential plant communities, are suited to different management practices, and can be identified only by use of landform traverses or soil sampling. Strongly contrasting soils have different potential plant communities and are suited to different management practices. They were identified by use of remote sensing techniques. These techniques include determining slope and aspect from topographic maps and photo-interpretation of tonal patterns.

The irrigated cropland and potential irrigable areas were mapped at Order 2 intensity. The map units are consociations and complexes of phases of soil series or miscellaneous areas. The minimum size of the delineations for similar soils is about 80 acres. The minimum size of the delineations for contrasting soils is about 40 acres, and that for strongly contrasting soils is about 10 acres. Photo-interpretation and field investigations were conducted at an intensity that could detect 10-acre areas that need significantly different management for irrigated hay, pasture, or cropland.

The areas of rangeland and forestland were mapped at Order 3 intensity. The map units are mainly associations and complexes of phases of soil series and miscellaneous areas. Consociations of phases of soil series were mapped in some areas. The minimum size of the delineations for similar soils is about 320 acres, and that of contrasting soils is about 160 acres. Smaller delineations of about 40 acres were mapped in areas of strongly contrasting soils that have high resource value. Photo-interpretation and field investigations were conducted at an intensity that could detect 40 -acre areas that need significantly different management for rangeland, forestland, wildlife habitat, recreation, and watershed.

In areas of rangeland and forestland, only about one-fourth of the number of landform traverses were made as compared to the areas of cropland. Transects were made to correlate plant associations for forestland and ecological sites for rangeland to soil patterns and composition. The density of trees was used to identify highly productive soils in the areas of forestland. For the areas of rangeland and forestland, similar soils are major components of the map unit. Many of these soils are in relatively small, isolated areas of the survey area. The characteristics of these soils and in some cases the location of the soils are given in the section "Detailed Soil Map Units."

Soil samples for chemical and physical analysis were taken for some of the typical pedons of the major soils in the survey area. The analyses were made by the National Soil Survey Laboratory in Lincoln, Nebraska, and by the laboratory at Oregon State University. The results of the analyses were used in classifying the soils, establishing soil properties, and making interpretations.

General Soil Map Units

The general soil map in this publication shows broad areas that have a distinctive pattern of soils, relief, and drainage. The 13 general soil map units in this survey have been grouped into six broader groups based on landform, climate, and vegetation. Each map unit on the general soil map is a unique natural landscape. Typically, it consists of one or more major soils or miscellaneous areas and some minor soils or miscellaneous areas. It is named for the major soils or miscellaneous areas. The components of one map unit can occur in another but in a different pattern.

The general soil map can be used to compare the suitability of large areas for general land uses. Areas of suitable soils can be identified on the map. Likewise, areas where the soils are not suitable can be identified.

Because of its small scale, the map is not suitable for planning the management of a farm or field or for selecting a site for a road or building or other structure. The soils in any one map unit differ from place to place in slope, depth, drainage, and other characteristics that affect management.

Warm Soils on Lake Plains, Lake Terraces, and Low Hills

Number of map units: 3
Percentage of survey area: 18 percent

1. Alvodest-Droval-Playas

Somewhat poorly drained, very deep soils that formed in lacustrine sediment; on lake plains

Percentage of survey area: 5 percent
Elevation: 4,000 to 4,600 feet
Average annual precipitation: 7 to 10 inches
Average annual temperature: 45 to 49 degrees F
Frost-free period: 80 to 100 days
Slope: 0 to 3 percent
Dominant vegetation: Black greasewood, inland saltgrass, basin wildrye
Minor components: Ozamis, Icene, Mesman, Boravall, and Dixon soils
Major uses: Livestock grazing, wetland wildlife habitat
Major soil limitations: Wetness, alkalinity, salinity

2. Spangenburg-Enko-Catlow

Well drained and moderately well drained, very deep soils that formed in alluvium and lacustrine sediment; on low lake terraces

Percentage of survey area: 8 percent
Elevation: 4,200 to 5,500 feet
Average annual precipitation: 8 to 10 inches

Average annual temperature: 45 to 49 degrees F
Frost-free period: 80 to 100 days
Slope: 0 to 20 percent
Dominant vegetation: Basin big sagebrush, Wyoming big sagebrush, beardless wildrye, bluebunch wheatgrass, Thurber needlegrass, basin wildrye, Indian ricegrass, needleandthread
Minor components: Outerkirk, Norad, Goldrun, Defenbaugh, Rio King, and Nevador soils
Major uses: Livestock grazing, irrigated alfalfa production
Major soil limitation: Hazard of wind erosion

3. Atlow-Tumtum-Deppy

Well drained, shallow soils that formed in old alluvium, residuum, and colluvium; on high lake terraces and low hills

Percentage of survey area: 5 percent
Elevation: 3,400 to 5,300 feet
Average annual precipitation: 7 to 10 inches
Average annual temperature: 45 to 49 degrees F
Frost-free period: 80 to 100 days
Slope: 2 to 50 percent
Dominant vegetation: Shadscale, bud sagebrush, Wyoming big sagebrush, bluebunch wheatgrass, Indian ricegrass, Thurber needlegrass
Minor components: Kerrfield, Bruncan, Vining, and Ladycomb soils
Major use: Livestock grazing
Major soil limitations: Hazard of water erosion, soil depth, low available water capacity

Warm Soils on Hills, Plateaus, and Mountains

Number of map units: 2
Percentage of survey area: 6 percent

4. Gumble-Risley-Mahoon

Well drained, shallow and moderately deep soils that formed in residuum and colluvium; on hills and plateaus

Percentage of survey area: 4 percent
Elevation: 3,400 to 4,800 feet
Average annual precipitation: 9 to 12 inches
Average annual temperature: 45 to 49 degrees F
Frost-free period: 80 to 100 days
Slope: 2 to 40 percent
Dominant vegetation: Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass, Sandberg bluegrass
Minor components: Porterfield soils, Torriorthents, Cagle soils
Major use: Livestock grazing
Major soil limitations: Hazard of water erosion, soil depth, low available water capacity

5. Felcher-Skedaddle

Well drained, very shallow to moderately deep soils that formed in colluvium and residuum; on mountains and hills
Percentage of survey area: 2 percent
Elevation: 4,100 to 7,100 feet
Average annual precipitation: 8 to 12 inches
Average annual temperature: 45 to 49 degrees F
Frost-free period: 80 to 100 days
Slope: 20 to 70 percent
Dominant vegetation: Wyoming big sagebrush, shadscale, bud sagebrush, Indian ricegrass, bluebunch wheatgrass, Thurber needlegrass, desert needlegrass
Minor components: Westbutte and Fitzwater soils
Major use: Livestock grazing
Major soil limitations: Hazard of water erosion, soil depth, steepness of slope, low available water capacity

Cool Soils on Lake Terraces, Lake Plains, and Fans

Number of map units: 3
Percentage of survey area: 10 percent

6. Fury-Skunkfarm-Housefield

Somewhat poorly drained to very poorly drained, very deep soils that formed in lacustrine sediment; on lake plains

Percentage of survey area: 3 percent
Elevation: 4,000 to 5,100 feet
Average annual precipitation: 8 to 10 inches
Average annual temperature: 43 to 45 degrees F
Frost-free period: 50 to 80 days
Slope: 0 to 2 percent
Dominant vegetation: Nebraska sedge, Baltic rush, beardless wildrye, hardstem bulrush, broadfruit burreed, spikerush, basin wildrye
Minor components: Widowspring, Skidoosprings, Degarmo, Opie, and Mcbain soils; Cumulic Haploxerolls; Jimgreen soils
Major uses: Livestock grazing, native hay production, wetland wildlife habitat Major soil limitation: Wetness

7. Poujade-Ausmus-Swalesilver

Moderately well drained and somewhat poorly drained, very deep soils that formed in lacustrine sediment and alluvium; on lake terraces and lake plains
Percentage of survey area: 4 percent
Elevation: 4,000 to 4,500 feet
Average annual precipitation: 8 to 10 inches
Average annual temperature: 43 to 45 degrees F

Frost-free period: 50 to 80 days
Slope: 0 to 5 percent
Dominant vegetation: Basin big sagebrush, black greasewood, silver sagebrush, basin wildrye, inland saltgrass, beardless wildrye, Sandberg bluegrass
Minor components: Skidoosprings, Crowcamp, Thenarrows, Fury, Duckclub, and Lolak soils; Playas; Opie soils
Major uses: Livestock grazing, irrigated alfalfa production, wetland wildlife habitat
Major soil limitations: Wetness, alkalinity, salinity

8. Reallis-Vergas-Lawen

Well drained, very deep soils that formed in alluvium; on lake terraces and fans
Percentage of survey area: 3 percent
Elevation: 4,000 to 6,000 feet
Average annual precipitation: 8 to 12 inches
Average annual temperature: 43 to 45 degrees F
Frost-free period: 50 to 80 days
Slope: 0 to 8 percent
Dominant vegetation: Basin big sagebrush, Wyoming big sagebrush, Thurber needlegrass, needleandthread
Minor components: Carvix, Widowspring, Voltage, Swaler, Swalesilver, and Sandgap soils
Major uses: Livestock grazing, irrigated alfalfa production
Major soil limitation: Hazard of wind erosion

Cold Soils on Mountains

Number of map units: 1
Percentage of survey area: 5 percent

9. Baconcamp-Clamp-Rock outcrop

Well drained, shallow and moderately deep soils that formed in colluvium; on mountains

Percentage of survey area: 5 percent (fig. 1)
Elevation: 5,100 to 9,700 feet
Average annual precipitation: 12 to 40 inches
Average annual temperature: 40 to 43 degrees F
Frost-free period: 30 to 50 days
Slope: 5 to 80 percent
Dominant vegetation: Mountain big sagebrush, antelope bitterbrush, Idaho fescue, rough fescue, tufted hairgrass, sheep fescue
Minor components: Hackwood, Duff, Krackle, Hapgood, Leemorris, Gilispie, Buckwilder, and Dickle soils
Major uses: Livestock grazing, wildlife habitat, recreation
Major soil limitations: Steepness of slope, hazard of water erosion, short growing season, soil depth

Figure 1.-Area of general soil map unit 9. Big Indian Gorge on Steens Mountain in background.

Cool Soils on Shrub- and Grass-Covered Plateaus, Hills, and Mountains that Receive 8 to 16 Inches of Precipitation

Number of map units: 2
Percentage of survey area: 50 percent

10. Raz-Brace-Anawalt

Well drained, shallow and moderately deep soils that formed in alluvium and colluvium; on plateaus and hills that receive 8 to 12 inches of precipitation

Percentage of survey area: 35 percent Elevation: 4,100 to 6,200 feet
Average annual precipitation: 8 to 12 inches
Average annual temperature: 43 to 45 degrees F
Frost-free period: 50 to 80 days
Slope: 0 to 30 percent
Dominant vegetation: Wyoming big sagebrush, low sagebrush, Thurber needlegrass, bluebunch wheatgrass, Indian ricegrass, needleandthread, Sandberg needlegrass
Minor components: Actem, Robson, Carryback, and Lonely soils
Major use: Livestock grazing
Major soil limitations: Soil depth, low available water capacity, hazard of water erosion

11. Ninemile-Westbutte-Carryback

Well drained, shallow and moderately deep soils that formed in residuum and colluvium; on plateaus, hills, and mountains that receive 12 to 16 inches of precipitation

Percentage of survey area: 15 percent
Elevation: 4,000 to 7,000 feet
Average annual precipitation: 12 to 16 inches
Average annual temperature: 40 to 45 degrees F
Frost-free period: 50 to 80 days
Slope: 0 to 65 percent
Dominant vegetation: Western juniper, low sagebrush, mountain big sagebrush, Idaho fescue
Minor components: Pernty, Reluctan, Lambring, Doyn, Teguro, Ateron, and Edemaps soils
Major use: Livestock grazing
Major soil limitations: Steepness of slope, hazard of water erosion, soil depth

Cool Soils on Forested and Shrub- and Grass-Covered Hills and Mountains that Receive 12 to 18 Inches of Precipitation

Number of map units: 2
Percentage of survey area: 11 percent

12. Merlin-Observation-Lambring

Well drained, shallow, moderately deep, and very deep soils that formed in residuum and colluvium; on shrub- and grass-covered hills and mountains

Percentage of survey area: 10 percent
Elevation: 4,900 to 6,600 feet
Average annual precipitation: 12 to 16 inches
Average annual temperature: 40 to 45 degrees F
Frost-free period: 50 to 80 days
Slope: 0 to 70 percent
Dominant vegetation: Western juniper, curl-leaf mountain mahogany, low sagebrush, mountain big sagebrush, antelope bitterbrush, Idaho fescue, onespike oatgrass, basin wildrye
Minor components: Doyn, Teguro, and Vitale soils
Major use: Livestock grazing
Major soil limitations: Steepness of slope, hazard of water erosion, soil depth

13. Gaib-Anatone-Royst

Well drained, shallow and moderately deep soils that formed in residuum and colluvium; on forested hills and mountains

Percentage of survey area: 1 percent
Elevation: 4,000 to 6,000 feet
Average annual precipitation: 16 to 18 inches
Average annual temperature: 40 to 43 degrees F
Frost-free period: 50 to 80 days

Slope: 2 to 60 percent
Dominant vegetation: Ponderosa pine, western juniper, curl-leaf mountain mahogany, low sagebrush, mountain big sagebrush, antelope bitterbrush, Idaho fescue, onespike oatgrass, Douglas fir
Minor components: Observation, Egyptcreek, Klicker, Mound, Lambring, Merlin, and Teguro soils
Major uses: Livestock grazing, forestland
Major soil limitations: Steepness of slope, surface rock fragments, hazard of water erosion, soil depth

Detailed Soil Map Units

The map units delineated on the detailed soil maps in this survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this section, along with the maps, can be used to determine the suitability and potential of a unit for specific uses. They also can be used to plan the management needed for those uses.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, soils. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. The contrasting components are mentioned in the map unit descriptions. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives the principal hazards and limitations to be considered in planning for specific uses.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase
commonly indicates a feature that affects use or management. For example, Ninemile very stony clay loam, 0 to 20 percent slopes, is a phase of the Ninemile series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes or associations.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Raz-Brace complex, 2 to 20 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Westbutte-Observation association, 5 to 40 percent slopes, is an example.

This survey includes miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Table 4 gives the acreage and proportionate extent of each map unit. Other tables give properties of the soils and the limitations, capabilities, and potentials for many uses. The Glossary defines many of the terms used in describing the soils or miscellaneous areas.

1—Actem cobbly loam, 2 to 20 percent slopes Composition

Actem and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Old alluvium and colluvium
Geology: Basalt and welded tuff
Elevation: 4,200 to 6,000 feet
Rangeland ecological site and characteristic vegetation: (Clayey 10-12PZ) Wyoming big sagebrush, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches—light gray cobbly loam
2 to 7 inches-brown clay
7 to 15 inches-light yellowish brown clay loam
15 to 20 inches-very pale brown indurated duripan
20 inches-basalt

Soil Properties and Qualities

Depth: 2 to 10 inches to a claypan, 12 to 20 inches to a hardpan, and 20 to 30 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches

Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Wagontire soils on fan terraces
- Gradon soils on fan terraces
- Playas

Major Soil Limitations

Depth to bedrock, depth to a claypan, depth to a hardpan, shrink-swell potential

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to bedrock limits the construction of water impoundments.
- The cemented hardpan restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- The suitability for seeding is poor because of the low available water capacity.

2—Actem extremely cobbly loam, low precipitation, 2 to 15 percent slopes

Composition

Actem and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Old alluvium and colluvium
Geology: Basalt and welded tuff
Elevation: 4,800 to 5,200 feet
Rangeland ecological site and characteristic vegetation: (Loamy 8-10PZ) Wyoming big sagebrush, Indian ricegrass, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-light gray extremely cobbly loam
2 to 7 inches-brown clay

7 to 15 inches-light yellowish brown clay loam
15 to 20 inches-very pale brown indurated duripan
20 inches-basalt

Soil Properties and Qualities

Depth: 2 to 10 inches to a claypan, 12 to 20 inches to a hardpan, and 20 to 30 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Carvix soils in drainageways and on stream terraces
- Rock outcrop

Major Soil Limitations

Surface rock fragments, depth to bedrock, depth to a claypan, depth to a hardpan, shrink-swell potential

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The extremely cobbly surface layer prohibits the operation of ground seeding equipment.
- The extremely cobbly soil surface limits livestock movement and the distribution of grazing.
- Depth to bedrock limits the construction of water impoundments.
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- The cemented hardpan restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- The suitability for seeding is very poor because of the surface rock fragments.

3—Actem-Robson complex, 2 to 20 percent slopes
 Composition

Actem and similar soils-45 percent Robson and similar soils-40 percent Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum
Geology: Basalt and welded tuff

Elevation: 4,900 to 5,400 feet
Rangeland ecological site and characteristic vegetation: Actem and Robson-
(Clayey 10-12PZ) Wyoming big sagebrush, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Actem
0 to 2 inches-light gray cobbly loam
2 to 7 inches-brown clay
7 to 15 inches-light yellowish brown clay loam
15 to 20 inches-very pale brown indurated duripan
20 inches-basalt

Properties and Qualities of Actem

Depth: 2 to 10 inches to a claypan, 12 to 20 inches to a hardpan, and 20 to 30 inches
to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Typical Profile of Robson
0 to 4 inches-light brownish gray very stony loam
4 to 13 inches-brown very gravelly clay
13 inches-basalt

Properties and Qualities of Robson

Depth: 12 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Anawalt soils in drainageways
- Swaler soils in basins and drainageways
- Rock outcrop

Major Soil Limitations

Actem and Robson-depth to bedrock, shrink-swell potential
Actem-depth to a claypan
Robson—available water capacity, surface stones

Use and Management

Livestock Grazing

Actem and Robson

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- The upper part of the soils is saturated following snowmelt.
- These soils are susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.

Actem

- The claypan restricts the rooting depth.
- The suitability for seeding is poor because of the low available water capacity.

Robson

- The low available water capacity of the surface layer limits seedling survival.
- The very stony surface layer restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The suitability for seeding is very poor because of the low available water capacity.

4-Alvodest silty clay loam, 0 to 3 percent slopes

 CompositionAlvodest and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,600 feet
Rangeland ecological site and characteristic vegetation: (Sodic Flat) black greasewood, inland saltgrass

Climatic factors:

Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F Frost-free period-80 to 100 days

Typical Profile

0 to 2 inches-light gray silty clay loam
2 to 6 inches-light brownish gray silty clay loam
6 to 42 inches-grayish brown silty clay
42 to 53 inches-light brownish gray silty clay
53 to 78 inches-light gray silty clay

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in winter and spring
Water table: Present in winter and spring
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Strong
Alkalinity: Strong
Shrink-swell potential: High
Corrosivity to concrete: High

Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Alvodest soils that have a sandy surface layer
- Defenbaugh and Outerkirk soils on alluvial fans

Major Soil Limitations

Available water capacity, wetness, shrink-swell potential, salinity, alkalinity, corrosivity, wind erosion

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Crusting of the soil surface reduces infiltration, results in ponding, and restricts seedling emergence and survival.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, black greasewood, alkali sacaton, and seepweed increase and inland saltgrass and basin wildrye decrease.
- The suitability for seeding is very poor because of the low available water capacity, strong salinity, and strong alkalinity.

5—Alvodest-Playas complex, 0 to 2 percent slopes

Composition
Alvodest and similar soils-50 percent
Playas-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Alvodest—plane; Playas—plane and concave
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,600 feet
Rangeland ecological site and characteristic vegetation: Alvodest—(Sodic Flat) black greasewood, inland saltgrass
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Alvodest

0 to 2 inches-light gray silty clay loam
2 to 6 inches-light brownish gray silty clay loam
6 to 42 inches-grayish brown silty clay
42 to 53 inches-light brownish gray silty clay
53 to 78 inches-light gray silty clay

Properties and Qualities of Alvodest

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in winter and spring
Water table: Present in winter and spring
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water-slight; wind-moderate
Salinity: Strong
Alkalinity: Strong
Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Typical Profile of Playas

0 to 60 inches-stratified loamy, silty, and clayey lacustrine sediment

Properties and Qualities of Playas

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: May be present throughout the year
Water table: Present throughout the year
Permeability: Very slow
Hazard of erosion: Water—slight; wind—slight to severe
Shrink-swell potential: High
Salinity: Strong
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Davey soils on lake terraces
- Outerkirk soils on alluvial fans

Major Limitations
Alvodest and Playas-available water capacity, wind erosion, shrink-swell potential, salinity, alkalinity, wetness, corrosivity

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Crusting of the soil surface reduces infiltration, results in ponding, and restricts seedling emergence and survival.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- This unit is suited to grazing in winter.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, black greasewood, alkali sacaton, and seepweed increase and inland saltgrass and basin wildrye decrease.
- The suitability for seeding is very poor because of the low available water capacity, strong salinity, and strong alkalinity.

6-Alyan gravelly sandy loam, 3 to 15 percent slopes

Composition

Alyan and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum
Geology: Welded tuff, rhyolite, and ashflow tuff
Elevation: 4,200 to 5,200 feet
Rangeland ecological site and characteristic vegetation: (Droughty Loam 11-13PZ) basin big sagebrush, Idaho fescue, Thurber needlegrass
Climatic factors:
Mean annual precipitation-11 to 13 inches Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-brown gravelly sandy loam
2 to 10 inches-brown loam
10 to 17 inches-pale brown cobbly clay loam
17 to 24 inches-light yellowish brown cobbly clay
24 inches-fractured ashflow tuff

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water-slight; wind-moderate
Shrink-swell potential: High

Contrasting Inclusions

- Riddleranch soils on mountains
- Carvix soils on stream terraces
- Ninemile soils on hills and plateaus
- Rock outcrop

Major Soil Limitations

Depth to bedrock, wind erosion, shrink-swell potential

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and needlegrasses, Idaho fescue, and bluebunch wheatgrass decrease.
- The suitability for seeding is fair because of the low available water capacity.

7-Anatone very stony loam, 2 to 12 percent slopes

 CompositionAnatone and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum
Geology: Welded tuff
Elevation: 4,200 to 6,000 feet
Rangeland ecological site and characteristic vegetation: (JD Mountain Claypan
12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, onespike oatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 5 inches-grayish brown very stony loam
5 to 16 inches-brown very gravelly loam
16 inches-fractured welded tuff

Soil Properties and Qualities

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Observation and Teguro soils on hills
- Westbutte soils on north-facing hillsides
- Rock outcrop

Major Soil Limitations

Surface stones, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- The very stony surface layer restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

8-Anatone complex, 2 to 30 percent slopes

Composition

Anatone, moist, and similar soils- 50 percent
Anatone and similar soils- 35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum
Geology: Welded tuff
Elevation: 4,600 to 5,500 feet
Rangeland ecological site and characteristic vegetation: Anatone, moist-(SR Dry
Pine 14-16PZ) ponderosa pine, western juniper, mountain big sagebrush, Idaho fescue, bluebunch wheatgrass; Anatone-(SR Mahogany Mountain Loam 14-18PZ) curl-leaf mountain mahogany, ponderosa pine, antelope bitterbrush, Idaho fescue, bluebunch wheatgrass

Climatic factors:

Mean annual precipitation-14 to 16 inches
Mean annual air temperature- 40 to 43 degrees F Frost-free period-50 to 80 days

Typical Profile of Anatone, Moist

0 to 5 inches-grayish brown very gravelly loam
5 to 16 inches-brown very gravelly loam
16 inches-fractured welded tuff

Typical Profile of Anatone

0 to 8 inches—grayish brown stony loam

8 to 14 inches—brown very gravelly loam
14 inches-fractured welded tuff

Properties and Qualities of Anatone, Moist, and Anatone

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Erakatak soils on north-facing hillsides
- Merlin and Observation soils on hills and ridges
- Doyn, Gaib, and Teguro soils on hills
- Rock outcrop and Rubble land

Major Soil Limitations

Anatone, moist, and Anatone—depth to bedrock, available water capacity

Use and Management

Livestock Grazing

Anatone, moist, and Anatone

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The low available water capacity of the surface layer limits seedling survival.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- The suitability for seeding is poor because of the low available water capacity.
- Excessive use of the mountain mahogany within reach of grazing animals reduces its productivity and potential for regeneration.

Forest Products

Anatone, moist

- Roads and landings are very difficult to construct because of the depth to bedrock.
- The shallow depth to bedrock prevents deep mechanical site preparation.
- Mechanical planting and hand planting are restricted by the surface rock fragments.
- The seedling mortality rate is high because of the low available water capacity.
- The risk of windthrow is high because of the shallow depth to bedrock.

9—Anatone-Teguro-Observation complex, 2 to 20 percent slopes

Composition
Anatone and similar soils-45 percent
Teguro and similar soils-25 percent
Observation and similar soils-20 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills and plateaus

Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Welded tuff, andesite, and basalt
Elevation: 4,700 to 5,600 feet
Rangeland ecological site and characteristic vegetation: Anatone-
(JD Mountain Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch
wheatgrass, onespike oatgrass; Teguro-(SR Mahogany Mountain Loam
14-18PZ) curl-leaf mountain mahogany, ponderosa pine, antelope
bitterbrush, Idaho fescue, bluebunch wheatgrass; Observation-
(SR Mountain Clayey 12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-14 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Anatone
0 to 5 inches-grayish brown very gravelly loam
5 to 16 inches-brown very gravelly loam
16 inches-fractured welded tuff
Properties and Qualities of Anatone
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight

Typical Profile of Teguro

0 to 2 inches-grayish brown gravelly loam
2 to 5 inches-grayish brown loam
5 to 10 inches-brown cobbly clay loam
10 to 14 inches-yellowish brown cobbly clay loam
14 inches-welded tuff

Properties and Qualities of Teguro

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Typical Profile of Observation
0 to 4 inches—dark grayish brown very gravelly loam
4 to 8 inches-brown cobbly loam
8 to 18 inches-dark yellowish brown clay loam
18 to 23 inches-dark yellowish brown clay
23 inches-fractured basalt
Properties and Qualities of Observation
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches

Hazard of erosion: Water—slight; wind—slight Shrink-swell potential: High

Contrasting Inclusions

- Doyn and Ticino soils on hills and plateaus
- Westbutte soils on north-facing hillsides
- Rock outcrop

Major Soil Limitations

Anatone, Teguro, and Observation-depth to bedrock
Anatone and Teguro-available water capacity
Observation-shrink-swell potential

Use and Management

Livestock Grazing

Anatone and Teguro

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The suitability for seeding is poor because of the low available water capacity.

Anatone

- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.

Teguro

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- Excessive use of the mountain mahogany within reach of grazing animals reduces its productivity and potential for regeneration.

Observation

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is good.

10-Anatone-Egyptcreek-Rock outcrop association, 20 to 50 percent slopes

Composition

Anatone, moist, and similar soils-45 percent
Egyptcreek and similar soils-30 percent
Rock outcrop-15 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills
Position on landform: Anatone, moist-south- and west-facing slopes;
Egyptcreek-north- and east-facing slopes
Parent material: Colluvium and residuum
Geology: Welded tuff
Elevation: 4,400 to 5,200 feet
Rangeland ecological site and characteristic vegetation: Anatone, moist-
(SR Dry Pine 14-16PZ) ponderosa pine, western juniper, mountain big sagebrush, Idaho fescue, bluebunch wheatgrass
Forestland plant association and characteristic vegetation: Egyptcreek(ponderosa pine/mountain big sagebrush/Idaho fescue-bluebunch
wheatgrass) ponderosa pine, antelope bitterbrush, mountain big sagebrush, Idaho fescue
Climatic factors:
Mean annual precipitation-14 to 18 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Anatone, Moist

0 to 8 inches-grayish brown extremely gravelly loam
8 to 14 inches-brown very gravelly loam
14 inches-fractured welded tuff
Properties and Qualities of Anatone, Moist
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Egyptcreek
1 inch to 0—slightly decomposed needles and twigs
0 to 8 inches-grayish brown very gravelly loam
8 to 18 inches-yellowish brown very gravelly loam
18 to 24 inches-yellowish brown extremely cobbly loam
24 inches-fractured welded tuff

Properties and Qualities of Egyptcreek

Depth: 20 to 36 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Gaib, Mound, and Vitale soils on hills

Major Soil Limitations

Anatone, moist, and Egyptcreek—available water capacity, water erosion, slope, depth to bedrock

Use and Management

Livestock Grazing

Anatone, moist, and Egyptcreek

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Depth to bedrock and slope limit the construction of water impoundments.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.

Anatone, moist

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The suitability for seeding is very poor because of the low available water capacity and steepness of slope.

Egyptcreek

- The suitability for seeding is very poor because of the steepness of slope.

Forest Products

Anatone, moist, and Egyptcreek

- Roads and landings are very difficult to construct because of the depth to bedrock and steepness of slope.
- The steepness of slope limits the use of wheeled and tracked equipment.
- This unit is not suited to mechanical planting and site preparation because of the steepness of slope.
- Hand planting is difficult because of the steepness of slope.
- The seedling mortality rate is high because of the low available water capacity.
- The risk of windthrow is high on the Anatone, moist, soil because of the shallow depth to bedrock.

11-Anatone-Minam-Rock outcrop association, 2 to 50 percent slopes

Composition

Anatone, moist, and similar soils- 50 percent
Minam and similar soils-20 percent
Rock outcrop-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Anatone, moist-sides slopes of 12 to 50 percent; Minam— drainageways with slopes of 2 to 12 percent
Parent material: Anatone, moist-colluvium and residuum; Minam—alluvium
Geology: Anatone, moist—welded tuff; Minam—mixed igneous rock; Rock outcropigneous rock
Elevation: 4,600 to 5,300 feet
Rangeland ecological site and characteristic vegetation: Anatone, moist-(SR Dry Pine 14-16PZ) ponderosa pine, mountain big sagebrush, Idaho fescue, bluebunch wheatgrass; Minam-(SR Dry Mountain Swale 12-16PZ) mountain big sagebrush, Idaho fescue, sedge

Climatic factors:
Mean annual precipitation-14 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Anatone, Moist

0 to 5 inches-grayish brown extremely gravelly loam
5 to 16 inches-brown very gravelly loam
16 inches-fractured welded tuff
Properties and Qualities of Anatone, Moist
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Minam

0 to 29 inches—dark grayish brown gravelly silt loam
29 to 39 inches-brown loam
39 to 52 inches-yellowish brown gravelly sandy clay loam
52 to 62 inches-yellowish brown gravelly sandy loam

Properties and Qualities of Minam

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 8 inches
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Westbutte, Merlin, Doyn, and Teguro soils on hills
- Welch soils in concave areas along drainageways
- Cumulic Haploxerolls adjacent to streams

Major Soil Limitations

Anatone, moist—available water capacity, depth to bedrock, water erosion, surface rock fragments
Minam—none

Use and Management

Livestock Grazing

Anatone, moist

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The low available water capacity of the surface layer limits seedling survival.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments .

Minam

- As the site deteriorates, big sagebrush, sedges, bluegrasses, and bottlebrush squirrel increase and Idaho fescue decreases.
- As the streambanks become unstable, the channels deepen and widen and the subsurface waterflow is reduced, resulting in a drier site with decreased production potential.
- The suitability for seeding is good.

Forest Products

Anatone, moist

- Significant soil erosion is likely to occur. Special harvesting techniques and alternative site preparation and timing should be used to reduce the risk of erosion.
- Ruts are likely to occur. Seasonal restriction of travel should be considered or additional rock should be placed in the road subgrade and surface grade.
- The steepness of slope makes construction of landings and roads unsafe.
- Roads and landings are very difficult to construct because of the shallow depth to bedrock and steepness of slope.
- Operating wheeled or tracked equipment efficiently is limited by the steepness of slope.
- Surface mechanical site preparation is restricted by the surface rock fragments.
- The shallow depth to bedrock and steepness of slope prevent the use of deep mechanical site preparation.
- Planting by hand is difficult because of the surface rock fragments.
- Mechanical planting is restricted by the steepness of slope.
- The seedling mortality rate is high because of the low available water capacity.
- The risk of windthrow is high because of the shallow depth to bedrock.
- Because of the surface rock fragments, fires of moderate fireline intensity may damage the soil. Consider alternative techniques if prescribed burning is used.

12—Anatone-Teguro-Rock outcrop association, 2 to 40 percent slopes

Composition

Anatone and similar soils-35 percent
Teguro and similar soils-30 percent
Rock outcrop-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Anatone—south- and west-facing side slopes of 20 to 40 percent; Teguro—side slopes of 2 to 20 percent
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,500 to 4,800 feet
Rangeland ecological site and characteristic vegetation: Anatone-(SR Mountain
Shallow South 12-16PZ) mountain big sagebrush, bluebunch wheatgrass,
Sandberg bluegrass, Thurber needlegrass; Teguro-(SR Mountain Shallow
12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Anatone

0 to 5 inches-grayish brown very stony loam
5 to 16 inches-brown very gravelly loam
16 inches-fractured welded tuff
Properties and Qualities of Anatone
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water-moderate; wind—slight

Typical Profile of Teguro

0 to 2 inches-grayish brown very gravelly loam
2 to 5 inches-grayish brown loam
5 to 10 inches-brown cobbly clay loam
10 to 14 inches-yellowish brown cobbly clay loam
14 inches-welded tuff
Properties and Qualities of Teguro
Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water-moderate; wind—slight
Contrasting Inclusions

- Egyptcreek, Lambring, and Westbutte soils on hills

Major Soil Limitations

Anatone and Teguro-available water capacity, depth to bedrock Anatone-slope, surface stones

Use and Management

Livestock Grazing

Anatone and Teguro

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
Anatone
- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Teguro

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue decreases.
- The suitability for seeding is poor because of the low available water capacity.

13-Anatone-Westbutte-Rock outcrop association, 20 to 60 percent slopes

Composition

Anatone and similar soils-40 percent
Westbutte and similar soils- 35 percent
Rock outcrop- 15 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills
Position on landform: Anatone—south- and west-facing side slopes; Westbutte-north- and east-facing side slopes
Parent material: Residuum and colluvium
Geology: Anatone and Westbutte-basalt, andesite, rhyolite, and welded tuff; Rock outcrop-igneous rock
Elevation: 4,100 to 5,800 feet
Rangeland ecological site and characteristic vegetation: Anatone-(SR Mountain Shallow South 12-16PZ) mountain big sagebrush, bluebunch wheatgrass, Sandberg bluegrass, Thurber needlegrass; Westbutte-(SR Mountain North 12-16PZ) mountain big sagebrush, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature- 40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Anatone
0 to 5 inches-grayish brown extremely gravelly loam
5 to 16 inches-brown very gravelly loam
16 inches-fractured welded tuff

Properties and Qualities of Anatone

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water-moderate; wind—slight
Typical Profile of Westbutte
0 to 12 inches-dark grayish brown very cobbly loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt

Properties and Qualities of Westbutte

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water-moderate; wind-slight

Contrasting Inclusions

- Merlin, Riddleranch, and Teguro soils on hills

Major Soil Limitations

Anatone and Westbutte-available water capacity, water erosion, slope, depth to bedrock, surface rock fragments

Use and Management

Livestock Grazing

Anatone and Westbutte

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Depth to bedrock limits the construction of water impoundments.
- The suitability for seeding is very poor because of the surface rock fragments and steepness of slope.

Anatone

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.

Westbutte

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.

14—Anawalt gravelly clay loam, 0 to 12 percent slopes

Composition

Anawalt and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt and welded tuff
Elevation: 4,500 to 6,000 feet
Rangeland ecological site and characteristic vegetation: (Claypan 10-12PZ) low
sagebrush, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-light brownish gray gravelly clay loam
2 to 11 inches-light brownish gray clay loam
11 to 16 inches-brownish yellow clay
16 inches-fractured welded tuff

Soil Properties and Qualities

Depth: 4 to 11 inches to a claypan and 12 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Raz and Oreneva soils on hills and plateaus
- Rock outcrop

Major Soil Limitations

Depth to bedrock, depth to a claypan, shrink-swell potential, corrosivity

Use and Management

Livestock Grazing

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The upper part of the soil is saturated following snowmelt.
- The claypan restricts the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- This unit is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the depth to the claypan.

15—Anawalt-Lonely complex, 5 to 30 percent slopes

Composition

Anawalt and similar soils-50 percent
Lonely and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,300 to 6,200 feet
Rangeland ecological site and characteristic vegetation: Anawalt-(Claypan 10-12PZ)
low sagebrush, bluebunch wheatgrass, Sandberg bluegrass; Lonely-(Loamy
10-12PZ) Wyoming big sagebrush, Thurber needlegrass, bluebunch needlegrass

Climatic factors:

Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Anawalt

0 to 2 inches-light brownish gray gravelly clay loam
2 to 11 inches-light brownish gray clay loam
11 to 16 inches-brownish yellow clay
16 inches-fractured welded tuff

Properties and Qualities of Anawalt

Depth: 4 to 11 inches to a claypan and 12 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Typical Profile of Lonely
0 to 4 inches-pale brown cobbly clay loam
4 to 16 inches-pale brown clay loam
16 to 24 inches-light brownish gray gravelly clay loam
24 inches-andesite
Properties and Qualities of Lonely
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Robson soils on hills and plateaus
- Pernty soils on hills
- Swalesilver soils in closed depressions on plateaus
- Rock outcrop

Major Soil Limitations

Anawalt and Lonely-water erosion, depth to bedrock
Anawalt-depth to a claypan, shrink-swell potential, corrosivity

Use and Management

Livestock Grazing

Anawalt and Lonely

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.

Anawalt

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The upper part of the soil is saturated following snowmelt.
- The claypan restricts the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the depth to the claypan.

Lonely

- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is fair because of the surface rock fragments.

16—Anawalt-Oreneva complex, 0 to 12 percent slopes Composition

Anawalt and similar soils-60 percent
Oreneva and similar soils-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt and welded tuff
Elevation: 4,700 to 6,200 feet
Rangeland ecological site and characteristic vegetation: Anawalt-(Shallow Gravelly Loam 10-12PZ) low sagebrush, Thurber needlegrass, Sandberg bluegrass; Oreneva-(Loamy 10-12PZ) Wyoming big sagebrush, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Anawalt

0 to 2 inches-light brownish gray gravelly clay loam
2 to 11 inches-light brownish gray clay loam
11 to 16 inches-brownish yellow clay
16 inches-fractured welded tuff

Properties and Qualities of Anawalt

Depth: 4 to 11 inches to a claypan and 12 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight

Shrink-swell potential: High
Corrosivity to steel: High

Typical Profile of Oreneva

0 to 2 inches-pale brown gravelly loam
2 to 10 inches-brown clay loam
10 to 21 inches-light yellowish brown very gravelly loam
21 inches-welded tuff
Properties and Qualities of Oreneva
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Contrasting Inclusions

- Felcher soils on south-facing slopes of hills
- Freznik soils on plateaus
- Playas
- Rock outcrop

Major Soil Limitations

Anawalt and Oreneva—depth to bedrock
Anawalt—depth to a claypan, shrink-swell potential, corrosivity

Use and Management

Livestock Grazing

Anawalt and Oreneva

- Depth to bedrock limits the construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Anawalt

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The claypan restricts the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, low sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Thurber needlegrass decreases.
- The suitability for seeding is poor because of the depth to the claypan.

Oreneva

- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is fair because of droughtiness.

17—Anawalt-Raz complex, 2 to 10 percent slopes

Composition

Anawalt and similar soils-45 percent
Raz and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Basalt and welded tuff
Elevation: 4,500 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Anawalt-(Claypan 10-12PZ)
low sagebrush, bluebunch wheatgrass, Sandberg bluegrass; Raz-(Loamy
10-12PZ) Wyoming big sagebrush, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Anawalt
0 to 2 inches-light brownish gray gravelly clay loam
2 to 11 inches-light brownish gray clay loam
11 to 16 inches-brownish yellow clay
16 inches-fractured welded tuff

Properties and Qualities of Anawalt

Depth: 4 to 11 inches to a claypan and 12 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water-slight; wind-slight
Shrink-swell potential: High
Corrosivity to steel: High

Typical Profile of Raz

0 to 2 inches-pale brown very cobbly loam
2 to 7 inches-light gray gravelly clay loam
7 to 12 inches-light gray clay loam
12 to 23 inches-indurated duripan
23 inches-basalt
Properties and Qualities of Raz
Depth: 10 to 18 inches to a hardpan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water-slight; wind-slight
Corrosivity to steel: High
Contrasting Inclusions

- Actem and Carryback soils on hills and plateaus
- Rock outcrop
- Swalesilver soils in closed depressions on plateaus

Major Soil Limitations

Anawalt and Raz-depth to bedrock
Anawalt-depth to a claypan, shrink-swell potential, corrosivity
Raz-depth to hardpan

Use and Management

Livestock Grazing

Anawalt and Raz

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Depth to bedrock limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.

Anawalt

- Depth to bedrock and the claypan restrict the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the depth to the claypan.

Raz

- The cemented hardpan restricts rooting depth.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

18-Ateron gravelly loam, 2 to 20 percent slopes Composition

Ateron and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,000 to 5,100 feet
Rangeland ecological site and characteristic vegetation: (SR Mountain
Shallow 12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch
wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches

Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 5 inches-dark grayish brown gravelly loam
5 to 12 inches-grayish brown very cobbly clay loam
12 to 18 inches-grayish brown extremely stony clay
18 inches-highly fractured basalt

Soil Properties and Qualities

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Doyn, Merlin, and Observation soils on hills
- Rubble land

Major Soil Limitations

Depth to bedrock, available water capacity, shrink-swell potential

Use and Management

Livestock Grazing

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- This unit commonly supports a sparse stand of perennial grasses; however, forbs become abundant if precipitation is favorable.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue decreases.
- The suitability for seeding is poor because of the low available water capacity.

19—Ateron-Rubble land complex, 2 to 35 percent slopes
 Composition

Ateron and similar soils-50 percent
Rubble land-35 percent
Contrasting inclusions-15 percent
\section*{Setting}
Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,000 to 5,500 feet
Rangeland ecological site and characteristic vegetation: Ateron-(SR Mountain

Shallow 12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass Climatic factors:

Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Ateron

0 to 5 inches—dark grayish brown very stony loam
5 to 12 inches-grayish brown very cobbly clay loam
12 to 18 inches-grayish brown extremely stony clay
18 inches-highly fractured basalt

Properties and Qualities of Ateron

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Merlin and Observation soils on hills

Major Soil Limitations

Surface stones, available water capacity, depth to bedrock, water erosion, shrink-swell potential

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The very stony surface layer restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- This unit commonly supports a sparse stand of perennial grasses; however, forbs become abundant if precipitation is favorable.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue decreases.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

20—Ateron-Observation association, 5 to 30 percent slopes

Composition
Ateron and similar soils-60 percent
Observation and similar soils-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Ateron—side slopes of 15 to 30 percent; Observation—ridges with slopes of 5 to 15 percent
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,200 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Ateron-(SR Mountain
Shallow 12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass;
Observation-(SR Mountain Clayey 12-16PZ) mountain big sagebrush, Idaho
fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Ateron

0 to 5 inches—dark grayish brown extremely stony silt loam
5 to 12 inches-grayish brown very cobbly clay loam
12 to 18 inches-grayish brown extremely stony clay
18 inches—highly fractured basalt

Properties and Qualities of Ateron

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Typical Profile of Observation
0 to 4 inches—dark grayish brown very stony loam
4 to 8 inches-brown cobbly loam
8 to 18 inches-dark yellowish brown clay loam
18 to 23 inches-dark yellowish brown clay
23 inches-fractured basalt
Properties and Qualities of Observation
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Lambring soils on mountains
- Minam soils in drainageways
- Gaib soils on hills
- Rock outcrop and Rubble Iand

Major Soil Limitations

Ateron and Observation-water erosion, surface stones, depth to bedrock, shrink-swell potential
Ateron-available water capacity

Use and Management

Livestock Grazing

Ateron and Observation

- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The surface stones prohibit the operation of ground seeding equipment.

Ateron

- The extremely stony soil surface limits livestock movement and the distribution of grazing.
- This soil commonly supports a sparse stand of perennial grasses; however, forbs become abundant if precipitation is favorable.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue decreases.
- The suitability for seeding is very poor because of the surface stones and low available water capacity.

Observation

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- If the site is in a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the surface stones.

21—Atlow very stony loam, 5 to 30 percent slopes

Composition

Atlow and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills

Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 4,300 to 5,000 feet
Rangeland ecological site and characteristic vegetation: (Shallow Loam 8-10PZ)
Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 3 inches-light brownish gray very stony loam
3 to 11 inches-brown very cobbly clay loam
11 inches-basalt

Soil Properties and Qualities

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Kerrfield and Skedaddle soils on ridges and shoulders
- Deppy and Tumtum soils on old lake terraces
- Rock outcrop

Major Soil Limitations

Available water capacity, water erosion, surface stones, depth to bedrock

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The very stony surface layer restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- A well-developed erosion pavement can limit the reestablishment of plants.
- This unit is suited to grazing in winter.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- The suitability for seeding is very poor because of the low available water capacity, depth to bedrock, and surface stones.

22—Atlow-Rock outcrop complex, 5 to 30 percent slopes

Composition

Atlow and similar soils- 70 percent
Rock outcrop- 15 percent
Contrasting inclusions- 15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 4,300 to 5,200 feet

Rangeland ecological site and characteristic vegetation: Atlow-(Shallow Loam 8-10PZ) Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Atlow

0 to 3 inches-light brownish gray very stony loam
3 to 11 inches-brown very cobbly clay loam
11 inches-basalt
Properties and Qualities of Atlow
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water-moderate; wind—slight
Contrasting Inclusions

- Kerrfield and Skedaddle soils on ridges
- Deppy and Tumtum soils on old lake terraces

Major Soil Limitations

Atlow-water erosion, surface stones, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The very stony surface layer and areas of Rock outcrop restrict the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- A well-developed erosion pavement can limit the reestablishment of plants.
- This unit is suited to grazing in winter.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- The suitability for seeding is very poor because of the low available water capacity, depth to bedrock, and areas of Rock outcrop.

23-Atlow-Rock outcrop complex, 30 to 50 percent slopes

Composition

Atlow and similar soils-70 percent
Rock outcrop- 15 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 4,300 to 4,800 feet
Rangeland ecological site and characteristic vegetation: Atlow-(Shallow Loamy
Slopes 6-10PZ) Wyoming big sagebrush, Indian ricegrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile of Atlow
0 to 3 inches-light brownish gray very stony loam
3 to 11 inches-brown very cobbly clay loam
11 inches-basalt
Properties and Qualities of Atlow
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Kerrfield and Skedaddle soils on ridges

Major Soil Limitations

Atlow-water erosion, slope, surface stones, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The steepness of slope, stones on the surface, and areas of Rock outcrop restrict the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- This unit is suited to grazing in winter.
- As the site deteriorates, big sagebrush and bottlebrush squirreltail increase and Indian ricegrass and needlegrasses decrease.
- The suitability for seeding is very poor because of the low available water capacity, steepness of slope, depth to bedrock, and areas of Rock outcrop.

24-Atlow-Skedaddle complex, 5 to 30 percent slopes

Skedaddle and similar soils-30 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Atlow—ridges; Skedaddle—side slopes
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and rhyolite
Elevation: 4,300 to 5,000 feet
Rangeland ecological site and characteristic vegetation: Atlow-(Shallow Loam 8-10PZ) Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass, bluebunch wheatgrass; Skedaddle-(Desert Loam 6-10PZ) shadscale, bud sagebrush, Indian ricegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile of Atlow
0 to 3 inches-light brownish gray very stony loam
3 to 11 inches-brown very cobbly clay loam
11 inches-basalt
Properties and Qualities of Atlow
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water-moderate; wind—slight

Typical Profile of Skedaddle

0 to 3 inches-light brownish gray very stony clay loam
3 to 8 inches-grayish brown very cobbly clay loam
8 to 11 inches-light brown very cobbly clay loam
11 inches-fractured basalt

Properties and Qualities of Skedaddle

Depth: 7 to 12 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water-moderate; wind—slight
Contrasting Inclusions

- Kerrfield soils on ridges
- Davey soils on lake terraces
- Rock outcrop
- Areas with overblown sand

Major Soil Limitations

Atlow and Skedaddle-water erosion, surface stones, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

Atlow and Skedaddle

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The very stony surface layer restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- This unit is suited to grazing in winter.
- A well-developed erosion pavement can limit the reestablishment of plants.
- The suitability for seeding is very poor because of the low available water capacity, depth to bedrock, and surface stones.

Atlow

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.

Skedaddle

- As the site deteriorates, shadscale, annual forbs, and cheatgrass increase and bud sagebrush, Indian ricegrass, and bottlebrush squirreltail decrease.

25-Ausmus fine sandy loam, 0 to 1 percent slopes Composition

Ausmus and similar soils- 85 percent Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Sodic Bottom) black
greasewood, basin wildrye, inland saltgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-light brownish gray fine sandy loam
2 to 16 inches-light brownish gray silty clay loam
16 to 29 inches-light brownish gray silt loam
29 to 69 inches-light yellowish brown loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Ponding: Present in spring
Water table: Present in spring

Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Strong
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High

Contrasting Inclusions

- Lolak soils in depressions on lake plains
- Crowcamp soils in drainageways on lake plains
- Poujade soils on low lake terraces

Major Soil Limitations

Wind erosion, wetness, salinity, alkalinity, corrosivity

Use and Management

Irrigated Hayland

- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.
- Providing adequate drainage is difficult because most areas have poor outlets and are seasonally ponded.
- Practices that help to control wind erosion include planting crops at right angles to the prevailing wind, maintaining crop residue on the soil surface, planting field windbreaks, stripcropping, planting cover crops, using minimum tillage, minimizing the areas of bare soil, and leaving the soil surface rough.
- The salinity and alkalinity limit the types of crops that can be grown.
- Salt- and alkali-tolerant plants are the most suitable for planting.
- If alfalfa or other crops are grown, sulphur amendments are needed because of the strong alkalinity of the soil.
- Proper irrigation water management and adequate drainage are needed to leach the salts below the rooting zone.

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, inland saltgrass and black greasewood increase and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity and salinity.

26-Ausmus fine sandy loam, 0 to 1 percent slopes, flooded

Composition

Ausmus and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,090 to 4,106 feet
Rangeland ecological site and characteristic vegetation: (Sodic Lake Terrace) black greasewood, inland saltgrass, Lemmon's alkaligrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-light brownish gray fine sandy loam
2 to 16 inches-light brownish gray silty clay loam
16 to 29 inches-light brownish gray silt loam
29 to 69 inches-light yellowish brown loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Frequency of ponding: Rare
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Strong
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High

Contrasting Inclusions

- Crowcamp and Thenarrows soils on lake plains
- Voltage soils on low lake terraces
- Sandgap soils on sand dunes

Major Soil Limitations

Wind erosion, wetness, salinity, alkalinity, corrosivity

Use and Management

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, inland saltgrass and black greasewood increase and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity and salinity.

27-Baconcamp stony clay loam, 15 to 30 percent north slopes

Composition

Baconcamp and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: North- and east-facing side slopes
Parent material: Colluvium
Geology: Basalt and andesite
Elevation: 6,200 to 7,300 feet
Rangeland ecological site and characteristic vegetation: (North Slopes 12-16PZ) mountain big sagebrush, Idaho fescue
Climatic factors:
Mean annual precipitation-14 to 20 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile

0 to 4 inches-very dark grayish brown stony clay loam
4 to 20 inches-very dark grayish brown gravelly loam
20 to 35 inches-very dark grayish brown very gravelly loam
35 inches-fractured basalt

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Clamp, Carryback, and Pearlwise soils on mountainsides
- Rock outcrop

Major Soil Limitations

Water erosion, depth to bedrock, cold climate

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is fair because of the short growing season and surface rock fragments.

28-Baconcamp-Clamp complex, 5 to 20 percent slopes

Composition

Baconcamp and similar soils-45 percent
Clamp and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Slope features: Concave and convex
Parent material: Colluvium
Geology: Basalt
Elevation: 6,500 to 7,900 feet
Rangeland ecological site and characteristic vegetation: Baconcamp-(Shallow loam
16-25PZ) mountain big sagebrush, Idaho fescue, sheep fescue; Clamp-
(Claypan 16-25PZ) low sagebrush, Idaho fescue, onespike oatgrass

Climatic factors:

Mean annual precipitation-16 to 35 inches
Mean annual air temperature-40 to 43 degrees F Frost-free period-30 to 60 days

Typical Profile of Baconcamp

0 to 4 inches-very dark grayish brown very stony clay loam 4 to 20 inches-very dark grayish brown gravelly loam 20 to 35 inches-very dark grayish brown very gravelly loam
35 inches-fractured basalt
Properties and Qualities of Baconcamp
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight

Typical Profile of Clamp

0 to 3 inches-grayish brown very stony clay loam 3 to 12 inches-grayish brown very cobbly clay loam
12 inches-fractured basalt

Properties and Qualities of Clamp

Depth: 4 to 14 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Duff soils on mountainsides
- Hackwood soils in depressions
- Welch soils in drainageways
- Noname soils on ridges
- Rock outcrop

Major Soil Limitations

Baconcamp and Clamp-surface stones, depth to bedrock, cold climate Clamp-available water capacity

Use and Management

Livestock Grazing

Baconcamp and Clamp

- The very stony surface layer restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.

Baconcamp

- As the site deteriorates, big sagebrush, rabbitbrush, Sandberg bluegrass, mountain brome, and bottlebrush squirreltail increase and fescue, skyline bluegrass, and basin wildrye decrease.
- The suitability for seeding is poor because of the surface rock fragments and short growing season.

Clamp

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, low sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and fescue and onespike oatgrass decrease.
- The suitability for seeding is very poor because of the low available water capacity and short growing season.

29-Baconcamp-Clamp complex, 30 to 50 percent north slopes

Composition

Baconcamp and similar soils-45 percent
Clamp and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: North- and east-facing side slopes
Parent material: Colluvium
Geology: Basalt
Elevation: 5,200 to 8,600 feet
Rangeland ecological site and characteristic vegetation: Baconcamp-(Deep North
12-18PZ) mountain big sagebrush, whortleleaf snowberry, Idaho fescue;
Clamp-(Shallow North 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-14 to 35 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period- 30 to 60 days

Typical Profile of Baconcamp

0 to 4 inches-very dark grayish brown very stony clay loam 4 to 20 inches-very dark grayish brown gravelly loam 20 to 35 inches-very dark grayish brown very gravelly loam 35 inches-fractured basalt

Properties and Qualities of Baconcamp
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Clamp

0 to 3 inches-grayish brown very stony clay loam
3 to 12 inches-grayish brown very cobbly clay loam
12 inches-fractured basalt

Properties and Qualities of Clamp

Depth: 4 to 14 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Dickle soils on ridges
- Carryback soils on side slopes
- Welch soils in drainageways
- Hackwood soils in depressions
- Rock outcrop

Major Soil Limitations

Baconcamp and Clamp—water erosion, slope, surface stones, depth to bedrock, cold climate
Clamp—available water capacity

Use and Management

Livestock Grazing

Baconcamp and Clamp

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.

Baconcamp

- As the site deteriorates, big sagebrush, bottlebrush squirreltail, and bluegrasses increase and Idaho fescue, bluebunch wheatgrass, and needlegrasses decrease.
- The suitability for seeding is very poor because of the steepness of slope and short growing season.

Clamp

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the low available water capacity, steepness of slope, and short growing season.

30-Baconcamp-Clamp-Rock outcrop complex, 50 to 70 percent north slopes

Composition

Baconcamp and similar soils-45 percent
Clamp and similar soils-25 percent
Rock outcrop-20 percent
Contrasting inclusions-10 percent

Setting

Landform: Mountains
Position on landform: North- and east-facing side slopes
Parent material: Colluvium
Geology: Basalt
Elevation: 5,200 to 8,000 feet
Rangeland ecological site and characteristic vegetation: Baconcamp-(North Slopes
12-16PZ) mountain big sagebrush, Idaho fescue; Clamp-(Shallow North
12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass

Climatic factors:

Mean annual precipitation-14 to 35 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile of Baconcamp

0 to 4 inches-very dark grayish brown stony clay loam
4 to 20 inches-very dark grayish brown gravelly loam
20 to 35 inches-very dark grayish brown very gravelly loam
35 inches-fractured basalt
Properties and Qualities of Baconcamp
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water-severe; wind—slight

Typical Profile of Clamp

0 to 3 inches-grayish brown extremely stony clay loam
3 to 12 inches-grayish brown very cobbly clay loam
12 inches-fractured basalt

Properties and Qualities of Clamp

Depth: 4 to 14 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water—severe; wind—slight

Contrasting Inclusions

- Dickle soils on ridges
- Carryback soils on side slopes
- Welch soils in drainageways

Major Soil Limitations

Baconcamp and Clamp-water erosion, slope, depth to bedrock, cold climate Clamp-available water capacity, surface stones

Use and Management

Livestock Grazing

Baconcamp and Clamp

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Depth to bedrock limits the construction of water impoundments.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.

Baconcamp

- Steepness of slope restricts the operation of ground seeding equipment.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the steepness of slope and short growing season.

Clamp

- The low available water capacity of the surface layer limits seedling survival.
- The extremely stony surface layer and steepness of slope prohibit the operation of ground seeding equipment.
- The extremely stony soil surface limits livestock movement and the distribution of grazing.
- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the low available water capacity, surface rock fragments, steepness of slope, and short growing season.

31—Baconcamp-Rock outcrop complex, 3 to 30 percent slopes

Composition

Baconcamp and similar soils-70 percent
Rock outcrop- 15 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains

Slope features: Concave and convex
Parent material: Colluvium
Geology: Basalt and andesite
Elevation: 5,100 to 9,200 feet
Rangeland ecological site and characteristic vegetation: Baconcamp-(Shallow
Loam 16-25PZ) mountain big sagebrush, Idaho fescue, sheep fescue
Climatic factors:
Mean annual precipitation-14 to 35 inches
Mean annual air temperature- 40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile of Baconcamp

0 to 4 inches-very dark grayish brown very cobbly loam 4 to 20 inches-very dark grayish brown gravelly loam 20 to 35 inches-very dark grayish brown very gravelly loam 35 inches-fractured basalt

Properties and Qualities of Baconcamp
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Clamp and Duff soils on side slopes
- Hackwood soils in depressions
- Welch soils in drainageways

Major Soil Limitations

Baconcamp-water erosion, depth to bedrock, cold climate

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Depth to bedrock limits the construction of water impoundments.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- As the site deteriorates, big sagebrush, rabbitbrush, Sandberg bluegrass, mountain brome, and bottlebrush squirreltail increase and fescue, skyline bluegrass, and basin wildrye decrease.
- The suitability for seeding is fair because of the short growing season, surface rock fragments, and areas of Rock outcrop.

32-Baconcamp-Rock outcrop complex, 30 to 70 percent north slopes

Composition
Baconcamp and similar soils-70 percent
Rock outcrop-15 percent
Contrasting soils-15 percent

Setting

Landform: Mountains
Position on landform: North- and east-facing side slopes
Parent material: Colluvium
Geology: Basalt and andesite
Elevation: 5,200 to 8,100 feet
Rangeland ecological site and characteristic vegetation: Baconcamp-(Deep North
12-18PZ) mountain big sagebrush, whortleleaf snowberry, Idaho fescue
Climatic factors:
Mean annual precipitation- 14 to 35 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days
Typical Profile of Baconcamp
0 to 4 inches-very dark grayish brown very stony clay loam
4 to 20 inches-very dark grayish brown gravelly loam
20 to 35 inches-very dark grayish brown very gravelly loam
35 inches-fractured basalt
Properties and Qualities of Baconcamp
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water-severe; wind—slight

Contrasting Inclusions

- Hackwood soils in depressions
- Krackle and Hapgood soils on side slopes
- Welch soils in drainageways

Major Soil Limitations

Baconcamp-water erosion, slope, surface stones, depth to bedrock, cold climate

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- As the site deteriorates, big sagebrush, bottlebrush squirreltail, and bluegrasses increase and Idaho fescue, bluebunch wheatgrass, and needlegrasses decrease.
- The suitability for seeding is very poor because of the steepness of slope, short growing season, and areas of Rock outcrop.

33-Baconcamp-Rock outcrop-Hackwood complex, 30 to 80 percent slopes

Composition

Baconcamp and similar soils-40 percent
Rock outcrop- 30 percent
Hackwood and similar soils-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains

Position on landform: Baconcamp-side slopes of 30 to 80 percent; Hackwoodside slopes of 30 to 50 percent
Parent material: Baconcamp-colluvium; Hackwood-loess and colluvium
Geology: Basalt and andesite
Elevation: 6,600 to 9,700 feet
Rangeland ecological site and characteristic vegetation: Baconcamp-
(Subalpine Slopes 16-35PZ) mountain big sagebrush, whortleleaf snowberry, Idaho fescue; Hackwood-(Aspen 16-35PZ) quaking aspen, whortleleaf snowberry, sedge
Climatic factors:
Mean annual precipitation- 30 to 40 inches
Mean annual air temperature- 40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile of Baconcamp

0 to 4 inches-very dark grayish brown very stony loam
4 to 20 inches-very dark grayish brown gravelly loam
20 to 35 inches-very dark grayish brown very gravelly loam
35 inches-fractured basalt
Properties and Qualities of Baconcamp
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water-severe; wind-slight

Typical Profile of Hackwood

0 to 11 inches-brown gravelly loam
11 to 23 inches-brown loam

23 to 48 inches-brown gravelly loam
48 to 60 inches-light yellowish brown gravelly loam

Properties and Qualities of Hackwood

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Dickle soils on ridges
- Hapgood soils on side slopes
- Welch soils in drainageways

Major Soil Limitations

Baconcamp and Hackwood-water erosion, slope, cold climate
Baconcamp-surface stones, depth to bedrock
Hackwood-seepage

Use and Management

Livestock Grazing

Baconcamp and Hackwood

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- The suitability for seeding is very poor because of the steepness of slope, short growing season, and areas of Rock outcrop.

Baconcamp

- Depth to bedrock limits the construction of water impoundments.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- As the site deteriorates, mountain big sagebrush, mountain brome, bottlebrush squirreltail, and bluegrasses increase and fescue and needlegrasses decrease.

Hackwood

- As the site deteriorates and available water becomes limited, willows, sedges, rushes, and tufted hairgrass decrease.

34-Baconcamp-Hapgood-Rock outcrop association, 15 to 50 percent slopes

Composition

[^0]
Setting

Landform: Mountains

Position on landform: Baconcamp—south- and west-facing side slopes; Hapgood— north- and east-facing side slopes
Parent material: Colluvium
Geology: Basalt and andesite
Elevation: 7,800 to 8,500 feet
Rangeland ecological site and characteristic vegetation: Baconcamp-(South Slopes 12-16PZ) mountain big sagebrush, antelope bitterbrush, bluebunch wheatgrass; Hapgood-(Deep North 12-18PZ) mountain big sagebrush, whortleleaf snowberry, Idaho fescue
Climatic factors:
Mean annual precipitation-16 to 35 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile of Baconcamp

0 to 4 inches-very dark grayish brown very stony loam 4 to 20 inches-very dark grayish brown gravelly loam 20 to 35 inches-dark grayish brown very gravelly loam
35 inches-fractured basalt

Properties and Qualities of Baconcamp

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Hapgood
0 to 10 inches-dark gray gravelly sandy loam
10 to 43 inches-dark grayish brown very stony loam
43 inches-basalt
Properties and Qualities of Hapgood
Depth: 40 to 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 4 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Clamp soils on side slopes
- Welch soils in swales

Major Soil Limitations

Baconcamp and Hapgood-water erosion, cold climate Baconcamp-surface stones, depth to bedrock

Use and Management

Livestock Grazing

Baconcamp and Hapgood

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.

Baconcamp

- The very stony surface layer restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- The suitability for seeding is very poor because of the depth to bedrock and short growing season.

Hapgood

- As the site deteriorates, big sagebrush, bottlebrush squirreltail, and bluegrasses increase and Idaho fescue, bluebunch wheatgrass, and needlegrasses decrease.
- The suitability for seeding is poor because of the short growing season.

35-Baconcamp-Krackle-Rock outcrop association, 25 to 65 percent slopes

Composition

Baconcamp and similar soils-40 percent
Krackle and similar soils-30 percent
Rock outcrop-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: Baconcamp—north- and east-facing side slopes; Krackle— south- and west-facing side slopes
Parent material: Colluvium
Geology: Basalt and andesite
Elevation: 5,400 to 8,200 feet
Rangeland ecological site and characteristic vegetation: Baconcamp-(Deep North 12-18PZ) mountain big sagebrush, whortleleaf snowberry, Idaho fescue;
Krackle-(South Slopes 12-16PZ) mountain big sagebrush, antelope bitterbrush, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-14 to 25 inches
Mean annual air temperature- 40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile of Baconcamp

0 to 4 inches-very dark grayish brown stony loam
4 to 20 inches-very dark grayish brown gravelly loam
20 to 35 inches-very dark grayish brown very gravelly loam
35 inches-fractured basalt
Properties and Qualities of Baconcamp
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Krackle
0 to 4 inches—grayish brown cobbly clay loam

4 to 15 inches-brown very stony clay loam
15 to 30 inches-yellowish brown very stony clay loam
30 inches-fractured basalt

Properties and Qualities of Krackle

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Clamp and Leemorris soils on side slopes

Major Soil Limitations

Baconcamp and Krackle-water erosion, slope, depth to bedrock, cold climate

Use and Management

Livestock Grazing

Baconcamp and Krackle

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- The suitability for seeding is very poor because of the steepness of slope and short growing season.

Baconcamp

- As the site deteriorates, big sagebrush, bottlebrush squirreltail, and bluegrasses increase and Idaho fescue, bluebunch wheatgrass, and needlegrasses decrease.

Krackle

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass.

36-Berdugo silt loam, 0 to 3 percent slopes

Composition

Berdugo and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,500 to 5,500 feet
Rangeland ecological site and characteristic vegetation: (Clayey Playette) Wyoming
big sagebrush, bottlebrush squirreltail, Thurber needlegrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches

Mean annual air temperature-45 to 49 degrees F
Frost-free period-70 to 100 days

Typical Profile

0 to 1 inch—light brownish gray silt loam
1 to 17 inches-pale brown silty clay loam and silt loam
17 to 26 inches-pale brown loam
26 to 39 inches-pale brown loamy sand
39 to 65 inches-pale brown extremely gravelly sand and gravelly sandy loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 7 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Contrasting Inclusions

- Spangenburg soils on lake terraces
- Boulder Lake soils in lower lying areas of depressions
- Swaler soils in higher lying areas of depressions
- Playas

Major Soil Limitation
Corrosivity

Use and Management

Livestock Grazing

- Crusting of the soil surface reduces infiltration and restricts seedling emergence and survival.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush increases and Indian ricegrass and needlegrasses decrease.
- This soil is susceptible to invasion by povertyweed and Russian thistle.
- With continued heavy grazing, Sandberg bluegrass and bottlebrush squirreltail will decrease in abundance.
- The suitability for seeding is fair because of droughtiness.

37-Berdugo-Catlow complex, 0 to 5 percent slopes

Composition
Berdugo and similar soils-50 percent
Catlow and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Berdugo—plane; Catlow—convex
Parent material: Berdugo—lacustrine sediment; Catlow—alluvium
Elevation: 4,500 to 5,500 feet

Rangeland ecological site and characteristic vegetation: Berdugo-(Clayey Playette)
Wyoming big sagebrush, bottlebrush squirreltail, Thurber needlegrass, Sandberg bluegrass; Catlow-(Loamy 8-10PZ) Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile of Berdugo
0 to 1 inch—light brownish gray silt loam
1 to 17 inches-pale brown silty clay loam and silt loam
17 to 26 inches-pale brown loam
26 to 39 inches-pale brown loamy sand
39 to 65 inches-pale brown extremely gravelly sand and gravelly sandy loam

Properties and Qualities of Berdugo

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 7 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High

Typical Profile of Catlow

0 to 3 inches—pale brown gravelly sandy loam
3 to 9 inches-brown very gravelly sandy clay loam
9 to 22 inches-pale brown very gravelly sandy clay loam
22 to 31 inches-pale brown extremely gravelly sandy loam
31 to 62 inches-multicolored extremely gravelly sand
Properties and Qualities of Catlow
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow over rapid
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High
Contrasting Inclusions

- Spangenburg soils on lake terraces
- Boulder Lake soils in lower lying areas of depressions
- Swaler soils in higher lying areas of depressions
- Playas

Major Soil Limitations

Berdugo and Catlow-corrosivity
Catlow-available water capacity, wind erosion

Use and Management

Livestock Grazing

Berdugo and Catlow

- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Berdugo

- Crusting of the soil surface reduces infiltration and restricts seedling emergence and survival.
- As the site deteriorates, big sagebrush increases and Indian ricegrass and needlegrasses decrease.
- This soil is susceptible to invasion by povertyweed and Russian thistle.
- Povertyweed invades after flooding.
- With continued heavy grazing, Sandberg bluegrass and bottlebrush squirreltail will decrease in abundance.
- Indian ricegrass is more abundant in areas that do not have an erosion pavement or that have a coarse-textured surface layer.
- The suitability for seeding is fair because of droughtiness.

Catlow

- The Iow available water capacity of the surface layer limits seedling survival.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- As the site deteriorates, big sagebrush and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- The suitability for seeding is poor because of the low available water capacity and droughtiness.

38-Bigfrog-Brock complex, 8 to 40 percent slopes Composition

Bigfrog and similar soils-45 percent
 Brock and similar soils-40 percent
 Contrasting inclusions-15 percent

Setting

Landform: Fan terraces
Position on landform: Bigfrog—north- and east-facing side slopes; Brock—south- and west-facing side slopes
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,200 to 5,600 feet
Rangeland ecological site and characteristic vegetation: Bigfrog-(North Slopes 6-10PZ) Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass; Brock-(South Slopes 6-10PZ) ephedra, purple sage, desert needlegrass, Indian ricegrass
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile of Bigfrog
0 to 3 inches-brown very cobbly sandy clay loam
3 to 10 inches-brown gravelly sandy clay loam
10 to 18 inches-pale brown gravelly sandy clay loam
18 to 38 inches-extremely gravelly indurated duripan
38 to 60 inches-stratified very gravelly sandy loam and very gravelly loamy sand

Properties and Qualities of Bigfrog

Depth: 8 to 18 inches to a hardpan and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Corrosivity to steel: High

Typical Profile of Brock

0 to 3 inches-light brownish gray very gravelly sandy loam
3 to 7 inches-light brownish gray very gravelly sandy clay loam
7 to 10 inches-pale brown very gravelly sandy loam
10 to 16 inches-extremely gravelly indurated duripan
16 to 60 inches-stratified very gravelly sandy loam and very gravelly loamy sand

Properties and Qualities of Brock

Depth: 8 to 18 inches to a hardpan and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—moderate
Corrosivity to steel: High

Contrasting Inclusions

- Deppy, Tumtum, and Catlow soils on lake terraces

Major Soil Limitations

Bigfrog and Brock-water erosion, depth to a hardpan, seepage, available water capacity
Brock-wind erosion

Use and Management

Livestock Grazing

Bigfrog and Brock

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The cemented hardpan restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- The risk of seepage limits the construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The suitability for seeding is very poor because of the low available water capacity and depth to the hardpan.
- This unit is suited to grazing in winter.

Bigfrog

- As the site deteriorates, ephedra and big sagebrush increase and bluebunch wheatgrass and Thurber needlegrass decrease.

Brock

- The low available water capacity of the surface layer limits seedling survival.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- As the site deteriorates, ephedra and purple sage increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- A well-developed erosion pavement can limit the reestablishment of plants.

39—Bocker-Westbutte complex, 5 to 25 percent slopes

Composition

Bocker and similar soils-50 percent Westbutte and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 5,300 to 6,600 feet
Rangeland ecological site and characteristic vegetation: Bocker-(Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass; Westbutte-(Loamy 12-16PZ) mountain big sagebrush, Idaho fescue, Thurber needlegrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Bocker
0 to 3 inches-pale brown extremely stony loam
3 to 7 inches-brown very stony loam
7 inches-basalt
Properties and Qualities of Bocker
Depth: 4 to 10 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight

Typical Profile of Westbutte

0 to 12 inches-dark grayish brown extremely stony loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt
Properties and Qualities of Westbutte
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Noname soils on hills
- Rock outcrop

Major Soil Limitations

Bocker and Westbutte-available water capacity, surface stones, depth to bedrock

Use and Management

Livestock Grazing

Bocker and Westbutte

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to bedrock limits the construction of water impoundments.
- The extremely stony surface layer prohibits the operation of ground seeding equipment and limits livestock movement and the distribution of grazing.

Bocker

- The bedrock restricts the rooting depth.
- Special design is needed for fences because the very shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the low available water capacity, depth to bedrock, and surface stones.

Westbutte

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the surface stones.

40-Boravall-Playas complex, 0 to 3 percent slopes

Composition

Boravall and similar soils-55 percent
Playas-30 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Boravall-plane; Playas—plane or concave
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: Boravall-(Sodic Meadow)
alkali sacaton, inland saltgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature- 45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Boravall

0 to 9 inches-light gray silty clay loam
9 to 19 inches-light gray silty clay
19 to 43 inches-very pale brown silty clay loam
43 to 60 inches-light gray silty clay loam

Properties and Qualities of Boravall

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in winter and spring
Water table: Present throughout the year
Permeability: Slow
Available water capacity: About 6 inches
Hazard of erosion: Water-slight; wind-moderate
Salinity: Strong
Alkalinity: Strong
Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Typical Profile of Playas

0 to 60 inches-stratified loamy, silty, and clayey lacustrine sediment

Properties and Qualities of Playas

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: May be present throughout the year
Water table: Present throughout the year
Permeability: Very slow
Hazard of erosion: Water—slight; wind—slight to severe
Salinity: Strong
Alkalinity: Strong
Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Turpin, Alvodest, and Homefield soils on lake plains

Major Soil Limitations

Boravall and Playas-available water capacity, wind erosion, shrink-swell potential, salinity, alkalinity, wetness, corrosivity

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- This unit is suited to grazing in winter.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, inland saltgrass, Baltic rush, and black greasewood increase and alkali sacaton and Sandberg bluegrass decrease.
- The suitability for seeding is very poor because of the low available water capacity of the surface layer and strong salinity and alkalinity.

41—Borobey sandy loam, 2 to 15 percent slopes Composition

Borobey and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: High stream terraces
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock and volcanic ash
Elevation: 4,400 to 5,300 feet
Rangeland ecological site and characteristic vegetation: (Pumice 10-12PZ) basin big sagebrush, antelope bitterbrush, Idaho fescue, western needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 3 inches—brown sandy loam
3 to 11 inches-brown gravelly loam
11 to 27 inches-brown sandy loam and gravelly loamy sand
27 to 60 inches-light yellowish brown gravelly loamy sand

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Somewhat excessively drained
Permeability: Moderately slow
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High
Contrasting Inclusions

- Gradon soils on fan terraces
- Gochea soils on lake terraces and in drainageways

Major Soil Limitations

Water erosion, wind erosion, corrosivity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and rabbitbrush increase and Idaho fescue, needlegrasses, and antelope bitterbrush decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is good.

42-Boulder Lake clay, 0 to 2 percent slopes

Composition

Boulder Lake and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains and depressions of plateaus
Slope features: Plane and concave
Parent material: Lacustrine sediment
Geology: Mixed igneous rock
Elevation: 5,300 to 6,000 feet
Rangeland ecological site and characteristic vegetation: (Ponded Clay) silver sagebrush, Sandberg bluegrass, beardless wildrye
Climatic factors:
Mean annual precipitation-10 to 14 inches
Mean annual air temperature- 40 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 1 inch—gray clay
1 to 42 inches-grayish brown clay
42 to 62 inches-brown silty clay loam
Soil Properties and Qualities
Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring and early in summer
Water table: Present in spring and early in summer
Permeability: Very slow
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Spangenburg soils in convex areas

Major Soil Limitations

Wetness, shrink-swell potential, permeability, corrosivity, surface texture

Use and Management

Irrigated Hayland

- The very slow permeability restricts water percolation. During the period of snowmelt and runoff in spring, the soil surface becomes saturated. To avoid soil
compaction or rutting and to maintain soil tilth, grazing of livestock and the use of equipment should be deferred until the soil is adequately drained.
- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- The seasonal high water table provides supplemental water for adapted plants.
- This unit provides important food and cover for wetland wildlife.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.

Livestock Grazing

- Grazing when the soil is wet results in compaction of the surface layer. A compacted surface layer may result in excessive runoff and restricted plant growth.
- Deferred grazing improves habitat for migrating waterfowl.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- Silver sagebrush resprouts after a fire.
- As the site deteriorates, silver sagebrush increases and Sandberg bluegrass decreases.
- The suitability for seeding is fair because of the clayey surface texture.

43-Boulder Lake-Merlin complex, 0 to 3 percent slopes

Composition

Boulder Lake and similar soils-65 percent
 Merlin and similar soils-20 percent
 Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Slope features: Boulder Lake—concave; Merlin—convex
Parent material: Boulder Lake—lacustrine sediment; Merlin—residuum and colluvium
Geology: Boulder Lake—mixed igneous rock; Merlin—basalt, welded tuff, and andesite
Elevation: 4,500 to 5,200 feet
Rangeland ecological site and characteristic vegetation: Boulder Lake-(Ponded
Clay) silver sagebrush, Sandberg bluegrass, beardless wildrye; Merlin-(JD Mountain Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, onespike oatgrass
Climatic factors:
Mean annual precipitation-12 to 14 inches Mean annual air temperature- 40 to 45 degrees F Frost-free period-50 to 80 days

Typical Profile of Boulder Lake

0 to 1 inch—gray clay loam
1 to 42 inches-grayish brown clay
42 to 62 inches-brown silty clay loam

Properties and Qualities of Boulder Lake

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring and early in summer
Water table: Present in spring and early in summer
Permeability: Very slow
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Typical Profile of Merlin
0 to 7 inches-brown very gravelly loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff
Properties and Qualities of Merlin
Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Minam soils in drainageways
- Vitale soils on hills and plateaus
- Doyn soils on plateaus
- Rock outcrop

Major Soil Limitations

Boulder Lake and Merlin—shrink-swell potential Boulder Lake-corrosivity, wetness, surface texture Merlin—depth to bedrock, depth to a claypan, available water capacity

Use and Management

Livestock Grazing

Boulder Lake and Merlin

- The upper part of the soils is saturated following snowmelt.
- Allow the soils to drain adequately before grazing to minimize compaction of the soils and damage to plants.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.

Boulder Lake

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves the habitat for migrating waterfowl.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Silver sagebrush resprouts after a fire.
- As the site deteriorates, silver sagebrush increases and Sandberg bluegrass decreases.
- This soil is susceptible to invasion by povertyweed.
- The suitability for seeding is fair because of the clayey surface texture.

Merlin

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The claypan restricts the rooting depth.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the low available water capacity and depth to the claypan.

44-Boulder Lake-Spangenburg complex, 0 to 2 percent slopes

Composition

Boulder Lake and similar soils-45 percent Spangenburg and similar soils-40 percent Contrasting inclusions-15 percent

Setting

Landform: Boulder Lake—lake plains; Spangenburg—lake terraces
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,500 to 5,300 feet
Rangeland ecological site and characteristic vegetation: Boulder Lake—(Ponded
Clay) silver sagebrush, Sandberg bluegrass, beardless wildrye; Spangenburg(Clayey Playette) Wyoming big sagebrush, bottlebrush squirreltail, Thurber needlegrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-40 to 49 degrees F
Frost-free period-50 to 100 days

Typical Profile of Boulder Lake

0 to 1 inch-gray clay
1 to 42 inches-grayish brown clay
42 to 62 inches-brown silty clay loam
Properties and Qualities of Boulder Lake
Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring and early in summer
Water table: Present in spring and early in summer
Permeability: Very slow
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Typical Profile of Spangenburg

0 to 2 inches-light brownish gray silt loam
2 to 6 inches_pale brown and pale yellowish brown silty clay
6 to 15 inches-yellowish brown silty clay
15 to 34 inches-pale brown silty clay loam
34 to 60 inches-very pale brown loam

Properties and Qualities of Spangenburg

Depth: 2 to 10 inches to a claypan and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 11 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Swaler soils in depressions

Major Soil Limitations

Boulder Lake and Spangenburg—shrink-swell potential, corrosivity Boulder Lake-wetness, permeability, surface texture Spangenburg-depth to a claypan

Use and Management

Irrigated Hayland

Boulder Lake

- Ponding and a seasonal high water table restrict haying and grazing. Soil wetness increases the risk of winterkill of plants.
- Grazing when the soil is wet results in compaction of the surface layer. A compacted surface layer may result in excessive runoff and restricted plant growth.
- The seasonal high water table provides supplemental water for adapted plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.
- The very slow and slow permeability of the clayey layer restricts water percolation. During the period of snowmelt and runoff in spring, the soil surface becomes saturated. To avoid soil compaction or rutting and to maintain soil tilth, grazing of livestock and the use of equipment should be deferred until the soils are adequately drained.

Livestock Grazing

Boulder Lake and Spangenburg

- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Boulder Lake

- This soil provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- Silver sagebrush resprouts after a fire.
- As the site deteriorates, silver sagebrush increases and Sandberg bluegrass decreases.
- This soil is susceptible to invasion by povertyweed.
- The suitability for seeding is fair because of the clayey surface texture.

Spangenburg

- As the site deteriorates, big sagebrush increases and Indian ricegrass and needlegrasses decrease.
- This soil is susceptible to invasion by povertyweed and Russian thistle.
- With continued heavy grazing, the abundance of Sandberg bluegrass and bottlebrush squirreltail decreases.
- The suitability for seeding is poor because of the depth to the claypan.

45-Brabble-Calderwood complex, 5 to 25 percent slopes

Composition

Brabble and similar soils-50 percent
Calderwood and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Old alluvium over bedrock
Geology: Fractured basalt and andesite
Elevation: 4,800 to 5,600 feet
Rangeland ecological site and characteristic vegetation: Brabble-(Shallow Loam
8-10PZ) Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass, bluebunch wheatgrass; Calderwood-(Shallow Loam 8-10PZ) Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass, bluebunch wheatgrass

Climatic factors:

Mean annual precipitation-8 to 10 inches
Mean annual air temperature- 45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Brabble

0 to 3 inches-grayish brown gravelly sandy clay loam
3 to 9 inches-light brownish gray sandy clay loam
9 to 18 inches-yellowish brown clay loam
18 to 26 inches-light yellowish brown loam
26 to 33 inches-pale brown loam
33 to 38 inches-indurated duripan
38 inches-fractured andesite

Properties and Qualities of Brabble

Depth: 20 to 40 inches to a hardpan and 30 to 50 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 5 inches
Hazard of erosion: Water-slight; wind-slight
Corrosivity to steel: High

Typical Profile of Calderwood

0 to 3 inches-pale brown very gravelly loam

3 to 12 inches-light yellowish brown very cobbly clay loam
12 to 18 inches-pale brown very stony clay loam
18 inches-fractured andesite
Properties and Qualities of Calderwood
Depth: 12 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Skedaddle and Kerrfield soils on hills
- Rock outcrop

Major Soil Limitations

Brabble and Calderwood-water erosion, depth to bedrock
Brabble—depth to a hardpan, corrosivity
Calderwood—available water capacity
Use and Management

Livestock Grazing

Brabble and Calderwood

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- This unit is suited to grazing in winter.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- A well-developed erosion pavement can limit the reestablishment of plants.

Brabble

- Depth to the hardpan and to bedrock limits construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The suitability for seeding is fair because of the low available water capacity.

Calderwood

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The suitability for seeding is poor because of the low available water capacity.

46-Brace-Coztur-Rock outcrop complex, 2 to 20 percent slopes

Composition

Brace and similar soils-40 percent
Coztur and similar soils-30 percent
Rock outcrop-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Brace—colluvium; Coztur—residuum
Geology: Basalt, andesite, welded tuff, and ashflow tuff
Elevation: 4,100 to 4,700 feet
Rangeland ecological site and characteristic vegetation: Brace and Coztur-
(Loamy 10-12PZ) Wyoming big sagebrush, Thurber needlegrass, bluebunch
wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Brace
0 to 6 inches-pale brown very stony loam
6 to 13 inches-pale brown clay loam
13 to 21 inches-very pale brown loam
21 to 32 inches-yellow loam
32 to 36 inches-indurated duripan
36 inches-fractured basalt

Properties and Qualities of Brace

Depth: 20 to 37 inches to a hardpan and 22 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Typical Profile of Coztur
0 to 9 inches-pale brown very stony loam
9 to 13 inches-brown gravelly sandy clay loam
13 to 18 inches-light yellowish brown gravelly sandy clay loam
18 inches-ashflow tuff
Properties and Qualities of Coztur
Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Contrasting Inclusions

- Actem and Anawalt soils on hills
- Reallis soils on terraces

Major Soil Limitations

Brace and Coztur-water erosion, surface stones, depth to bedrock
Brace—depth to a hardpan
Coztur-corrosivity

Use and Management

Livestock Grazing

Brace and Coztur

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The very stony surface layer restricts the operation of ground seeding equipment.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- These soils are susceptible to invasion by cheatgrass.

Brace

- Depth to the hardpan and to bedrock limits the construction of water impoundments.
- The suitability for seeding is poor because of the surface rock fragments.

Coztur

- The upper part of the soil is saturated following snowmelt.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

47-Brace-Vergas complex, 2 to 20 percent slopes

 CompositionBrace and similar soils-45 percent
Vergas and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Position on landform: Brace-convex areas that have slopes of 2 to 20 percent;
Vergas-concave areas that have slopes of 2 to 8 percent
Parent material: Brace-residuum and old alluvium; Vergas-alluvium
Geology: Brace-basalt, andesite, and welded tuff; Vergas-mixed igneous rock
Elevation: 4,100 to 4,700 feet
Rangeland ecological site and characteristic vegetation: Brace and Vergas-(Loamy
10-12PZ) Wyoming big sagebrush, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Brace

0 to 6 inches-pale brown cobbly fine sandy loam
6 to 13 inches-pale brown clay loam
13 to 21 inches-very pale brown loam
21 to 32 inches-yellow loam

32 to 36 inches-indurated duripan
36 inches-fractured basalt

Properties and Qualities of Brace

Depth: 20 to 37 inches to a hardpan and 22 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—moderate

Typical Profile of Vergas

0 to 6 inches-light brownish gray fine sandy loam
6 to 14 inches-yellowish brown gravelly sandy clay loam
14 to 20 inches-light yellowish brown gravelly loamy sand
20 to 62 inches-light yellowish brown extremely gravelly coarse sand
Properties and Qualities of Vergas
Depth: 14 to 35 inches to the hard, brittle layer and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow over very rapid
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High

Contrasting Inclusions

- Sagehen and Actem soils on hills
- Rock outcrop

Major Soil Limitations

Brace and Vergas-wind erosion
Brace-water erosion, depth to bedrock, depth to a hardpan
Vergas—seepage, corrosivity

Use and Management

Livestock Grazing

Brace and Vergas

- Maintaining adequate plant cover minimizes the risk of wind erosion.

Brace

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to the hardpan and to bedrock limits construction of water impoundments.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is fair because of the depth to bedrock.

Vergas

- The risk of seepage limits the construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is good.

48-Bruncan complex, 0 to 5 percent slopes
 Composition

Bruncan, thick surface, and similar soils-50 percent Bruncan, thin surface, and similar soils- 35 percent Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Slope features: Concave and convex
Parent material: Old alluvium over basalt
Geology: Basalt
Elevation: 4,700 to 5,800 feet
Rangeland ecological site and characteristic vegetation: Bruncan-(Shallow Loam 8 -10PZ) Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass, bluebunch wheatgrass; Bruncan-(Thin Surface 8-14PZ) black sagebrush, bottlebrush squirreltail, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature- 45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Bruncan, Thick Surface

0 to 5 inches-light gray cobbly fine sandy loam
5 to 10 inches-very pale brown clay loam
10 to 15 inches-light brown clay loam
15 to 17 inches-pink indurated duripan
17 inches-basalt
Typical Profile of Bruncan, Thin Surface
0 to 1 inch-light gray cobbly fine sandy loam
1 to 10 inches-very pale brown clay loam
10 to 15 inches-light brown clay loam
15 to 17 inches-pink indurated duripan
17 inches-basalt

Properties and Qualities of Bruncan

Depth: 11 to 20 inches to a hardpan and 13 to 30 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water-slight; wind-moderate
Corrosivity to steel: High

Contrasting Inclusions

- Anawalt and Fourwheel soils on plateaus
- Vining soils on hills
- Rock outcrop

Major Soil Limitations

Depth to bedrock, depth to a hardpan, wind erosion, corrosivity

Use and Management

Livestock Grazing

- Bedrock and the cemented hardpan restrict the rooting depth and limit the construction of water impoundments.
- The upper part of the soils is saturated following snowmelt.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- This unit is suited to grazing in winter.
- The suitability for seeding is poor because of the low available water capacity.

49-Brunzell gravelly loam, 0 to 2 percent slopes Composition

Brunzell and similar soils-90 percent
Contrasting inclusions-10 percent

Setting

Landform: Drainageways
Slope features: Plane
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,600 to 5,000 feet
Rangeland ecological site and characteristic vegetation: (SR Dry Mountain Swale
12-16PZ) mountain big sagebrush, Idaho fescue, sedge
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-grayish brown gravelly loam
2 to 11 inches-brown gravelly loam
11 to 18 inches-brown gravelly sandy clay loam
18 to 30 inches-yellowish brown very gravelly sandy clay loam
30 to 47 inches-light yellowish brown extremely gravelly loamy coarse sand
47 to 62 inches-pale brown extremely gravelly loamy coarse sand

Soil Properties and Qualities

Depth: 25 to 40 inches to sand and gravel and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow over rapid
Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Roschene and Welch soils on stream terraces

Major Soil Limitation
Seepage

Use and Management

Livestock Grazing

- The risk of seepage limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, sedges, bluegrasses, and bottlebrush squirrel increase and Idaho fescue decreases.
- As the streambanks become unstable, the channels deepen and widen and the subsurface waterflow is reduced, resulting in drier conditions and reduced production.
- The suitability for seeding is good.

50-Bucklake very stony clay loam, 20 to 50 percent north slopes

Composition

Bucklake and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills

Position on landform: North- and east-facing side slopes
Parent material: Colluvium and residuum
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 3,400 to 4,200 feet
Rangeland ecological site and characteristic vegetation: (SR Mountain North 9-12PZ)
Wyoming big sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg
bluegrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 2 inches-brown very stony clay loam
2 to 16 inches-brown gravelly clay
16 to 31 inches-yellowish brown gravelly clay loam
31 inches-welded tuff

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 4 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Drewsey, Mahoon, and Risley soils on hillsides
- Rock outcrop

Major Soil Limitations

Water erosion, slope, surface stones, depth to bedrock, shrink-swell potential

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The steepness of slope and surface stones restrict the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the surface stones and steepness of slope.

51-Bucklake-Mahoon-Rubble land complex, 20 to 40 percent slopes

Composition

Bucklake and similar soils-35 percent
Mahoon and similar soils-35 percent
Rubble land-20 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills

Position on landform: Bucklake—north- and east-facing side slopes; Mahoon-south- and west-facing side slopes
Parent material: Colluvium and residuum
Geology: Bucklake—basalt, andesite, rhyolite, and welded tuff; Mahoon-
tuffaceous sedimentary rock and diatomaceous earth; Rubble land-igneous rock
Elevation: 3,400 to 4,200 feet
Rangeland ecological site and characteristic vegetation: Bucklake—(SR Mountain
North 9-12PZ) Wyoming big sagebrush, Idaho fescue; Mahoon-(SR Clayey
South 9-12PZ) Wyoming big sagebrush, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Bucklake

0 to 2 inches—brown very cobbly loam
2 to 16 inches-brown gravelly clay
16 to 31 inches-yellowish brown gravelly clay loam
31 inches-welded tuff
Properties and Qualities of Bucklake
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 4 inches

Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Mahoon

0 to 3 inches-grayish brown very cobbly loam
3 to 9 inches-grayish brown gravelly clay
9 to 18 inches-brown gravelly clay
18 to 25 inches-pale brown gravelly clay
25 inches-diatomaceous earth

Properties and Qualities of Mahoon

Depth: 2 to 10 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 4 inches
Hazard of erosion: Water-moderate; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Poall, Risley, and Drewsey soils on hills

Major Soil Limitations

Bucklake and Mahoon-water erosion, slope, depth to bedrock, shrink-swell potential
Mahoon-depth to a claypan, corrosivity

Use and Management

Livestock Grazing

Bucklake and Mahoon

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.

Bucklake

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the surface rock fragments.

Mahoon

- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the depth to the claypan and surface rock fragments.

52-Calderwood very gravelly loam, 5 to 25 percent slopes

Composition

Calderwood and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Old alluvium over bedrock
Geology: Fractured basalt and andesite
Elevation: 4,800 to 6,100 feet
Rangeland ecological site and characteristic vegetation: (Shallow Loam 8-10PZ)
Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass, bluebunch
wheatgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees
Frost-free period-80 to 100 days

Typical Profile

0 to 3 inches-pale brown very gravelly loam
3 to 12 inches-light yellowish brown very cobbly clay loam
12 to 18 inches-pale brown very stony clay loam
18 inches-fractured andesite

Soil Properties and Qualities

Depth: 12 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water-slight; wind—slight

Contrasting Inclusions

- Atlow and Kerrfield soils on hills
- Enko soils on lake terraces
- Rock outcrop

Major Soil Limitations

Water erosion, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- This unit is suited to grazing in winter.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- A well-developed erosion pavement can limit the reestablishment of plants.
- The suitability for seeding is poor because of the low available water capacity.

53-Calderwood-McConnel complex, 0 to 20 percent slopes

Composition

Calderwood and similar soils-65 percent McConnel and similar soils-20 percent Contrasting inclusions-15 percent

Setting

Landform: Hills and lake terraces
Position on landform: Calderwood—hills with slopes of 0 to 10 percent; McConnel— lake terraces with slopes of 0 to 20 percent
Parent material: Calderwood-old alluvium over bedrock; McConnel—alluvium
Geology: Calderwood—fractured basalt and andesite; McConnel—mixed igneous rock
Elevation: 4,650 to 4,850 feet
Rangeland ecological site and characteristic vegetation: Calderwood-(Shallow Loam 8-10PZ) Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass, bluebunch wheatgrass; McConnel-(Loamy 8-10PZ) Wyoming big sagebrush, Indian ricegrass, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches Mean annual air temperature-45 to 49 degrees F Frost-free period-80 to 100 days

Typical Profile of Calderwood

0 to 3 inches-pale brown cobbly loam
3 to 12 inches-light yellowish brown very cobbly clay loam
12 to 18 inches-pale brown very stony clay loam
18 inches-fractured andesite
Properties and Qualities of Calderwood
Depth: 12 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight

Typical Profile of McConnel

0 to 3 inches-grayish brown very gravelly sandy loam
3 to 11 inches-brown gravelly sandy loam
11 to 25 inches-brown very cobbly loamy sand
25 to 52 inches-brown extremely cobbly loamy sand
52 to 62 inches-brown extremely gravelly loamy sand

Properties and Qualities of McConnel

Depth: More than 60 inches to bedrock
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High

Contrasting Inclusions

- Deppy and Tumtum soils on old lake terraces
- Atlow soils on hills
- Davey soils on lake terraces
- Rock outcrop

Major Soil Limitations

Calderwood and McConnel—available water capacity
Calderwood-depth to bedrock
McConnel-wind erosion, seepage
Use and Management

Livestock Grazing

Calderwood and McConnel

- This unit is suited to grazing in winter.
- The suitability for seeding is poor because of the low available water capacity.

Calderwood

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- A well-developed erosion pavement can limit the reestablishment of plants.

McConnel

- The low available water capacity of the surface layer limits seedling survival.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The risk of seepage limits the construction of water impoundments.
- As the site deteriorates, big sagebrush and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.

54-Carryback silty clay loam, 2 to 20 percent slopes
 Composition

[^1]Slope features: Plane and convex
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 4,500 to 4,700 feet
Rangeland ecological site and characteristic vegetation: (Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 3 inches-pale brown silty clay loam
3 to 7 inches-brown silty clay loam
7 to 24 inches-brown clay
24 inches-basalt

Soil Properties and Qualities

Depth: 2 to 7 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water-slight; wind-slight
Shrink-swell potential: High

Contrasting Inclusions

- Carvix soils on stream terraces
- Lambring soils on steep north-facing mountainsides
- Felcher soils on steep, south-facing mountainsides

Major Soil Limitations

Depth to bedrock, depth to a claypan, shrink-swell potential

Use and Management

Livestock Grazing

- Depth to bedrock limits the construction of water impoundments.
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the depth to the claypan.

55-Carryback cobbly clay loam, 5 to 20 percent slopes Composition

Carryback and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Plane and convex
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 4,800 to 5,800 feet
Rangeland ecological site and characteristic vegetation: (Loamy 12-16PZ) mountain big sagebrush, Idaho fescue, Thurber needlegrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 7 inches-pale brown cobbly clay loam
7 to 24 inches-brown clay
24 inches-basalt

Soil Properties and Qualities

Depth: 7 to 11 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Madeline and Bocker soils on hills and plateaus
- Rock outcrop

Major Soil Limitations

Depth to bedrock, depth to a claypan, shrink-swell potential

Use and Management

Livestock Grazing

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the depth to the claypan.

56-Carryback very stony clay loam, 2 to 20 percent slopes

Composition

Carryback and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Slope features: Plane and convex
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 4,200 to 4,700 feet
Rangeland ecological site and characteristic vegetation: (Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 7 inches-pale brown very stony clay loam
7 to 24 inches-brown clay
24 inches-basalt

Soil Properties and Qualities

Depth: 2 to 7 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Pernty soils on higher lying, south-facing mountainsides
- Riddleranch soils on lower lying, south-facing mountainsides
- Lambring soils on north-facing mountainsides

Major Soil Limitations

Surface stones, depth to bedrock, depth to a claypan, shrink-swell potential

Use and Management

Livestock Grazing

- The very stony surface layer restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- This soil is susceptible to invasion by cheatgrass and medusahead and by western juniper.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the depth to the claypan and surface stones.

57-Carryback very gravelly loam, low elevation, 3 to 20 percent slopes

Composition

Carryback and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Slope features: Plane and convex
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 4,000 to 4,700 feet
Rangeland ecological site and characteristic vegetation: (Loamy 10-12PZ) Wyoming big sagebrush, Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 7 inches—pale brown very gravelly loam
7 to 24 inches-brown clay
24 inches-basalt

Soil Properties and Qualities

Depth: 7 to 11 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Carvix soils on stream terraces
- Felcher soils on steep, south-facing mountainsides
- Lambring soils on steep, north-facing mountainsides
- Swalesilver soils in depressions of plateaus

Major Soil Limitations

Depth to bedrock, shrink-swell potential, depth to a claypan

Use and Management

Livestock Grazing

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush,
and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the depth to the claypan.

58-Carryback complex, 2 to $\mathbf{2 0}$ percent slopes

Composition

Carryback, thin surface, and similar soils-50 percent Carryback, thick surface, and similar soils- 35 percent Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Slope features: Plane and convex
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 4,500 to 6,200 feet
Rangeland ecological site and characteristic vegetation: Carryback-(Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg bluegrass; Carryback, thick surface-(Droughty Loam 11-13PZ) basin big sagebrush, Idaho fescue, Thurber needlegrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Carryback, Thin Surface
0 to 3 inches-pale brown silty clay loam
3 to 7 inches-brown silty clay loam
7 to 24 inches-brown clay
24 inches-basalt

Properties and Qualities of Carryback, Thin Surface

Depth: 2 to 7 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water-slight; wind-slight
Shrink-swell potential: High

Typical Profile of Carryback, Thick Surface

0 to 10 inches-pale brown very gravelly loam
10 to 24 inches-brown clay
24 inches-basalt
Properties and Qualities of Carryback, Thick Surface
Depth: 7 to 11 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind-slight
Shrink-swell potential: High

Contrasting Inclusions

- Pernty soils on steep, south-facing hillslopes

Major Soil Limitations

Depth to bedrock, depth to a claypan, shrink-swell potential

Use and Management

Carryback, thin surface, and Carryback, thick surface

- Depth to bedrock limits the construction of water impoundments.
- The claypan restricts the rooting depth.
- The upper part of the soils is saturated following snowmelt.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Allow the soils to drain adequately before grazing to minimize compaction of the soils and damage to plants.

Carryback, thin surface

- This soil is susceptible to invasion by cheatgrass and medusahead and by western juniper.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the depth to the claypan.

Carryback, thick surface

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and needlegrasses, Idaho fescue, and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the depth to the claypan.

59-Carryback complex, 20 to 40 percent slopes

Composition

Carryback, thin surface, and similar soils-35 percent
Carryback, south slopes, and similar soils-30 percent
Carryback, north slopes, and similar soils-25 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 4,500 to 6,200 feet
Rangeland ecological site and characteristic vegetation: Carryback, thin surface-
(Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass,
Sandberg bluegrass; Carryback, south slopes-(Droughty South Slopes
11-13PZ) basin big sagebrush, bluebunch wheatgrass, Thurber needlegrass;
Carryback, north slopes-(North Slopes 12-16PZ) mountain big sagebrush, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Carryback, Thin Surface

0 to 7 inches-pale brown silty clay loam
7 to 24 inches-brown clay
24 inches-basalt
Properties and Qualities of Carryback, Thin Surface
Depth: 2 to 7 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High

Typical Profile of Carryback, South Slopes

0 to 10 inches-pale brown gravelly clay loam
10 to 24 inches-brown clay
24 inches-basalt

Properties and Qualities of Carryback, South Slopes

Depth: 7 to 11 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Typical Profile of Carryback, North Slopes
0 to 10 inches-pale brown gravelly clay loam
10 to 24 inches-brown clay
24 inches-basalt
Properties and Qualities of Carryback, North Slopes
Depth: 7 to 11 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Contrasting Inclusions

- Felcher soils on south-facing hillsides
- Carvix soils on stream terraces
- Rock outcrop

Major Soil Limitations

Water erosion, depth to bedrock, depth to a claypan, shrink-swell potential

Use and Management

Livestock Grazing

Carryback, thin surface, south slopes, and north slopes

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to bedrock limits the construction of water impoundments.
- The claypan restricts the rooting depth.
- The upper part of the soils is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Allow the soils to drain adequately before grazing to minimize compaction of the soils and damage to plants.

Carryback, thin surface

- This soil is susceptible to invasion by cheatgrass and medusahead and by western juniper.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the depth to the claypan.

Carryback, south slopes

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the depth to the claypan.

Carryback, north slopes

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass and western juniper.
- The suitability for seeding is poor because of the depth to the claypan.

60-Carryback complex, low elevation, 20 to 40 percent slopes

Composition

Carryback, south slopes, and similar soils-45 percent Carryback, north slopes, and similar soils-40 percent Contrasting inclusions-15 percent

Setting

Landform: Hills

Position on landform: Carryback, south slopes-south- and west-facing side slopes;
Carryback, north slopes-north- and east-facing side slopes
Parent material: Colluvium, residuum, and loess
Geology: Basalt, andesite, and welded tuff
Elevation: 4,000 to 4,700 feet
Rangeland ecological site and characteristic vegetation: Carryback, south slopes-
(South Slopes 8-12PZ) Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass; Carryback, north slopes-(North Slopes 10-12PZ) Wyoming big sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Carryback, South Slopes

0 to 10 inches-pale brown very gravelly loam
10 to 24 inches-brown clay
24 inches-basalt

Properties and Qualities of Carryback, South Slopes

Depth: 7 to 11 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Typical Profile of Carryback, North Slopes
0 to 10 inches-pale brown very gravelly loam
10 to 24 inches-brown clay
24 inches-basalt
Properties and Qualities of Carryback, North Slopes
Depth: 7 to 11 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Carvix soils on stream terraces
- Reluctan soils on hills
- Rock outcrop

Major Soil Limitations

Water erosion, depth to bedrock, depth to a claypan, shrink-swell potential

Use and Management

Livestock Grazing

Carryback, south and north slopes

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to bedrock limits the construction of water impoundments.
- The claypan restricts the rooting depth.
- The upper part of the soils is saturated following snowmelt.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Allow the soils to drain adequately before grazing to minimize compaction of the soils and damage to plants.
- The suitability for seeding is poor because of the depth to the claypan.

Carryback, south slopes

- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.

Carryback, north slopes

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.

61-Carryback-Pearlwise complex, 3 to 15 percent slopes

Composition

Carryback and similar soils-55 percent Pearlwise and similar soils-30 percent Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Slope features: Plane and convex
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 5,500 to 6,600 feet
Rangeland ecological site and characteristic vegetation: Carryback-(Claypan
12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg
bluegrass; Pearlwise-(Loamy 12-16PZ) mountain big sagebrush, Idaho fescue,
Thurber needlegrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature- 40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Carryback

0 to 7 inches-pale brown extremely cobbly clay loam
7 to 24 inches-brown clay
24 inches-basalt

Properties and Qualities of Carryback

Depth: 2 to 7 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Pearlwise

0 to 22 inches-very dark grayish brown clay loam
22 inches-basalt
Properties and Qualities of Pearlwise
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind-slight
Contrasting Inclusions

- Duff soils on north-facing side slopes
- Clamp soils on ridges of north-facing side slopes
- Welch soils in drainageways
- Rock outcrop

Major Soil Limitations

Carryback and Pearlwise-depth to bedrock
Carryback-available water capacity, surface rock fragments, depth to a claypan, shrink-swell potential

Use and Management

Livestock Grazing

Carryback and Pearlwise

- Depth to bedrock limits the construction of water impoundments.

Carryback

- The low available water capacity of the surface layer limits seedling survival.
- The extremely cobbly surface layer prohibits the operation of ground seeding equipment.
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity, depth to the claypan, and surface rock fragments.

Pearlwise

- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is good.

62-Carryback-Pearlwise-Rock outcrop complex, 25 to 50 percent north slopes

Composition

Carryback and similar soils-45 percent
Pearlwise and similar soils-30 percent
Rock outcrop-15 percent
Contrasting inclusions-10 percent

Setting

Landform: Mountains
Position on landform: North- and east-facing side slopes
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 5,500 to 6,600 feet
Rangeland ecological site and characteristic vegetation: Carryback-(Shallow North 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass; Pearlwise(Deep North 12-18PZ) mountain big sagebrush, whortleleaf snowberry, Idaho fescue

Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Carryback

0 to 7 inches—pale brown extremely cobbly clay loam
7 to 24 inches-brown clay
24 inches—basalt

Properties and Qualities of Carryback

Depth: 2 to 7 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Typical Profile of Pearlwise
0 to 22 inches-very dark grayish brown clay loam
22 inches-basalt

Properties and Qualities of Pearlwise

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 4 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Baconcamp soils on north-facing side slopes
- Clamp soils on ridges of north-facing side slopes
- Welch soils in drainageways

Major Soil Limitations

Carryback and Pearlwise-water erosion, slope, depth to bedrock
Carryback—available water capacity, surface rock fragments, depth to a claypan, shrink-swell potential

Use and Management

Livestock Grazing

Carryback and Pearlwise

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.

Carryback

- The extremely cobbly surface layer prohibits the operation of ground seeding equipment.
- The low available water capacity of the surface layer limits seedling survival.
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the surface rock fragments and steepness of slope.

Pearlwise

- As the site deteriorates, big sagebrush, bottlebrush squirreltail, and bluegrasses increase and Idaho fescue, bluebunch wheatgrass, and needlegrasses decrease.
- The suitability for seeding is very poor because of the steepness of slope.

63-Carryback-Dickle association, 12 to 35 percent north slopes

Composition

Carryback and similar soils-50 percent
Dickle and similar soils- 35 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains and hills
Position on landform: Carryback-lower lying (below 6,000 feet), north- and east-facing side slopes; Dickle-higher lying (above 6,000 feet), north- and east-facing side slopes
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 5,200 to 6,700 feet
Rangeland ecological site and characteristic vegetation: Carryback and Dickle(Shallow North 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature- 40 to 45 degrees F
Frost-free period- 30 to 80 days

Typical Profile of Carryback

0 to 7 inches-pale brown very stony clay loam
7 to 24 inches-brown clay
24 inches-basalt

Properties and Qualities of Carryback

Depth: 2 to 7 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water-moderate; wind-slight
Shrink-swell potential: High
Typical Profile of Dickle
0 to 3 inches-light brownish gray very cobbly clay loam
3 to 6 inches-grayish brown clay loam

6 to 14 inches-brown clay loam
14 inches-basalt

Properties and Qualities of Dickle

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Felcher and Fourwheel soils on south-facing side slopes
- Sagehen soils in depressions
- Rock outcrop

Major Soil Limitations

Carryback and Dickle-water erosion, depth to bedrock, available water capacity Carryback-surface stones, depth to a claypan, shrink-swell potential Dickle-cold climate, surface rock fragments

Use and Management

Livestock Grazing

Carryback and Dickle

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The upper part of the soils is saturated following snowmelt.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- These soils are susceptible to invasion by cheatgrass.

Carryback

- The very stony surface layer restricts the operation of equipment.
- Depth to bedrock limits the construction of water impoundments.
- The claypan restricts the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- The suitability for seeding is poor because of the depth to the claypan, surface rock fragments, and low available water capacity.

Dickle

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- The suitability for seeding is very poor because of the low available water capacity, surface rock fragments, depth to bedrock, and short growing season.

64-Carvix silt loam, 0 to 5 percent slopes

Composition

Carvix and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Stream terraces
Slope features: Convex and plane
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,000 to 4,600 feet
Rangeland ecological site and characteristic vegetation: (Swale 10-14PZ) basin big sagebrush, basin wildrye, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 14 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 6 inches-brown silt loam
6 to 19 inches-brown silt loam
19 to 39 inches-brown loam
39 to 60 inches-yellowish brown loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Contrasting Inclusions

- Fury and Skunkfarm soils on lake plains

Major Soil Limitation

Corrosivity

Use and Management

Irrigated Hayland

- This soil is well suited to irrigated hayland.

Livestock Grazing

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and basin wildrye, Idaho fescue, and bluebunch wheatgrass decrease.
- The suitability for seeding is good.

65-Clamp-Baconcamp-Hackwood complex, 20 to 35 percent north slopes

Composition

Clamp and similar soils-40 percent
Baconcamp and similar soils-30 percent

Hackwood and similar soils-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: North- and east-facing side slopes
Parent material: Clamp and Baconcamp-colluvium; Hackwood—loess and colluvium
Geology: Basalt
Elevation: 5,200 to 8,000 feet
Rangeland ecological site and characteristic vegetation: Clamp-(Shallow North 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass; Baconcamp(Deep North 12-18PZ) mountain big sagebrush, whortleleaf snowberry, Idaho fescue; Hackwood-(Aspen 16-35PZ) quaking aspen, whortleleaf snowberry, sedge
Climatic factors:
Mean annual precipitation-14 to 35 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days
Typical Profile of Clamp
0 to 3 inches-grayish brown very stony clay loam
3 to 12 inches-grayish brown very cobbly clay loam
12 inches-fractured basalt

Properties and Qualities of Clamp

Depth: 4 to 14 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Baconcamp
0 to 4 inches-very dark grayish brown very stony clay loam 4 to 20 inches-very dark grayish brown gravelly loam 20 to 35 inches-very dark grayish brown very gravelly loam 35 inches-fractured basalt

Properties and Qualities of Baconcamp

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Hackwood

0 to 11 inches-brown gravelly loam
11 to 23 inches-brown loam
23 to 48 inches-brown gravelly loam
48 to 60 inches-light yellowish brown gravelly loam
Properties and Qualities of Hackwood
Depth: More than 60 inches to bedrock
Drainage class: Well drained

Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Pearlwise soils on ridges
- Welch soils in drainageways
- Duff soils on side slopes at higher elevations
- Rock outcrop

Major Soil Limitations

Clamp, Baconcamp, and Hackwood-water erosion, cold climate
Clamp and Baconcamp-depth to bedrock
Clamp—available water capacity
Baconcamp-surface stones
Hackwood-seepage

Use and Management

Livestock Grazing

Clamp, Baconcamp, and Hackwood

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.

Clamp

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the low available water capacity and short growing season.

Baconcamp

- The very stony surface layer restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, bottlebrush squirreltail, and bluegrasses increase and Idaho fescue, bluebunch wheatgrass, and needlegrasses decrease.
- The suitability for seeding is poor because of the surface rock fragments and short growing season.

Hackwood

- The risk of seepage limits the construction of water impoundments.
- Excessive use of aspen reduces its productivity and potential for regeneration.
- As the site deteriorates, shrubs and forbs increase and needlegrasses decrease.
- The suitability for seeding is fair because of the short growing season.

66-Coztur sandy loam, 2 to 15 percent slopes
 Composition

Coztur and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum
Geology: Basalt, welded tuff, and ashflow tuff
Elevation: 4,200 to 5,600 feet
Rangeland ecological site and characteristic vegetation: (Loamy 10-12PZ) Wyoming
big sagebrush, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 9 inches—pale brown sandy loam
9 to 13 inches-brown gravelly sandy clay loam
13 to 18 inches-light yellowish brown gravelly sandy clay loam
18 inches-ashflow tuff

Soil Properties and Qualities

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High

Contrasting Inclusions

- Gochea soils on terraces
- Swalesilver soils in closed depressions of plateaus
- Actem soils on plateaus
- Rock outcrop

Major Soil Limitations

Water erosion, depth to bedrock, wind erosion, corrosivity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity.

67-Crowcamp loam, 0 to 1 percent slopes Composition

Crowcamp and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Ponded Clay) silver sagebrush, Sandberg bluegrass, beardless wildrye
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 3 inches-gray loam
3 to 30 inches-grayish brown and dark gray clay
30 to 53 inches-grayish brown and light olive gray loam
53 to 68 inches-light olive gray very gravelly loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Slow
Available water capacity: About 9 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High
Contrasting Inclusions

- Ausmus and Lolak soils on lake plains
- Poujade soils on low lake terraces

Major Soil Limitations

Corrosivity, wetness, shrink-swell potential

Use and Management
 Irrigated Hayland

- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.
- Providing adequate drainage is difficult because most areas have poor outlets and are seasonally ponded.

Livestock Grazing

- Grazing when the soil is wet results in compaction of the surface layer. A compacted surface layer may result in excessive runoff and restricted plant growth.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Silver sagebrush resprouts after a fire.
- As the site deteriorates, silver sagebrush increases and Sandberg bluegrass decreases.
- This soil is susceptible to invasion by povertyweed.
- The suitability for seeding is good.

68-Crowcamp-Ausmus-Poujade complex, 0 to 5 percent slopes

Composition

Crowcamp and similar soils-50 percent
Ausmus and similar soils-20 percent
Poujade and similar soils-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Crowcamp and Ausmus—lake plains; Poujade—low lake terraces Position on landform: Crowcamp and Ausmus—plane areas with slopes of 0 to 2 percent; Poujade-convex areas with slopes of 1 to 5 percent
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: Crowcamp-(Ponded Clay) silver sagebrush, Sandberg bluegrass, beardless wildrye; Ausmus-(Sodic Bottom) black greasewood, basin wildrye, inland saltgrass; Poujade-(Dry Basin) basin big sagebrush, black greasewood, basin wildrye
Climatic factors:
Mean annual precipitation-8 to 10 inches Mean annual air temperature-43 to 45 degrees F Frost-free period-50 to 80 days

Typical Profile of Crowcamp

0 to 3 inches-gray silty clay loam

3 to 30 inches-grayish brown and dark gray clay
30 to 53 inches-grayish brown and light olive gray loam
53 to 68 inches-light olive gray very gravelly loam
Properties and Qualities of Crowcamp
Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Slow
Available water capacity: About 9 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High

Typical Profile of Ausmus

0 to 2 inches-light brownish gray fine sandy loam
2 to 16 inches-light brownish gray silty clay loam
16 to 29 inches-light brownish gray silt loam
29 to 69 inches-light yellowish brown loam
Properties and Qualities of Ausmus
Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind-moderate
Salinity: Strong
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High

Typical Profile of Poujade

0 to 4 inches-light brownish gray very fine sandy loam
4 to 6 inches-light brownish gray loam
6 to 9 inches-light brownish gray silty clay loam
9 to 13 inches-light yellowish brown silty clay loam
13 to 40 inches-light gray loam
40 to 58 inches-white silty clay loam and loam
58 to 65 inches-light gray fine sandy loam

Properties and Qualities of Poujade

Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Moderate
Alkalinity: Strong

Corrosivity to concrete: High
Corrosivity to steel: High

Contrasting Inclusions

- Lolak soils on lake plains
- Lawen soils on high lake terraces

Major Soil Limitations

Crowcamp, Ausmus, and Poujade-corrosivity
Crowcamp and Ausmus-wetness
Crowcamp-shrink-swell potential
Ausmus and Poujade-wind erosion, alkalinity
Ausmus-salinity

Use and Management
 Irrigated Hayland

Crowcamp and Ausmus

- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.
- Providing adequate drainage is difficult because most areas have poor outlets and are seasonally ponded.

Ausmus and Poujade

- Practices that help to control wind erosion include planting crops at right angles to the prevailing wind, maintaining crop residue on the soil surface, planting field windbreaks, stripcropping, planting cover crops, using minimum tillage, minimizing the areas of barren soil, and leaving the soil surface rough.

Ausmus

- The salinity and alkalinity limit the types of crops that can be grown.
- Salt- and alkali-tolerant plants are the most suitable for planting.
- If alfalfa or other crops are grown, sulphur amendments are needed because of the strong alkalinity of the soil.
- Proper irrigation water management and adequate drainage are needed to leach the salts below the rooting zone.

Poujade

- Alkali-tolerant plants are the most suitable for planting. The alkalinity of the soil should be treated with sulphur amendments if alfalfa or other crops are grown.

Livestock Grazing

Crowcamp, Ausmus, and Poujade

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Grazing when the soils are wet results in compaction of the surface layer. A compacted surface layer may result in excessive runoff and restricted plant growth.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.

Crowcamp

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Silver sagebrush resprouts after fires.
- As the site deteriorates, silver sagebrush increases and Sandberg bluegrass decreases.
- This soil is susceptible to invasion by povertyweed.
- The suitability for seeding is good.

Ausmus and Poujade

- Maintaining adequate plant cover reduces the risk of wind erosion.
- Excess salts and sodium in the soils result in nutrient imbalances and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.

Ausmus

- As the site deteriorates, inland saltgrass and black greasewood increases and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity and salinity.

Poujade

- As the site deteriorates, big sagebrush increases and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity.

69—Davey sandy loam, 0 to 8 percent slopes

Composition

Davey and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane and convex
Parent material: Alluvium
Geology: Mixed rock sources
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Sandy 6-10PZ) fourwing saltbush, basin big sagebrush, needleandthread, Indian ricegrass
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 18 inches-grayish brown sandy loam
18 to 60 inches-light brownish gray loamy sand

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High

Contrasting Inclusions

- Enko and Oreanna soils on lake terraces
- Outerkirk soils on alluvial fans

Major Soil Limitations

Wind erosion, seepage, corrosivity

Use and Management

Irrigated Hayland

- Practices that help to control wind erosion include planting crops at right angles to the prevailing wind, maintaining crop residue on the soil surface, planting field windbreaks, stripcropping, planting cover crops, using minimum tillage, minimizing the areas of barren soil, and leaving the soil surface rough.

Livestock Grazing

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- This unit is suited to grazing in winter.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and fourwing saltbush, Indian ricegrass, and needlegrasses decrease.
- The suitability for seeding is very poor because of droughtiness.

70-Davey-Oreanna complex, 0 to 8 percent slopes

 CompositionDavey and similar soils-45 percent
Oreanna and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Position on landform: Davey-convex areas with slopes of 2 to 8 percent; Oreannaconcave areas with slopes of 0 to 3 percent
Parent material: Alluvium
Geology: Mixed rock sources
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: Davey-(Sandy 6-10PZ)
fourwing saltbush, basin big sagebrush, needleandthread, Indian ricegrass;
Oreanna-(Desert Loam 6-10PZ) shadscale, bud sagebrush, Indian ricegrass

Climatic factors:

Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile of Davey
0 to 3 inches-grayish brown gravelly sandy loam
3 to 18 inches-grayish brown sandy loam
18 to 60 inches-light brownish gray loamy sand

Properties and Qualities of Davey

Depth: More than 60 inches to bedrock
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid

Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High

Typical Profile of Oreanna

0 to 7 inches-pale brown gravelly sandy clay loam
7 to 14 inches-pale brown sandy clay loam
14 to 21 inches-pale brown gravelly sandy clay loam
21 to 43 inches-very pale brown very gravelly loamy coarse sand
43 to 50 inches-very pale brown very gravelly sandy loam
50 to 60 inches-white loamy sand

Properties and Qualities of Oreanna

Depth: 20 to 30 inches to sand and gravel and more than 60 inches to bedrock Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High

Contrasting Inclusions

- Enko soils on lake terraces
- Outerkirk soils on alluvial fans

Major Soil Limitations

Davey and Oreanna-seepage, corrosivity
Davey-wind erosion

Use and Management
 Livestock Grazing

Davey and Oreanna

- The risk of seepage limits the construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- This unit is suited to grazing in winter.
- The suitability for seeding is very poor because of droughtiness.

Davey

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and fourwing saltbush, Indian ricegrass, and needlegrasses decrease.

Oreanna

- As the site deteriorates, shadscale, annual forbs, and cheatgrass increase and bud sagebrush, Indian ricegrass, and bottlebrush squirreltail decrease.

71—Defenbaugh loam, 0 to 2 percent slopes Composition

Defenbaugh and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Alluvial fans
Slope features: Plane
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 3,900 to 4,600 feet
Rangeland ecological site and characteristic vegetation: (Low Sodic Terrace 6-10PZ) black greasewood, shadscale, spiny hopsage, bottlebrush squirreltail, bud sagebrush
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 5 inches—pale brown loam
5 to 16 inches-light yellowish brown clay loam
16 to 29 inches-yellowish brown clay loam
29 to 47 inches-light yellowish brown very fine sandy loam
47 to 53 inches-yellowish brown sandy loam
53 to 62 inches-light yellowish brown loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 9 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High

Contrasting Inclusions

- Davey soils on lake terraces
- Droval soils on lake plains
- Outerkirk soils on alluvial fans

Major Soil Limitations
Salinity, corrosivity

Use and Management

Livestock Grazing

- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, shadscale, black greasewood, and bottlebrush squirreltail increase and bud sagebrush, basin wildrye, and beardless wildrye decrease.
- This soil is susceptible to invasion by halogeton, povertyweed, Russian thistle, and cheatgrass.
- The suitability for seeding is very poor because of droughtiness.

72—Deppy very gravelly loam, 5 to 15 percent slopes

Composition

Deppy and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Old lake terraces
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,200 to 4,800 feet
Rangeland ecological site and characteristic vegetation: (Desert Loam 6-10PZ)
shadscale, bud sagebrush, Indian ricegrass, bottlebrush squirreltail
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 6 inches-very pale brown very gravelly loam
6 to 15 inches-very pale brown clay loam
15 to 21 inches-strongly cemented duripan
21 to 28 inches-pale brown very gravelly sandy loam
28 to 47 inches-light yellowish brown gravelly sandy loam
47 to 60 inches-very pale brown gravelly sandy loam

Soil Properties and Qualities

Depth: 10 to 20 inches to a hardpan and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow over rapid
Available water capacity: About 3 inches
Hazard of erosion: Water-slight; wind-slight
Corrosivity to steel: High

Contrasting Inclusions

- Rock outcrop
- Tumtum soils on old lake terraces
- Davey soils on young lake terraces
- Atlow soils on hills

Major Soil Limitations

Seepage, depth to a hardpan, available water capacity, corrosivity

Use and Management

Livestock Grazing

- The cemented hardpan restricts the rooting depth and limits the construction of water impoundments.
- The risk of seepage limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, shadscale, annual forbs, and cheatgrass increase and bud sagebrush, Indian ricegrass, and bottlebrush squirreltail decrease.
- A well-developed erosion pavement can limit the reestablishment of plants.
- The suitability for seeding is poor because of the low available water capacity.

73—Deppy-Tumtum complex, 5 to 15 percent slopes

Composition

Deppy and similar soils-45 percent
Tumtum and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Old lake terraces
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,200 to 5,000 feet
Rangeland ecological site and characteristic vegetation: Deppy-(Desert Loam
6-10PZ) shadscale, bud sagebrush, Indian ricegrass, bottlebrush squirreltail;
Tumtum-(Shallow Loam 8-10PZ) Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature- 45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Deppy

0 to 6 inches-very pale brown very cobbly loam
6 to 15 inches-very pale brown clay loam
15 to 21 inches-strongly cemented duripan
21 to 28 inches-pale brown very gravelly sandy loam
28 to 47 inches-light yellowish brown gravelly sandy loam
47 to 60 inches-very pale brown gravelly sandy loam

Properties and Qualities of Deppy

Depth: 10 to 20 inches to a hardpan and more than 60 inches to bedrock Drainage class: Well drained
Permeability: Moderately slow over rapid
Available water capacity: About 3 inches
Hazard of erosion: Water-slight; wind-slight
Corrosivity to steel: High

Typical Profile of Tumtum

0 to 2 inches-light brownish gray cobbly loam
2 to 12 inches-yellowish brown clay loam
12 to 25 inches-indurated duripan
25 to 60 inches-light yellowish brown gravelly sandy loam

Properties and Qualities of Tumtum

Depth: 9 to 18 inches to a hardpan and more than 60 inches to bedrock

Drainage class: Well drained
Permeability: Slow over rapid
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind-slight
Corrosivity to steel: High
Contrasting Inclusions

- Enko soils on lake terraces
- Atlow and Skedaddle soils on hills

Major Soil Limitations

Deppy and Tumtum-seepage, depth to a hardpan, available water capacity, corrosivity

Use and Management
 Livestock Grazing

Deppy and Tumtum

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The cemented hardpan restricts the rooting depth and limits the construction of water impoundments.
- The risk of seepage limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- A well-developed erosion pavement can limit the reestablishment of plants.
- This unit is suited to grazing in winter.

Deppy

- As the site deteriorates, shadscale, annual forbs, and cheatgrass increase and bud sagebrush, Indian ricegrass, and bottlebrush squirreltail decrease.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Tumtum

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- The suitability for seeding is poor because of the low available water capacity.

74—Dickle very cobbly clay loam, 3 to 12 percent slopes Composition

Dickle and similar soils- 85 percent Contrasting inclusions-15 percent

Setting

Landform: Mountains
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Basalt, andesite, rhyolite, and welded tuff

Elevation: 6,000 to 7,800 feet
Rangeland ecological site and characteristic vegetation: (Claypan 16-25PZ) low sagebrush, Idaho fescue, onespike oatgrass
Climatic factors:
Mean annual precipitation-16 to 35 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile

0 to 3 inches-light brownish gray very cobbly clay loam
3 to 6 inches-grayish brown clay loam
6 to 14 inches-brown clay loam
14 inches-basalt

Soil Properties and Qualities

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind-slight

Contrasting Inclusions

- Baconcamp soils on side slopes
- Welch soils along drainageways
- Hackwood soils in depressions
- Rock outcrop

Major Soil Limitations

Depth to bedrock, cold climate, available water capacity, surface rock fragments

Use and Management

Livestock Grazing

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, low sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and fescue and onespike oatgrass decrease.
- The suitability for seeding is very poor because of the low available water capacity, surface rock fragments, depth to bedrock, and short growing season.

75-Dixon gravelly fine sandy loam, 0 to 5 percent slopes Composition

Setting

Landform: Lake terraces
Slope features: Plane and convex
Parent material: Alluvium
Geology: Tuffaceous sedimentary rock and mixed igneous rock
Elevation: 4,400 to 4,600 feet
Rangeland ecological site and characteristic vegetation: (Loamy 8-10PZ)
Wyoming big sagebrush, Indian ricegrass, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 2 inches-pale brown gravelly fine sandy loam
2 to 8 inches-light yellowish brown clay loam
8 to 18 inches-light yellowish brown gravelly sandy clay loam
18 to 35 inches-pale brown sandy clay loam
35 to 46 inches-light yellowish brown very gravelly loamy sand
46 to 60 inches-very pale brown very gravelly sandy loam

Soil Properties and Qualities

Depth: 30 to 40 inches to sand and gravel and more than 60 inches to bedrock Drainage class: Well drained
Permeability: Moderately slow over rapid
Available water capacity: About 7 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High
Contrasting Inclusions

- Catlow soils on lake terraces
- Ozamis soil on lake plains

Major Soil Limitations

Seepage, wind erosion, corrosivity

Use and Management

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits construction of water impoundments.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- The suitability for seeding is poor because of droughtiness.

76-Dixon gravelly fine sandy loam, alkali, 0 to 2 percent slopes

Composition

Dixon and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Dry Sodic Floodplain)
black greasewood, basin big sagebrush, inland saltgrass, basin wildrye
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 2 inches—pale brown gravelly fine sandy loam
2 to 8 inches-light yellowish brown clay loam
8 to 18 inches-light yellowish brown gravelly sandy clay loam
18 to 35 inches-pale brown sandy clay loam
35 to 46 inches-light yellowish brown very gravelly loamy sand
46 to 60 inches-very pale brown very gravelly sandy loam
Soil Properties and Qualities
Depth: 30 to 40 inches to sand and gravel and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow over rapid
Available water capacity: About 7 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Moderate
Alkalinity: Strong
Corrosivity to steel: High

Contrasting Inclusions

- Droval soils on lake plains
- Rio King soils on lake terraces

Major Soil Limitations
Seepage, wind erosion, corrosivity, alkalinity

Use and Management

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, rabbitbrush, and bottlebrush squirreltail increase and inland saltgrass and basin wildrye decrease.
- The suitability for seeding is poor because of the strong alkalinity.

77-Dixon gravelly sandy clay loam, 3 to 15 percent slopes

Composition
Dixon and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces (fig. 2)
Slope features: Plane and convex
Parent material: Alluvium
Geology: Mixed igneous rock

Figure 2.-Area of Dixon gravelly sandy clay loam, 3 to 15 percent slopes, in foreground.
Skedaddle-Rock outcrop complex, 40 to $\mathbf{7 0}$ percent slopes, on escarpment. Steens Mountain in background.

Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Sodic Fan 6-10PZ) basin big sagebrush, black greasewood, Indian ricegrass, basin wildrye
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 2 inches-pale brown gravelly sandy clay loam
2 to 8 inches-light yellowish brown clay loam
8 to 18 inches-light yellowish brown gravelly sandy clay loam
18 to 35 inches-pale brown sandy clay loam
35 to 46 inches-light yellowish brown very gravelly loamy sand
46 to 60 inches-very pale brown very gravelly sandy loam

Soil Properties and Qualities

Depth: 30 to 40 inches to sand and gravel and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow over rapid
Available water capacity: About 7 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Moderate
Alkalinity: Moderate
Corrosivity to steel: High

Contrasting Inclusions

- Droval soils on intermediate stream terraces
- Rio King soils on high stream terraces
- Ozamis soils on low stream terraces
- Wet soils in drainageways of fan terraces

Major Soil Limitations

Water erosion, seepage, corrosivity

Use and Management

Livestock Grazing

- The construction of waterbars prevents gullying on roads, trails, and pipelines.
- The risk of seepage limits the construction of water impoundments.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, black greasewood, and bottlebrush squirreltail increase and basin wildrye and Indian ricegrass decrease.
- The suitability for seeding is poor because of droughtiness.

78-Dixon-Droval complex, 0 to 2 percent slopes Composition

Setting

Landform: Dixon—lake terraces; Droval—lake plains
Slope features: Plane
Parent material: Dixon—alluvium; Droval—lacustrine sediment
Geology: Mixed igneous rock
Elevation: 4,100 to 4,200 feet
Rangeland ecological site and characteristic vegetation: Dixon—(Dry Floodplain)
basin big sagebrush, basin wildrye, beardless wildrye; Droval—(Sodic Bottom)
black greasewood, basin wildrye, inland saltgrass
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile of Dixon
0 to 2 inches-pale brown gravelly sandy clay loam
2 to 8 inches-light yellowish brown clay loam
8 to 18 inches-light yellowish brown gravelly sandy clay loam
18 to 35 inches-pale brown sandy clay loam
35 to 46 inches-light yellowish brown very gravelly loamy sand
46 to 60 inches-very pale brown very gravelly sandy loam

Properties and Qualities of Dixon

Depth: 30 to 40 inches to sand and gravel and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow over rapid
Available water capacity: About 7 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Moderate
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High

Typical Profile of Droval

0 to 4 inches-light brownish gray loam
4 to 11 inches-grayish brown silty clay
11 to 22 inches-light brownish gray silty clay
22 to 32 inches-grayish brown clay
32 to 46 inches-pale brown silty clay
46 to 61 inches-pale brown clay
61 inches-highly fractured lacustrine sediment

Properties and Qualities of Droval

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring
Water table: Present in winter and spring
Permeability: Slow
Available water capacity: About 7 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Strong
Alkalinity: Strong

Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Rio King, Deppy, and Leathers soils on lake terraces
- Ozamis soils on lake plains

Major Soil Limitations

Dixon and Droval—alkalinity, corrosivity
Dixon-seepage
Droval-wetness, shrink-swell potential, salinity

Use and Management
 Irrigated Hayland

Dixon

- The alkalinity limits the types of crops that can be grown.
- Because the infiltration rate is moderately rapid, sprinkler irrigation is best suited to this soil.

Droval

- The salinity and alkalinity limit the types of crops that can be grown.
- Salt- and alkali-tolerant plants are the most suitable for planting.
- If alfalfa or other crops are grown, sulphur amendments are needed because of the strong alkalinity of the soil.
- Proper irrigation water management and adequate drainage are needed to leach the salts below the rooting zone.

Livestock Grazing

Dixon and Droval

- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.

Dixon

- The risk of seepage limits the construction of water impoundments.
- As the site deteriorates, big sagebrush and rabbitbrush increase and basin wildrye and beardless wildrye decrease.
- The suitability for seeding is poor because of droughtiness and the strong alkalinity.

Droval

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Crusting of the soil surface reduces infiltration, causes ponding, and restricts seedling emergence and survival.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- The surface of the soil becomes highly sodic with continued deterioration of the site.
- As the site deteriorates, inland saltgrass and black greasewood increase and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity and salinity.

79-Dogmountain gravelly loam, 4 to 20 percent slopes

Composition

Dogmountain and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Ash and cinders
Geology: Volcanic ejecta
Elevation: 4,150 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Loamy 10-12PZ) Wyoming
big sagebrush, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 3 inches-brown gravelly loam
3 to 9 inches-pale brown gravelly loam
9 to 12 inches-light gray very gravelly loam
12 to 21 inches-very pale brown extremely gravelly loam
21 to 30 inches-indurated duripan
30 to 60 inches—black gravel-sized cinders

Soil Properties and Qualities

Depth: 20 to 30 inches to a duripan and more than 60 inches to bedrock Drainage class: Well drained
Permeability: Moderate above the duripan and very rapid below it
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Contrasting Inclusions

- Reallis soils on lake terraces
- Wolverine soils on sand dunes
- Middlebox soils on hills

Major Soil Limitations

Depth to hardpan, seepage, water erosion, corrosivity

Use and Management

Livestock Grazing and Irrigated Hayland

- Depth to the hardpan and the risk of seepage limit the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity of the surface layer.

80—Doyn very stony loam, 2 to 20 percent slopes
 Composition

Doyn and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, welded tuff, rhyolite, and andesite
Elevation: 3,900 to 6,000 feet
Rangeland ecological site and characteristic vegetation: (SR Mountain Very Shallow
12-16PZ) stiff sagebrush, onespike oatgrass, Sandberg bluegrass, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-brown very stony loam
2 to 8 inches-brown cobbly loam
8 inches-basalt

Soil Properties and Qualities

Depth: 4 to 10 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Ateron and Merlin soils on plateaus
- Modoc soils on alluvial fans
- Rock outcrop

Major Soil Limitations

Surface stones, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- The very stony surface layer restricts the operation of ground seeding equipment.
- This unit commonly supports a sparse stand of perennial grasses; however, forbs become abundant if precipitation is favorable.
- As the site deteriorates, stiff sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- The suitability for seeding is very poor because of the low available water capacity, surface stones, and depth to bedrock.

81—Doyn-Merlin complex, 2 to 20 percent slopes
 Composition

Doyn and similar soils-60 percent
Merlin and similar soils-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,200 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Doyn-(SR Mountain Very
Shallow 12-16PZ) stiff sagebrush, onespike oatgrass, Sandberg bluegrass, Idaho
fescue; Merlin-(JD Mountain Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, onespike oatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Doyn
0 to 2 inches-brown very stony loam
2 to 8 inches-brown cobbly loam
8 inches-basalt
Properties and Qualities of Doyn
Depth: 4 to 10 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight

Typical Profile of Merlin

0 to 7 inches-brown very cobbly clay loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff
Properties and Qualities of Merlin
Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Teguro, Ticino, and Vitale soils on hills and plateaus
- Rock outcrop

Major Soil Limitations

Doyn and Merlin-available water capacity, depth to bedrock
Doyn-surface stones
Merlin—depth to a claypan, shrink-swell potential, surface rock fragments

Use and Management

Livestock Grazing

Doyn and Merlin

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.

Doyn

- The very stony surface layer restricts the operation of ground seeding equipment.
- This soil commonly supports a sparse stand of perennial grasses; however, forbs become abundant if precipitation is favorable.
- As the site deteriorates, stiff sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- The suitability for seeding is very poor because of .the low available water capacity, surface stones, and depth to bedrock.

Merlin

- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- If this soil is disturbed or in a deteriorated condition, it is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the low available water capacity, depth to a claypan, and surface rock fragments.

82—Doyn-Arcia association, 2 to 30 percent slopes

Composition

Doyn and similar soils-60 percent
Arcia and similar soils-25 percent Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Position on landform: Doyn—convex side slopes; Arcia—concave side slopes
Parent material: Residuum and colluvium
Geology: Basalt and welded tuff
Elevation: 4,000 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Doyn-(SR Mountain Very
Shallow 12-16PZ) stiff sagebrush, onespike oatgrass, Sandberg bluegrass, Idaho fescue; Arcia-(SR Mountain Clayey 12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass

Climatic factors:

Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Doyn
0 to 2 inches-brown very stony loam
2 to 8 inches—brown cobbly loam
8 inches-basalt
Properties and Qualities of Doyn
Depth: 4 to 10 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight
Typical Profile of Arcia
0 to 4 inches-grayish brown extremely stony loam
4 to 13 inches-grayish brown very gravelly loam
13 to 23 inches-brown gravelly clay
23 inches—basalt
Properties and Qualities of Arcia
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Merlin soils on plateaus and hills
- Teguro soils on hills
- Westbutte soils on north-facing slopes of hills
- Rock outcrop

Major Soil Limitations

Doyn and Arcia—available water capacity, surface stones, depth to bedrock Arcia—shrink-swell potential

Use and Management
 Livestock Grazing

Doyn and Arcia

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- The suitability for seeding is very poor because of the low available water capacity, surface stones, and depth to bedrock.
- The surface stones restrict the operation of ground seeding equipment, movement of livestock, and distribution of grazing.

Doyn

- Special design is needed for fences because the very shallow soil depth limits the placement of fence posts.
- This soil commonly supports a sparse stand of perennial grasses; however, forbs become abundant if precipitation is favorable.
- As the site deteriorates, stiff sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.

Arcia

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- If the soil is disturbed or in a deteriorated condition, it is susceptible to invasion by medusahead.

83—Drewsey very fine sandy loam, 1 to 5 percent slopes

Composition

Drewsey and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave to convex
Parent material: Colluvium and eolian material
Geology: Tuffaceous sedimentary rock
Elevation: 3,500 to 4,000 feet
Rangeland ecological site and characteristic vegetation: (SR Loamy 9-12PZ)
Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 3 inches-brown very fine sandy loam
3 to 14 inches-light yellowish brown loam
14 to 62 inches-light yellowish brown and pale brown fine sandy loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 9 inches
Hazard of erosion: Water—slight; wind—severe
Corrosivity to steel: High

Contrasting Inclusions

- Poall soils on hills
- Legler soils on stream terraces

Major Soil Limitations
Corrosivity, wind erosion

Use and Management
 Livestock Grazing

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is good.

84-Drewsey very fine sandy loam, 2 to 20 percent slopes

Composition

Drewsey and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave to convex
Parent material: Colluvium and eolian material Geology: Tuffaceous sedimentary rock
Elevation: 3,500 to 4,000 feet
Rangeland ecological site and characteristic vegetation: (SR Loamy 9-12PZ)
Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 3 inches-brown very fine sandy loam
3 to 14 inches-light yellowish brown loam
14 to 62 inches-light yellowish brown and pale brown fine sandy loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 9 inches
Hazard of erosion: Water-slight; wind-severe
Corrosivity to steel: High
Contrasting Inclusions

- Risley and Gumble soils and Torriorthents on hills
- Rock outcrop

Major Soil Limitations
Corrosivity, water erosion, wind erosion

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is good.

85-Drewsey-Torriorthents-Gumble complex, 2 to 40 percent slopes

Composition

Drewsey and similar soils- 35 percent
Torriorthents and similar soils- 30 percent
Gumble and similar soils-25 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills

Position on landform: Drewsey-foot slopes of 2 to 20 percent; Torriorthentsridges and side slopes of 2 to 40 percent; Gumble-ridges with slopes of 2 to 20 percent
Parent material: Drewsey—colluvium and eolian material; Torriorthents and Gumbleresiduum and colluvium
Geology: Tuffaceous sedimentary rock
Elevation: 3,400 to 4,000 feet
Rangeland ecological site and characteristic vegetation: Drewsey-(SR Loamy
9-12PZ) Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass;
Torriorthents-(SR Shallow Escarpment 9-12PZ) Wyoming big sagebrush, squaw apple, bluebunch wheatgrass, Thurber needlegrass; Gumble-(SR Shallow 9-12PZ) bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-9 to 12 inches Mean annual air temperature- 45 to 49 degrees F Frost-free period-80 to 100 days

Typical Profile of Drewsey

0 to 3 inches-brown very cobbly sandy loam
3 to 14 inches-light yellowish brown loam
14 to 62 inches-light yellowish brown and pale brown fine sandy loam
Properties and Qualities of Drewsey
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 9 inches
Hazard of erosion: Water-moderate; wind—slight
Corrosivity to steel: High
Reference Profile of Torriorthents
0 to 7 inches—light brownish gray very gravelly sandy loam
7 inches-tuffaceous sedimentary rock

Properties and Qualities of Torriorthents

Depth: 4 to 14 inches to bedrock
Drainage class: Well drained
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Gumble
0 to 3 inches-pale brown very cobbly loam
3 to 8 inches-pale brown loam
8 to 14 inches-pale brown clay loam
14 to 16 inches-light yellowish brown silty clay loam
16 inches-tuffaceous sedimentary rock

Properties and Qualities of Gumble

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Legler soils on stream terraces
- Risley soils on hills
- Bucklake soils on north-facing hillslopes
- Rock outcrop

Major Soil Limitations

Drewsey, Torriorthents, and Gumble-water erosion
Torriorthents and Gumble-available water capacity, depth to bedrock Drewsey and Gumble-corrosivity, surface rock fragments Gumble—shrink-swell potential

Use and Management

Livestock Grazing

Drewsey, Torriorthents, and Gumble

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Torriorthents and Gumble

- The low available water capacity of the surface layer limits seedling survival.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.

Drewsey

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the surface rock fragments.

Torriorthents

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- These soils are susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the low available water capacity and depth to bedrock.

Gumble

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

86—Droval loam, 0 to 3 percent slopes

Composition

Droval and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Sodic Bottom) black
greasewood, basin wildrye, inland saltgrass
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 4 inches-light brownish gray loam
4 to 11 inches-grayish brown silty clay
11 to 22 inches-light brownish gray silty clay
22 to 32 inches-grayish brown clay
32 to 46 inches-pale brown silty clay
46 to 61 inches-pale brown clay
61 inches-highly fractured lacustrine sediment

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring
Water table: Present in winter and spring
Permeability: Slow
Available water capacity: About 7 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Strong
Alkalinity: Strong
Shrink-swell potential: High

Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Alvodest soils on lake plains
- Rio King soils on lake terraces
- Goldrun soils on sand dunes
- Playas

Major Soil Limitations

Wetness, shrink-swell potential, salinity, alkalinity, corrosivity

Use and Management

Livestock Grazing

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing provides habitat for migratory waterfowl.
- Crusting of the soil surface reduces infiltration, causes ponding, and restricts seedling emergence and survival.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- The surface of the soil becomes highly sodic with continued deterioration of the site.
- As the site deteriorates, inland saltgrass and black greasewood increase and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong salinity and alkalinity.

87—Duff loam, 3 to 12 percent slopes

Composition

Duff and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Slope features: Concave
Parent material: Colluvium and loess
Geology: Basalt and andesite
Elevation: 6,100 to 8,300 feet
Rangeland ecological site and characteristic vegetation: (Swale 12-16PZ) mountain
big sagebrush, whortleleaf snowberry, basin wildrye
Climatic factors:
Mean annual precipitation-14 to 35 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile

0 to 24 inches-very dark grayish brown loam

24 to 43 inches-dark brown very gravelly loam
43 inches-fractured basalt

Soil Properties and Qualities

Depth: 40 to 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Hackwood soils in swales of mountains
- Welch soils in drainageways of mountains
- Baconcamp soils on mountains
- Rock outcrop

Major Soil Limitation

Cold climate

Use and Management

Livestock Grazing

- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, rabbitbrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue, skyline bluegrass, and basin wildrye decrease.
- As the streambanks become unstable, channels deepen and widen and the subsurface waterflow is reduced, resulting in a drier site with decreased production.
- The suitability for seeding is fair because of the short growing season.

88-Duff-Clamp complex, 5 to 20 percent slopes

Composition

Duff and similar soils-45 percent
Clamp and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Slope features: Concave and convex
Parent material: Colluvium
Geology: Basalt and andesite
Elevation: 6,100 to 7,300 feet
Rangeland ecological site and characteristic vegetation: Duff-(Loamy 12-16PZ)
mountain big sagebrush, Idaho fescue, Thurber needlegrass; Clamp-(Claypan
12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-12 to 20 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile of Duff

0 to 24 inches-very dark grayish brown loam
24 to 43 inches-dark brown very gravelly loam
43 inches-fractured basalt
Properties and Qualities of Duff
Depth: 40 to 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—slight

Typical Profile of Clamp

0 to 3 inches-grayish brown cobbly clay loam
3 to 12 inches-grayish brown very cobbly clay loam
12 inches-fractured basalt
Properties and Qualities of Clamp
Depth: 4 to 14 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Baconcamp soils on north- and south-facing hillsides
- Welch soils in drainageways of mountains
- Hackwood soils in swales of mountains
- Rock outcrop

Major Soil Limitations

Duff and Clamp-cold climate
Clamp—depth to bedrock, available water capacity

Use and Management

Livestock Grazing

Duff and Clamp

- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.

Duff

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is fair because of the short growing season.

Clamp

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the low available water capacity and the short growing season.

89—Duff-Clamp complex, 20 to 40 percent north slopes
 Composition

Duff and similar soils-45 percent Clamp and similar soils-40 percent Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: North- and east-facing side slopes
Parent material: Colluvium
Geology: Basalt and andesite
Elevation: 6,100 to 7,300 feet
Rangeland ecological site and characteristic vegetation: Duff-(North Slopes
12-16PZ) mountain big sagebrush, Idaho fescue; Clamp-(Shallow North
12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 20 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile of Duff

0 to 24 inches-very dark grayish brown loam
24 to 43 inches-dark brown very gravelly loam
43 inches-fractured basalt

Properties and Qualities of Duff

Depth: 40 to 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Clamp
0 to 3 inches-grayish brown cobbly clay loam
3 to 12 inches-grayish brown very cobbly clay loam
12 inches-fractured basalt
Properties and Qualities of Clamp
Depth: 4 to 14 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Baconcamp soils on side slopes
- Welch soils in drainageways
- Pearlwise soils on ridges
- Rock outcrop

Major Soil Limitations

Duff and Clamp-water erosion, cold climate, slope
Clamp—depth to bedrock, available water capacity

Use and Management

Livestock Grazing

Duff and Clamp

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.

Duff

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is fair because of the short growing season and steepness of slope.

Clamp

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the low available water capacity, short growing season, and steepness of slope.

90—Duff-Hackwood complex, 2 to 30 percent slopes

Composition

Duff and similar soils-60 percent
Hackwood and similar soils-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Slope features: Concave
Parent material: Colluvium and loess
Geology: Basalt
Elevation: 6,000 to 8,300 feet
Rangeland ecological site and characteristic vegetation: Duff-(Swale 12-16PZ) mountain big sagebrush, whortleleaf snowberry, basin wildrye; Hackwood(Aspen 16-35PZ) quaking aspen, whortleleaf snowberry, sedge
Climatic factors:
Mean annual precipitation-14 to 35 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile of Duff

0 to 24 inches-very dark grayish brown loam

24 to 43 inches-dark brown very gravelly loam
43 inches-fractured basalt

Properties and Qualities of Duff

Depth: 40 to 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—slight

Typical Profile of Hackwood

0 to 11 inches-brown very gravelly loam
11 to 23 inches-brown loam
23 to 48 inches-brown gravelly loam
48 to 60 inches-light yellowish brown gravelly loam
Properties and Qualities of Hackwood
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Clamp soils on side slopes
- Leemorris soils on south-facing side slopes
- Welch soils in drainageways
- Rock outcrop

Major Soil Limitation

Duff and Hackwood-cold climate
Use and Management

Livestock Grazing

Duff and Hackwood

- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- The suitability for seeding is fair because of the short growing season.

Duff

- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, rabbitbrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue, skyline bluegrass, and basin wildrye decrease.

Hackwood

- Excessive use of aspen reduces its productivity and potential for regeneration.
- As the site deteriorates, shrubs and forbs increase and needlegrasses decrease.

91-Edemaps loam, 5 to 20 percent slopes Composition

Edemaps and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Plane and convex
Parent material: Old alluvium and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,200 to 4,800 feet
Rangeland ecological site and characteristic vegetation: (Droughty Loam 11-13PZ)
basin big sagebrush, Idaho fescue, Thurber needlegrass
Climatic factors:
Mean annual precipitation-12 to 14 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 7 inches-grayish brown loam
7 to 10 inches-dark brown clay
10 to 18 inches-brown clay
18 to 25 inches-yellowish brown very cobbly clay loam
25 to 30 inches-indurated duripan
30 inches-fractured basalt
Soil Properties and Qualities
Depth: 20 to 35 inches to a duripan and 24 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Brace and Ninemile soils on hills and plateaus
- Carvix soils on stream terraces
- Rock outcrop

Major Soil Limitations

Depth to bedrock, depth to a hardpan, shrink-swell potential

Use and Management

Livestock Grazing

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and needlegrasses, Idaho fescue, and bluebunch wheatgrass decrease.
- The suitability for seeding is good.

92-Edemaps-Carryback association, 2 to 10 percent slopes

Composition

Edemaps and similar soils-45 percent

Carryback and similar soils-40 percent

Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Slope features: Edemaps—plane; Carryback—convex
Parent material: Residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 4,700 to 5,700 feet
Rangeland ecological site and characteristic vegetation: Edemaps-(Droughty Loam
11-13PZ) basin big sagebrush, Idaho fescue, Thurber needlegrass; Carryback-
(Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass,
Sandberg bluegrass
Climatic factors:
Mean annual precipitation-12 to 14 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Edemaps

0 to 7 inches-grayish brown cobbly clay loam
7 to 10 inches-dark brown clay
10 to 18 inches-brown clay
18 to 25 inches-yellowish brown very cobbly clay loam
25 to 30 inches-indurated duripan
30 inches-fractured basalt

Properties and Qualities of Edemaps

Depth: 20 to 35 inches to a duripan and 24 to 40 inches to bedrock Drainage class: Well drained
Permeability: Slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Carryback

0 to 7 inches-pale brown cobbly clay loam
7 to 24 inches-brown clay
24 inches-basalt

Properties and Qualities of Carryback

Depth: 2 to 7 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Fourwheel soils on hills
- Carvix soils on stream terraces
- Brace soils on hills and plateaus
- Rock outcrop

Major Soil Limitations

Edemaps and Carryback-depth to bedrock, shrink-swell potential Edemaps—depth to a hardpan
Carryback—depth to a claypan

Use and Management

Livestock Grazing

Edemaps and Carryback

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Allow the soils to drain adequately before grazing to minimize compaction of the soils and damage to plants.

Edemaps

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and needlegrasses, Idaho fescue, and bluebunch wheatgrass decrease.
- The suitability for seeding is good.

Carryback

- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the depth to the claypan.

93-Enko loamy sand, 2 to 8 percent slopes

Composition

Enko and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,200 to 4,800 feet
Rangeland ecological site and characteristic vegetation: (Sandy Loam 8-10PZ) basin
big sagebrush, needleandthread, Indian ricegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F Frost-free period-80 to 100 days

Typical Profile

0 to 8 inches-brown loamy sand
8 to 19 inches-brown sandy loam
19 to 29 inches-yellowish brown sandy loam
29 to 45 inches-light yellowish brown sandy loam
45 to 62 inches-very pale brown gravelly loamy sand

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—severe
Corrosivity to steel: High

Contrasting Inclusions

- McConnel and Davey soils on lake terraces
- Outerkirk soils on alluvial fans

Major Soil Limitations

Available water capacity, corrosivity, wind erosion, seepage

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- This unit is suited to grazing in winter.
- As the site deteriorates, big sagebrush, bottlebrush squirreltail, and Sandberg bluegrass increase and Indian ricegrass and needlegrasses decrease.
- The suitability for seeding is poor because of droughtiness and the low available water capacity.

Irrigated Hayland

- Because the infiltration rate is moderately rapid, sprinkler irrigation is best suited to this soil.
- Practices that help to control wind erosion include planting crops at right angles to the prevailing wind, maintaining crop residue on the soil surface, planting field windbreaks, stripcropping, planting cover crops, using minimum tillage, minimizing the areas of barren soil, and leaving the soil surface rough.

94-Enko-Catlow complex, 1 to 7 percent slopes

Enko and similar soils-50 percent
Catlow and similar soils-35 percent
Contrasting inclusions-15 percent
Setting
Landform: Lake terraces
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,400 to 4,800 feet
Rangeland ecological site and characteristic vegetation: Enko-(Sandy Loam
8-10PZ) basin big sagebrush, needleandthread, Indian ricegrass; Catlow-
(Loamy 8-10PZ) Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass

Climatic factors:

Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile of Enko
0 to 8 inches-brown loamy sand
8 to 19 inches-brown sandy loam
19 to 29 inches-yellowish brown sandy loam
29 to 45 inches-light yellowish brown sandy loam
45 to 62 inches-very pale brown gravelly loamy sand
Properties and Qualities of Enko
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 6 inches
Hazard of erosion: Water—moderate; wind—severe
Corrosivity to steel: High

Typical Profile of Catlow

0 to 3 inches-pale brown gravelly loam
3 to 9 inches-brown very gravelly sandy clay loam
9 to 22 inches-pale brown very gravelly sandy clay loam
22 to 31 inches-pale brown extremely gravelly sandy loam
31 to 60 inches-multicolored extremely gravelly sand
Properties and Qualities of Catlow
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow over rapid
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Corrosivity to steel: High

Contrasting Inclusions

- Berdugo, Spangenburg, and Norad soils on lake terraces

Major Soil Limitations

Enko and Catlow-seepage, corrosivity
Enko-wind erosion, sandy surface layer
Catlow-available water capacity

Use and Management

Livestock Grazing

Enko and Catlow

- The risk of seepage limits the construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- This unit is suited to grazing in winter.

Enko

- The low available water capacity of the sandy surface layer limits seedling survival.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- As the site deteriorates, big sagebrush, bottlebrush squirreltail, and Sandberg bluegrass increase and Indian ricegrass and needlegrasses decrease.
- The suitability for seeding is poor because of droughtiness.

Catlow

- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of droughtiness and the low available water capacity.

Irrigated Hayland

Enko and Catlow

- Because the infiltration rate is moderately rapid, sprinkler irrigation is best suited to the soils in this unit.
- Practices that help to control wind erosion include planting crops at right angles to the prevailing wind, maintaining crop residue on the soil surface, planting field windbreaks, stripcropping, planting cover crops, using minimum tillage, minimizing the areas of barren soil, and leaving the soil surface rough.

95-Enko-Catlow complex, 7 to 15 percent slopes Composition

Enko and similar soils-50 percent
Catlow and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,400 to 4,800 feet
Rangeland ecological site and characteristic vegetation: Enko-(Sandy Loam
8-10PZ) basin big sagebrush, needleandthread, Indian ricegrass; Catlow-
(Loamy 8-10PZ) Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile of Enko
0 to 8 inches-brown loamy sand
8 to 19 inches-brown sandy loam
19 to 29 inches-yellowish brown sandy loam
29 to 45 inches-light yellowish brown sandy loam
45 to 62 inches-very pale brown gravelly loamy sand
Properties and Qualities of Enko
Depth: More than 60 inches to bedrock
Drainage class: Well drained

Permeability: Slow
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—severe
Corrosivity to steel: High

Typical Profile of Catlow

0 to 3 inches-pale brown gravelly loam
3 to 9 inches-brown very gravelly sandy clay loam
9 to 22 inches-pale brown very gravelly sandy clay loam
22 to 31 inches-pale brown extremely gravelly sandy loam
31 to 60 inches-multicolored extremely gravelly sand
Properties and Qualities of Catlow
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow over rapid
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Contrasting Inclusions

- Berdugo, Spangenburg, and Norad soils on lake terraces

Major Soil Limitations

Enko and Catlow-seepage, corrosivity, water erosion
Enko-wind erosion, sandy surface layer
Catlow—available water capacity

Use and Management

Livestock Grazing

Enko and Catlow

- Maintaining adequate plant cover minimizes the risk of water erosion.
- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The risk of seepage limits the construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- This unit is suited to grazing in winter.

Enko

- The low available water capacity of the sandy surface layer limits seedling survival.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- As the site deteriorates, big sagebrush, bottlebrush squirreltail, and Sandberg bluegrass increase and Indian ricegrass and needlegrasses decrease.
- The suitability for seeding is poor because of droughtiness.

Catlow

- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of droughtiness and the low available water capacity.

96-Enko-Catlow association, 2 to 20 percent slopes

Composition

Enko and similar soils-50 percent
Catlow and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Position on landform: Enko—slopes of 2 to 8 percent; Catlow—slopes of 5 to 20 percent
Parent material: Enko—alluvium; Catlow—colluvium
Geology: Mixed igneous rock
Elevation: 4,200 to 4,800 feet
Rangeland ecological site and characteristic vegetation: Enko-(Sandy Loam 8-10PZ) basin big sagebrush, needleandthread, Indian ricegrass; Catlow(Loamy 10-12PZ) Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Enko

0 to 8 inches-brown loamy sand
8 to 19 inches-brown sandy loam
19 to 29 inches-yellowish brown sandy loam
29 to 45 inches-light yellowish brown sandy loam
45 to 62 inches-very pale brown gravelly loamy sand
Properties and Qualities of Enko
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—severe
Corrosivity to steel: High

Typical Profile of Catlow

0 to 3 inches-pale brown very stony loam
3 to 9 inches-brown very stony sandy clay loam
9 to 22 inches-pale brown extremely stony sandy clay loam
22 to 31 inches-pale brown extremely cobbly loamy coarse sand
31 to 60 inches-multicolored extremely cobbly coarse sand
Properties and Qualities of Catlow
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow over rapid
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High

Contrasting Inclusions

- McConnel soils on lake terraces
- Wolverine soils on sand dunes
- Rock outcrop

Major Soil Limitations

Enko and Catlow-water erosion, seepage, corrosivity
Enko-wind erosion, sandy surface layer
Catlow-surface stones, available water capacity

Use and Management

Livestock Grazing

Enko and Catlow

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The risk of seepage limits the construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- This unit is suited to grazing in winter.

Enko

- The low available water capacity of the sandy surface layer limits seedling survival.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- As the site deteriorates, big sagebrush, bottlebrush squirreltail, and Sandberg bluegrass increase and Indian ricegrass and needlegrasses decrease.
- The suitability for seeding is poor because of droughtiness.

Catlow

- The very stony surface layer restricts the operation of ground seeding equipment.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of droughtiness, the low available water capacity, and surface rock fragments.

97-Erakatak extremely stony silty clay loam, 50 to 80 percent north slopes

Composition

Erakatak and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Mountains

Position on landform: North- and east-facing side slopes
Parent material: Residuum and colluvium
Geology: Basalt and welded tuff
Elevation: 5,000 to 6,200 feet
Rangeland ecological site and characteristic vegetation: (North Slopes 12-16PZ) mountain big sagebrush, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches

Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 7 inches-grayish brown and brown extremely stony silty clay loam
7 to 16 inches-brown very cobbly clay loam
16 to 25 inches-light yellowish brown very cobbly clay
25 inches-fractured welded tuff

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—severe; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Ninemile soils on convex side slopes
- Welch soils in drainageways
- Pernty soils on south-facing side slopes
- Rock outcrop

Major Soil Limitations

Available water capacity, water erosion, slope, surface stones, depth to bedrock, shrink-swell potential

Use and Management
 Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope and the extremely stony surface layer prohibit the operation of ground seeding equipment.
- The extremely stony soil surface limits livestock movement and the distribution of grazing.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the depth to bedrock, surface stones, steepness of slope, and low available water capacity.

98-Erakatak-Lambring-Rock outcrop complex, 20 to 60 percent north slopes

Composition

Erakatak and similar soils-40 percent
Lambring and similar soils-35 percent
Rock outcrop-15 percent
Contrasting inclusions-10 percent

Setting

Landform: Mountains and hills
Position on landform: North- and east-facing side slopes
Parent material: Colluvium
Geology: Basalt and welded tuff
Elevation: 5,600 to 6,600 feet
Rangeland ecological site and characteristic vegetation: Erakatak-(Shallow North
12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass; Lambring-
(North Slopes 12-16PZ) mountain big sagebrush, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Erakatak

0 to 7 inches-grayish brown and brown very cobbly loam
7 to 16 inches-brown very cobbly clay loam
16 to 25 inches-light yellowish brown very cobbly clay
25 inches-fractured welded tuff

Properties and Qualities of Erakatak

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Typical Profile of Lambring
0 to 7 inches-dark grayish brown very gravelly loam
7 to 21 inches-brown gravelly loam
21 to 60 inches-brown very cobbly loam

Properties and Qualities of Lambring

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Ninemile soils on convex side slopes
- Westbutte soils on side slopes

Major Soil Limitations
Erakatak and Lambring-water erosion, slope
Erakatak-depth to bedrock, shrink-swell potential

Use and Management

Livestock Grazing

Erakatak and Lambring

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope restricts the operation of ground seeding equipment.
- The suitability for seeding is very poor because of the steepness of slope.

Erakatak

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.

Lambring

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.

99—Erakatak-Merlin-Westbutte complex, 10 to 60 percent slopes

Composition

Erakatak and similar soils-35 percent
Merlin and similar soils-30 percent
Westbutte and similar soils-25 percent
Contrasting soils-10 percent

Setting

Landform: Hills
Position on landform: Erakatak—north- and east-facing side slopes of 20 to 60 percent; Merlin—side slopes of 10 to 30 percent; Westbutte—south- and west-facing side slopes of 20 to 60 percent
Parent material: Residuum and colluvium
Geology: Basalt and welded tuff
Elevation: 4,400 to 5,000 feet
Rangeland ecological site and characteristic vegetation: Erakatak-(SR Mountain North 12-16PZ) mountain big sagebrush, Idaho fescue; Merlin-(JD Mountain Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass; Westbutte-(SR Mountain South 12-16PZ) mountain big sagebrush, bluebunch wheatgrass, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Erakatak

0 to 7 inches-grayish brown and brown very cobbly loam
7 to 16 inches-brown very cobbly clay loam
16 to 25 inches-light yellowish brown very cobbly clay
25 inches-fractured welded tuff

Properties and Qualities of Erakatak

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High

Typical Profile of Merlin

0 to 7 inches-brown very stony loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Properties and Qualities of Merlin

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Typical Profile of Westbutte
0 to 12 inches—dark grayish brown very stony loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt

Properties and Qualities of Westbutte

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Anatone, Doyn, and Gaib soils on hills
- Rock outcrop
- Lambring soils on north- and west-facing hillsides
- Vitale soils on south- and west-facing hillsides

Major Soil Limitations

Erakatak, Merlin, and Westbutte—depth to bedrock
Erakatak and Merlin—shrink-swell potential
Merlin and Westbutte—surface stones
Erakatak and Westbutte-slope, water erosion
Merlin—depth to a claypan, available water capacity

Use and Management

Livestock Grazing

Erakatak, Merlin, and Westbutte

- This unit is susceptible to invasion by western juniper.

Erakatak and Merlin

- These heavy-textured soils expand when wet and contract when dry, which may damage structures.

Merlin and Westbutte

- The very stony surface layer restricts the operation of ground seeding equipment.

Erakatak and Westbutte

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Depth to bedrock limits the construction of water impoundments.

Erakatak

- Steepness of slope restricts the operation of ground seeding equipment.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the steepness of slope.

Merlin

- The bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drained adequately before grazing to prevent compaction of the soil and damage to plants.
- The claypan restricts the rooting depth.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- If the site is disturbed or in a deteriorated condition, it is susceptible to invasion by medusahead.
- The suitability for seeding is very poor because of the surface rock fragments and low available water capacity.

Westbutte

- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- If the site is disturbed or in a deteriorated condition, it is susceptible to invasion by medusahead.
- The suitability for seeding is very poor because of the surface rock fragments and steepness of slope.

100—Erakatak-Rock outcrop complex, 20 to 60 percent slopes

Composition

Erakatak and similar soils-65 percent
 Rock outcrop-20 percent
 Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt and welded tuff
Elevation: 5,300 to 6,600 feet
Rangeland ecological site and characteristic vegetation: Erakatak-(Juniper South
Slopes 12-16PZ) western juniper, mountain big sagebrush, bluebunch wheatgrass, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature- 40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Erakatak

0 to 7 inches-grayish brown and brown very stony clay loam
7 to 16 inches-pale brown very cobbly clay loam
16 to 25 inches-light yellowish brown very cobbly clay
25 inches-fractured welded tuff

Properties and Qualities of Erakatak

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Ninemile and Westbutte soils on north- and east-facing hillsides

Major Soil Limitations

Water erosion, slope, surface stones, depth to bedrock, shrink-swell potential

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope, surface stones, and the areas of Rock outcrop restrict the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the steepness of slope, depth to bedrock, surface stones, and areas of Rock outcrop.

101—Erakatak-Ninemile-Hapgood association, 5 to 40 percent slopes

Composition

Erakatak and similar soils-35 percent
Ninemile and similar soils-30 percent
Hapgood and similar soils-25 percent
Contrasting inclusions-10 percent

Setting

Landform: Mountains and hills
Position on landform: Erakatak—south- and west-facing side slopes of 25 to 40 percent at the higher elevations; Ninemile—south- and west-facing side slopes of 5 to 30 percent at the lower elevations; Hapgood-north- and east-facing side slopes of 25 to 40 percent
Parent material: Erakatak and Ninemile—colluvium and residuum; Hapgoodcolluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 5,600 to 7,500 feet

Rangeland ecological site and characteristic vegetation: Erakatak-(South Slopes
12-16PZ) mountain big sagebrush, antelope bitterbrush, bluebunch wheatgrass;
Ninemile-(Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg bluegrass; Hapgood-(Deep North 12-18PZ) mountain big sagebrush, whortleleaf snowberry, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-30 to 80 days

Typical Profile of Erakatak

0 to 7 inches-grayish brown very stony clay loam
7 to 16 inches-pale brown very cobbly clay loam
16 to 25 inches-light yellowish brown very cobbly clay
25 inches-fractured welded tuff

Properties and Qualities of Erakatak

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High

Typical Profile of Ninemile

0 to 4 inches-grayish brown very cobbly loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Hapgood

0 to 10 inches—dark gray very cobbly loam
10 to 43 inches-dark grayish brown very stony loam
43 inches-basalt
Properties and Qualities of Hapgood
Depth: 40 to 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 4 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Baconcamp and Duff soils on south- and west-facing mountainsides and hillsides at higher elevations
- Pearlwise soils on south- and west-facing mountainsides and hillsides at lower elevations
- Welch soils in drainageways and on stream terraces
- Rock outcrop

Major Soil Limitations

Erakatak and Hapgood-water erosion
Erakatak and Ninemile—depth to bedrock, shrink-swell potential, available water capacity
Erakatak—surface stones
Ninemile—depth to a claypan, surface rock fragments
Hapgood—cold climate, surface rock fragments

Use and Management

Livestock Grazing

Erakatak and Hapgood

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.

Erakatak and Ninemile

- These heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.

Erakatak

- The very stony surface layer restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

Ninemile

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The claypan restricts the rooting depth.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Hapgood

- As the site deteriorates, big sagebrush, bottlebrush squirreltail, and bluegrasses increase and Idaho fescue, bluebunch wheatgrass, and needlegrasses decrease.
- The suitability for seeding is poor because of the surface rock fragments and short growing season.

102—Felcher extremely stony clay loam, 20 to 40 percent south slopes

Composition

Felcher and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Mountains and hills
Position on landform: South- and west-facing side slopes
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 4,800 to 7,100 feet
Rangeland ecological site and characteristic vegetation: (South Slopes 8-12PZ)
Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 10 inches-light brownish gray extremely stony clay loam
10 to 22 inches-yellowish brown very gravelly clay loam
22 inches-basalt

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Riddleranch soils on lower lying, south-facing mountainsides
- Anawalt soils on convex, south-facing hillsides
- Rock outcrop

Major Soil Limitations

Available water capacity, water erosion, surface stones, depth to bedrock

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The extremely stony surface layer prohibits the operation of ground seeding equipment.
- The extremely stony soil surface limits livestock movement and the distribution of grazing.
- Depth to bedrock limits the construction of water impoundments.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- The suitability for seeding is very poor because of the surface stones.

103—Felcher-Rock outcrop complex, 40 to 70 percent south slopes

Composition

Felcher and similar soils-65 percent
Rock outcrop-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains and hills
Position on landform: South- and west-facing side slopes
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 4,100 to 7,100 feet
Rangeland ecological site and characteristic vegetation: Felcher-(South Slopes
8-12PZ) Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-80 to 100 days
Typical Profile of Felcher
0 to 10 inches-light brownish gray very stony clay loam
10 to 22 inches-yellowish brown very gravelly clay loam
22 inches-igneous rock
Properties and Qualities of Felcher
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—severe; wind—slight

Contrasting Inclusions

- Sagehen soils on south- and west-facing mountainsides and hillsides
- Westbutte soils on north- and east-facing mountainsides and hillsides
- Robson soils on south- and west-facing hillsides

Major Soil Limitations

Available water capacity, water erosion, slope, surface stones, depth to bedrock

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- The suitability for seeding is very poor because of the steepness of slope.

104—Felcher-Rock outcrop-Brezniak complex, 30 to 65 percent south slopes

Composition

Felcher and similar soils-35 percent
Rock outcrop-30 percent
Brezniak and similar soils-25 percent
Contrasting inclusions-10 percent

Setting

Landform: Mountains
Position on landform: South- and west-facing side slopes
Parent material: Felcher and Brezniak—residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,700 to 6,800 feet
Rangeland ecological site and characteristic vegetation: Felcher-(South Slopes
8-12PZ) Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass;
Brezniak-(South Slopes 8-12PZ) Wyoming big sagebrush, bluebunch
wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-80 to 100 days
Typical Profile of Felcher
0 to 10 inches-light brownish gray extremely stony sandy clay loam
10 to 22 inches-yellowish brown very gravelly clay loam
22 inches-basalt
Properties and Qualities of Felcher
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Brezniak
0 to 3 inches—brown cobbly loam
3 to 7 inches-brown clay
7 to 10 inches—reddish yellow clay
10 inches-fractured basalt
Properties and Qualities of Brezniak
Depth: 7 to 12 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 1 inch

Hazard of erosion: Water—moderate; wind—slight Shrink-swell potential: High

Contrasting Inclusions

- Sagehen soils on south- and west-facing mountainsides
- Westbutte soils on north- and east-facing mountainsides
- Robson soils on south- and west-facing hillsides

Major Soil Limitations

Felcher and Brezniak—water erosion, slope, depth to bedrock, available water capacity
Felcher-surface stones
Brezniak—shrink-swell potential

Use and Management

Livestock Grazing

Felcher and Brezniak

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Depth to bedrock limits the construction of water impoundments.
- These soils are susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.

Felcher

- The low available water capacity of the surface layer limits seedling survival.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- The suitability for seeding is very poor because of the surface stones and steepness of slope.

Brezniak

- Steepness of slope restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- The suitability for seeding is very poor because of the depth to bedrock and steepness of slope.

105-Felcher-Rock outcrop-Westbutte complex, 20 to 40 percent slopes

Composition

Felcher and similar soils-35 percent
Rock outcrop-30 percent
Westbutte and similar soils-25 percent
Contrasting inclusions-10 percent

Setting

Landform: Mountains

Position on landform: Felcher—south- and west-facing side slopes; Rock outcropside slopes; Westbutte—north- and east-facing side slopes
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 5,800 to 7,000 feet
Rangeland ecological site and characteristic vegetation: Felcher-(South Slopes
8-12PZ) Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass; Westbutte-(North Slopes 12-16PZ) mountain big sagebrush, Idaho fescue
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 100 days
Typical Profile of Felcher
0 to 10 inches-light brownish gray very cobbly loam
10 to 22 inches-yellowish brown very gravelly clay loam
22 inches-basalt
Properties and Qualities of Felcher
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Westbutte
0 to 12 inches-dark grayish brown extremely stony loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt
Properties and Qualities of Westbutte
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Robson and Sagehen soils on south- and west-facing mountainsides

Major Soil Limitations

Felcher and Westbutte-water erosion, available water capacity, depth to bedrock Felcher-surface rock fragments
Westbutte—surface stones

Use and Management

Livestock Grazing

Felcher and Westbutte

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Depth to bedrock limits the construction of water impoundments.

Felcher

- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Westbutte

- The extremely stony surface layer prohibits the operation of ground seeding equipment.
- The extremely stony soil surface limits livestock movement and the distribution of grazing.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the surface stones and low available water capacity.

106-Felcher-Sagehen complex, 5 to 30 percent slopes

Composition

Felcher and similar soils-45 percent Sagehen and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Basalt and andesite
Elevation: 4,900 to 7,100 feet
Rangeland ecological site and characteristic vegetation: Felcher-(Loamy 10-12PZ)
Wyoming big sagebrush, Thurber needlegrass, bluebunch wheatgrass;
Sagehen-(Claypan 10-12PZ) low sagebrush, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Felcher
0 to 10 inches-light brownish gray very stony clay loam
10 to 22 inches-yellowish brown very gravelly clay loam
22 inches-basalt
Properties and Qualities of Felcher
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight

Typical Profile of Sagehen

0 to 10 inches-light brownish gray stony clay loam
10 to 19 inches-brown very gravelly clay loam
19 inches-basalt

Properties and Qualities of Sagehen

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Westbutte soils on north- and east-facing mountainsides
- Rock outcrop

Major Soil Limitations

Felcher and Sagehen—depth to bedrock, surface stones, available water capacity

Use and Management

Livestock Grazing

Felcher and Sagehen

- The stony surface layer restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.

Felcher

- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

Sagehen

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

107-Felcher-Sagehen complex, 40 to 70 percent south slopes

Composition

Felcher and similar soils-45 percent Sagehen and similar soils-40 percent Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: South- and west-facing side slopes
Parent material: Colluvium and residuum
Geology: Basalt and andesite
Elevation: 4,900 to 7,100 feet

Rangeland ecological site and characteristic vegetation: Felcher-(South Slopes
8-12PZ) Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass;
Sagehen-(Claypan 10-12PZ) low sagebrush, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees
Frost-free period-50 to 80 days

Typical Profile of Felcher

0 to 10 inches-light brownish gray very stony clay loam
10 to 22 inches-yellowish brown very gravelly clay loam
22 inches-basalt

Properties and Qualities of Felcher

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—severe; wind—slight

Typical Profile of Sagehen

0 to 10 inches-light brownish gray very stony clay loam
10 to 19 inches-brown very gravelly clay loam
19 inches-basalt

Properties and Qualities of Sagehen

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water-severe; wind—slight

Contrasting Inclusions

- Brace soils on hills
- Westbutte soils on north- and east-facing mountainsides
- Rock outcrop

Major Soil Limitations

Felcher and Sagehen-water erosion, slope, surface stones, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

Felcher and Sagehen

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- The suitability for seeding is very poor because of the steepness of slope.
- These soils are susceptible to invasion by cheatgrass and medusahead.

Felcher

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.

Sagehen

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.

108-Felcher-Fitzwater-Rock outcrop association, 20 to 60 percent slopes

Composition

Felcher and similar soils-40 percent
Fitzwater and similar soils-30 percent
Rock outcrop-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Felcher—south- and west-facing side slopes; Fitzwater-north- and east-facing side slopes
Parent material: Colluvium
Geology: Basalt and welded tuff
Elevation: 4,100 to 5,300 feet
Rangeland ecological site and characteristic vegetation: Felcher-(South Slopes
8-12PZ) Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass; Fitzwater-(North Slopes 10-12PZ) Wyoming big sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches Mean annual air temperature-43 to 45 degrees F Frost-free period-50 to 100 days

Typical Profile of Felcher
0 to 10 inches-light brownish gray very cobbly loam
10 to 22 inches-yellowish brown very gravelly clay loam
22 inches-basalt
Properties and Qualities of Felcher
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Fitzwater
0 to 9 inches-grayish brown very cobbly loam
9 to 16 inches-brown very gravelly loam

16 to 30 inches-brown extremely cobbly loam
30 to 58 inches-pale brown extremely stony sandy loam
58 inches-basalt

Properties and Qualities of Fitzwater

Depth: 40 to 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately rapid
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Riddleranch soils on south-facing side slopes
- Carvix soils on stream terraces
- Anawalt soils on convex slopes

Major Soil Limitations

Felcher and Fitzwater-available water capacity, water erosion, slope Felcher-depth to bedrock

Use and Management

Livestock Grazing

Felcher and Fitzwater

- The low available water capacity of the surface layer limits seedling survival.
- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope restricts the operation of ground seeding equipment.
- The suitability for seeding is very poor because of the steepness of slope.

Felcher

- Depth to bedrock limits the construction of water impoundments.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.

Fitzwater

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.

109-Felcher-Pernty-Ninemile association, 10 to 35 percent slopes
 Composition

Felcher and similar soils-35 percent Pernty and similar soils-30 percent Ninemile and similar soils-20 percent Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: Felcher-south- and west-facing slopes of 20 to 35 percent; Pernty-north- and east-facing slopes of 20 to 35 percent; Ninemile—slopes of 10 to 20 percent

Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 5,500 to 6,200 feet
Rangeland ecological site and characteristic vegetation: Felcher-(South Slopes
8-12PZ) Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass;
Pernty-(Shallow North 12-16PZ) low sagebrush, Idaho fescue, bluebunch
wheatgrass; Ninemile—(Claypan 10-12PZ) low sagebrush, bluebunch
wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 100 days
Typical Profile of Felcher
0 to 10 inches-light brownish gray very stony clay loam 10 to 22 inches-yellowish brown very gravelly clay loam
22 inches-basalt
Properties and Qualities of Felcher
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Pernty

0 to 3 inches-grayish brown cobbly loam
3 to 8 inches-grayish brown cobbly loam 8 to 15 inches-brown very cobbly loam
15 inches-rhyolite
Properties and Qualities of Pernty
Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Ninemile

0 to 4 inches-grayish brown very cobbly clay loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Contrasting Inclusions

- Carvix soils on terraces
- Lambring soils on north-facing mountainsides
- Riddleranch soils on south-facing mountainsides
- Rock outcrop

Major Soil Limitations

Felcher, Pernty, and Ninemile-water erosion, depth to bedrock, available water capacity
Felcher-surface stones
Ninemile—depth to a claypan, shrink-swell potential, surface rock fragments

Use and Management

Livestock Grazing

Felcher, Pernty, and Ninemile

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Depth to bedrock limits the construction of water impoundments.

Pernty and Ninemile

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.

Felcher

- The very stony surface layer restricts the operation of ground seeding equipment.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

Pernty

- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity.

Ninemile

- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

110—Felcher-Westbutte association, 20 to 40 percent slopes

Composition

Felcher and similar soils-45 percent
Westbutte and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains and hills
Position on landform: Felcher—south- and west-facing side slopes; Westbutte-north- and east-facing side slopes
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 5,200 to 6,200 feet
Rangeland ecological site and characteristic vegetation: Felcher-(South Slopes
8-12PZ) Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass;
Westbutte-(North Slopes 12-16PZ) mountain big sagebrush, Idaho fescue
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 100 days
Typical Profile of Felcher
0 to 10 inches-light brownish gray very stony clay loam
10 to 22 inches-yellowish brown very gravelly clay loam
22 inches-basalt

Properties and Qualities of Felcher

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Westbutte
0 to 12 inches—dark grayish brown extremely stony loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt

Properties and Qualities of Westbutte

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Anawalt and Brace soils on plateaus
- Rock outcrop

Major Soil Limitations

Felcher and Westbutte—water erosion, surface stones, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

Felcher and Westbutte

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Depth to bedrock limits the construction of water impoundments.

Felcher

- The surface stones restrict the operation of ground seeding equipment.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

Westbutte

- The extremely stony surface layer prohibits the operation of ground seeding equipment.
- The extremely stony soil surface limits livestock movement and the distribution of grazing.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the surface stones.

111—Final silt loam, 0 to 2 percent slopes

Composition

Final and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Stream terraces
Slope features: Plane
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 3,500 to 4,000 feet
Rangeland ecological site and characteristic vegetation: (Sodic Bottom) black greasewood, basin wildrye, inland saltgrass
Climatic factors:
Mean annual precipitation-8 to 11 inches Mean annual air temperature- 45 to 49 degrees F Frost-free period-80 to 100 days

Typical Profile

0 to 3 inches-very dark grayish brown silt loam
3 to 24 inches-very dark gray and dark grayish brown clay
24 to 42 inches-very dark grayish brown clay loam
42 to 60 inches-dark grayish brown silty clay loam
Soil Properties and Qualities
Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Water table: Present in spring
Permeability: Slow
Available water capacity: About 5 inches
Hazard of erosion: Water-slight; wind-slight
Salinity: Strong
Alkalinity: Strong
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Loupence and Wenas soils on stream terraces
- Lambranch soils on alluvial fans

Major Soil Limitations

Salinity, alkalinity, corrosivity, shrink-swell potential

Use and Management

Livestock Grazing

- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, black greasewood, foxtail barley, and inland saltgrass increase and basin wildrye decreases.
- Invasion of quackgrass, iris, and povertyweed is common on this soil.
- The suitability for seeding is very poor because of the strong alkalinity.

112-Fitzwater-Hapgood association, 20 to 40 percent slopes

Composition

Fitzwater and similar soils-45 percent
Hapgood, thick surface, and similar soils-30 percent
Hapgood, thin surface, and similar soils-15 percent
Contrasting inclusions-10 percent

Setting

Landform: Mountains and hills
Position on landform: Fitzwater-south- and west-facing side slopes; Hapgood, thick and thin surface-north- and east-facing side slopes
Parent material: Colluvium
Geology: Basalt and welded tuff
Elevation: 6,400 to 7,500 feet
Rangeland ecological site and characteristic vegetation: Fitzwater-(South Slopes
12-16PZ) mountain big sagebrush, antelope bitterbrush, bluebunch wheatgrass; Hapgood, thick surface-(North Slopes 12-16PZ) mountain big sagebrush, Idaho fescue; Hapgood, thin surface-(Shallow North 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches Mean annual air temperature- 40 to 45 degrees F Frost-free period-30 to 80 days

Typical Profile of Fitzwater

0 to 9 inches-grayish brown very stony loam
9 to 16 inches-brown very gravelly loam
16 to 30 inches-brown extremely cobbly loam

30 to 58 inches-pale brown extremely stony sandy loam
58 inches-basalt

Properties and Qualities of Fitzwater

Depth: 40 to 60 inches to bedrock
Drainage class: Well drained Permeability: Moderately rapid Available water capacity: About 3 inches Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Hapgood, Thick Surface

0 to 10 inches-dark gray gravelly sandy loam
10 to 43 inches-dark grayish brown very stony loam
43 inches-basalt
Properties and Qualities of Hapgood, Thick Surface
Depth: 40 to 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 4 inches
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Hapgood, Thin Surface

0 to 5 inches—dark gray extremely gravelly sandy loam
5 to 43 inches-dark grayish brown very stony loam
43 inches-basalt
Properties and Qualities of Hapgood, Thin Surface
Depth: 40 to 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Clamp soils on mountainsides
- Rock outcrop and Rubble land

Major Soil Limitations

Fitzwater and Hapgood, thick and thin surface-water erosion
Fitzwater and Hapgood, thin surface-available water capacity
Fitzwater-surface stones
Hapgood, thick surface and thin surface-cold climate

Use and Management

Livestock Grazing

Fitzwater and Hapgood, thick and thin surface

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.

Fitzwater and Hapgood, thin surface

- The low available water capacity of the surface layer limits seedling survival.

Fitzwater

- The very stony surface layer restricts the operation of ground seeding equipment.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity, surface stones, and steepness of slope.

Hapgood, thick surface

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the steepness of slope and short growing season.

Hapgood, thin surface

- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the surface rock fragments and short growing season.

113-Fitzwater-Rock outcrop complex, 20 to 60 percent north slopes

Composition

Fitzwater and similar soils-60 percent
Rock outcrop-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains and hills
Position on landform: North- and east-facing side slopes
Parent material: Colluvium
Geology: Basalt and welded tuff
Elevation: 4,800 to 5,200 feet
Rangeland ecological site and characteristic vegetation: Fitzwater-(North Slopes
10-12PZ) Wyoming big sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Fitzwater

0 to 9 inches-grayish brown very cobbly loam
9 to 16 inches-brown very gravelly loam
16 to 30 inches-brown extremely cobbly loam
30 to 58 inches-pale brown extremely stony sandy loam
58 inches-basalt

Properties and Qualities of Fitzwater

Depth: 40 to 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately rapid
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Felcher soils on south- and west-facing hillsides

Major Soil Limitations

Fitzwater-available water capacity, water erosion, slope
Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope restricts the operation of ground seeding equipment.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the steepness of slope and areas of Rock outcrop.

114—Flank-Lava flows complex, 1 to 40 percent slopes Composition

Flank and similar soils-50 percent
Lava flows-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills near Diamond Crater
Position on landform: Flank—slopes of 1 to 10 percent; Lava flows—basalt flow pressure ridges with slopes of 2 to 40 percent
Parent material: Flank-cinders and ash
Geology: Basalt
Elevation: 4,100 to 4,300 feet
Rangeland ecological site and characteristic vegetation: Flank—(Shallow Lava $10-12 P Z$) basin big sagebrush, Thurber needlegrass, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Flank
0 to 1 inch—dark grayish brown extremely gravelly loamy sand
1 to 9 inches-dark brown very gravelly sandy loam
9 inches-basalt

Properties and Qualities of Flank

Depth: 4 to 15 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Aval soils on hills

Major Soil Limitations

Flank—available water capacity, depth to bedrock

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- This soil is susceptible to invasion by cheatgrass.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- The areas of Lava flows restrict livestock movement.
- The suitability for seeding is very poor because of the low available water capacity, depth to bedrock, surface rock fragments, and areas of Lava flows.

115-Fourwheel stony loam, 3 to 12 percent slopes
 Composition

Fourwheel and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,500 to 6,400 feet
Rangeland ecological site and characteristic vegetation: (Clayey 10-12PZ) Wyoming
big sagebrush, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 7 inches-gray stony loam
7 to 14 inches-dark yellowish brown clay
14 to 22 inches-yellowish brown clay
22 inches-basalt

Soil Properties and Qualities

Depth: 4 to 11 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 3 inches

Hazard of erosion: Water—slight; wind—slight Shrink-swell potential: High

Contrasting Inclusions

- Vining soils on hills
- Rock outcrop

Major Soil Limitations

Depth to bedrock, depth to a claypan, shrink-swell potential, surface stones

Use and Management

Livestock Grazing

- Depth to bedrock limits the construction of water impoundments.
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- The surface stones restrict the operation of ground seeding equipment.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the depth to the claypan and surface stones.

116-Fourwheel extremely cobbly loam, 20 to 40 percent north slopes

Composition

Fourwheel and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: North- and east-facing side slopes
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,200 to 5,400 feet
Rangeland ecological site and characteristic vegetation: (North Slopes 10-12PZ)
Wyoming big sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 7 inches-gray extremely cobbly loam
7 to 14 inches-dark yellowish brown clay
14 to 22 inches-yellowish brown clay
22 inches-basalt

Soil Properties and Qualities

Depth: 4 to 11 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Anawalt and Reluctan soils on hills
- Felcher soils on south-facing hillsides
- Rock outcrop

Major Soil Limitations

Water erosion, available water capacity, surface rock fragments, depth to bedrock, depth to a claypan, shrink-swell potential

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of erosion.
- The low available water capacity of the surface layer limits seedling survival.
- The extremely cobbly surface layer prohibits the operation of ground seeding equipment.
- The extremely cobbly soil surface limits livestock movement and the distribution of grazing.
- Depth to bedrock limits the construction of water impoundments.
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drained adequately before grazing to prevent compaction of the soil and damage to plants.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the surface rock fragments.

117-Freznik very stony silt loam, 2 to 15 percent slopes

Composition

Freznik and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt and welded tuff
Elevation: 5,700 to 6,200 feet

Rangeland ecological site and characteristic vegetation: (Thin Surface Claypan
10-16PZ) low sagebrush, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 4 inches-light brownish gray very stony silt loam
4 to 12 inches-pale brown cobbly silty clay loam
12 to 20 inches-light yellowish brown silty clay
20 to 31 inches-light yellowish brown silty clay loam
31 to 35 inches-very pale brown silty clay loam
35 inches-basalt

Soil Properties and Qualities

Depth: 2 to 5 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Carryback soils on plateaus
- Rock outcrop and Rubble land

Major Soil Limitations

Surface stones, depth to bedrock, depth to a claypan, shrink-swell potential, corrosivity

Use and Management

Livestock Grazing

- The very stony surface layer restricts the operation of equipment.
- Depth to bedrock limits the construction of water impoundments.
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, low sagebrush and rabbitbrush increase and Sandberg bluegrass decreases.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the depth to the claypan and surface stones.

118-Fury silt loam, 0 to 1 percent slopes Composition

Fury and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 5,100 feet
Rangeland ecological site and characteristic vegetation: (Basin Wet Meadow)
Nebraska sedge, Baltic rush, spikerush
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 14 inches-dark gray silt loam
14 to 27 inches-dark gray silty clay loam
27 to 34 inches-light gray silt loam
34 to 44 inches-white silt loam
44 to 60 inches-gray silty clay loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present late in winter through early in summer
Permeability: Moderately slow
Available water capacity: About 12 inches
Hazard of erosion: Water-slight; wind—slight
Corrosivity to steel: High
Potential frost action: High
Contrasting Inclusions

- Voltage soils on low lake terraces
- Opie and Skidoosprings soils on lake plains

Major Soil Limitations

Wetness, corrosivity, frost action

Use and Management

Irrigated Hayland

- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- The seasonal high water table provides supplemental water for adapted plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.
- Providing adequate drainage is difficult because most areas have poor outlets.
- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heaving.

Livestock Grazing

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Grazing when the soil is wet results in compaction of the surface layer. A compacted surface layer may restrict plant growth.
- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- Trampling by livestock when the soil is wet or saturated damages plants and causes soil compaction and displacement.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The suitability for seeding is good.

119—Fury silt loam, 0 to 1 percent slopes, ponded Composition

Fury and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Position on landform: Depressions
Parent material: Lacustrine sediment
Elevation: 4,700 to 5,100 feet
Rangeland ecological site and characteristic vegetation: (Lakebed) spikerush, dock, Baltic rush
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 14 inches-dark gray silt loam
14 to 27 inches—dark gray silty clay loam
27 to 34 inches-light gray silt loam
34 to 44 inches-white silt loam
44 to 60 inches-gray silty clay loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present late in winter through early in summer
Permeability: Moderately slow
Available water capacity: About 12 inches
Hazard of erosion: Water-slight; wind—slight
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Swalesilver soils in depressions of lake plains
- Playas

Major Soil Limitations
Wetness, frost action, corrosivity

Use and Management

Livestock Grazing

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Grazing when the soil is wet results in compaction of the surface layer. A compacted surface layer may result in restricted plant growth.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Trampling by livestock when the soil is wet or saturated damages plants and causes soil compaction and displacement.
- As the site deteriorates, bottlebrush squirreltail increases and spikerush and mat muhly decrease.
- The suitability for seeding is fair because of wetness.

120—Fury-Degarmo complex, 0 to 2 percent slopes

Composition

Fury and similar soils-55 percent Degarmo and similar soils-30 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: Fury-(Basin Wet Meadow)
Nebraska sedge, Baltic rush, spikerush; Degarmo-(Loamy Bottom) basin big sagebrush, basin wildrye
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Fury

0 to 14 inches-dark gray silt loam
14 to 27 inches-dark gray silty clay loam
27 to 34 inches-light gray silt loam
34 to 44 inches-white silt loam
44 to 60 inches-gray silty clay loam
Properties and Qualities of Fury
Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present late in winter through early in summer
Frequency of flooding: Rare
Permeability: Moderately slow
Available water capacity: About 12 inches

Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Potential frost action: High

Typical Profile of Degarmo

0 to 3 inches-dark gray silt loam
3 to 21 inches-dark gray silty clay loam and clay
21 to 28 inches-grayish brown clay loam
28 to 60 inches-grayish brown sandy clay loam and very gravelly sandy loam

Properties and Qualities of Degarmo

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Rare
Water table: Present in spring through early in summer
Permeability: Slow
Available water capacity: About 7 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Widowspring soils on stream terraces
- Opie soils on low stream terraces
- Skidoosprings soils on lake terraces
- Housefield soils on flood plains

Major Soil Limitations

Fury and Degarmo-corrosivity, frost action, wetness
Degarmo-shrink-swell potential

Use and Management

Irrigated Hayland

Fury and Degarmo

- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heave.
- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- The seasonal high water table provides supplemental water for adapted plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.

Livestock Grazing

Fury and Degarmo

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Grazing when the soils are wet results in compaction of the surface layer. A compacted surface layer may result in excessive runoff and restricted plant growth.
- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- Trampling by livestock when the soils are wet or saturated damages plants and causes soil compaction and displacement.

Fury

- The suitability for seeding is good.

Degarmo

- As the site deteriorates, big sagebrush increases and basin wildrye decreases.
- The suitability for seeding is good.

121-Fury-Housefield complex, 0 to 1 percent slopes Composition

Fury and similar soils-50 percent Housefield and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,100 to 4,230 feet
Rangeland ecological site and characteristic vegetation: Fury-(Basin Wet Meadow)
Nebraska sedge, Baltic rush, spikerush; Housefield-(Wet Marsh) hardstem bulrush, broadfruit burreed

Climatic factors:

Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Fury

0 to 14 inches-dark gray silt loam
14 to 27 inches—dark gray silty clay loam
27 to 34 inches-light gray silt loam
34 to 44 inches-white silt loam
44 to 60 inches-gray silty clay loam
Properties and Qualities of Fury
Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present late in winter through early in summer
Permeability: Moderately slow
Available water capacity: About 12 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Potential frost action: High
Typical Profile of Housefield
3 inches to 0—slightly decomposed roots and leaves
0 to 36 inches-black mucky silt loam
36 to 48 inches-black mucky silty clay loam
48 to 60 inches-brown silty clay

Properties and Qualities of Housefield

Depth: 40 to 60 inches to the clayey layer and more than 60 inches to bedrock
Drainage class: Very poorly drained
Ponding: Present in spring and summer
Water table: Present throughout the year
Permeability: Slow
Available water capacity: About 16 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High in the substratum
Potential frost action: High

Contrasting Inclusions

- Doubleo, Jimgreen, Skidoosprings, and Widowspring soils on lake plains

Major Soil Limitations

Fury and Housefield-wetness, frost action
Fury-corrosivity
Housefield—shrink-swell potential

Use and Management

Irrigated Hayland

Fury and Housefield

- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heave.
- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- The seasonal high water table provides supplemental water for adapted plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.

Livestock Grazing

Fury and Housefield

- Providing adequate drainage is difficult because most areas have poor outlets.
- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Grazing when the soils are wet results in compaction of the surface layer. A compacted surface layer may result in excessive runoff and restricted plant growth.
- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- Trampling by livestock when the soils are wet or saturated damages plants and causes soil compaction and displacement.

Fury

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The suitability for seeding is good.

Housefield

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- The suitability for seeding is very poor because of wetness.

122—Fury-Housefield-Skidoosprings complex, 0 to 2 percent slopes

Composition

Fury and similar soils-40 percent Housefield and similar soils-30 percent Skidoosprings and similar soils-15 percent Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Position on landform: Fury—plane areas with slopes of 0 to 1 percent; Housefieldplane or concave areas with slopes of 0 to 1 percent; Skidoosprings-convex areas with slopes of 0 to 2 percent
Parent material: Lacustrine sediment
Elevation: 4,105 to 4,110 feet
Rangeland ecological site and characteristic vegetation: Fury-(Basin Wet Meadow) Nebraska sedge, Baltic rush, spikerush; Housefield-(Wet Marsh) hardstem bulrush, broadfruit burreed; Skidoosprings-(Sodic Bottom) black greasewood, basin wildrye, inland saltgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Fury

0 to 14 inches-dark gray silt loam
14 to 27 inches-dark gray silty clay loam
27 to 34 inches-light gray silt loam
34 to 44 inches-white silt loam
44 to 60 inches-gray silty clay loam
Properties and Qualities of Fury
Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present late in winter through early in summer
Permeability: Moderately slow
Available water capacity: About 12 inches
Hazard of erosion: Water-slight; wind-slight
Corrosivity to steel: High
Potential frost action: High
Typical Profile of Housefield
3 inches to 0-slightly decomposed leaves and stems
0 to 36 inches-black mucky silt loam
36 to 48 inches-black mucky silty clay loam
48 to 60 inches-brown silty clay
Properties and Qualities of Housefield
Depth: 40 to 60 inches to a clayey layer and more than 60 inches to bedrock Drainage class: Very poorly drained

Ponding: Present in spring and summer
Water table: Present throughout the year
Permeability: Slow
Available water capacity: About 16 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High in the substratum
Potential frost action: High
Typical Profile of Skidoosprings
0 to 11 inches—pale brown sandy loam
11 to 41 inches-pale brown sandy loam
41 to 49 inches-indurated duripan
49 to 60 inches-very pale brown coarse sandy loam
Properties and Qualities of Skidoosprings
Depth: 40 to 50 inches to a hardpan and more than 60 inches to bedrock
Drainage class: Moderately well drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately rapid
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Moderate
Alkalinity: Strong
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Doubleo, Jimgreen, and Skunkfarm soils on lake plains

Major Soil Limitations

Fury, Housefield, and Skidoosprings-wetness, frost action
Fury and Skidoosprings-corrosivity
Housefield-shrink-swell potential
Skidoosprings-wind erosion, seepage, salinity, alkalinity

Use and Management

Irrigated Hayland

Fury, Housefield, and Skidoosprings

- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- The seasonal high water table provides supplemental water for adapted plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.
- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heave.

Skidoosprings

- The salinity and alkalinity limit the types of crops that can be grown.
- Salt- and alkali-tolerant plants are the most suitable for planting.
- If alfalfa or other crops are grown, sulphur amendments are needed because of the strong alkalinity of the soil.
- Proper irrigation water management and adequate drainage are needed to leach the salts below the rooting zone.
- Practices that help to control wind erosion include planting crops at right angles to the prevailing wind, maintaining crop residue on the soil surface, planting field windbreaks, stripcropping, planting cover crops, using minimum tillage, minimizing the areas of barren soil, and leaving the soil surface rough.

Livestock Grazing

Fury, Housefield, and Skidoosprings

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Grazing when the soils are wet results in compaction of the surface layer. A compacted surface layer may result in excessive runoff and restricted plant growth.
- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.

Fury and Skidoosprings

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Fury

- The suitability for seeding is good.

Housefield

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- The suitability for seeding is very poor because of wetness.

Skidoosprings

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- As the site deteriorates, inland saltgrass and black greasewood increase and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity and moderate salinity.

123-Fury-Opie complex, 0 to 1 percent slopes Composition

Fury and similar soils-55 percent
Opie and similar soils-30 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment

Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: Fury-(Basin Wet Meadow)
Nebraska sedge, Baltic rush, spikerush; Opie-(Sodic Meadow) alkali sacaton,
inland saltgrass, Sandberg bluegrass

Climatic factors:

Mean annual precipitation-8 to 10 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Fury

0 to 14 inches—dark gray silt loam
14 to 27 inches-dark gray silty clay loam
27 to 34 inches-light gray silt loam
34 to 44 inches-white silt loam
44 to 60 inches-gray silty clay loam
Properties and Qualities of Fury
Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present late in winter through early in summer
Permeability: Moderately slow
Available water capacity: About 12 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Potential frost action: High

Typical Profile of Opie

0 to 7 inches-gray silt loam
7 to 10 inches-gray silty clay loam
10 to 16 inches-gray silt loam
16 to 26 inches-dark gray silty clay loam
26 to 44 inches-gray and dark grayish brown silt loam
44 to 64 inches-light brownish gray gravelly loam

Properties and Qualities of Opie

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present late in winter through early in summer
Permeability: Moderately slow
Available water capacity: About 7 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Strong
Alkalinity: Moderate
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Crowcamp, Skidoosprings, and Widowspring soils on lake plains

Major Soil Limitations

Fury and Opie-wetness, corrosivity, frost action
Opie—salinity, alkalinity

Use and Management
 Irrigated Cropland

Fury and Opie

- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- The seasonal high water table provides supplemental water for adapted plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.
- Providing adequate drainage is difficult because most areas have poor outlets.
- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heave.

Opie

- Salt-tolerant plants are the most suitable for planting.
- Proper irrigation water management and adequate drainage are needed to leach the salts below the rooting zone.

Livestock Grazing

Fury and Opie

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Grazing when the soils are wet results in compaction of the surface layer. A compacted surface layer may result in excessive runoff and restricted plant growth.
- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- Trampling by livestock when the soils are wet or saturated damages plants and causes soil compaction and displacement.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Fury

- The suitability for seeding is good.

Opie

- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- As the site deteriorates, inland saltgrass, Baltic rush, and black greasewood increase and alkali sacaton and Sandberg bluegrass decrease.
- The suitability for seeding is very poor because of the strong salinity and moderate alkalinity.

124—Fury-Skidoosprings-Opie complex, 0 to 2 percent slopes

Composition

Fury and similar soils-35 percent
Skidoosprings and similar soils-30 percent
Opie and similar soils-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Fury and Opie—plane; Skidoosprings—convex
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: Fury-(Basin Wet Meadow)
Nebraska sedge, Baltic rush, spikerush; Skidoosprings-(Sodic Bottom) black
greasewood, basin wildrye, inland saltgrass; Opie-(Sodic Meadow) alkali
sacaton, inland saltgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Fury
0 to 14 inches—dark gray silt loam
14 to 27 inches—dark gray silty clay loam
27 to 34 inches-light gray silt loam
34 to 44 inches-white silt loam
44 to 60 inches-gray silty clay loam

Properties and Qualities of Fury

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present late in winter through early in summer
Permeability: Moderately slow
Available water capacity: About 12 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Potential frost action: High
Typical Profile of Skidoosprings
0 to 11 inches—pale brown sandy loam
11 to 41 inches-pale brown sandy loam
41 to 49 inches-indurated duripan
49 to 60 inches-very pale brown coarse sandy loam
Properties and Qualities of Skidoosprings
Depth: 40 to 50 inches to a hardpan and more than 60 inches to bedrock
Drainage class: Moderately well drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately rapid
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Moderate
Alkalinity: Strong
Corrosivity to steel: High
Potential frost action: High

Typical Profile of Opie

0 to 7 inches-gray silt loam
7 to 10 inches-gray silty clay loam

10 to 16 inches-gray silt loam
16 to 26 inches-dark gray silty clay loam
26 to 44 inches-gray and dark grayish brown silt loam
44 to 64 inches-light brownish gray gravelly loam
Properties and Qualities of Opie
Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present late in winter through early in summer
Permeability: Moderately slow
Available water capacity: About 7 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Strong
Alkalinity: Moderate
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Crowcamp and Widowspring soils on lake plains

Major Soil Limitations

Fury, Skidoosprings, and Opie—wetness, corrosivity, frost action Skidoosprings and Opie—salinity, alkalinity
Skidoosprings-seepage, wind erosion

Use and Management

Irrigated Hayland

Fury, Skidoosprings, and Opie

- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- A seasonal high water table provides supplemental water for adapted plants.
- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heave.

Skidoosprings

- Practices that help to control wind erosion include planting crops at right angles to the prevailing wind, maintaining crop residue on the soil surface, planting field windbreaks, stripcropping, planting cover crops, using minimum tillage, minimizing the areas of barren soil, and leaving the soil surface rough.

Skidoosprings and Opie

- The salinity and alkalinity limit the types of crops that can be grown.
- Salt- and alkali-tolerant plants are the most suitable for planting.
- If alfalfa or other crops are grown, amendments are needed because of the alkalinity and salinity of the soil.
- Proper irrigation water management and adequate drainage are needed to leach the salts below the rooting zone.

Livestock Grazing

Fury, Skidoosprings, and Opie

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- Trampling by livestock when the soils are wet or saturated damages plants and causes soil compaction and displacement.

Skidoosprings and Opie

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.

Fury

- The suitability for seeding is good.

Skidoosprings

- The risk of seepage limits the construction of water impoundments.
- Crusting of the soil surface reduces infiltration, results in ponding, and restricts seedling emergence and survival.
- As the site deteriorates, inland saltgrass and black greasewood increase and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity and moderate salinity.

Opie

- As the site deteriorates, inland saltgrass, Baltic rush, and black greasewood increase and alkali sacaton and Sandberg bluegrass decrease.
- The suitability for seeding is very poor because of the strong salinity and moderate alkalinity.

125-Fury-Widowspring complex, 0 to 2 percent slopes

Composition

Fury and similar soils-45 percent
Widowspring and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains (fig. 3)
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: Fury-(Basin Wet Meadow)
Nebraska sedge, Baltic rush, spikerush; Widowspring-(Loamy Bottom) basin big sagebrush, basin wildrye
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Fury

0 to 14 inches-dark gray silt loam
14 to 27 inches-dark gray silty clay loam

Figure 3.-Area of Fury-Widowspring complex, 0 to 2 percent slopes, in Diamond Valley. These soils are important for use as hay and pasture.

27 to 34 inches-light gray silt loam
34 to 44 inches-white silt loam
44 to 60 inches-gray silty clay loam
Properties and Qualities of Fury
Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Frequency of ponding: Rare
Water table: Present late in winter through early in summer
Permeability: Moderately slow
Available water capacity: About 12 inches
Hazard of erosion: Water-slight; wind-slight
Corrosivity to steel: High
Potential frost action: High

Typical Profile of Widowspring

0 to 7 inches-dark grayish brown silt loam
7 to 22 inches-grayish brown silt loam
22 to 43 inches-brown silt loam
43 to 63 inches-yellowish brown loam

Properties and Qualities of Widowspring

Depth: More than 60 inches to bedrock Drainage class: Moderately well drained Water table: Present in winter and spring Ponding: Present in spring Permeability: Moderately slow

Available water capacity: About 12 inches
Hazard of erosion: Water—slight; wind—slight
Potential frost action: High

Contrasting Inclusions

- Crowcamp, Degarmo, Opie, and Skidoosprings soils on lake plains

Major Soil Limitations

Fury and Widowspring-wetness, frost action Fury-corrosivity

Use and Management

Irrigated Hayland

Fury

- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- The seasonal high water table provides supplemental water for adapted plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.
- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heave.

Livestock Grazing

Fury and Widowspring

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Grazing when the soils are wet results in compaction of the surface layer. A compacted surface layer may result in excessive runoff and restricted plant growth.
- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- Trampling by livestock when the soils are wet or saturated damages plants and causes soil compaction and displacement.
- The suitability for seeding is good.

Fury

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, sedges, rushes, cinquefoil, bluegrasses, and reedgrass increase and tufted hairgrass decreases.

Widowspring

- As the site deteriorates, big sagebrush increases and basin wildrye decreases.

126-Gaib gravelly loam, 2 to 20 percent slopes

Composition

Gaib and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex

Parent material: Residuum and colluvium

Geology: Welded tuff
Elevation: 4,700 to 5,400 feet
Forestland plant association and characteristic vegetation: (Ponderosa pine/mountain big sagebrush/Idaho fescue-bluebunch wheatgrass) ponderosa pine, antelope bitterbrush, mountain big sagebrush, Idaho fescue

Climatic factors:

Mean annual precipitation-16 to 18 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile

2 inches to 0—slightly decomposed pine needles and twigs
0 to 3 inches-dark grayish brown gravelly loam
3 to 7 inches-brown gravelly loam
7 to 12 inches-brown very cobbly clay loam
12 to 16 inches-light yellowish brown extremely cobbly clay loam
16 inches-fractured welded tuff

Soil Properties and Qualities

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Arcia, Erakatak, and Observation soils on hills
- Cumulic Haploxerolls in swales and drainageways
- Rock outcrop and Rubble land

Major Soil Limitations
Depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- This soil is susceptible to invasion by western juniper.
- The suitability for seeding is poor because of the low available water capacity.

Forest Products

- Seasonal restriction of travel should be considered or additional rock should be placed in the road subgrade and surface grade to minimize rutting of the surface.
- Roads and landings are very difficult to construct because of the shallow depth to bedrock.
- The shallow depth to bedrock prevents deep mechanical site preparation.
- The seedling mortality rate is high because of the low available water capacity.

127-Gaib-Ateron complex, 2 to 15 percent slopes

 CompositionGaib and similar soils-55 percent Ateron and similar soils-30 percent
Contrasting inclusions-15 percent
Setting
Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Gaib—welded tuff; Ateron—basalt, andesite, and welded tuff
Elevation: 4,800 to 5,100 feet
Forestland plant association and characteristic vegetation: Gaib-(ponderosa pine/ mountain big sagebrush/Idaho fescue-bluebunch wheatgrass) ponderosa pine, antelope bitterbrush, mountain big sagebrush, Idaho fescue
Rangeland ecological site and characteristic vegetation: Ateron-(JD Shrubby Mountain Clayey 12-16PZ) antelope bitterbrush, mountain big sagebrush, Idaho fescue
Climatic factors:
Mean annual precipitation-14 to 18 inches Mean annual air temperature-40 to 43 degrees F Frost-free period-50 to 80 days

Typical Profile of Gaib

2 inches to 0—slightly decomposed pine needles and twigs
0 to 3 inches-dark grayish brown gravelly loam
3 to 7 inches-brown gravelly loam
7 to 12 inches-brown very cobbly clay loam
12 to 16 inches-light yellowish brown extremely cobbly clay loam
16 inches-fractured welded tuff
Properties and Qualities of Gaib
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight

Typical Profile of Ateron

0 to 5 inches—dark grayish brown very gravelly loam 5 to 12 inches-grayish brown very cobbly clay loam 12 to 18 inches-grayish brown extremely stony clay 18 inches-highly fractured basalt

Properties and Qualities of Ateron
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Doyn, Erakatak, Lambring, Merlin, and Ticino soils on hills
- Roschene soils in swales and drainageways
- Rock outcrop and Rubble land

Major Soil Limitations

Gaib and Ateron—available water capacity, depth to bedrock Ateron—shrink-swell potential

Use and Management

Livestock Grazing

Gaib and Ateron

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The suitability for seeding is poor because of the low available water capacity.

Gaib

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.

Ateron

- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.

Forest Products

Gaib

- Seasonal restriction of travel should be considered or additional rock should be placed in the road subgrade and surface grade to minimize rutting of the surface.
- Roads and landings are very difficult to construct because of the shallow depth to bedrock.
- The shallow depth to bedrock prevents deep mechanical site preparation.
- The seedling mortality rate is high because of the low available water capacity.

128-Gaib-Rock outcrop complex, 20 to 60 percent slopes

Composition

> Gaib and similar soils- 65 percent Rock outcrop- 20 percent Contrasting inclusions- 15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Welded tuff

Elevation: 4,300 to 5,000 feet
Forestland plant association and characteristic vegetation: Gaib-(ponderosa pine/ mountain big sagebrush/Idaho fescue-bluebunch wheatgrass) ponderosa pine, antelope bitterbrush, mountain big sagebrush, Idaho fescue

Climatic factors:

Mean annual precipitation-14 to 18 inches
Mean annual air temperature-40 to 43 degrees F Frost-free period-50 to 80 days

Typical Profile of Gaib

2 inches to 0-slightly decomposed pine needles and twigs
0 to 3 inches-dark grayish brown gravelly loam
3 to 7 inches-brown gravelly loam
7 to 12 inches-brown very cobbly clay loam
12 to 16 inches-light yellowish brown extremely cobbly clay loam
16 inches-fractured welded tuff
Properties and Qualities of Gaib
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Arcia, Erakatak, and Observation soils on hills
- Cumulic Haploxerolls in swales and drainageways

Major Soil Limitations

Gaib—water erosion, slope, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- This soil is susceptible to invasion by western juniper invasion.
- The suitability for seeding is very poor because of the steepness of slope.

Forest Products

- Special harvesting techniques and alternative site preparation and timing should be used to minimize soil erosion.
- Steepness of slope and the areas of Rock outcrop restrict the use of wheeled and tracked equipment and the construction of roads and landings.
- The shallow depth to bedrock and the steepness of slope prevent deep mechanical site preparation.
- Planting by hand is difficult because of the steepness of slope.
- Mechanical planting is prohibited by the steepness of slope and areas of Rock outcrop.
- The seedling mortality rate is high because of the low available water capacity.

129—Gilispie-Noname complex, 3 to 15 percent slopes
 Composition

Gilispie and similar soils-65 percent
Noname and similar soils-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Basalt and andesite
Elevation: 5,800 to 7,000 feet
Rangeland ecological site and characteristic vegetation: Gilispie—(Loamy 12-16PZ) mountain big sagebrush, Idaho fescue, Thurber needlegrass; Noname-(Rocky Ridges 12-16PZ) curl-leaf mountain mahogany, mountain big sagebrush, skyline bluegrass
Climatic factors:
Mean annual precipitation-12 to 25 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days
Typical Profile of Gilispie
0 to 5 inches—dark brown loam
5 to 14 inches—dark brown silty clay loam
14 inches-basalt

Properties and Qualities of Gilispie

Depth: 12 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water-slight; wind—slight

Typical Profile of Noname

0 to 3 inches-pale brown very stony loam
3 to 12 inches-yellowish brown clay loam
12 inches-andesite
Properties and Qualities of Noname
Depth: 4 to 14 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow

Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Buckwilder and Baconcamp soils on mountains
- Rock outcrop

Major Soil Limitations

Gilispie and Noname—depth to bedrock, cold climate Noname-surface stones

Use and Management

Livestock Grazing

Gilispie and Noname

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- The suitability for seeding is very poor because of the low available water capacity and depth to bedrock.

Gilispie

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.

Noname

- The very stony surface layer restricts the operation of equipment.
- As the site deteriorates, big sagebrush and bottlebrush squirreltail increase and basin wildrye, skyline bluegrass, and western needlegrass decrease.
- Excessive use of the mountain mahogany within reach of grazing animals reduces its productivity and potential for regeneration.

130-Gochea sandy loam, 0 to 2 percent slopes Composition

Gochea and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Plateaus and lake terraces
Position on landform: Depressions
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,300 to 5,000 feet
Rangeland ecological site and characteristic vegetation: (Sandy Loam 10-12PZ)
basin big sagebrush, needleandthread, Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 9 inches-grayish brown sandy loam
9 to 13 inches-brown sandy loam
13 to 27 inches-light yellowish brown sandy loam
27 to 35 inches-very pale brown gravelly sandy loam
35 to 62 inches-light yellowish brown very gravelly sandy loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High

Contrasting Inclusions

- Felcher soils on hills
- Playas
- Rock outcrop

Major Soil Limitations

Wind erosion, corrosivity

Use and Management

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush increases and Indian ricegrass and needlegrasses decrease.
- The suitability for seeding is good.

131-Goldrun-Alvodest complex, 0 to 12 percent slopes Composition

Goldrun and similar soils-55 percent
Alvodest and similar soils-30 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Position on landform: Goldrun-sand dunes with slopes of 2 to 12 percent;
Alvodest-slopes of 0 to 3 percent
Parent material: Goldrun-eolian sand; Alvodest—lacustrine sediment
Elevation: 4,000 to 4,600 feet
Rangeland ecological site and characteristic vegetation: Goldrun-(Sodic Dunes)
basin big sagebrush, black greasewood, Indian ricegrass, needleandthread;
Alvodest-(Sodic Flat) black greasewood, inland saltgrass
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Goldrun

0 to 24 inches-pale brown loamy sand 24 to 56 inches-pale brown loamy fine sand 56 to 62 inches-brown sandy clay loam

Properties and Qualities of Goldrun
Depth: More than 60 inches to bedrock Drainage class: Somewhat excessively drained Permeability: Rapid over moderately slow Available water capacity: About 5 inches Hazard of erosion: Water-slight; wind-severe Corrosivity to steel: High

Typical Profile of Alvodest

0 to 2 inches-light gray silty clay loam
2 to 6 inches-light brownish gray silty clay loam
6 to 42 inches-grayish brown silty clay
42 to 53 inches-light brownish gray silty clay
53 to 78 inches-light gray silty clay

Properties and Qualities of Alvodest

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in winter and spring
Water table: Present in winter and spring
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water-slight; wind-moderate
Salinity: Strong
Alkalinity: Strong
Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Reese soils on lake plains
- Soils that are similar to the Alvodest soil but have a sandy surface layer
- Playas

Major Soil Limitations

Goldrun and Alvodest-available water capacity, wind erosion, corrosivity
Goldrun-seepage
Alvodest-shrink-swell potential, salinity, alkalinity, wetness, frost action

Use and Management

Livestock Grazing

Goldrun and Alvodest

- The low available water capacity of the surface layer limits seedling survival.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.

Goldrun

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The risk of seepage as a result of the rapid permeability limits the construction of water impoundments.
- Severe deterioration of the plant community leads to unstable areas of windblown sand.
- As the site deteriorates, black greasewood and inland saltgrass increase and basin wildrye, Indian ricegrass, and needlegrasses decrease.
- This soil is susceptible to invasion by halogeton, povertyweed, and Russian thistle.
- The suitability for seeding is very poor because of droughtiness.

Alvodest

- This soil provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Crusting of the soil surface reduces infiltration, results in ponding, and restricts seedling emergence and survival.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, black greasewood, alkali sacaton, and seepweed increase and inland saltgrass and basin wildrye decrease.
- The suitability for seeding is very poor because of droughtiness and the strong salinity and alkalinity.

132-Gradon gravelly fine sandy loam, 0 to 8 percent slopes

Composition

Gradon and similar soils- 85 percent
Contrasting inclusions- 15 percent

Setting

Landform: Fan terraces
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,300 to 4,800 feet
Rangeland ecological site and characteristic vegetation: (Droughty Loam 11-13PZ)
basin big sagebrush, Idaho fescue, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches Mean annual air temperature- 43 to 45 degrees F Frost-free period-50 to 80 days

Typical Profile

0 to 3 inches-brown gravelly fine sandy loam
3 to 10 inches-brown loam
10 to 22 inches-light yellowish brown clay loam

22 to 32 inches-light yellowish brown gravelly sandy clay loam
32 to 48 inches-indurated duripan
48 to 52 inches-strongly cemented duripan
52 to 62 inches-pale brown sandy loam

Soil Properties and Qualities

Depth: 20 to 40 inches to a hardpan and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—moderate
Contrasting Inclusions

- Carryback soils on plateaus and hills
- Brace soils on plateaus
- Carvix soils on stream terraces
- Lambring soils on mountains

Major Soil Limitations
Depth to a hardpan, wind erosion

Use and Management

Livestock Grazing

- The cemented hardpan restricts the rooting depth and limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and needlegrasses, Idaho fescue, and bluebunch wheatgrass decrease.
- The suitability for seeding is good.

133-Guano gravelly sandy loam, 2 to 15 percent slopes

Composition

Guano and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Slope features: Concave and convex
Parent material: Loess
Geology: Tuffaceous sedimentary rock
Elevation: 4,600 to 5,000 feet
Rangeland ecological site and characteristic vegetation: (Loamy 8-10PZ) Wyoming big sagebrush, Indian ricegrass, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 3 inches—pale brown gravelly sandy loam

3 to 11 inches-yellowish brown gravelly clay loam
11 inches-weathered tuffaceous sedimentary rock

Soil Properties and Qualities

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High

Contrasting Inclusions

- Reallis soils on lake terraces
- Rock outcrop
- Carvix soils on stream terraces
- Brace and Raz soils on plateaus

Major Soil Limitations

Water erosion, depth to bedrock, wind erosion, available water capacity, corrosivity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The upper part of the soil is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- As the site deteriorates, big sagebrush and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- The suitability for seeding is poor because of the low available water capacity.

134-Gumble very gravelly silt loam, 2 to 20 percent slopes

Composition

Gumble and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Tuffaceous sedimentary rock and diatomaceous earth
Elevation: 3,400 to 4,200 feet
Rangeland ecological site and characteristic vegetation: (SR Shallow 9-12PZ) bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-9 to 12 inches

Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 3 inches-pale brown very gravelly silt loam
3 to 8 inches-pale brown loam
8 to 14 inches-pale brown clay loam
14 to 16 inches-light yellowish brown silty clay loam
16 inches-tuffaceous sedimentary rock

Soil Properties and Qualities

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Legler soils on stream terraces
- Longcreek soils on hills
- Bucklake soils on north-facing hillslopes
- Rock outcrop

Major Soil Limitations

Corrosivity, depth to bedrock, shrink-swell potential

Use and Management
 Livestock Grazing

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the low available water capacity.

135-Gumble very stony loam, 20 to 40 percent south slopes

Composition

Gumble and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: South- and west-facing side slopes
Parent material: Residuum and colluvium
Geology: Tuffaceous sedimentary rock and diatomaceous earth
Elevation: 3,400 to 4,300 feet
Rangeland ecological site and characteristic vegetation: (SR Shallow South 9-12PZ)
bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 3 inches-pale brown very stony loam
3 to 8 inches-pale brown loam
8 to 14 inches-pale brown clay loam
14 to 16 inches-light yellowish brown silty clay loam
16 inches-tuffaceous sedimentary rock

Soil Properties and Qualities

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Contrasting Inclusions

- Legler soils on stream terraces
- Longcreek and Drewsey soils on hills
- Bucklake soils on north-facing hillslopes
- Modoc soils on fans
- Rock outcrop

Major Soil Limitations

Available water capacity, water erosion, surface stones, depth to bedrock, shrink-swell potential, corrosivity

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The very stony surface layer restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

136-Gumble-Mahoon-Cagle complex, 2 to 40 percent slopes

Composition

Gumble and similar soils-35 percent
Mahoon and similar soils-30 percent
Cagle and similar soils-25 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills
Position on landform: Gumble—ridges with slopes of 2 to 20 percent; Mahoon— south- and west-facing side slopes of 20 to 40 percent; Cagle-north- and east-facing side slopes of 20 to 40 percent
Parent material: Residuum and colluvium
Geology: Tuffaceous sedimentary rock and diatomaceous earth
Elevation: 3,500 to 4,500 feet
Rangeland ecological site and characteristic vegetation: Gumble-(SR Shallow 9-12PZ) bluebunch wheatgrass, Thurber needlegrass; Mahoon-(SR Shallow South 9-12PZ) bluebunch wheatgrass, Thurber needlegrass; Cagle—(SR Mountain North 9-12PZ) Idaho fescue
Climatic factors:
Mean annual precipitation-9 to 12 inches Mean annual air temperature-45 to 49 degrees F Frost-free period-80 to 100 days

Typical Profile of Gumble
0 to 3 inches-pale brown very gravelly silt loam
3 to 8 inches-pale brown loam
8 to 14 inches-pale brown clay loam
14 to 16 inches-light yellowish brown silty clay loam
16 inches-tuffaceous sedimentary rock
Properties and Qualities of Gumble
Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Typical Profile of Mahoon

0 to 3 inches-grayish brown very gravelly loam
3 to 9 inches-grayish brown gravelly clay
9 to 18 inches-brown gravelly clay
18 to 25 inches-pale brown gravelly clay
25 inches-diatomaceous earth

Properties and Qualities of Mahoon

Depth: 2 to 10 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Typical Profile of Cagle

0 to 4 inches-brown very gravelly loam
4 to 12 inches-brown clay
12 to 24 inches-yellowish brown clay
24 to 36 inches-yellowish brown clay loam
36 inches-tuffaceous sedimentary rock

Properties and Qualities of Cagle

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Legler soils on stream terraces
- Bucklake soils on hillsides at higher elevations in the Drinkwater Pass area

Major Soil Limitations

Gumble, Mahoon, and Cagle—depth to bedrock, shrink-swell potential Gumble and Mahoon-corrosivity
Gumble-available water capacity
Mahoon-depth to a claypan, water erosion
Cagle-water erosion

Use and Management

Livestock Grazing

Gumble, Mahoon, and Cagle

- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- The upper part of the soils is saturated following snowmelt.
- Depth to bedrock limits the construction of water impoundments.
- This unit is suited to grazing in winter.

Gumble and Mahoon

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Mahoon and Cagle

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes water erosion.
- These soils are susceptible to invasion by cheatgrass.

Gumble

- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the low available water capacity.

Mahoon

- The claypan restricts the rooting depth.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the depth to the claypan.

Cagle

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is fair because of the surface rock fragments.

137—Hackwood gravelly loam, 20 to 35 percent slopes

Composition

Hackwood and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Slope features: Concave and convex
Parent material: Loess and colluvium
Geology: Basalt and andesite
Elevation: 5,400 to 8,200 feet
Rangeland ecological site and characteristic vegetation: (Aspen 16-35PZ) quaking aspen, whortleleaf snowberry, sedge
Climatic factors:
Mean annual precipitation-16 to 35 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days
Typical Profile
0 to 11 inches-brown gravelly loam
11 to 23 inches-brown loam
23 to 48 inches-brown gravelly loam
48 to 60 inches-light yellowish brown gravelly loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock

Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Baconcamp soils on side slopes
- Hapgood soils on north-facing side slopes
- Leemorris soils on ridges
- Rock outcrop

Major Soil Limitations

Water erosion, cold climate, seepage, slope

Use and Management
 Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- The risk of seepage limits the construction of water impoundments.
- Excessive use of aspen reduces its productivity and potential for regeneration.
- As the site deteriorates, shrubs and forbs increase and needlegrasses decrease.
- The suitability for seeding is fair because of the short growing season and steepness of slope.

138-Hackwood-Baconcamp complex, 20 to 35 percent north slopes

Composition

Hackwood and similar soils-50 percent
Baconcamp and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: North- and east-facing side slopes
Parent material: Loess and colluvium
Geology: Basalt
Elevation: 6,600 to 9,200 feet
Rangeland ecological site and characteristic vegetation: Hackwood-(Aspen
$16-35 P Z$) quaking aspen, whortleleaf snowberry, sedge; Baconcamp-(Subalpine
Slopes 16-35PZ) mountain big sagebrush, whortleleaf snowberry, Idaho fescue
Climatic factors:
Mean annual precipitation-16 to 35 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile of Hackwood

0 to 11 inches-brown gravelly loam
11 to 23 inches-brown loam

23 to 48 inches-brown gravelly loam
48 to 60 inches-light yellowish brown gravelly loam

Properties and Qualities of Hackwood

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Baconcamp

0 to 4 inches-very dark grayish brown very cobbly loam 4 to 20 inches-very dark grayish brown gravelly loam 20 to 35 inches-very dark grayish brown very gravelly loam 35 inches-fractured basalt

Properties and Qualities of Baconcamp
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Krackle and Clamp soils on side slopes
- Dickle and Leemorris soils on ridges
- Rock outcrop

Major Soil Limitations

Hackwood and Baconcamp-water erosion, cold climate Hackwood-seepage
Baconcamp-depth to bedrock, surface rock fragments
Use and Management

Livestock Grazing

Hackwood and Baconcamp

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.

Hackwood

- The risk of seepage limits the construction of water impoundments.
- Excessive use of aspen reduces its productivity and potential for regeneration.
- As the site deteriorates, shrubs and forbs increase and needlegrasses decrease.
- The suitability for seeding is fair because of the short growing season.

Baconcamp

- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, bottlebrush squirreltail, and bluegrasses increase and Idaho fescue, bluebunch wheatgrass, and needlegrasses decrease.
- The suitability for seeding is poor because of the surface rock fragments and short growing season.

139-Hapgood very cobbly loam, 2 to 12 percent slopes

Composition

Hapgood and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Mountains

Slope features: Concave and convex
Parent material: Colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 6,800 to 8,100 feet
Rangeland ecological site and characteristic vegetation: (Loamy 12-16PZ)
mountain big sagebrush, Idaho fescue, Thurber needlegrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile

0 to 10 inches—dark gray very cobbly loam
10 to 43 inches—dark grayish brown very stony loam
43 inches-basalt
Soil Properties and Qualities
Depth: 40 to 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Noname soils on ridges
- Welch soils in swales
- Baconcamp soils on side slopes
- Duff soils in concave areas
- Rock outcrop

Major Soil Limitation

Cold climate

Use and Management

Livestock Grazing

- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by western juniper.
- The suitability for seeding is poor because of the short growing season.

140—Hart Camp cobbly loam, 5 to 15 percent slopes Composition

Hart Camp and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Tuff
Elevation: 4,100 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (SR Mountain
Shallow 9-12PZ) Wyoming big sagebrush, Idaho fescue, bluebunch
wheatgrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 9 inches-brown cobbly loam
9 to 19 inches—brown cobbly clay loam
19 inches-weathered tuff
Soil Properties and Qualities
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Felcher soils on south-facing hillslopes
- Lambring soils on north-facing hillslopes
- Carryback soils on hills

Major Soil Limitations

Depth to bedrock

Use and Management
 Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of water erosion.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the depth to bedrock.

141—Hart Camp cobbly loam, 15 to 30 percent slopes Composition

Hart Camp and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Tuff
Elevation: 4,100 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (SR Mountain Shallow
9-12PZ) Wyoming big sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 9 inches—brown cobbly loam
9 to 19 inches-brown cobbly clay loam
19 inches-weathered tuff

Soil Properties and Qualities

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Felcher soils on south-facing hillslopes
- Lambring soils on north-facing hillslopes
- Carryback soils on hills

Major Soil Limitations

Water erosion, depth to bedrock

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the depth to bedrock.

142-Helphenstein-Goldrun complex, 0 to 15 percent slopes

Composition

Helphenstein and similar soils-50 percent Goldrun and similar soils-35 percent Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Position on landform: Helphenstein—slopes of 0 to 1 percent; Goldrun—sand dunes with slopes of 1 to 15 percent
Parent material: Helphenstein—lacustrine sediment; Goldrun-eolian sand Elevation: 4,400 to 4,500 feet
Rangeland ecological site and characteristic vegetation: Helphenstein-(Sodic Flat) black greasewood, inland saltgrass; Goldrun-(Sodic Dunes) basin big sagebrush, black greasewood, Indian ricegrass, needleandthread

Climatic factors:

Mean annual precipitation-7 to 10 inches Mean annual air temperature-45 to 49 degrees F Frost-free period-80 to 100 days

Typical Profile of Helphenstein

0 to 3 inches-light brownish gray fine sandy loam
3 to 9 inches-light yellowish brown loam
9 to 26 inches-pale yellow loam
26 to 33 inches-pale yellow fine sandy loam
33 to 41 inches-pale yellow very fine sandy loam
41 to 51 inches-light gray loam
51 to 62 inches-pale yellow fine sandy loam
Properties and Qualities of Helphenstein
Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in winter and spring
Water table: Present in winter and spring
Permeability: Slow
Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Moderate
Alkalinity: Strong
Corrosivity to steel: High
Corrosivity to concrete: High

Typical Profile of Goldrun

0 to 24 inches-pale brown loamy fine sand 24 to 56 inches-pale brown loamy fine sand 56 to 62 inches-brown sandy clay loam

Properties and Qualities of Goldrun

Depth: More than 60 inches to bedrock Drainage class: Somewhat excessively drained Permeability: Rapid over moderately slow

Available water capacity: About 5 inches
Hazard of erosion: Water-slight; wind-severe
Corrosivity to steel: High

Contrasting Inclusions

- Playas
- Davey soils on lake terraces

Major Soil Limitations

Helphenstein and Goldrun-wind erosion, seepage, corrosivity Helphenstein-wetness, salinity, alkalinity Goldrun-low available water capacity

Use and Management

Livestock Grazing

Helphenstein and Goldrun

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- This unit is suited to grazing in winter.
- The risk of seepage limits the construction of water impoundments.

Helphenstein

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- As the site deteriorates, black greasewood, alkali sacaton, and seepweed increase and inland saltgrass and basin wildrye decrease.
- The suitability for seeding is poor because of droughtiness and the strong alkalinity.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.

Goldrun

- The low available water capacity of the surface layer limits seedling survival.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Severe deterioration of the plant community leads to unstable areas of windblown sand.
- As the site deteriorates, black greasewood and inland saltgrass increase and basin wildrye, Indian ricegrass, and needlegrasses decrease.
- This soil is susceptible to invasion by halogeton, povertyweed, and Russian thistle.
- The suitability for seeding is poor because of droughtiness.

143-Homefield mucky silt loam, 0 to 1 percent slopes
 Composition

Homefield and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane

Parent material: Lacustrine sediment
Elevation: 4,090 to 4,105 feet
Rangeland ecological site and characteristic vegetation: (Wet Marsh) hardstem
bulrush, broadfruit burreed
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 25 inches—very dark gray mucky silt loam
25 to 48 inches-very dark grayish brown mucky silt loam and silty clay loam 48 to 60 inches-brown clay

Soil Properties and Qualities

Depth: 40 to 60 inches to the clayey layer and more than 60 inches to bedrock
Drainage class: Very poorly drained
Ponding: Present in spring and summer
Water table: Present throughout the year
Permeability: Slow
Available water capacity: About 16 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Moderate
Alkalinity: Strong
Shrink-swell potential: High in the substratum
Potential frost action: High

Contrasting Inclusions

- Duckclub and Thenarrows soils on lake plains
- Sandgap soils on sand dunes of lake plains

Major Soil Limitations

Wetness, shrink-swell potential of the substratum, alkalinity

Use and Management

Livestock Grazing

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- The suitability for seeding is very poor because of wetness.

144—Housefield mucky silt loam, 0 to 1 percent slopes Composition

Housefield and similar soils-85 percent
Contrasting inclusions-15 percent
Setting
Landform: Lake plains (fig. 4)
Slope features: Plane

Figure 4.-View of the Blitzen River Valley. Area of Housefield mucky silt loam, 0 to 1 percent slopes, in foreground.

Parent material: Lacustrine sediment

Elevation: 4,100 to 4,230 feet
Rangeland ecological site and characteristic vegetation: (Basin Wet Meadow) Nebraska sedge, Baltic rush, spikerush

Climatic factors:

Mean annual precipitation-8 to 10 inches
Mean annual air temperature- 43 to 45 degrees F Frost-free period-50 to 80 days

Typical Profile

3 inches to 0-slightly decomposed roots and leaves
0 to 36 inches-black mucky silt loam
36 to 48 inches-black mucky silty clay loam
48 to 60 inches-brown silty clay

Soil Properties and Qualities

Depth: 40 to 60 inches to the clayey layer and more than 60 inches to bedrock Drainage class: Very poorly drained
Ponding: Present in spring and summer
Water table: Present throughout the year
Permeability: Slow
Available water capacity: About 16 inches
Hazard of erosion: Water-slight; wind-slight
Corrosivity to steel: Moderate
Shrink-swell potential: High
Potential frost action: High

Contrasting Inclusions

- Fury and Jimgreen soils on flood plains
- Doubleo soils in depressions

Major Soil Limitations

Wetness, shrink-swell potential of the substratum, frost action

Use and Management

Irrigated Hayland

- Ponding and a seasonal high water table restrict the timing for haying and grazing.
- Grazing when the soil is wet results in compaction of the surface layer. A compacted surface layer may result in restricted plant growth.
- The seasonal high water table provides supplemental water for adapted plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.
- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heave.

Livestock Grazing

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soil is wet or saturated damages plants and causes soil compaction and displacement.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- The suitability for seeding is very poor because of wetness.

145-Housefield-Doubleo complex, 0 to 1 percent slopes

Composition

Housefield and similar soils-45 percent
Doubleo and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane and concave
Parent material: Lacustrine sediment
Elevation: 4,100 to 4,200 feet
Rangeland ecological site and characteristic vegetation: Housefield-(Wet Marsh)
hardstem bulrush, broadfruit burreed; Doubleo-(Semi-wet Marsh) cattail
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Housefield

3 inches to 0-slightly decomposed roots and leaves
0 to 36 inches-black mucky silt loam
36 to 48 inches-black mucky silty clay loam
48 to 60 inches-brown silty clay

Properties and Qualities of Housefield

Depth: 40 to 60 inches to the clayey layer and more than 60 inches to bedrock
Drainage class: Very poorly drained
Ponding: Present in spring and summer
Water table: Present throughout the year
Permeability: Slow
Available water capacity: About 16 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Potential frost action: High
Typical Profile of Doubleo
0 to 3 inches-dark grayish brown loam
3 to 10 inches-dark gray silty clay
10 to 20 inches-dark grayish brown clay
20 to 28 inches-gray clay loam
28 to 45 inches-light brownish gray fine sandy loam
45 to 60 inches-pale brown loam
Properties and Qualities of Doubleo
Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring and summer
Water table: Present in spring and summer
Permeability: Very slow
Available water capacity: About 9 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Fury, Jimgreen, and Skidoosprings soils on lake plains
- Mcbain soils on lake terraces

Major Soil Limitations
Housefield and Doubleo-wetness, shrink-swell potential, frost action
Doubleo-corrosivity

Use and Management

Livestock Grazing

Housefield and Doubleo

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soil is wet or saturated damages plants and causes soil compaction and displacement.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- The suitability for seeding is very poor because of wetness.

Doubleo

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

146-Icene-Playas complex, 0 to 1 percent slopes

Composition

Icene and similar soils-60 percent
Playas-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Icene—plane; Playas—plane or concave
Parent material: Lacustrine sediment
Elevation: 4,400 to 4,500 feet
Rangeland ecological site and characteristic vegetation: Icene-(Low Sodic Terrace 6-10PZ) black greasewood, shadscale, spiny hopsage, bottlebrush squirreltail, bud sagebrush
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile of Icene
0 to 6 inches-light gray loam
6 to 13 inches-light gray clay loam
13 to 22 inches-light brownish gray clay loam
22 to 32 inches-light brownish gray silty clay loam
32 to 44 inches-light gray silt loam
44 to 62 inches-light brownish gray clay loam

Properties and Qualities of Icene

Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Frequency of ponding: Rare
Water table: Present late in winter and in spring
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind-moderate
Salinity: Strong
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High

Typical Profile of Playas

0 to 60 inches-stratified loamy, silty, and clayey lacustrine sediment

Properties and Qualities of Playas

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: May be present throughout the year

Water table: Present throughout the year
Permeability: Very slow
Hazard of erosion: Water—slight; wind—slight to severe
Salinity: Strong
Alkalinity: Strong
Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Boravall soils on lake plains
- Enko soils on lake terraces

Major Soil Limitations

Icene and Playas—salinity, alkalinity, available water capacity, wetness, wind erosion, shrink-swell potential, corrosivity

Use and Management

Livestock Grazing

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Crusting of the soil surface reduces infiltration, results in ponding, and restricts seedling emergence and survival.
- Maintaining adequate plant cover reduces wind erosion.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, shadscale, black greasewood, and bottlebrush squirreltail increase and bud sagebrush, basin wildrye, and beardless wildrye decrease.
- This unit is susceptible to invasion by halogeton, povertyweed, Russian thistle, and cheatgrass.
- The suitability for seeding is very poor because of droughtiness and the strong alkalinity and salinity.

147-Icene-Playas complex, slightly alkaline, 0 to 1 percent slopes

Composition

Icene and similar soils-60 percent
Playas-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Icene—plane; Playas—plane or concave
Parent material: Lacustrine sediment
Elevation: 4,400 to 4,500 feet

Rangeland ecological site and characteristic vegetation: Icene-(Sodic Terrace 6-10PZ) basin big sagebrush, spiny hopsage, black greasewood, Indian ricegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile of Icene
0 to 6 inches-light gray fine sandy loam
6 to 13 inches-light gray clay loam
13 to 22 inches-light brownish gray clay loam
22 to 32 inches-light brownish gray silty clay loam
32 to 44 inches-light gray silt loam
44 to 62 inches-light brownish gray clay loam
Properties and Qualities of Icene
Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Frequency of ponding: Rare
Water table: Present late in winter and in spring
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Strong
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High

Typical Profile of Playas

0 to 60 inches-stratified loamy, silty, and clayey lacustrine sediment

Properties and Qualities of Playas

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: May be present throughout the year
Water table: Present throughout the year
Permeability: Very slow
Hazard of erosion: Water—slight; wind—slight to severe
Salinity: Strong
Alkalinity: Strong
Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Alvodest and Skidoosprings soils on lake plains
- Mesman soils on lake terraces

Major Soil Limitations

Icene and Playas-wind erosion, salinity, alkalinity, available water capacity, corrosivity, wetness, shrink-swell potential

Use and Management

Livestock Grazing

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce infiltration, result in ponding, and restrict seedling emergence and survival.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- This unit is suited to grazing in winter.
- As the site deteriorates, big sagebrush, shadscale, and black greasewood increase and bud sagebrush, basin wildrye, and Indian ricegrass decrease.
- This unit is susceptible to invasion by halogeton, povertyweed, Russian thistle, and cheatgrass.
- The suitability for seeding is very poor because of droughtiness and the strong alkalinity and salinity.

148-Jesse Camp silt loam, 2 to 5 percent slopes

Composition

Jesse Camp and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,900 to 4,910 feet
Rangeland ecological site and characteristic vegetation: (Swale 10-14PZ) basin big sagebrush, basin wildrye
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 34 inches-pale brown silt loam
34 to 50 inches-very pale brown silt loam
50 to 60 inches-very pale brown very gravelly sandy loam

> Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Moderate
Corrosivity to steel: High

Contrasting Inclusions

- Swaler soils in depressions of lake terraces
- Enko soils on lake terraces
- Playas

Major Soil Limitations

Salinity, corrosivity

Use and Management

Livestock Grazing

- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and basin wildrye and bluebunch wheatgrass decrease.
- As streambanks become unstable, channels deepen and widen and the subsurface waterflow is reduced, resulting in a drier site with decreased production.
- The suitability for seeding is fair because of droughtiness and salinity.

149-Jimgreen muck, 0 to 1 percent slopes

Composition

Jimgreen and similar soils-90 percent
Contrasting inclusions-10 percent

Setting

Landform: Lake plains
Slope features: Concave
Parent material: Organic material and lacustrine sediment
Elevation: 4,130 to 4,140 feet
Rangeland ecological site and characteristic vegetation: (Wet Marsh) hardstem
bulrush, broadfruit burreed
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 10 inches—black muck
10 to 12 inches-dark gray mucky silt loam
12 to 32 inches-black muck
32 to 60 inches—dark grayish brown and very dark grayish brown muck

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Very poorly drained
Ponding: Present in spring and summer
Water table: Present throughout the year

Permeability: Moderate
Available water capacity: About 27 inches
Hazard of erosion: Water—slight; wind—slight
Potential frost action: High
Fire hazard: High when the soil is dry

Contrasting Inclusions

- Fury, Housefield, and Skidoosprings soils on lake plains

Major Soil Limitations

Wetness, subsidence, frost action

Use and Management

Wildlife Habitat

- This unit provides important food and cover for wetland wildlife.
- Saturated soil conditions make fences unstable and limit their placement.
- Because of the high content of organic matter, this soil is subject to subsidence if it is drained and is susceptible to fire.
- The suitability for seeding is very poor because of wetness.

150-Jimgreen-Housefield complex, 0 to 1 percent slopes

 CompositionJimgreen and similar soils-50 percent
Housefield and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains (fig. 5)
Slope features: Jimgreen-concave; Housefield—plane
Parent material: Jimgreen—organic material and lacustrine sediment; Housefield— lacustrine sediment
Elevation: 4,140 to 4,160 feet
Rangeland ecological site and characteristic vegetation: Jimgreen-(Wet Marsh)
hardstem bulrush, broadfruit burreed; Housefield-(Basin Wet Meadow)
Nebraska sedge, Baltic rush, spikerush
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Jimgreen

0 to 10 inches—black muck
10 to 12 inches-dark gray mucky silt loam
12 to 32 inches-black muck
32 to 60 inches—dark grayish brown and very dark grayish brown mucky peat

Properties and Qualities of Jimgreen

Depth: More than 60 inches to bedrock
Drainage class: Very poorly drained
Ponding: Present in spring and summer
Water table: Present throughout the year

Figure 5.-Area of Jimgreen-Housefield complex, 0 to 1 percent slopes, in the Blitzen River Valley.

Permeability: Moderate

Available water capacity: About 27 inches
Hazard of erosion: Water—slight; wind—slight
Potential frost action: High
Fire hazard: High when the soil is dry
Typical Profile of Housefield
3 inches to 0—slightly decomposed roots and leaves
0 to 36 inches—black mucky silt loam
36 to 48 inches—black mucky silty clay loam
48 to 60 inches-brown silty clay

Properties and Qualities of Housefield

Depth: 40 to 60 inches to the clayey layer and more than 60 inches to bedrock Drainage class: Very poorly drained Ponding: Present in spring and summer Water table: Present throughout the year
Permeability: Slow
Available water capacity: About 16 inches
Hazard of erosion: Water-slight; wind—slight
Shrink-swell potential: High in the substratum
Potential frost action: High

Contrasting Inclusions

- Doubleo and Fury soils on lake plains

Major Soil Limitations

Jimgreen-wetness, subsidence, frost action
Housefield-wetness, shrink-swell potential of the substratum, frost action

Use and Management

Livestock Grazing

Jimgreen and Housefield

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- The suitability for seeding is very poor because of wetness.

Jimgreen

- Because of the high content of organic matter, this soil is subject to subsidence if it is drained and is susceptible to fire.

Housefield

- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soil is wet or saturated damages plants and causes soil compaction and displacement.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As streambanks become unstable, channels deepen and widen and the subsurface waterflow is reduced, resulting in a drier site with decreased production and increased density of upland shrubs.
- As the site deteriorates, sedges, rushes, cinquefoil, bluegrasses, and reedgrass increase and tufted hairgrass decreases.

151—Kegler fine sandy loam, 2 to 5 percent slopes Composition

Kegler and similar soils- 85 percent Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Sandy Loam 10-12PZ)
basin big sagebrush, needleandthread, Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 7 inches-grayish brown fine sandy loam
7 to 10 inches-brown fine sandy loam
10 to 32 inches-pale brown sandy clay loam
32 to 37 inches-very pale brown silt loam

37 to 49 inches-indurated duripan
49 to 62 inches-very pale brown silt loam

Soil Properties and Qualities

Depth: 25 to 40 inches to a duripan and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High

Contrasting Inclusions

- Poujade, Reallis, and Lawen soils on lake terraces
- Ausmus soil on lake plains

Major Soil Limitations

Depth to a hardpan, seepage, corrosivity, wind erosion

Use and Management

Irrigated Hayland

- Because the infiltration rate is moderately rapid, sprinkler irrigation is best suited to this soil.
- Practices that help to control wind erosion include planting crops at right angles to the prevailing wind, maintaining crop residue on the soil surface, planting field windbreaks, stripcropping, planting cover crops, using minimum tillage, minimizing the areas of barren soil, and leaving the soil surface rough.

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Depth to the hardpan limits the construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush increases and Indian ricegrass and needlegrasses decrease.
- The suitability for seeding is good.

152—Kerrfield loam, 3 to 20 percent slopes

Composition

Kerrfield and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Alluvium
Geology: Tuffaceous sedimentary rock and diatomaceous earth
Elevation: 4,200 to 4,800 feet
Rangeland ecological site and characteristic vegetation: (Loamy 8-10PZ)
Wyoming big sagebrush, Indian ricegrass, Thurber needlegrass, bluebunch
wheatgrass
Climatic factors:
Mean annual precipitation-8 to 11 inches

Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 3 inches-pale brown loam
3 to 8 inches-light yellowish brown loam
8 to 12 inches-very pale brown loam
12 to 26 inches-very pale brown sandy loam
26 to 33 inches-very pale brown very gravelly loamy coarse sand
33 inches-tuffaceous sedimentary rock

Soil Properties and Qualities

Depth: 10 to 20 inches to a hard, brittle layer and 20 to 40 inches to bedrock Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 4 inches
Hazard of erosion: Water—moderate; wind—slight
Corrosivity to steel: High
Contrasting Inclusions

- Dixon, Deppy, and Enko soils on lake terraces
- Rock outcrop

Major Soil Limitations
Water erosion, depth to bedrock, corrosivity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- This unit is suited to grazing in winter.
- As the site deteriorates, big sagebrush and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- The suitability for seeding is poor because of droughtiness.

153-Klicker very gravelly loam, 35 to 60 percent north slopes

Composition

Klicker and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains

Position on landform: North- and east-facing side slopes
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 5,000 to 6,000 feet
Forestland plant association and characteristic vegetation: (Douglas fir/elk sedge) white fir, Douglas fir, elk sedge

Climatic factors:

Mean annual precipitation-22 to 26 inches
Mean annual air temperature- 40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile
3 inches to 0-slightly decomposed pine needles and twigs
0 to 3 inches-brown very gravelly loam
3 to 13 inches-brown very cobbly loam
13 to 17 inches-brown very cobbly clay loam
17 to 24 inches-pale brown very cobbly clay loam
24 inches-fractured basalt

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water-moderate; wind—slight
Contrasting Inclusions

- Rock outcrop
- Royst and Gaib soils on south-facing mountain slopes

Major Soil Limitations

Water erosion, depth to bedrock

Use and Management
 Forest Products

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of equipment.
- Depth to bedrock and steepness of slope limit the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- As the site deteriorates, annual and perennial forbs increase.
- Excessive grazing decreases the abundance of sedges, pinegrass, and western fescue.

154—Klicker extremely cobbly loam, 15 to 35 percent north slopes

Composition

Klicker and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: North- and east-facing side slopes
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 5,000 to 6,000 feet

Forestland plant association and characteristic vegetation: (Ponderosa pine/elk sedge) ponderosa pine, elk sedge, Idaho fescue
Climatic factors:
Mean annual precipitation-18 to 24 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile
3 inches to 0—slightly decomposed pine needles and twigs
0 to 3 inches-brown extremely cobbly loam
3 to 13 inches-brown very cobbly loam
13 to 17 inches-brown very cobbly clay loam
17 to 24 inches-pale brown very cobbly clay loam
24 inches-fractured basalt

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Mound soils on north-facing mountain slopes
- Gaib and Lambring soils on south-facing mountain slopes
- Rock outcrop

Major Soil Limitations

Water erosion, surface rock fragments, depth to bedrock

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The extremely cobbly surface layer prohibits the operation of ground seeding equipment.
- The extremely cobbly soil surface limits livestock movement and the distribution of grazing.
- Depth to bedrock and steepness of slope limit the construction of water impoundments.
- As the site deteriorates, rabbitbrush and big sagebrush increase and sedges, Idaho fescue, and bluebunch wheatgrass decrease.

Forest Products

- Steepness of slope and the surface rock fragments restrict use of this unit for landings and roads.
- Surface mechanical site preparation is difficult because of the surface rock fragments.
- The surface rock fragments prevent deep mechanical site preparation.
- Planting by hand is difficult because of the surface rock fragments.
- Mechanical planting is prohibited because of the steepness of slope and surface rock fragments.

155—Krackle complex, 20 to 40 percent slopes
 Composition

Krackle, north slopes, and similar soils-55 percent Krackle, south slopes, and similar soils-30 percent Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: Krackle, north slopes—north- and east-facing side slopes;
Krackle, south slopes-south- and west-facing side slopes
Parent material: Colluvium
Geology: Basalt and andesite
Elevation: 5,500 to 7,400 feet
Rangeland ecological site and characteristic vegetation: Krackle, north slopes-
(North Slopes 12-16PZ) mountain big sagebrush, Idaho fescue; Krackle, south slopes-(South Slopes 12-16PZ) mountain big sagebrush, antelope bitterbrush, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-14 to 25 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile of Krackle, North and South Slopes

0 to 4 inches-grayish brown gravelly loam
4 to 15 inches-brown very stony clay loam
15 to 30 inches-yellowish brown very stony clay loam
30 inches-fractured basalt

Soil Properties and Qualities of Krackle, North and South Slopes

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Baconcamp, Dickle, Duff, and Leemorris soils on side slopes
- Rock outcrop

Major Soil Limitations

Water erosion, depth to bedrock, slope, cold climate

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The steepness of slope restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water and wind erosion.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- This unit is susceptible to invasion by cheatgrass.
- The suitability for seeding is fair because of the short growing season and steepness of slope.

156-Krackle-Baconcamp-Rock outcrop complex, 3 to 30 percent slopes

Composition

Krackle and similar soils-40 percent
Baconcamp and similar soils-30 percent
Rock outcrop- 15 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains fig. 6)
Position on landform: Krackle—side slopes of 10 to 30 percent; Baconcamp-ridges and side slopes of 3 to 30 percent
Parent material: Colluvium
Geology: Basalt and andesite
Elevation: 7,900 to 8,800 feet
Rangeland ecological site and characteristic vegetation: Krackle-(Open Slopes 25-35PZ) sedge, Letterman needlegrass, sheep fescue; Baconcamp-(Loamy $25-35 \mathrm{PZ}$) mountain big sagebrush, sheep fescue, Idaho fescue

Figure 6.-Area of Krackle-Baconcamp-Rock outcrop complex, 3 to 30 percent slopes, in foreground. Noname-Duff-Rock outcrop complex, 20 to 80 percent slopes, on escarpment. Duff-Hackwood complex, 2 to 30 percent slopes, on canyon bottom, in Little Blitzen Gorge.

Climatic factors:

Mean annual precipitation-25 to 35 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days
Typical Profile of Krackle
0 to 4 inches-grayish brown very gravelly loam
4 to 15 inches-brown very stony clay loam
15 to 30 inches-yellowish brown very stony clay loam
30 inches-fractured basalt
Properties and Qualities of Krackle
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind-slight

Typical Profile of Baconcamp

0 to 4 inches-very dark grayish brown very gravelly loam 4 to 20 inches-very dark grayish brown gravelly loam 20 to 35 inches-very dark grayish brown very gravelly loam 35 inches-fractured basalt

Properties and Qualities of Baconcamp

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind-slight

Contrasting Inclusions

- Welch soils in swales
- Dickle, Duff, and Leemorris soils on side slopes and ridges

Major Soil Limitations

Depth to bedrock, cold climate

Use and Management

Livestock Grazing

Krackle and Baconcamp

- Depth to bedrock limits the construction of water impoundments.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- The suitability for seeding is fair because of the short growing season and areas of Rock outcrop.

Krackle

- As the site deteriorates, sedges, fescue, and needlegrasses decrease and bottlebrush squirreltail and bluegrasses increase.

Baconcamp

- As the site deteriorates, big sagebrush, rabbitbrush, Sandberg bluegrass, mountain brome, and bottlebrush squirreltail increase and fescue and skyline bluegrass decrease.

157-Krackle-Baconcamp-Rock outcrop complex, high precipitation, 3 to 30 percent slopes

Composition

Krackle and similar soils-40 percent
Baconcamp and similar soils-30 percent
Rock outcrop-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Slope features: Concave and convex
Parent material: Colluvium
Geology: Basalt and andesite
Elevation: 8,500 to 9,700 feet
Rangeland ecological site and characteristic vegetation: Krackle—(Subalpine
Thin Surface 35-40PZ) sheep fescue, skyline bluegrass, Idaho fescue;
Baconcamp-(Subalpine Loamy 35-40PZ) rough fescue, sheep fescue, Idaho fescue
Climatic factors:
Mean annual precipitation-35 to 40 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days
Typical Profile of Krackle
0 to 4 inches-grayish brown very gravelly loam
4 to 15 inches-brown very stony clay loam
15 to 30 inches-yellowish brown very stony clay loam
30 inches-fractured basalt
Properties and Qualities of Krackle
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Typical Profile of Baconcamp
0 to 4 inches-very dark grayish brown very gravelly loam
4 to 20 inches-very dark grayish brown gravelly loam
20 to 35 inches-very dark grayish brown very gravelly loam
35 inches-fractured basalt
Properties and Qualities of Baconcamp
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Welch soils in swales
- Duff soils on side slopes and ridges

Major Soil Limitations

Depth to bedrock, cold climate

Use and Management
 Livestock Grazing

Krackle and Baconcamp

- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- The suitability for seeding is fair because of the short growing season and areas of Rock outcrop.

Krackle

- As the site deteriorates, bottlebrush squirreltail and Sandberg bluegrass increase and fescue and skyline bluegrass decrease.

Baconcamp

- As the site deteriorates, fescue and tufted hairgrass decrease and bottlebrush squirreltail and bluegrasses increase.

158—Krackle-Rock outcrop complex, 25 to 50 percent south slopes

Composition

Krackle and similar soils-70 percent
Rock outcrop- 15 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: South- and west-facing side slopes
Parent material: Colluvium
Geology: Basalt and andesite
Elevation: 5,700 to 7,400 feet
Rangeland ecological site and characteristic vegetation: Krackle-(South Slopes
12-16PZ) mountain big sagebrush, antelope bitterbrush, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-14 to 20 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days
Typical Profile of Krackle
0 to 4 inches-grayish brown cobbly clay loam
4 to 15 inches-brown very stony clay loam
15 to 30 inches-yellowish brown very stony clay loam
30 inches-fractured basalt
Properties and Qualities of Krackle
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow

Available water capacity: About 4 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Buckwilder, Duff, and Noname soils on side slopes
- Hackwood soils in concave areas on side slopes

Major Soil Limitations

Krackle-water erosion, slope, depth to bedrock, cold climate

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- The soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the steepness of slope, short growing season, and areas of Rock outcrop.

159—Krackle-Baconcamp-Hackwood association, 20 to 35 percent slopes

Composition

Krackle and similar soils-40 percent
Baconcamp and similar soils-30 percent
Hackwood and similar soils-20 percent
Contrasting inclusions-10 percent

Setting

Landform: Mountains
Position on landform: Krackle—south- and west-facing side slopes; Baconcamp-north- and east-facing side slopes and convex slopes; Hackwood-north- and east-facing footslopes and concave slopes
Parent material: Krackle and Baconcamp-colluvium; Hackwood—loess and colluvium
Geology: Basalt and andesite
Elevation: 5,400 to 8,200 feet
Rangeland ecological site and characteristic vegetation: Krackle—(South Slopes
12-16PZ) mountain big sagebrush, antelope bitterbrush, bluebunch wheatgrass;
Baconcamp-(Deep North 12-18PZ) mountain big sagebrush, whortleleaf snowberry, Idaho fescue; Hackwood-(Aspen 16-35PZ) quaking aspen, whortleleaf snowberry, sedge

Climatic factors:

Mean annual precipitation-14 to 25 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile of Krackle

0 to 4 inches-grayish brown cobbly clay loam
4 to 15 inches-brown very stony clay loam
15 to 30 inches-yellowish brown very stony clay loam
30 inches-fractured basalt
Properties and Qualities of Krackle
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Baconcamp
0 to 4 inches-very dark grayish brown stony loam
4 to 20 inches-very dark grayish brown gravelly loam
20 to 35 inches-very dark grayish brown very gravelly loam
35 inches-fractured basalt
Properties and Qualities of Baconcamp
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Hackwood

0 to 11 inches-brown gravelly loam
11 to 23 inches-brown loam
23 to 48 inches-brown gravelly loam
48 to 60 inches-light yellowish brown gravelly loam
Properties and Qualities of Hackwood
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Hapgood, Pearlwise, and Leemorris soils on side slopes
- Rock outcrop

Major Soil Limitations
Krackle, Baconcamp, and Hackwood-water erosion, slope, cold climate Krackle and Baconcamp-depth to bedrock Hackwood-seepage

Use and Management

Livestock Grazing

Krackle, Baconcamp, and Hackwood

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- The suitability for seeding is fair because of the short growing season and steepness of slope.

Krackle and Baconcamp

- Depth to bedrock limits the construction of water impoundments.

Krackle

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass.

Baconcamp

- As the site deteriorates, big sagebrush, bottlebrush squirreltail, and bluegrasses increase and Idaho fescue, bluebunch wheatgrass, and needlegrasses decrease.

Hackwood

- The risk of seepage limits the construction of water impoundments.
- Excessive use of aspen reduces its productivity and potential for regeneration.
- As the site deteriorates, shrubs and forbs increase and needlegrasses decrease.

160—Ladycomb cobbly clay loam, 8 to $\mathbf{2 5}$ percent slopes Composition

Ladycomb and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum
Geology: Basalt, andesite, and rhyolite
Elevation: 4,700 to 5,300 feet
Rangeland ecological site and characteristic vegetation: (Shrubby Loam 8-10PZ)
Wyoming big sagebrush, ephedra, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 2 inches-grayish brown cobbly clay loam
2 to 8 inches-grayish brown clay loam
8 inches—highly fractured andesite

Soil Properties and Qualities

Depth: 4 to 10 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Kerrfield soils on hills
- Bruncan soils on plateaus

Major Soil Limitations

Water erosion, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- This unit is suited to grazing in winter.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Thurber needlegrass and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the low available water capacity and depth to bedrock.

161—Lambranch gravelly loam, 2 to 8 percent slopes Composition

Lambranch and similar soils-85 percent
Contrasting inclusions-15 percent
Setting
Landform: Alluvial fans
Slope features: Plane and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 3,600 to 4,100 feet
Rangeland ecological site and characteristic vegetation: (JD Loamy Fan 9-12PZ)
basin big sagebrush, bluebunch wheatgrass, basin wildrye, Thurber needlegrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 3 inches-grayish brown gravelly loam
3 to 7 inches-grayish brown clay loam
7 to 19 inches-brown very gravelly clay and very cobbly sandy clay loam
19 to 27 inches-dark brown very gravelly clay
27 to 60 inches-pale brown very gravelly clay loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 5 inches

Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Loupence, Final, and Wenas soils on stream terraces
- Poall soils on hills

Major Soil Limitation
Shrink-swell potential

Use and Management

Livestock Grazing

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and basin wildrye, bluebunch wheatgrass, and needlegrasses decrease.
- As streambanks become unstable, channels deepen and widen and the subsurface waterflow is reduced, resulting in a drier site with decreased production.
- The suitability for seeding is good.

162—Lambring-Egyptcreek-Rock outcrop complex, 20 to 60 percent slopes

Composition

Lambring and similar soils-40 percent
Egyptcreek and similar soils-30 percent
Rock outcrop-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and mountains
Slope features: Concave and convex
Parent material: Colluvium
Geology: Welded tuff
Elevation: 4,200 to 5,000 feet
Rangeland ecological site and characteristic vegetation: Lambring-(SR Mahogany Rockland 12+PZ) curl-leaf mountain mahogany, western juniper, antelope bitterbrush, bluebunch wheatgrass, Idaho fescue
Forestland plant association and characteristic vegetation: Egyptcreek-(ponderosa pine/mountain big sagebrush/Idaho fescue-bluebunch wheatgrass) ponderosa pine, antelope bitterbrush, mountain big sagebrush, Idaho fescue

Climatic factors:

Mean annual precipitation-14 to 18 inches
Mean annual air temperature-40 to 45 degrees F Frost-free period-50 to 80 days

Typical Profile of Lambring
0 to 7 inches—dark grayish brown very stony loam
7 to 21 inches-brown gravelly loam
21 to 60 inches-brown very cobbly loam
Properties and Qualities of Lambring
Depth: More than 60 inches to bedrock
Drainage class: Well drained

Permeability: Moderate
 Available water capacity: About 6 inches
 Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Egyptcreek

1 inch to 0—slightly decomposed needles and twigs
0 to 8 inches-grayish brown very stony loam
8 to 18 inches-yellowish brown very gravelly loam
18 to 24 inches-yellowish brown extremely cobbly loam
24 inches-fractured welded tuff

Properties and Qualities of Egyptcreek

Depth: 20 to 36 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Erakatak and Observation soils on hills
- Roschene soils on stream terraces
- Soils that are similar to Hackwood soils and are in concave areas of mountains

Major Soil Limitations

Lambring and Egyptcreek-water erosion, slope, surface stones
Egyptcreek—depth to bedrock, available water capacity

Use and Management

Livestock Grazing

Lambring and Egyptcreek

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- The suitability for seeding is very poor because of the steepness of slope and surface stones.

Lambring

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.

Egyptcreek

- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.

Forest Products

Egyptcreek

- The steepness of slope and surface stones make landings and roads very difficult to construct.
- The steepness of slope limits the use of wheeled or tracked equipment.
- The steepness of slope prevents deep mechanical site preparation and mechanical planting.
- Planting by hand is difficult because of the steepness of slope and surface stones.
- The seedling mortality rate is high because of the low available water capacity.
- Because of the surface stones, fires of moderate fireline intensity may damage the soil. Consider alternative techniques if prescribed burning is used.

163—Lambring-Rock outcrop complex, 30 to 70 percent north slopes

Composition

Lambring, thick surface, and similar soils-40 percent
Lambring, thin surface, and similar soils-30 percent
Rock outcrop-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains and hills
Position on landform: North- and east-facing side slopes
Parent material: Colluvium
Geology: Basalt and welded tuff
Elevation: 6,100 to 6,500 feet
Rangeland ecological site and characteristic vegetation: Lambring, thick surface-
(North Slopes 12-16PZ) mountain big sagebrush, Idaho fescue; Lambring, thin surface-(Shallow North 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Lambring, Thick Surface
0 to 10 inches-dark grayish brown very gravelly loam
10 to 21 inches-brown gravelly loam
21 to 60 inches-brown very cobbly loam
Typical Profile of Lambring, Thin Surface
0 to 7 inches—dark grayish brown very gravelly loam
7 to 21 inches-brown gravelly loam
21 to 60 inches—brown very cobbly loam
Properties and Qualities of Lambring, Thick and Thin Surface
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water-severe; wind—slight

Contrasting Inclusions

- Ninemile soils on hills
- Fitzwater soils on south-facing side slopes of hills and mountains

Major Soil Limitations
Water erosion, slope

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope and the areas of Rock outcrop restrict the operation of ground seeding equipment.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The suitability for seeding is very poor because of the steepness of slope.

164-Lambring-Rubble land complex, 30 to 50 percent slopes

Composition

Lambring and similar soils-50 percent
Rubble land- 35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and mountains
Slope features: Concave and convex
Parent material: Colluvium
Geology: Basalt and welded tuff
Elevation: 5,000 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Lambring-(SR Mahogany
Rockland 12+PZ) curl-leaf mountain mahogany, western juniper, antelope
bitterbrush, bluebunch wheatgrass, Idaho fescue
Climatic factors:
Mean annual precipitation-14 to 18 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Lambring
0 to 7 inches-dark grayish brown extremely stony loam
7 to 21 inches-brown gravelly loam
21 to 60 inches-brown very cobbly loam
Properties and Qualities of Lambring
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water-moderate; wind-slight

Contrasting Inclusions

- Erakatak, Gaib, and Ticino soils on hills
- Roschene soils on stream terraces
- Soils that are similar to Hackwood soils and are on mountains

Major Soil Limitations

Water erosion, slope, surface stones

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment and limit livestock movement and the distribution of grazing.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the surface stones and steepness of slope.

165—Langslet silty clay, 0 to 2 percent slopes

Composition

Langslet and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Clay Basin 6-8PZ)
shadscale, bud sagebrush, bottlebrush squirreltail
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature- 45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 7 inches-light gray silty clay
7 to 14 inches-light brownish gray silty clay
14 to 23 inches-light brownish gray sandy clay loam
23 to 37 inches-pale brown clay loam
37 to 49 inches-very pale brown silty clay
49 to 62 inches-pale brown sandy clay loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Water table: Present in winter and spring
Permeability: Slow
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Potential frost action: High

Contrasting Inclusions

- Defenbaugh soils on alluvial fans
- Helphenstein and Ozamis soils on lake plains

Major Soil Limitations

Wetness, shrink-swell potential

Use and Management
 Livestock Grazing

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- The soil expands when wet and contracts when dry, which may damage structures and fences.
- This unit is suited to grazing in winter.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, shadscale increases and bottlebrush squirreltail decreases.
- The suitability for seeding is very poor because of droughtiness.

166-Lava flows

Composition

Lava flows-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Basalt flow pressure ridges at the periphery of Diamond Craters Geology: Basalt
Elevation: 4,100 to 4,300 feet
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Contrasting Inclusions

- Flank, Pomerening, and Srednic soils on hills

Major Uses

Watershed, wildlife habitat

167-Lava flows-Flank complex, 1 to 40 percent slopes Composition

Lava flows-55 percent
Flank and similar soils-30 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills near Diamond Craters
Position on landform: Flank—pressure ridges with slopes of 2 to 40 percent; Flank— hillsides with slopes of 1 to 10 percent
Parent material: Flank-cinders and ash
Geology: Basalt
Elevation: 4,100 to 4,300 feet

Rangeland ecological site and characteristic vegetation: Flank—(Shallow Lava
10-12PZ) basin big sagebrush, Thurber needlegrass, bluebunch wheatgrass, Sandberg bluegrass

Climatic factors:

Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Flank

0 to 1 inch—dark grayish brown very gravelly sandy loam
1 to 9 inches-dark brown very gravelly sandy loam
9 inches-basalt

Properties and Qualities of Flank

Depth: 4 to 15 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Pomerening soils on hills

Major Soil Limitations

Flank—available water capacity, depth to bedrock

Use and Management

Livestock Grazing

- Lava flows restrict livestock movement.
- The low available water capacity of the surface layer limits seedling survival.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the Flank soil is saturated following snowmelt.
- The Flank soil is susceptible to invasion by cheatgrass.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- The suitability for seeding is very poor because of the low available water capacity and depth to bedrock.

168-Lawen fine sandy loam, 2 to 5 percent slopes
 Composition

Lawen and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,000 to 4,500 feet

Rangeland ecological site and characteristic vegetation: (Sandy Loam 10-12PZ)
basin big sagebrush, needleandthread, Thurber needlegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 10 inches-brown fine sandy loam
10 to 15 inches-brown loam
15 to 60 inches—pale brown fine sandy loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 9 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High
Contrasting Inclusions

- Poujade and Windybutte soils on lake terraces
- Ausmus soils on lake plains

Major Soil Limitations

Wind erosion, corrosivity

Use and Management
 Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush increases and Indian ricegrass and needlegrasses decrease.
- The suitability for seeding is good.

Irrigated Hayland

- Because the infiltration rate is moderately rapid, sprinkler irrigation is best suited to this soil.
- This soil is well suited to use as irrigated hayland.

169—Leathers silt loam, 0 to 2 percent slopes
 Composition

Leathers and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane and concave
Parent material: Lacustrine sediment
Geology: Mixed igneous rock
Elevation: 4,100 to 4,200 feet

Rangeland ecological site and characteristic vegetation: (Dry Sodic Floodplain) black greasewood, basin big sagebrush, inland saltgrass, basin wildrye
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 9 inches-light brownish gray silt loam
9 to 13 inches-pale brown loam
13 to 24 inches-very pale brown sandy loam
24 to 28 inches-light gray loam
28 to 46 inches-light brownish gray loamy fine sand
46 to 52 inches-very pale brown loam
52 to 61 inches-very pale brown sand

Soil Properties and Qualities

Depth: 40 to 60 inches or more to sand layer and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Strong
Alkalinity: Strong
Corrosivity to steel: High

Contrasting Inclusions

- Poujade and Windybutte soils on lake terraces
- Ausmus soils on lake plains

Major Soil Limitations

Salinity, alkalinity, corrosivity

Use and Management

Livestock Grazing

- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, rabbitbrush, and bottlebrush squirreltail increase and inland saltgrass and basin wildrye decrease.
- The suitability for seeding is very poor because of the strong salinity and alkalinity.

170—Leathers silt loam, 1 to 3 percent slopes

Composition

Leathers and similar soils-85 percent
Contrasting inclusions-15 percent

Slope features: Plane
Parent material: Lacustrine sediment
Geology: Mixed igneous rock
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Low Sodic Terrace 6-10PZ) black greasewood, shadscale, spiny hopsage, bottlebrush squirreltail, bud sagebrush
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 9 inches-light brownish gray silt loam
9 to 13 inches-pale brown loam
13 to 24 inches-very pale brown sandy loam
24 to 28 inches-light gray loam
28 to 46 inches-light brownish gray loamy fine sand
46 to 52 inches-very pale brown loam
52 to 61 inches-very pale brown sand

Soil Properties and Qualities

Depth: 40 to 60 inches or more to sand layer and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Strong
Alkalinity: Strong
Corrosivity to steel: High

Contrasting Inclusions

- Poujade soils on lake terraces
- Ausmus and Lolak soils on lake plains
- Goldrun soils on sand dunes

Major Soil Limitations

Salinity, alkalinity, corrosivity

Use and Management

Livestock Grazing

- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, shadscale, black greasewood, and bottlebrush squirreltail increase and bud sagebrush, basin wildrye, and beardless wildrye decrease.
- This soil is susceptible to invasion by halogeton, povertyweed, Russian thistle, and cheatgrass.
- The suitability for seeding is very poor because of the strong salinity and alkalinity.

171-Leemorris-Buckwilder complex, 3 to 15 percent slopes

Composition

Leemorris and similar soils-50 percent Buckwilder and similar soils-35 percent Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Basalt and andesite
Elevation: 6,000 to 7,200 feet
Rangeland ecological site and characteristic vegetation: Leemorris-(Loamy
$12-16 \mathrm{PZ}$) mountain big sagebrush, Idaho fescue, Thurber needlegrass;
Buckwilder-(Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch
wheatgrass
Climatic factors:
Mean annual precipitation-12 to 25 inches
Mean annual air temperature- 40 to 43 degrees F
Frost-free period- 30 to 60 days

Typical Profile of Leemorris

0 to 5 inches-very dark grayish brown gravelly clay loam 5 to 26 inches-dark grayish brown gravelly clay loam 26 to 30 inches-dark yellowish brown gravelly clay 30 inches-basalt

Properties and Qualities of Leemorris

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Potential frost action: High
Typical Profile of Buckwilder
0 to 8 inches-grayish brown very cobbly clay loam
8 to 21 inches-brown clay
21 to 27 inches-dark yellowish brown cobbly clay
27 inches-fractured basalt
Properties and Qualities of Buckwilder
Depth: 6 to 10 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Pearlwise soils on plateaus
- Welch soils along drainageways
- Rock outcrop

Major Soil Limitations

Leemorris and Buckwilder-water erosion, depth to bedrock, shrink-swell potential, cold climate, frost action
Buckwilder-depth to a claypan, surface rock fragments, corrosivity

Use and Management

Livestock Grazing

Leemorris and Buckwilder

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.

Leemorris

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is fair because of the short growing season.

Buckwilder

- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of depth to the claypan, surface rock fragments, and short growing season.

172—Leemorris-Buckwilder complex, 15 to 35 percent slopes

Composition

Leemorris and similar soils-50 percent Buckwilder and similar soils-35 percent Contrasting inclusions-15 percent

Setting
Landform: Mountains (fig. 7)
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Basalt and andesite
Elevation: 6,000 to 7,200 feet
Rangeland ecological site and characteristic vegetation: Leemorris-(Loamy
$12-16 P Z$) mountain big sagebrush, Idaho fescue, Thurber needlegrass;

Figure 7.-View of Pueblo Mountains. Leemorris-Buckwilder complex, 15 to 35 percent slopes, in foreground, and Baconcamp-Rock outcrop complex, 30 to 70 percent north slopes, in background.

Buckwilder-(Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 25 inches
Mean annual air temperature- 40 to 43 degrees F Frost-free period-30 to 60 days

Typical Profile of Leemorris

0 to 5 inches-very dark grayish brown gravelly clay loam
5 to 26 inches-dark grayish brown gravelly clay loam
26 to 30 inches-dark yellowish brown gravelly clay
30 inches-basalt
Properties and Qualities of Leemorris
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 4 inches
Hazard of erosion: Water-moderate; wind-slight
Shrink-swell potential: High
Potential frost action: High

Typical Profile of Buckwilder

0 to 8 inches-grayish brown very cobbly clay loam
8 to 21 inches-brown clay
21 to 27 inches-dark yellowish brown cobbly clay
27 inches-fractured basalt

Properties and Qualities of Buckwilder

Depth: 6 to 10 inches to a claypan and 20 to 40 inches to bedrock Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Baconcamp soils on mountains
- Rock outcrop

Major Soil Limitations

Leemorris and Buckwilder-water erosion, depth to bedrock, shrink-swell potential, cold climate, frost action
Buckwilder-depth to a claypan, surface rock fragments, corrosivity

Use and Management

Livestock Grazing

Leemorris and Buckwilder

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.

Leemorris

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is fair because of the short growing season.

Buckwilder

- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the depth to the claypan, surface rock fragments, and short growing season.

173-Legler silty clay loam, 0 to 3 percent slopes
 Composition

Legler and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Stream terraces
Slope features: Concave
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 3,400 to 4,200 feet
Rangeland ecological site and characteristic vegetation: (SR Swale 9-12PZ) basin big sagebrush, basin wildrye, bluebunch wheatgrass, needleandthread
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature- 45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 4 inches-yellowish brown silty clay loam
4 to 45 inches-yellowish brown silty clay loam
45 to 62 inches-light yellowish brown loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Frequency of flooding: Rare
Permeability: Moderately slow
Available water capacity: About 10 inches
Hazard of erosion: Water-slight; wind-slight
Corrosivity to steel: High

Contrasting Inclusions

- Lambranch soils on alluvial fans
- Loupence soils on stream terraces
- Risley and Poall soils on hills

Major Soil Limitation

Corrosivity

Use and Management

Livestock Grazing

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and basin wildrye, bluebunch wheatgrass, and needlegrasses decrease.
- As streambanks become unstable, channels deepen and widen and the subsurface waterflow is reduced, resulting in a drier site with decreased production.
- The suitability for seeding is good.

174-Locane very cobbly loam, 5 to 25 percent slopes

Composition

Locane and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum
Geology: Basalt and welded tuff
Elevation: 4,800 to 6,500 feet
Rangeland ecological site and characteristic vegetation: (Clayey 10-12PZ) Wyoming
big sagebrush, bluebunch wheatgrass

Climatic factors:

Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 7 inches-light brownish gray very cobbly loam
7 to 15 inches-brown very cobbly clay loam
15 inches-welded tuff

Soil Properties and Qualities

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Reluctan and Anawalt soils on hills and plateaus
- Rock outcrop

Major Soil Limitations

Available water capacity, depth to bedrock, shrink-swell potential

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- The suitability for seeding is very poor because of the low available water capacity and depth to bedrock.

175-Lolak very fine sandy loam, 0 to 1 percent slopes

Composition

Lolak and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Sodic Meadow) alkali
sacaton, inland saltgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 3 inches-light gray very fine sandy loam
3 to 10 inches-light brownish gray clay loam
10 to 19 inches-light brownish gray clay
19 to 40 inches-light brownish gray silty clay loam
40 to 60 inches-light gray loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Very slow
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—moderate
Alkalinity: Strong
Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: Moderate

Contrasting Inclusions

- Ausmus, Crowcamp, Poujade, and Skidoosprings soils on higher lake terraces

Major Soil Limitations

Wind erosion, wetness, shrink-swell potential, alkalinity, corrosivity

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soil is wet or saturated damages plants and causes soil compaction and displacement.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- Black greasewood invades when ponding is less frequent.
- As the site deteriorates, inland saltgrass, Baltic rush, and black greasewood increase and alkali sacaton and Sandberg bluegrass decrease.
- The suitability for seeding is very poor because of the strong alkalinity.

176—Lolak-Ausmus complex, 0 to 1 percent slopes Composition

Lolak and similar soils-50 percent
Ausmus and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,200 feet
Rangeland ecological site and characteristic vegetation: Lolak-(Sodic Meadow) alkali sacaton, Sandberg bluegrass, inland saltgrass; Ausmus-(Sodic Bottom)
black greasewood, basin wildrye, inland saltgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Lolak
0 to 3 inches-light gray very fine sandy loam
3 to 10 inches-light brownish gray clay loam
10 to 19 inches-light brownish gray clay loam and clay
19 to 40 inches-light brownish gray silty clay loam
40 to 60 inches-light gray loam

Properties and Qualities of Lolak

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present late in winter and in spring
Permeability: Very slow
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—moderate
Alkalinity: Strong
Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Typical Profile of Ausmus

0 to 2 inches-light brownish gray fine sandy loam
2 to 16 inches-light brownish gray silty clay loam
16 to 29 inches-light brownish gray silt loam
29 to 69 inches-light yellowish brown loam
Properties and Qualities of Ausmus
Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Strong
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High
Contrasting Inclusions

- Crowcamp soils on lake plains
- Poujade and Voltage soils on low lake terraces

Major Soil Limitations

Lolak and Ausmus-wetness, alkalinity, corrosivity, wind erosion Lolak—shrink-swell potential
Ausmus-salinity

Use and Management
 Livestock Grazing

Lolak and Ausmus

- Excess salts and sodium in the soils result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soils are wet or saturated damages plants and causes soil compaction and displacement.

Lolak

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- The suitability for seeding is very poor because of the strong alkalinity.

Ausmus

- As the site deteriorates, inland saltgrass and black greasewood increase and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity and salinity.

177—Lonely-Doyn association, 2 to 20 percent slopes Composition

Lonely and similar soils-50 percent
Doyn and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Lonely—concave areas with slopes of 2 to 10 percent; Doyn-convex areas with slopes of 8 to 20 percent
Parent material: Lonely-colluvium; Doyn—residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,300 to 5,700 feet
Rangeland ecological site and characteristic vegetation: Lonely and Doyn-
(Loamy 10-12PZ) Wyoming big sagebrush, Thurber needlegrass, bluebunch
wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Lonely
0 to 4 inches-pale brown sandy clay loam
4 to 16 inches-pale brown clay loam
16 to 24 inches-light brownish gray gravelly clay loam
24 inches-andesite
Properties and Qualities of Lonely
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Typical Profile of Doyn
0 to 2 inches-brown sandy clay loam
2 to 8 inches-brown cobbly loam
8 inches-basalt
Properties and Qualities of Doyn
Depth: 4 to 10 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Rock outcrop
- Actem soils on hills and plateaus

Major Soil Limitations

Lonely and Doyn-depth to bedrock
Doyn-water erosion, available water capacity

Use and Management

Livestock Grazing

Lonely and Doyn

- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.

Lonely

- The suitability for seeding is good.

Doyn

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The suitability for seeding is very poor because of the low available water capacity and depth to bedrock.

178-Lonely-Robson association, 5 to 25 percent slopes

Composition

Lonely and similar soils-50 percent
Robson and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Lonely—side slopes of 12 to 25 percent; Robson—ridges with slopes of 5 to 15 percent
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,500 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Lonely-(Loamy
10-12PZ) Wyoming big sagebrush, Thurber needlegrass, bluebunch
wheatgrass; Robson-(Clayey 10-12PZ) Wyoming big sagebrush, bluebunch
wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Lonely
0 to 4 inches-pale brown cobbly clay loam
4 to 16 inches-pale brown clay loam
16 to 24 inches-light brownish gray gravelly clay loam
24 inches-andesite
Properties and Qualities of Lonely
Depth: 20 to 40 inches to bedrock

Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Robson
0 to 4 inches-light brownish gray very cobbly clay loam
4 to 13 inches-brown very gravelly clay
13 inches-basalt

Properties and Qualities of Robson

Depth: 12 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Rock outcrop
- Fourwheel soils on hills

Major Soil Limitations

Lonely and Robson-depth to bedrock
Lonely-water erosion, surface rock fragments
Robson—available water capacity, shrink-swell potential

Use and Management
 Livestock Grazing

Lonely and Robson

- Depth to bedrock limits the construction of water impoundments.

Lonely

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover reduces the risk of water erosion.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is fair because of the surface rock fragments.

Robson

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- The suitability for seeding is very poor because of the low available water capacity.

179—Longcreek-Cleavage complex, 20 to 50 percent slopes

Composition

Longcreek and similar soils-45 percent
Cleavage and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: Longcreek—south- and west-facing side slopes; Cleavage-north- and east-facing side slopes
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 5,400 to 6,600 feet
Rangeland ecological site and characteristic vegetation: Longcreek-(Droughty South Slopes 11-13PZ) basin big sagebrush, bluebunch wheatgrass, Thurber needlegrass; Cleavage-(Shallow North 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 14 inches Mean annual air temperature-43 to 49 degrees F Frost-free period-50 to 100 days

Typical Profile of Longcreek

0 to 3 inches-dark grayish brown very cobbly loam
3 to 7 inches-brown very cobbly loam
7 to 11 inches-brown very cobbly clay loam
11 to 18 inches-brown very cobbly clay
18 inches-fractured andesite
Properties and Qualities of Longcreek
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Typical Profile of Cleavage
0 to 7 inches—dark grayish brown extremely gravelly loam
7 to 15 inches-brown very cobbly clay loam
15 inches-fractured bedrock
Properties and Qualities of Cleavage
Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Ninemile soils on mountains
- Baconcamp soils on steep, north-facing mountainsides
- Pearlwise soils on north-facing mountainsides
- Rock outcrop

Major Soil Limitations

Longcreek and Cleavage-water erosion, slope, depth to bedrock, available water capacity
Longcreek-shrink-swell potential

Use and Management

Livestock Grazing

Longcreek and Cleavage

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- These soils are susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity and steepness of slope.

Longcreek

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.

Cleavage

- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.

180—Longcreek-Rock outcrop complex, 40 to 70 percent south slopes

Composition

Longcreek and similar soils-75 percent
Rock outcrop-10 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains

Position on landform: South- and west-facing side slopes
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 5,300 to 6,400 feet
Rangeland ecological site and characteristic vegetation: Longcreek-(Droughty
South Slopes 11-13PZ) basin big sagebrush, bluebunch wheatgrass, Thurber
needlegrass

Climatic factors:

Mean annual precipitation-12 to 14 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Longcreek

0 to 3 inches—dark grayish brown very cobbly loam
3 to 7 inches-brown very cobbly loam
7 to 11 inches-brown very cobbly clay loam
11 to 18 inches-brown very cobbly clay
18 inches-fractured andesite

Properties and Qualities of Longcreek

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water-severe; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Cleavage, Carryback, and Pearlwise soils on mountains

Major Soil Limitations

Longcreek-water erosion, slope, depth to bedrock, shrink-swell potential

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- The soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the steepness of slope and low available water capacity.

181—Loupence silt loam, 0 to 2 percent slopes

Composition
Loupence and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Stream terraces
Slope features: Plane

Parent material: Alluvium

Geology: Mixed igneous rock
Elevation: 3,500 to 3,800 feet
Rangeland ecological site and characteristic vegetation: (Loamy Bottom) basin wildrye
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-45 to 49 degrees F Frost-free period-80 to 100 days

Typical Profile

0 to 49 inches-grayish brown silt loam
49 to 60 inches-brown sandy loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Water table: Present late in winter through early in summer
Flooding: Present in spring
Permeability: Moderate
Available water capacity: About 11 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Wenas soils in depressions of stream terraces
- Cumulic Haploxerolls adjacent to streams
- Final soils on stream terraces

Major Soil Limitations
Wetness, corrosivity, frost action

Use and Management

Irrigated Hayland

- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heave.
- Flooding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- Grazing when the soil is wet results in compaction of the surface layer. A compacted soil surface layer may lead to excessive runoff and restricted plant growth.
- The seasonal high water table provides supplemental water for adapted plants.
- This unit provides food and cover important for wildlife.
- Flooding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.

Livestock Grazing

- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soil is wet or saturated damages plants and causes soil compaction and displacement.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As streambanks become unstable, channels deepen and widen and the subsurface waterflow is reduced, resulting in a drier site with decreased production and increased density of upland shrubs.
- As the site deteriorates, big sagebrush and bluegrasses increase and basin wildrye and willows decrease.
- The suitability for seeding is good.

182-Madeline very stony loam, 15 to 40 percent south slopes

Composition

Madeline and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains and hills
Position on landform: South- and west-facing side slopes
Parent material: Colluvium and residuum
Geology: Rhyolite, andesite, welded tuff, and basalt
Elevation: 3,500 to 6,000 feet
Rangeland ecological site and characteristic vegetation: (South Slopes
8-12PZ) Wyoming big sagebrush, bluebunch wheatgrass, Sandberg
bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches—reddish brown very stony loam
2 to 10 inches—reddish brown clay loam
10 to 19 inches-reddish brown cobbly clay loam
19 inches—rhyolite

Soil Properties and Qualities

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Contrasting Inclusions

- Fitzwater soils on steep, north-facing hillsides
- Carryback and Ninemile soils on hills
- Rock outcrop

Major Soil Limitations

Depth to bedrock, water erosion, surface stones, available water capacity, slope, shrink-swell potential

Use and Management

Livestock Grazing

- Steepness of slope and surface stones restrict the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

183-Madeline very stony loam, 20 to 60 percent north slopes

Composition

Madeline and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and mountains
Position on landform: North- and east-facing side slopes
Parent material: Colluvium and residuum
Geology: Rhyolite, andesite, welded tuff, and basalt
Elevation: 3,500 to 6,000 feet
Rangeland ecological site and characteristic vegetation: (North Slopes 12-16PZ) mountain big sagebrush, Idaho fescue

Climatic factors:

Mean annual precipitation-10 to 12 inches
Mean annual air temperature- 43 to 45 degrees F Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-reddish brown very stony loam
2 to 10 inches-reddish brown clay loam
10 to 19 inches-reddish brown cobbly clay loam
19 inches-rhyolite

Soil Properties and Qualities

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Felcher soils on south-facing hillsides
- Carryback and Ninemile soils on hills
- Rock outcrop

Major Soil Limitations

Depth to bedrock, water erosion, surface stones, slope, available water capacity, shrink-swell potential

Use and Management

Livestock Grazing

- Steepness of slope and surface stones restrict the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass and western juniper.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

184-Madeline-Ninemile complex, 15 to 35 percent slopes

Composition

Madeline and similar soils-45 percent
Ninemile and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 4,500 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Madeline-(South Slopes
8-12PZ) Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass;

Ninemile-(Claypan 10-12PZ) low sagebrush, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature- 40 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Madeline
0 to 2 inches-reddish brown gravelly clay loam
2 to 10 inches-reddish brown clay loam
10 to 19 inches-reddish brown cobbly clay loam
19 inches-rhyolite

Properties and Qualities of Madeline

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water-moderate; wind-slight
Shrink-swell potential: High

Typical Profile of Ninemile

0 to 4 inches-grayish brown very cobbly loam 4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Westbutte soils on north-facing hillsides
- Carryback soils on hills
- Rock outcrop

Major Soil Limitations

Madeline and Ninemile-water erosion, shrink-swell potential, depth to bedrock, available water capacity
Ninemile-depth to a claypan, surface rock fragments
Use and Management

Livestock Grazing

Madeline and Ninemile

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- These soils are susceptible to invasion by cheatgrass and medusahead.

Madeline

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity.

Ninemile

- The claypan restricts the rooting depth.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

185-Madeline-Rock outcrop complex, 40 to 70 percent slopes

Composition

Madeline and similar soils-65 percent
Rock outcrop-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and mountains
Position on landform: Side slopes
Parent material: Colluvium and residuum
Geology: Rhyolite, andesite, welded tuff, and basalt
Elevation: 3,500 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Madeline—(South
Slopes 8-12PZ) Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Madeline

0 to 2 inches-reddish brown very stony loam
2 to 10 inches-reddish brown clay loam
10 to 19 inches-reddish brown cobbly clay loam
19 inches-rhyolite

Properties and Qualities of Madeline

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—severe; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Westbutte soils on north-facing hillsides and mountainsides
- Carryback and Ninemile soils on hills

Major Soil Limitations

Slope, surface stones, depth to bedrock, water erosion, available water capacity, shrink-swell potential

Use and Management

Livestock Grazing

- Steepness of slope, surface stones, and areas of Rock outcrop restrict the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- The soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

186-Mahoon very cobbly loam, 2 to 20 percent slopes

Composition

Mahoon and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Tuffaceous sedimentary rock and diatomaceous earth
Elevation: 3,400 to 4,200 feet
Rangeland ecological site and characteristic vegetation: (SR Clayey 9-12PZ)
bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F Frost-free period-80 to 100 days

Typical Profile of Mahoon
0 to 3 inches-grayish brown very cobbly loam
3 to 9 inches-grayish brown gravelly clay
9 to 18 inches-brown gravelly clay
18 to 25 inches-pale brown gravelly clay
25 inches-diatomaceous earth

Properties and Qualities of Mahoon

Depth: 2 to 10 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Drewsey and Risley soils on hills
- Rock outcrop

Major Soil Limitations

Surface rock fragments, depth to bedrock, shrink-swell potential, depth to a claypan, corrosivity

Use and Management

Livestock Grazing

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the depth to the claypan and surface rock fragments.

187-Mahoon-Brezniak-Longcreek complex, 2 to 20 percent slopes

Composition

Mahoon and similar soils-40 percent
Brezniak and similar soils-25 percent
Longcreek and similar soils-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus Slope features: Concave and convex Parent material: Residuum
Geology: Mahoon—tuffaceous sedimentary rock and diatomaceous earth;
Brezniak and Longcreek-basalt, andesite, and welded tuff
Elevation: 3,600 to 4,700 feet
Rangeland ecological site and characteristic vegetation: Mahoon-(SR Clayey
9-12PZ) bluebunch wheatgrass; Brezniak-(SR Very Shallow 9-12PZ) stiff
sagebrush, Sandberg bluegrass, Idaho fescue; Longcreek-(JD Claypan
9-12PZ) low sagebrush, bluebunch wheatgrass, Sandberg bluegrass

Climatic factors:

Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Mahoon

0 to 3 inches-grayish brown very cobbly loam
3 to 9 inches-grayish brown gravelly clay
9 to 18 inches-brown gravelly clay
18 to 25 inches-pale brown gravelly clay
25 inches-diatomaceous earth

Properties and Qualities of Mahoon

Depth: 2 to 10 inches to a claypan and 20 to 40 inches to bedrock Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Typical Profile of Brezniak
0 to 3 inches—brown cobbly loam
3 to 7 inches-brown clay
7 to 10 inches-reddish yellow clay
10 inches-fractured basalt

Properties and Qualities of Brezniak

Depth: 7 to 12 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Longcreek

0 to 3 inches-dark grayish brown gravelly loam
3 to 7 inches-brown gravelly loam
7 to 11 inches-brown very cobbly clay loam
11 to 18 inches-brown very cobbly clay
18 inches-fractured andesite
Properties and Qualities of Longcreek
Depth: 3 to 12 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Bucklake soils on steep, north-facing hillsides
- Drewsey soils on hills
- Rock outcrop

Major Soil Limitations

Mahoon, Brezniak, and Longcreek—depth to bedrock, shrink-swell potential Mahoon and Longcreek—depth to a claypan
Brezniak and Longcreek—available water capacity
Mahoon-corrosivity, surface rock fragments

Use and Management

Livestock Grazing

Mahoon, Brezniak, and Longcreek

- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.

Mahoon and Longcreek

- The claypan restricts the rooting depth.
- The upper part of the soils is saturated following snowmelt.

Mahoon

- Because of the corrosivity to uncoated steel, noncorrosive material and treatments should be used for structures.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the depth to the claypan and surface rock fragments.

Brezniak

- As the site deteriorates, stiff sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity and depth to bedrock.

Longcreek

- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the low available water capacity and depth to the claypan.

188-Mahoon-Cagle complex, 10 to 40 percent slopes Composition

Mahoon and similar soils-65 percent Cagle and similar soils-20 percent Contrasting inclusions-15 percent

Setting

Landform: Hills

Position on landform: Mahoon—side slopes and footslopes of 10 to 20 percent;
Cagle—north- and east-facing side slopes of 20 to 40 percent
Parent material: Residuum and colluvium
Geology: Tuffaceous sedimentary rock and diatomaceous earth
Elevation: 3,400 to 4,200 feet
Rangeland ecological site and characteristic vegetation: Mahoon-(SR Clayey
9-12PZ) bluebunch wheatgrass; Cagle—(SR Mountain North 9-12PZ) Idaho fescue
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile of Mahoon
0 to 3 inches-grayish brown very cobbly loam
3 to 9 inches-grayish brown gravelly clay
9 to 18 inches-brown gravelly clay
18 to 25 inches-pale brown gravelly clay
25 inches-diatomaceous earth

Properties and Qualities of Mahoon

Depth: 2 to 10 inches to a claypan and 20 to 40 inches to bedrock Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Typical Profile of Cagle

0 to 4 inches-brown very stony clay loam
4 to 12 inches-brown clay
12 to 24 inches-yellowish brown clay
24 to 36 inches-yellowish brown clay loam
36 inches-tuffaceous sedimentary rock

Properties and Qualities of Cagle

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 4 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Contrasting Inclusions

- Drewsey and Risley soils on hills
- Rock outcrop

Major Soil Limitations

Mahoon and Cagle—depth to bedrock, shrink-swell potential Mahoon-depth to a claypan, corrosivity, surface rock fragments Cagle-surface stones, water erosion

Use and Management

Livestock Grazing

Mahoon and Cagle

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
Mahoon
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the depth to the claypan and surface rock fragments.

Cagle

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The very stony surface layer restricts the operation of ground seeding equipment.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the surface stones.

189-Mahoon-Risley complex, 2 to 20 percent slopes Composition

Mahoon and similar soils-50 percent
Risley and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Tuffaceous sedimentary rock and diatomaceous earth
Elevation: 3,700 to 4,500 feet
Rangeland ecological site and characteristic vegetation: Mahoon-(SR Clayey
9-12PZ) bluebunch wheatgrass; Risley-(JD Claypan 9-12PZ) low sagebrush, bluebunch wheatgrass, Sandberg bluegrass

Climatic factors:

Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Mahoon

0 to 3 inches-grayish brown silt loam
3 to 9 inches-grayish brown gravelly clay
9 to 18 inches-brown gravelly clay

18 to 25 inches-pale brown gravelly clay
25 inches-diatomaceous earth

Properties and Qualities of Mahoon

Depth: 2 to 10 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Typical Profile of Risley

0 to 3 inches-light brownish gray very gravelly loam
3 to 12 inches-grayish brown clay
12 to 25 inches-light olive brown gravelly clay
25 to 37 inches-light yellowish brown gravelly clay loam
37 to 39 inches-pale yellow very gravelly sandy clay loam
39 inches-tuffaceous sedimentary rock

Properties and Qualities of Risley

Depth: 1 to 11 inches to a claypan and 20 to 40 inches to bedrock Drainage class: Well drained
Permeability: Slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Bucklake soils on steep, north-facing hillsides
- Gumble and Drewsey soils on hills
- Rock outcrop

Major Soil Limitations

Mahoon and Risley—depth to bedrock, depth to a claypan, shrink-swell potential, corrosivity

Use and Management

Livestock Grazing

Mahoon and Risley

- Depth to bedrock limits the construction of water impoundments.
- The claypan restricts the rooting depth.
- The upper part of the soils is saturated following snowmelt.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- These soils are susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the depth to the claypan.

Mahoon

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.

Risley

- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.

190—Mahoon-Cotant association, 15 to 30 percent slopes

Composition

Mahoon and similar soils-50 percent
Cotant and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Mahoon—south- and west-facing side slopes; Cotant—northand east-facing side slopes
Parent material: Residuum and colluvium
Geology: Tuffaceous sedimentary rock and diatomaceous earth
Elevation: 3,800 to 4,800 feet
Rangeland ecological site and characteristic vegetation: Mahoon-(SR Clayey South 8-12PZ) bluebunch wheatgrass; Cotant-(SR Mountain North 9-12PZ) Idaho fescue
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-50 to 100 days

Typical Profile of Mahoon

0 to 3 inches-grayish brown very gravelly loam
3 to 9 inches-grayish brown gravelly clay
9 to 18 inches-brown gravelly clay
18 to 25 inches-pale brown gravelly clay
25 inches-diatomaceous earth

Properties and Qualities of Mahoon

Depth: 2 to 10 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Typical Profile of Cotant

0 to 3 inches-grayish brown stony loam
3 to 13 inches-grayish brown clay
13 inches-weathered tuffaceous sedimentary rock

Properties and Qualities of Cotant

Depth: 2 to 10 inches to a claypan and 12 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches

Hazard of erosion: Water—moderate; wind—slight Shrink-swell potential: High

Contrasting Inclusions

- Drewsey, Risley, and Poall soils on hills
- Rock outcrop

Major Soil Limitations

Mahoon and Cotant-water erosion, depth to bedrock, depth to a claypan, shrink-swell potential
Mahoon-corrosivity
Cotant—available water capacity

Use and Management

Livestock Grazing

Mahoon and Cotant

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- The claypan restricts the rooting depth.
- The upper part of the soils is saturated following snowmelt.

Mahoon

- Depth to bedrock limits the construction of water impoundments.
- Because of the high corrosivity to steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the depth to the claypan.

Cotant

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity and depth to the claypan.

191—Mcbain-Ausmus complex, 0 to 2 percent slopes

Composition

Mcbain and similar soils-45 percent
Ausmus and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Mcbain—low lake terraces; Ausmus—lake plains Slope features: Mcbain-convex; Ausmus—plane and concave Parent material: Lacustrine sediment

Elevation: 4,100 to 4,200 feet
Rangeland ecological site and characteristic vegetation: Mcbain—(Dry Floodplain)
basin big sagebrush, basin wildrye, beardless wildrye; Ausmus-(Sodic Bottom)
black greasewood, basin wildrye, inland saltgrass

Climatic factors:

Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Mcbain

0 to 5 inches-light brownish gray silt loam
5 to 22 inches-pale brown and light gray loam
22 to 27 inches-light brownish gray clay loam
27 to 37 inches-pale brown very fine sandy loam
37 to 43 inches-grayish brown clay loam
43 to 60 inches-pale brown loam
Properties and Qualities of Mcbain
Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 7 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Strong
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High

Typical Profile of Ausmus

0 to 2 inches-light brownish gray fine sandy loam
2 to 16 inches-light brownish gray silty clay loam
16 to 29 inches-light brownish gray silt loam
29 to 69 inches-light yellowish brown loam

Properties and Qualities of Ausmus

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Strong
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High
Contrasting Inclusions

- Fury, Housefield, and Skunkfarm soils on lake plains

Major Soil Limitations

Mcbain and Ausmus-salinity, alkalinity, corrosivity
Ausmus-wind erosion, wetness

Use and Management

Livestock Grazing

Mcbain and Ausmus

- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.

Mcbain

- As the site deteriorates, big sagebrush and rabbitbrush increase and basin wildrye and beardless wildrye decrease.
- The suitability for seeding is very poor because of the strong salinity and alkalinity.

Ausmus

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- As the site deteriorates, inland saltgrass and black greasewood increase and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity and salinity.

192-McConnel cobbly sandy loam, 3 to 8 percent slopes

Composition

McConnel and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,000 to 4,800 feet
Rangeland ecological site and characteristic vegetation: (Loamy 8-10PZ) Wyoming
big sagebrush, Indian ricegrass, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 3 inches-grayish brown cobbly sandy loam
3 to 11 inches-brown gravelly sandy loam
11 to 25 inches-brown very cobbly loamy sand
25 to 52 inches-brown extremely cobbly loamy sand
52 to 62 inches-brown extremely gravelly loamy sand

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: About 2 inches

Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High

Contrasting Inclusions

- Droval soils on lake plains
- Outerkirk soils on alluvial fans

Major Soil Limitations

Available water capacity, corrosivity, wind erosion, seepage

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- This unit is suited to grazing in winter.
- As the site deteriorates, big sagebrush and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- The suitability for seeding is poor because of the low available water capacity.

193-Merlin very stony loam, 2 to 15 percent slopes
 Composition

Merlin and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, welded tuff, and andesite
Elevation: 4,600 to 5,200 feet
Rangeland ecological site and characteristic vegetation: (JD Mountain Claypan
12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, onespike oatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature- 40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 7 inches-brown very stony loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Soil Properties and Qualities

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches

Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Doyn, Observation, Teguro, and Vitale soils on hills and plateaus
- Gaib soils on hills
- Roschene soils on stream terraces
- Rock outcrop and Rubble land

Major Soil Limitations

Surface stones, depth to bedrock, depth to a claypan, shrink-swell potential, available water capacity

Use and Management

Livestock Grazing

- The very stony surface layer restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The claypan restricts the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity, depth to a claypan, and surface stones.

194-Merlin complex, 2 to 20 percent slopes

Composition

Merlin, very stony, and similar soils-50 percent
Merlin, very cobbly, and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and loess
Geology: Basalt, welded tuff, and ashflow tuff
Elevation: 4,600 to 5,300 feet
Rangeland ecological site and characteristic vegetation: Merlin, very stony(JD Mountain Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, onespike oatgrass; Merlin, very cobbly-(JD Shrubby Mountain Claypan 12-16) antelope bitterbrush, low sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature- 40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Merlin, Very Stony

0 to 7 inches-brown very stony loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff
Typical Profile of Merlin, Very Cobbly
0 to 7 inches—brown very cobbly loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Properties and Qualities of Merlin, Very Stony and Very Cobbly

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Erakatak, Gaib, and Vitale soils on hills
- Roschene soils in swales and drainageways
- Doyn and Ticino soils on hills and plateaus
- Rock outcrop and Rubble land

Major Soil Limitations

Depth to bedrock, depth to a claypan, shrink-swell potential, available water capacity, surface rock fragments

Use and Management

Livestock Grazing

Merlin, very stony and very cobbly

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- Allow the soils to drain adequately before grazing to minimize compaction of the soils and damage to plants.
- The claypan restricts the rooting depth.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- The suitability for seeding is poor because of the low available water capacity, depth to the claypan, and surface rock fragments.

Merlin, very stony

- The very stony surface layer restricts the operation of ground seeding equipment.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.

Merlin, very cobbly

- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, onespike oatgrass, and antelope bitterbrush decrease.

195—Merlin-Ateron complex, 2 to 20 percent slopes

Composition

Merlin and similar soils-60 percent
Ateron and similar soils-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,800 to 5,200 feet
Rangeland ecological site and characteristic vegetation: Merlin-(JD Mountain Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass;
Ateron-(SR Mahogany Mountain Loam 14-18PZ) curl-leaf mountain mahogany, ponderosa pine, antelope bitterbrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-14 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Merlin

0 to 7 inches-brown very cobbly loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Properties and Qualities of Merlin

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Ateron

0 to 5 inches—dark grayish brown gravelly loam 5 to 12 inches-grayish brown very cobbly clay loam 12 to 18 inches-grayish brown extremely stony clay 18 inches-highly fractured basalt

Properties and Qualities of Ateron

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Doyn, Erakatak, Gaib, Ticino, and Vitale soils on hills
- Roschene soils in swales and drainageways
- Rock outcrop and Rubble land

Major Soil Limitations

Merlin and Ateron-available water capacity, depth to bedrock, depth to a claypan, shrink-swell potential
Merlin-surface rock fragments

Use and Management

Livestock Grazing

Merlin and Ateron

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- Allow the soils to drain adequately before grazing to minimize compaction of the soils and damage to plants.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.

Merlin

- The claypan restricts the rooting depth.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the low available water capacity, depth to the claypan, and surface rock fragments.
Ateron
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- Excessive use of the mountain mahogany within reach of grazing animals reduces its productivity and potential for regeneration.
- The suitability for seeding is poor because of the low available water capacity.

196-Merlin-Ateron-Rubble land complex, 2 to 20 percent slopes

Composition

Merlin and similar soils-40 percent
Ateron and similar soils-35 percent
Rubble land-15 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff

Elevation: 3,900 to 5,600 feet
Rangeland ecological site and characteristic vegetation: Merlin-(JD Mountain
Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass;
Ateron-(SR Mountain Very Shallow 12-16PZ) stiff sagebrush, onespike
oatgrass, Sandberg bluegrass, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Merlin

0 to 7 inches-brown very stony clay loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Properties and Qualities of Merlin

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Ateron

0 to 5 inches-dark grayish brown very cobbly loam 5 to 12 inches-grayish brown very cobbly clay loam 12 to 18 inches-grayish brown extremely stony clay 18 inches-highly fractured basalt

Properties and Qualities of Ateron

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Doyn, Erakatak, Gaib, and Vitale soils on hills
- Roschene soils in swales and drainageways

Major Soil Limitations

Merlin and Ateron—available water capacity, depth to bedrock, shrink-swell potential Merlin-surface stones, depth to a claypan
Ateron-surface rock fragments

Use and Management

Livestock Grazing

Merlin and Ateron

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- Allow the soils to drain adequately before grazing to minimize compaction of the soils and damage to plants.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.

Merlin

- The very stony surface layer restricts the operation of ground seeding equipment.
- The claypan restricts the rooting depth.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the low available water capacity, depth to the claypan, and surface stones.
- This soil is susceptible to invasion by western juniper.

Ateron

- As the site deteriorates, stiff sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

197-Merlin-Ateron-Ticino complex, 2 to 20 percent slopes

Composition

Merlin and similar soils- 35 percent Ateron and similar soils-30 percent Ticino and similar soils-25 percent Contrasting inclusions-10 percent

Setting

Landform: Hills and plateaus Slope features: Concave and convex
Parent material: Merlin and Ateron—residuum and colluvium; Ticino—residuum Geology: Merlin—basalt and welded tuff; Ateron—basalt, andesite, and welded tuff;

Ticino-welded tuff
Elevation: 3,900 to 5,200 feet
Rangeland ecological site and characteristic vegetation: Merlin-(JD Mountain
Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass;
Ateron-(SR Mountain Very Shallow 12-16PZ) stiff sagebrush, onespike
oatgrass, Sandberg bluegrass, Idaho fescue; Ticino-(JD Shrubby Mountain
Clayey $12-16 P Z$) antelope bitterbrush, mountain big sagebrush, Idaho fescue Climatic factors:

Mean annual precipitation-12 to 16 inches
Mean annual air temperature- 40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Merlin

0 to 7 inches-brown very cobbly loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Properties and Qualities of Merlin

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Ateron

0 to 5 inches—dark grayish brown very stony loam 5 to 12 inches-grayish brown very cobbly clay loam 12 to 18 inches-grayish brown extremely stony clay 18 inches—highly fractured basalt

Properties and Qualities of Ateron

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Ticino

0 to 9 inches-dark grayish brown very cobbly loam
9 to 26 inches-pale brown sandy clay loam
26 to 29 inches-very pale brown weathered tuff
29 inches-fractured welded tuff
Properties and Qualities of Ticino
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Doyn, Erakatak, Gaib, and Vitale soils on hills
- Roschene soils in swales and drainageways
- Rock outcrop and Rubble land

Major Soil Limitations

Merlin, Ateron, and Ticino-available water capacity, depth to bedrock, surface rock fragments
Merlin and Ateron—shrink-swell potential
Merlin—depth to a claypan

Use and Management

Livestock Grazing

Merlin, Ateron, and Ticino

- Depth to bedrock limits the construction of water impoundments.

Merlin and Ateron

- The upper part of the soils is saturated following snowmelt.
- Allow the soils to drain adequately before grazing to minimize compaction of the soils and damage to plants.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.

Merlin

- The claypan restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the low available water capacity, depth to the claypan, and surface rock fragments.

Ateron

- The very stony surface layer restricts the operation of ground seeding equipment.
- This soil commonly supports a sparse stand of perennial grasses; however, forbs become abundant if precipitation is favorable.
- As the site deteriorates, stiff sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

Ticino

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

198-Merlin-Erakatak-Teguro complex, 2 to 20 percent slopes

Composition

Merlin and similar soils- 35 percent Erakatak and similar soils-30 percent Teguro and similar soils-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt and welded tuff
Elevation: 4,700 to 4,900 feet
Rangeland ecological site and characteristic vegetation: Merlin-(JD Mountain Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass; Erakatak-(SR Mahogany Mountain Loam 14-18PZ) curl-leaf mountain mahogany, ponderosa pine, antelope bitterbrush, Idaho fescue, bluebunch wheatgrass; Teguro-(JD Shrubby Mountain Clayey 12-16PZ) antelope bitterbrush, mountain big sagebrush, Idaho fescue

Climatic factors:

Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Merlin
0 to 7 inches-brown very stony loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Properties and Qualities of Merlin

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Typical Profile of Erakatak
0 to 7 inches-grayish brown and brown very cobbly loam
7 to 16 inches-brown very cobbly clay loam
16 to 25 inches-light yellowish brown very cobbly clay
25 inches-fractured welded tuff

Properties and Qualities of Erakatak

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind-slight
Shrink-swell potential: High

Typical Profile of Teguro

0 to 2 inches-grayish brown very gravelly loam
2 to 5 inches-grayish brown loam
5 to 10 inches-brown cobbly clay loam
10 to 14 inches-yellowish brown cobbly clay loam
14 inches-welded tuff
Properties and Qualities of Teguro
Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Anatone, Doyn, and Gaib soils on hills
- Rock outcrop

Major Soil Limitations

Merlin, Erakatak, and Teguro—available water capacity, depth to bedrock

Merlin and Erakatak-shrink-swell potential
Merlin-surface stones, depth to a claypan

Use and Management
 Livestock Grazing

Merlin, Erakatak, and Teguro

- Depth to bedrock limits the construction of water impoundments.

Merlin and Erakatak

- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.

Merlin and Teguro

- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The suitability for seeding is poor because of the low available water capacity and depth to bedrock.

Merlin

- The very stony surface layer restricts the operation of ground seeding equipment.
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is very poor because of the depth to the claypan, depth to bedrock, and surface stones.

Erakatak

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- Excessive use of the mountain mahogany within reach of grazing animals reduces its productivity and potential for regeneration.

Teguro

- The depth to bedrock restricts the rooting depth.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.

199—Merlin-Observation complex, 2 to 20 percent slopes

Composition

Merlin and similar soils-50 percent Observation and similar soils- 35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium

Geology: Basalt, andesite, and welded tuff
Elevation: 4,200 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Merlin-(JD Mountain
Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass,
onespike oatgrass; Observation-(SR Mountain Clayey 12-16PZ) mountain big
sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Merlin

0 to 7 inches-brown very cobbly clay loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Properties and Qualities of Merlin

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Observation

0 to 4 inches-dark grayish brown very stony loam
4 to 8 inches-brown cobbly loam 8 to 18 inches-dark yellowish brown clay loam 18 to 23 inches-dark yellowish brown clay
23 inches-fractured basalt

Properties and Qualities of Observation

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Anatone soils on south-facing hillsides
- Westbutte soils on north-facing hillsides
- Roschene soils on stream terraces
- Gaib soils on hills
- Rock outcrop and Rubble land

Major Soil Limitations

Merlin and Observation-depth to bedrock, shrink-swell potential Merlin-depth to a claypan, available water capacity, surface rock fragments Observation-surface stones

Use and Management

Livestock Grazing

Merlin and Observation

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
Merlin
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The claypan restricts the rooting depth.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the low available water capacity, depth to the claypan, and surface rock fragments.

Observation

- The very stony surface layer restricts the operation of ground seeding equipment.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the surface stones.

200-Merlin-Observation complex, 20 to 40 percent north slopes

Composition

Merlin and similar soils-60 percent
Observation and similar soils-30 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills
Position on landform: North- and east-facing side slopes
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,200 to 5,600 feet
Rangeland ecological site and characteristic vegetation: Merlin-(JD Mountain Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, onespike oatgrass; Observation-(SR Mountain North 12-16PZ) mountain big sagebrush, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Merlin

0 to 7 inches-brown very cobbly clay loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff
Properties and Qualities of Merlin
Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water-moderate; wind—slight
Shrink-swell potential: High
Typical Profile of Observation
0 to 4 inches—dark grayish brown very stony loam
4 to 8 inches-brown cobbly loam 8 to 18 inches-dark yellowish brown clay loam 18 to 23 inches-dark yellowish brown clay 23 inches-fractured basalt

Properties and Qualities of Observation
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water-moderate; wind—slight
Shrink-swell potential: High
Contrasting Inclusions

- Anatone soils on south-facing hillsides
- Westbutte soils on north-facing hillsides
- Roschene soils on stream terraces
- Gaib soils on hills
- Rock outcrop and Rubble land

Major Soil Limitations

Merlin and Observation-water erosion, depth to bedrock, shrink-swell potential Merlin-depth to a claypan, available water capacity, surface rock fragments Observation-surface stones

Use and Management

Livestock Grazing

Merlin and Observation

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Depth to bedrock limits the construction of water impoundments.

Merlin

- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The claypan restricts the rooting depth.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the low available water capacity, depth to the claypan, and surface rock fragments.

Observation

- The very stony surface layer restricts the operation of ground seeding equipment.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the surface stones.

201-Merlin-Rubble land complex, 2 to 15 percent slopes

Composition

Merlin and similar soils-70 percent
Rubble land-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, welded tuff, and andesite
Elevation: 4,300 to 5,200 feet
Rangeland ecological site and characteristic vegetation: Merlin-(JD Mountain Claypan $12-16 \mathrm{PZ}$) low sagebrush, Idaho fescue, bluebunch wheatgrass, onespike oatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches Mean annual air temperature- 40 to 43 degrees F Frost-free period-50 to 80 days

Typical Profile of Merlin
0 to 7 inches-brown very stony clay loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Properties and Qualities of Merlin

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water-slight; wind-slight
Shrink-swell potential: High

Contrasting Inclusions

- Observation, Royst, and Vitale soils on hills and plateaus

Major Soil Limitations

Merlin—surface stones, depth to bedrock, depth to a claypan, shrink-swell potential, available water capacity

Use and Management

Livestock Grazing

- The very stony surface layer restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The claypan restricts the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, the soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the low available water capacity, depth to the claypan, and surface stones.

202—Merlin-Teguro complex, 2 to 15 percent slopes

Composition

Merlin and similar soils-55 percent
 Teguro and similar soils-30 percent

Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,400 to 5,500 feet
Rangeland ecological site and characteristic vegetation: Merlin-(JD Mountain
Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass,
onespike oatgrass; Teguro-(SR Mountain Shallow 12-16PZ) mountain big
sagebrush, Idaho fescue, bluebunch wheatgrass

Climatic factors:

Mean annual precipitation-12 to 16 inches
Mean annual air temperature- 40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Merlin

0 to 7 inches-brown very gravelly loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Properties and Qualities of Merlin

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Teguro

0 to 2 inches-grayish brown very gravelly loam
2 to 5 inches-grayish brown loam
5 to 10 inches-brown cobbly clay loam
10 to 14 inches-yellowish brown cobbly clay loam
14 inches-welded tuff
Properties and Qualities of Teguro
Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Observation, Ticino, and Vitale soils on hills and plateaus
- Rock outcrop

Major Soil Limitations

Merlin and Teguro-depth to bedrock, available water capacity Merlin-depth to a claypan, shrink-swell potential

Use and Management

Livestock Grazing

Merlin and Teguro

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
Merlin
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the low available water capacity and depth to the claypan.

Teguro

- This soil commonly supports a sparse stand of perennial grasses; however, forbs become abundant if precipitation is favorable.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue decreases.
- The suitability for seeding is poor because of the low available water capacity.

203-Merlin-Teguro complex, very stony, 2 to 20 percent slopes

Composition

Merlin and similar soils-45 percent Teguro and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium Geology: Basalt, andesite, and welded tuff Elevation: 4,300 to 5,200 feet
Rangeland ecological site and characteristic vegetation: Merlin-(JD Mountain Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, onespike oatgrass; Teguro-(JD Shrubby Mountain Clayey 12-16PZ) antelope bitterbrush, mountain big sagebrush, Idaho fescue

Climatic factors:

Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Merlin
0 to 7 inches—brown very stony loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Properties and Qualities of Merlin

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Teguro

0 to 2 inches-grayish brown very stony loam
2 to 5 inches-grayish brown loam
5 to 10 inches-brown cobbly clay loam
10 to 14 inches-yellowish brown cobbly clay loam
14 inches-welded tuff
Properties and Qualities of Teguro
Depth: 14 to 20 inches to bedrock

Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Observation soils on hills
- Royst and Vitale soils on hills and plateaus
- Lambring soils on north-facing mountainsides
- Rock outcrop

Major Soil Limitations

Merlin and Teguro—surface stones, depth to bedrock, available water capacity Merlin-depth to a claypan, shrink-swell potential

Use and Management

Livestock Grazing

Merlin and Teguro

- The very stony surface layer restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- Maintaining adequate plant cover minimizes the risk of water erosion.

Merlin

- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the low available water capacity, depth to the claypan, and surface stones.

Teguro

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

204-Mesman loamy fine sand, 0 to 5 percent slopes Composition

Mesman and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane

Parent material: Lacustrine sediment

Elevation: 4,400 to 4,600 feet

Rangeland ecological site and characteristic vegetation: (Sodic Dunes) basin big
sagebrush, basin wildrye, black greasewood, Indian ricegrass,
needleandthread
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 4 inches-light brownish gray loamy fine sand
4 to 12 inches-pale brown clay loam
12 to 26 inches-light brownish gray loam
26 to 62 inches-very pale brown clay loam
Soil Properties and Qualities
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water-slight; wind-severe
Salinity: Strong
Alkalinity: Strong
Corrosivity to steel: High

Contrasting Inclusions

- Alvodest soils on lake plains
- Norad soils on lake terraces
- Playas on lake plains

Major Soil Limitations

Wind erosion, salinity, alkalinity, corrosivity

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Severe deterioration leads to unstable areas of windblown sand.
- As the site deteriorates, black greasewood and inland saltgrass increase and basin wildrye, Indian ricegrass, and needlegrasses decrease.
- This soil is susceptible to invasion by halogeton, povertyweed, and Russian thistle.
- The suitability for seeding is very poor because of the strong salinity and alkalinity.

205-Mesman fine sandy loam, 0 to 5 percent slopes

Composition

Mesman and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,400 to 4,600 feet
Rangeland ecological site and characteristic vegetation: (Loamy 8-10PZ) Wyoming
big sagebrush, Thurber needlegrass, Indian ricegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 4 inches-light brownish gray fine sandy loam
4 to 12 inches-pale brown clay loam
12 to 26 inches-light brownish gray loam
26 to 62 inches-very pale brown clay loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind-moderate
Salinity: Strong
Alkalinity: Strong
Corrosivity to steel: High

Contrasting Inclusions

- Boravall soils on lake plains
- Enko soils on lake terraces
- Playas on lake plains

Major Soil Limitations

Wind erosion, salinity, alkalinity, corrosivity

Use and Management

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Crusting of the soil surface reduces infiltration, results in ponding, and restricts seedling emergence and survival.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- The suitability for seeding is poor because of the strong salinity and alkalinity.

206-Mesman-Norad complex, 0 to 2 percent slopes

Composition

Mesman and similar soils-45 percent
Norad and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,400 to 4,600 feet
Rangeland ecological site and characteristic vegetation: Mesman-(Sodic Terrace 6-10PZ) basin big sagebrush, spiny hopsage, black greasewood, Indian ricegrass; Norad-(Silty 6-10PZ) winterfat, sickle saltbush, Indian ricegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Mesman

0 to 4 inches-light brownish gray fine sandy loam
4 to 12 inches-pale brown clay loam
12 to 26 inches-light brownish gray loam
26 to 62 inches-very pale brown clay loam
Properties and Qualities of Mesman
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Strong
Alkalinity: Strong
Corrosivity to steel: High
Typical Profile of Norad
0 to 3 inches-light brownish gray silt loam
3 to 7 inches—pale brown silty clay loam
7 to 23 inches-light brownish gray silty clay loam
23 to 34 inches-pale brown silty clay loam
34 to 46 inches-very pale brown silt loam
46 to 52 inches-white silt loam
52 to 61 inches-light gray loam
Properties and Qualities of Norad
Depth: More than 60 inches to bedrock

Drainage class: Well drained
Permeability: Slow
Available water capacity: About 13 inches
Hazard of erosion: Water-slight; wind—slight
Corrosivity to steel: High
Contrasting Inclusions

- Alvodest and Icene soils on lake plains
- Playas on lake plains

Major Soil Limitations

Mesman and Norad-corrosivity
Mesman—wind erosion, salinity, alkalinity

Use and Management
 Livestock Grazing

Mesman and Norad

- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Mesman

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- As the site deteriorates, big sagebrush, shadscale, and black greasewood increase and bud sagebrush, basin wildrye, and Indian ricegrass decrease.
- This soil is susceptible to invasion by halogeton, povertyweed, Russian thistle, and cheatgrass.
- The suitability for seeding is very poor because of the strong salinity and alkalinity.

Norad

- As the site deteriorates, shadscale and bottlebrush squirreltail increase and winterfat and Indian ricegrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is good.

207-Middlebox gravelly sandy loam, 5 to 20 percent slopes

Composition

Middlebox and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum
Geology: Tuffaceous and pumiceous material
Elevation: 4,700 to 6,000 feet

Rangeland ecological site and characteristic vegetation: (Loamy 10-12PZ) Wyoming
big sagebrush, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 4 inches-light brownish gray gravelly sandy loam
4 to 10 inches-pale brown very gravelly sandy clay loam
10 to 35 inches-pale brown very cobbly sandy clay loam
35 to 40 inches-weathered pumiceous tuff

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately rapid
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—moderate

Contrasting Inclusions

- Robson and Seharney soils on hills
- Felcher soils on south-facing hillsides
- Rock outcrop

Major Soil Limitations

Available water capacity, depth to bedrock, wind erosion

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of droughtiness.

208—Middlebox complex, 15 to 40 percent slopes

Composition

Middlebox, north slopes, and similar soils-60 percent
Middlebox, south slopes, and similar soils-30 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills
Position on landform: Middlebox, north slopes—north- and east-facing side slopes;
Middlebox, south slopes-south- and west-facing side slopes
Parent material: Residuum and colluvium
Geology: Tuffaceous and pumiceous material
Elevation: 4,700 to 6,000 feet

Rangeland ecological site and characteristic vegetation: Middlebox, north slopes-
(North Slopes 12-16PZ) mountain big sagebrush, Idaho fescue; Middlebox, south
slopes-(South Slopes 8-12PZ) Wyoming big sagebrush, bluebunch wheatgrass,
Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Middlebox, North and South Slopes

0 to 4 inches-light brownish gray gravelly sandy loam
4 to 10 inches-pale brown very gravelly sandy clay loam
10 to 35 inches-pale brown very cobbly sandy clay loam
35 to 40 inches-weathered pumiceous tuff
Properties and Qualities of Middlebox, North and South Slopes
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained Permeability: Moderately rapid
Available water capacity: About 3 inches
Hazard of erosion: Water-moderate; wind-moderate

Contrasting Inclusions

- Robson and Dogmountain soils on hills
- Felcher soils on south-facing hillsides
- Rock outcrop

Major Soil Limitations

Available water capacity, water erosion, depth to bedrock, wind erosion

Use and Management

Livestock Grazing

Middlebox, north and south slopes

- The low available water capacity of the surface layer limits seedling survival.
- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water and wind erosion.
- The suitability for seeding is poor because of droughtiness.

Middlebox, north slopes

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.

Middlebox, south slopes

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- This soil is susceptible to invasion by cheatgrass and medusahead.

209—Minam silt loam, 0 to 2 percent slopes
 Composition

Minam and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Drainageways
Slope features: Plane and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,500 to 5,100 feet
Rangeland ecological site and characteristic vegetation: (SR Dry Mountain Swale
12-16PZ) mountain big sagebrush, Idaho fescue, sedge
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 29 inches-dark grayish brown silt loam
29 to 39 inches-brown loam
39 to 52 inches-yellowish brown gravelly sandy clay loam
52 to 62 inches-yellowish brown gravelly sandy loam
Soil Properties and Qualities
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 8 inches
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Welch soils in concave areas on stream terraces
- Roschene soils on stream terraces
- Cumulic Haploxerolls adjacent to streams

Major Soil Limitations

None

Use and Management

Livestock Grazing

- As the site deteriorates, big sagebrush, sedges, bluegrasses, and bottlebrush squirrel increase and Idaho fescue decreases.
- As the streambanks become unstable, channels deepen and widen and the subsurface waterflow is reduced, resulting in a drier site with decreased production.
- The suitability for seeding is good.

210—Minam-Welch complex, 0 to 3 percent slopes

Composition

Minam and similar soils-60 percent
Welch and similar soils-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Drainageways and stream terraces
Slope features: Minam—plane and convex; Welch—plane and concave

Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,500 to 4,900 feet
Rangeland ecological site and characteristic vegetation: Minam-(SR Dry Mountain
Swale 12-16PZ) mountain big sagebrush, Idaho fescue, sedge; Welch-
(Mountain Meadow) tufted hairgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Minam

0 to 29 inches—dark grayish brown silt loam
29 to 39 inches—brown loam
39 to 52 inches-yellowish brown gravelly sandy clay loam
52 to 62 inches-yellowish brown gravelly sandy loam

Properties and Qualities of Minam

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 8 inches
Hazard of erosion: Water—slight; wind—slight

Typical Profile of Welch

0 to 5 inches—dark grayish brown silt loam
5 to 34 inches-gray and dark gray silt loam
34 to 60 inches-light brownish gray loam
Properties and Qualities of Welch
Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Water table: Present late in winter, in spring, and early in summer
Flooding: Present in spring
Permeability: Moderately slow
Available water capacity: About 11 inches
Hazard of erosion: Water—slight; wind—slight
Potential frost action: High
Contrasting Inclusions

- Cumulic Haploxerolls adjacent to streams
- Roschene soils on stream terraces

Major Soil Limitations

Minam—none
Welch—wetness, frost action

Use and Management

Livestock Grazing

Minam and Welch

- As streambanks become unstable, channels deepen and widen and the subsurface waterflow is reduced, resulting in a drier site with decreased production and increased density of upland shrubs.
- This unit provides important food and cover for wildlife.
- The suitability for seeding is good.

Minam

- As the site deteriorates, big sagebrush, sedges, bluegrasses, and bottlebrush squirrel increase and Idaho fescue decreases.

Welch

- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soil is wet or saturated damages plants and causes soil compaction and displacement.
- As the site deteriorates, sedges, rushes, cinquefoil, and bluegrasses increase and tufted hairgrass decreases.

211—Modoc gravelly sandy loam, 2 to 15 percent slopes

Composition

Modoc and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Alluvial fans
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 3,700 to 4,000 feet
Rangeland ecological site and characteristic vegetation: (SR Mountain Loamy
9-12PZ) Wyoming big sagebrush, Idaho fescue, Thurber needlegrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 2 inches-brown gravelly sandy loam
2 to 22 inches-brown and light yellowish brown loam
22 to 25 inches-yellow gravelly clay loam
25 to 41 inches-indurated duripan
41 to 60 inches-yellow extremely gravelly coarse sandy loam

Soil Properties and Qualities

Depth: 20 to 25 inches to a duripan and more than 60 inches to bedrock Drainage class: Well drained
Permeability: Moderately slow above the duripan and rapid below it
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—moderate
Contrasting Inclusions

- Loupence soils on stream terraces
- Mahoon soils on hills

Major Soil Limitations

Depth to a hardpan, wind erosion, seepage

Use and Management

Livestock Grazing

- Depth to the hardpan and the risk of seepage limit the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- This soil is susceptible to invasion by cheatgrass.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue and needlegrasses decrease.
- The suitability for seeding is good.

212—Morfitt loam, 0 to 2 percent slopes

Composition

Morfitt and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane and concave
Parent material: Lacustrine sediment
Elevation: 4,600 to 4,800 feet
Rangeland ecological site and characteristic vegetation: (Dry Ponded Clay 6-10PZ)
basin big sagebrush, beardless wildrye
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 2 inches-light gray loam
2 to 8 inches-gray clay loam
8 to 20 inches-brown clay loam
20 to 32 inches-light brownish gray clay loam
32 to 41 inches-light brownish gray loam
41 to 60 inches-light gray loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Ponding: Present in spring
Permeability: Moderately slow
Available water capacity: About 10 inches
Hazard of erosion: Water-slight; wind-slight
Corrosivity to steel: High

Contrasting Inclusions

- Swalesilver soils in depressions of lake plains

Major Soil Limitations

Wetness, corrosivity

Use and Management

Livestock Grazing

- This unit provides important food and cover for wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Crusting of the soil surface reduces infiltration, results in ponding, and restricts seedling emergence and survival.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and rabbitbrush increase and basin wildrye and beardless wildrye decrease.
- This soil is susceptible to invasion by povertyweed and Russian thistle.
- The suitability for seeding is very poor because of droughtiness.

213-Morganhills sandy loam, 2 to 12 percent slopes Composition

Morganhills and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Convex
Parent material: Colluvium and residuum
Geology: Tuffaceous sandstone
Elevation: 4,000 to 5,000 feet
Rangeland ecological site and characteristic vegetation: (Loamy 10-12PZ) Wyoming
big sagebrush, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 8 inches-brown sandy loam
8 to 15 inches-brown gravelly sandy loam
15 to 17 inches-pale brown very gravelly sandy loam
17 inches-tuffaceous sandstone

Soil Properties and Qualities

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately rapid
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—moderate
Contrasting Inclusions

- Pernty soils on hills
- Reallis and Lawen soils on lake terraces

Major Soil Limitations

Wind erosion, water erosion, depth to bedrock

Use and Management
 Irrigated Hayland

- Practices that help to control erosion include maintaining crop residue on the soil surface, using minimum tillage, stripcropping, planting cover crops, and contour plowing.

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity.

214-Morganhills complex, 2 to 35 percent slopes Composition

Morganhills, more than 12 percent slopes, and similar soils-50 percent Morganhills, less than 12 percent slopes, and similar soils- 40 percent Contrasting inclusions-10 percent

Setting

Landform: Hills
Slope features: Convex
Parent material: Colluvium and residuum
Geology: Tuffaceous sandstone
Elevation: 4,000 to 5,000 feet
Rangeland ecological site and characteristic vegetation: Morganhills, more than
12 percent slopes-(Sandy Slopes 10-12PZ) basin big sagebrush, antelope bitterbrush, needleandthread, Indian ricegrass; Morganhills, less than 12 percent slopes-(Loamy $10-12 \mathrm{PZ}$) Wyoming big sagebrush, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 8 inches-brown sandy loam
8 to 15 inches-brown gravelly sandy loam
15 to 17 inches-pale brown very gravelly sandy loam
17 inches-weathered tuffaceous sandstone

Properties and Qualities

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately rapid

Available water capacity: About 2 inches
Hazard of erosion: Water-moderate; wind-moderate

Contrasting Inclusions

- Pernty soils on hills
- Reallis and Lawen soils on lake terraces

Major Soil Limitations

Water erosion, depth to bedrock, wind erosion

Use and Management

Livestock Grazing

Morganhills, more than 12 percent slopes and less than 12 percent slopes

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The suitability for seeding is poor because of the low available water capacity.

Morganhills, more than 12 percent slopes

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Indian ricegrass, needlegrass, and antelope bitterbrush decrease.

Morganhills, less than 12 percent slopes

- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.

215-Mound stony loam, 2 to 20 percent slopes

Composition

Mound and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Tuff
Elevation: 5,100 to 5,600 feet
Forestland plant association and characteristic vegetation: (Ponderosa pine/elk sedge) ponderosa pine, elk sedge
Climatic factors:
Mean annual precipitation-16 to 20 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile

0.5 inch to 0—slightly decomposed plant material

0 to 3 inches-brown stony loam
3 to 10 inches-yellowish brown very stony loam
10 to 26 inches-brown very stony clay
26 to 53 inches-strong brown very stony clay
53 inches-welded tuff

Soil Properties and Qualities

Depth: 40 to 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Royst and Merlin soils on hills
- Rock outcrop

Major Soil Limitations

Surface stones, shrink-swell potential

Use and Management

Forest Products

- Because of the clayey subsoil, roads need additional rock in the subgrade and surface grade.
- Roads and landings are difficult to construct because of the stones in the soil and the depth to bedrock.
- The surface stones limit the effective use of equipment for mechanical site preparation and limit use of wheeled or tracked equipment.
- Planting by hand is very difficult because of the surface stones.
- Mechanical planting is restricted by the surface stones.
- Because of the surface stones, fires of moderate fireline intensity may damage the soil. Consider alternative techniques if prescribed burning is used.
- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The heavy-textured soil expands when wet and contracts when dry, which may damage the roots of seedlings.

216-Nevador very gravelly sandy loam, 3 to 12 percent slopes

Composition

Nevador and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Alluvial fans
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,600 to 5,000 feet
Rangeland ecological site and characteristic vegetation: (Loamy 8-10PZ) Wyoming big sagebrush, Indian ricegrass, Thurber needlegrass, bluebunch wheatgrass

Climatic factors:

Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 3 inches-very pale brown very gravelly sandy loam
3 to 7 inches-light gray loam
7 to 14 inches-yellowish brown clay loam
14 to 18 inches-brownish yellow clay loam
18 to 32 inches-very pale brown sandy loam
32 to 62 inches-very pale brown gravelly sandy loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High
Contrasting Inclusions

- Kerrfield and Tumtum soils on alluvial fans
- Torriorthents on convex slopes

Major Soil Limitations

Corrosivity, wind erosion

Use and Management
 Livestock Grazing

- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- The suitability for seeding is poor because of droughtiness.

217-Ninemile gravelly loam, hummocky, 0 to 8 percent slopes

Composition

Ninemile and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Slope features: Concave and convex
Parent material: Residuum and alluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,400 to 4,700 feet
Rangeland ecological site and characteristic vegetation: (Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg bluegrass

Climatic factors:

Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 4 inches-grayish brown gravelly loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Soil Properties and Qualities

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind-slight
Shrink-swell potential: High
Contrasting Inclusions

- Reluctan soils on plateaus
- Carvix soils on stream terraces
- Gradon soils on fans
- Rock outcrop and Rubble land

Major Soil Limitations

Depth to bedrock, depth to a claypan, shrink-swell potential, available water capacity

Use and Management
 Livestock Grazing

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity.

218-Ninemile very cobbly clay loam, low precipitation, 2 to 30 percent slopes

Composition

Ninemile and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus (fig. 8)

Figure 8.-Area of Ninemile very cobbly clay loam, low precipitation, 2 to 30 percent slopes, in foreground. Western juniper in background is in an area of Ninemile gravelly loam, hummocky, 0 to 8 percent slopes.

Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff Elevation: 4,600 to 6,300 feet
Rangeland ecological site and characteristic vegetation: (Claypan 10-12PZ) low sagebrush, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature- 40 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 4 inches-grayish brown very cobbly clay loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Soil Properties and Qualities

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Brace and Fourwheel soils on hills and plateaus
- Carvix soils on stream terraces and drainageways
- Rock outcrop

Major Soil Limitations

Depth to bedrock, depth to a claypan, available water capacity, shrink-swell potential, surface rock fragments

Use and Management

Livestock Grazing

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The claypan restricts the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

219—Ninemile very stony clay loam, 0 to 20 percent slopes

Composition

Ninemile and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Andesite, basalt, and welded tuff
Elevation: 4,400 to 6,800 feet
Rangeland ecological site and characteristic vegetation: (Claypan 12-16) low sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature- 40 to 45 degrees F Frost-free period-50 to 80 days

Typical Profile

0 to 4 inches-grayish brown very stony clay loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Soil Properties and Qualities

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water-slight; wind-slight
Shrink-swell potential: High

Contrasting Inclusions

- Carvix soils on stream terraces
- Westbutte soils on hills and mountains
- Rock outcrop
- Rubble land

Major Soil Limitations

Surface stones, depth to bedrock, depth to a claypan, shrink-swell potential, available water capacity

Use and Management

Livestock Grazing

- The very stony surface layer restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The claypan restricts the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the surface stones and low available water capacity.

220-Ninemile-Carvix complex, 0 to 8 percent slopes

Composition

Ninemile and similar soils-55 percent
Carvix and similar soils-30 percent
Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Position on landform: Ninemile-convex areas; Carvix-concave drainageways Parent material: Ninemile-residuum and alluvium; Carvix-alluvium Geology: Ninemile-basalt, andesite, and welded tuff; Carvix-mixed rock sources Elevation: 4,200 to 4,600 feet
Rangeland ecological site and characteristic vegetation: Ninemile-(Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass; Carvix-(Swale 10-14PZ) basin big sagebrush, basin wildrye, bluebunch wheatgrass, Idaho fescue

Climatic factors:

Mean annual precipitation-12 to 14 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Ninemile
0 to 4 inches-grayish brown gravelly loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind-slight
Shrink-swell potential: High
Typical Profile of Carvix
0 to 6 inches—brown silt loam
6 to 19 inches-brown silt loam
19 to 39 inches—brown loam
39 to 60 inches-yellowish brown loam

Properties and Qualities of Carvix

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Contrasting Inclusions

- Reluctan soils in concave areas of plateaus
- Gradon soils on fans
- Reallis soils on terraces
- Rock outcrop and Rubble land

Major Soil Limitations

Ninemile—depth to bedrock, depth to a claypan, available water capacity, shrink-swell potential
Carvix—corrosivity

Use and Management

Livestock Grazing

Ninemile

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The claypan restricts the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity.

Carvix

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and basin wildrye, Idaho fescue, and bluebunch wheatgrass decrease.
- As streambanks become unstable, channels deepen and widen and the subsurface waterflow is reduced, resulting in a drier site with decreased production.
- The suitability for seeding is good.

221—Ninemile-Doyn complex, 2 to 20 percent slopes

Composition

Ninemile and similar soils-60 percent
Doyn and similar soils-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,200 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Ninemile-(Claypan
10-12PZ) low sagebrush, bluebunch wheatgrass, Sandberg bluegrass; Doyn-
(SR Very Shallow 9-12PZ) stiff sagebrush, Sandberg bluegrass, Idaho fescue
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Ninemile

0 to 4 inches-grayish brown very cobbly clay loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Typical Profile of Doyn
0 to 2 inches—brown very stony loam

2 to 8 inches—brown cobbly loam
8 inches-basalt

Properties and Qualities of Doyn

Depth: 4 to 10 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Mahoon and Porterfield soils on hills
- Rock outcrop

Major Soil Limitations

Ninemile and Doyn—depth to bedrock, available water capacity
Ninemile-depth to a claypan, shrink-swell potential, surface rock fragments
Doyn-surface stones

Use and Management

Livestock Grazing

Ninemile and Doyn

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.

Ninemile

- The claypan restricts the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Doyn

- The very stony surface layer restricts the operation of ground seeding equipment.
- As the site deteriorates, stiff sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the low available water capacity, depth to bedrock, and surface stones.

222-Ninemile-Edemaps complex, 2 to 10 percent slopes Composition

Ninemile and similar soils-50 percent
Edemaps and similar soils- 35 percent
Contrasting inclusions-15 percent

Setting

Landform: Plateaus and hills
Slope features: Plane and convex
Parent material: Ninemile—residuum and colluvium; Edemaps—old alluvium and colluvium
Geology: Andesite, basalt, and welded tuff
Elevation: 4,500 to 4,900 feet
Rangeland ecological site and characteristic vegetation: Ninemile—(Claypan
12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg bluegrass; Edemaps-(Droughty Loam 11-13PZ) basin big sagebrush, Idaho fescue, Thurber needlegrass
Climatic factors:
Mean annual precipitation-12 to 14 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Ninemile
0 to 4 inches-grayish brown gravelly loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Edemaps

0 to 7 inches-grayish brown cobbly clay loam
7 to 10 inches-dark brown clay
10 to 18 inches-brown clay
18 to 25 inches-yellowish brown very cobbly clay loam
25 to 30 inches-indurated duripan
30 inches-fractured basalt

Properties and Qualities of Edemaps

Depth: 20 to 35 inches to a duripan and 24 to 40 inches to bedrock Drainage class: Well drained
Permeability: Slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Contrasting Inclusions

- Westbutte soils on hills and plateaus
- Reallis soils on lake terraces
- Carvix soils on stream terraces

Major Soil Limitations

Ninemile and Edemaps-depth to bedrock, shrink-swell potential

Ninemile—depth to a claypan, available water capacity
Edemaps-depth to a hardpan

Use and Management

Livestock Grazing

Ninemile and Edemaps

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.

Ninemile

- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- This soil is susceptible to invasion by cheatgrass and medusahead and by western juniper.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the low available water capacity.

Edemaps

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and needlegrasses, Idaho fescue, and bluebunch wheatgrass decrease.
- The suitability for seeding is good.

223-Ninemile-Madeline complex, 2 to 15 percent slopes

Composition

Ninemile and similar soils-45 percent
Madeline and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 4,200 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Ninemile—(Claypan
10-12PZ) low sagebrush, bluebunch wheatgrass, Sandberg bluegrass;
Madeline-(SR Mountain Shallow 9-12PZ) Wyoming big sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Ninemile

0 to 4 inches-grayish brown very cobbly clay loam

4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Madeline

0 to 2 inches-reddish brown gravelly clay loam
2 to 10 inches-reddish brown clay loam
10 to 19 inches-reddish brown cobbly clay loam
19 inches-rhyolite

Properties and Qualities of Madeline

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Doyn and Mahoon soils on hills
- Rock outcrop

Major Soil Limitations

Ninemile and Madeline—shrink-swell potential, depth to bedrock, available water capacity
Ninemile—depth to a claypan, surface rock fragments

Use and Management

Livestock Grazing

Ninemile and Madeline

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- These soils are susceptible to invasion by cheatgrass and medusahead.

Ninemile

- The claypan restricts the rooting depth.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Madeline

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity.

224-Ninemile-Pearlwise complex, 20 to 35 percent slopes

Composition

Ninemile and similar soils-60 percent
Pearlwise and similar soils-30 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills
Position on landform: Ninemile—side slopes and benches; Pearlwise—north- and east-facing side slopes and benches
Parent material: Residuum and alluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 5,500 to 6,200 feet
Rangeland ecological site and characteristic vegetation: Ninemile—(Claypan
12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg
bluegrass; Pearlwise-(Deep North 12-18PZ) mountain big sagebrush, whortleleaf snowberry, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Ninemile
0 to 4 inches-grayish brown very cobbly clay loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Typical Profile of Pearlwise
0 to 22 inches-very dark grayish brown clay loam
22 inches-basalt
Properties and Qualities of Pearlwise
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate

Available water capacity: About 4 inches
Hazard of erosion: Water-moderate; wind-slight

Contrasting Inclusions

- Baconcamp soils on south-facing side slopes
- Hackwood soils on footslopes
- Welch soils in drainageways
- Noname soils on ridges
- Rock outcrop

Major Soil Limitations

Ninemile and Pearlwise-water erosion, depth to bedrock
Ninemile-depth to a claypan, shrink-swell potential, available water capacity, surface rock fragments

Use and Management

Livestock Grazing

Ninemile and Pearlwise

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Depth to bedrock limits the construction of water impoundments.

Ninemile

- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The claypan restricts the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Pearlwise

- As the site deteriorates, big sagebrush, bottlebrush squirreltail, and bluegrasses increase and Idaho fescue, bluebunch wheatgrass, and needlegrasses decrease.
- The suitability for seeding is fair because of the steepness of slope.

225-Ninemile-Reluctan complex, 0 to 15 percent slopes

 CompositionNinemile and similar soils-55 percent
Reluctan and similar soils- 30 percent
Contrasting inclusions-15 percent

Setting

Landform: Plateaus and hills
Slope features: Concave and convex
Parent material: Ninemile—residuum and colluvium; Reluctan—residuum
Geology: Basalt and welded tuff
Elevation: 4,300 to 5,600 feet
Rangeland ecological site and characteristic vegetation: Ninemile-(Claypan

12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg
bluegrass; Reluctan-(Droughty Loam 11-13PZ) basin big sagebrush, Idaho fescue, Thurber needlegrass

Climatic factors:

Mean annual precipitation-11 to 13 inches
Mean annual air temperature-40 to 45 degrees F Frost-free period-50 to 80 days

Typical Profile of Ninemile
0 to 4 inches-grayish brown very cobbly loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Reluctan

0 to 2 inches—brown cobbly loam
2 to 9 inches-brown sandy loam
9 to 15 inches-brown sandy clay loam
15 to 26 inches-light brownish gray sandy clay loam
26 inches-basalt

Properties and Qualities of Reluctan

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Contrasting Inclusions

- Carvix soils on stream terraces
- Westbutte soils on hills and plateaus
- Reallis soils on lake terraces
- Rock outcrop and Rubble land

Major Soil Limitations

Ninemile and Reluctan—depth to bedrock
Ninemile—depth to a claypan, shrink-swell potential, available water capacity, surface
rock fragments
Reluctan—corrosivity

Use and Management

Livestock Grazing

Ninemile and Reluctan

- Depth to bedrock limits the construction of water impoundments.

Ninemile

- Bedrock and the claypan restrict the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Reluctan

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and needlegrasses, Idaho fescue, and bluebunch wheatgrass decrease.
- The suitability for seeding is good.

226-Ninemile-Reluctan-Rubble land complex, 2 to 30 percent slopes

Composition

Ninemile and similar soils-50 percent
Reluctan and similar soils-20 percent
Rubble land-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Ninemile—residuum and colluvium; Reluctan—residuum
Geology: Basalt and welded tuff
Elevation: 4,300 to 5,600 feet
Rangeland ecological site and characteristic vegetation: Ninemile-(Claypan
12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg
bluegrass; Reluctan-(Droughty Loam 11-13PZ) basin big sagebrush, Idaho
fescue, Thurber needlegrass
Climatic factors:
Mean annual precipitation-11 to 13 inches
Mean annual air temperature- 40 to 45 degrees F Frost-free period-50 to 80 days

Typical Profile of Ninemile
0 to 4 inches-grayish brown very cobbly loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock

Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind-slight
Shrink-swell potential: High
Typical Profile of Reluctan
0 to 2 inches—brown loam
2 to 9 inches-brown sandy loam
9 to 15 inches-brown sandy clay loam
15 to 26 inches-light brownish gray sandy clay loam
26 inches-basalt

Properties and Qualities of Reluctan

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High

Contrasting Inclusions

- Carvix soils on stream terraces
- Westbutte soils on hills and plateaus

Major Soil Limitations

Ninemile and Reluctan-depth to bedrock
Ninemile—depth to a claypan, shrink-swell potential, available water capacity, surface rock fragments
Reluctan-wind erosion, corrosivity

Use and Management

Livestock Grazing

Ninemile and Reluctan

- The areas of Rubble land restrict the use of wheeled and tracked equipment.
- Depth to bedrock limits the construction of water impoundments.

Ninemile

- Bedrock and the claypan restrict the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Reluctan

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and needlegrasses, Idaho fescue, and bluebunch wheatgrass decrease.
- The suitability for seeding is good.

227-Ninemile-Rock outcrop complex, 40 to 70 percent south slopes

Composition

Ninemile and similar soils-70 percent
Rock outcrop-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: South- and west-facing hillsides
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 5,200 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Ninemile—(Claypan
10-12PZ) low sagebrush, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Ninemile

0 to 4 inches-grayish brown very cobbly loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—severe; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Edemaps soils on upper concave slopes of hillsides
- Reluctan soils on lower slopes of hillsides

Major Soil Limitations

Ninemile-water erosion, slope, depth to bedrock, depth to a claypan, shrink-swell potential, available water capacity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The claypan restricts the rooting depth.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is very poor because of the steepness of slope.

228-Ninemile-Rubble land complex, 5 to 20 percent slopes

Composition

Ninemile and similar soils-65 percent Rubble land-20 percent Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,500 to 5,000 feet
Rangeland ecological site and characteristic vegetation: Ninemile-(Claypan
12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Ninemile

0 to 4 inches-grayish brown very cobbly loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Reluctan and Westbutte soils on hills and plateaus
- Carvix soils on stream terraces

Major Soil Limitations

Depth to bedrock, depth to a claypan, shrink-swell potential, available water capacity, surface rock fragments

Use and Management

Livestock Grazing

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The claypan restricts the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

229-Ninemile-Westbutte complex, 2 to 15 percent slopes Composition

Ninemile and similar soils-60 percent
Westbutte and similar soils-30 percent
Contrasting inclusions-10 percent

Setting

Landform: Mountains, hills, and plateaus Slope features: Concave and convex Parent material: Residuum and colluvium Geology: Basalt, andesite, and welded tuff Elevation: 4,600 to 7,000 feet
Rangeland ecological site and characteristic vegetation: Ninemile—(Claypan
12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg
bluegrass; Westbutte-(Loamy 12-16PZ) mountain big sagebrush, Idaho fescue,
Thurber needlegrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Ninemile
0 to 4 inches-grayish brown very cobbly loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches

Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Typical Profile of Westbutte
0 to 12 inches-dark grayish brown extremely stony loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt

Properties and Qualities of Westbutte

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Pernty soils on hills
- Edemaps soils on hills and plateaus
- Carvix soils on stream terraces
- Rock outcrop

Major Soil Limitations

Ninemile and Westbutte—depth to bedrock, available water capacity Ninemile—depth to a claypan, shrink-swell potential, surface rock fragments Westbutte—surface stones

Use and Management

Livestock Grazing

Ninemile and Westbutte

- Depth to bedrock limits the construction of water impoundments.

Ninemile

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The claypan restricts the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the low available water capacity and surface rock fragments.

Westbutte

- The extremely stony surface layer prohibits the operation of ground seeding equipment and limits livestock movement and the distribution of grazing.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the surface stones and low available water capacity.

230—Ninemile-Westbutte-Ninemile complex, 2 to 30 percent slopes

Composition

Ninemile, very cobbly, and similar soils-40 percent
Westbutte and similar soils-30 percent
Ninemile, extremely stony, and similar soils-20 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 5,400 to 6,300 feet
Rangeland ecological site and characteristic vegetation: Ninemile, very cobbly-
(Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass,
Sandberg bluegrass; Westbutte-(Loamy 12-16PZ) mountain big sagebrush, Idaho fescue, Thurber needlegrass; Ninemile, extremely stony-(Juniper Tableland $10-14 \mathrm{PZ}$) western juniper, low sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Ninemile, Very Cobbly
0 to 4 inches-grayish brown very cobbly clay loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile, Very Cobbly

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Typical Profile of Westbutte
0 to 12 inches-dark grayish brown extremely stony loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt

Properties and Qualities of Westbutte

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind-slight

Typical Profile of Ninemile, Extremely Stony

0 to 4 inches-grayish brown extremely stony silt loam

4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt
Properties and Qualities of Ninemile, Extremely Stony
Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Edemaps soils on hills and plateaus
- Carvix soils on stream terraces
- Rock outcrop

Major Soil Limitations

Ninemile and Westbutte—depth to bedrock, available water capacity, surface rock fragments
Ninemile—depth to a claypan, shrink-swell potential

Use and Management

Livestock Grazing

Ninemile, very cobbly and extremely stony, and Westbutte

- Depth to bedrock limits the construction of water impoundments.
- The surface stones prohibit the operation of ground seeding equipment and limit livestock movement and the distribution of grazing.

Ninemile, very cobbly and extremely stony

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The claypan restricts the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.

Ninemile, very cobbly

- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Westbutte

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the surface stones.

Ninemile, extremely stony

- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and

Idaho fescue and bluebunch wheatgrass decrease.

- The suitability for seeding is very poor because of the surface stones.

231-Ninemile association, 2 to 12 percent slopes
 Composition

Ninemile, very cobbly, and similar soils-70 percent
Ninemile, extremely stony, and similar soils-20 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,200 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Ninemile, very cobbly-
(Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass,
Sandberg bluegrass; Ninemile, extremely stony-(Juniper Tableland
10-14PZ) western juniper, low sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Ninemile, Very Cobbly
0 to 4 inches-grayish brown very cobbly clay loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt
Typical Profile of Ninemile, Extremely Stony
0 to 4 inches-grayish brown extremely stony silt loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt
Properties and Qualities of Ninemile, Very Cobbly and Extremely Stony
Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Boulder Lake soils on lakebeds
- Carryback soils on hills, ridges, and plateaus
- Rock outcrop

Major Soil Limitations

Depth to bedrock, depth to a claypan, shrink-swell potential, surface rock fragments, available water capacity

Use and Management

Livestock Grazing

Ninemile, very cobbly and extremely stony

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- The claypan restricts the rooting depth.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Allow the soils to drain adequately before grazing to minimize compaction of the soils and damage to plants.
- The surface rock fragments prohibit the operation of ground seeding equipment and limit livestock movement and the distribution of grazing.

Ninemile, very cobbly

- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Ninemile, extremely stony

- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the surface stones.

232-Ninemile-Felcher association, 5 to 30 percent slopes

Composition

Ninemile and similar soils-70 percent
Felcher and similar soils-20 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills and plateaus
Position on landform: Ninemile—benches with slopes of 5 to 20 percent; Felcher— south- and west-facing side slopes of 20 to 30 percent
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,900 to 6,300 feet
Rangeland ecological site and characteristic vegetation: Ninemile—(Claypan
10-12PZ) low sagebrush, bluebunch wheatgrass, Sandberg bluegrass;
Felcher-(South Slopes 8-12PZ) Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Ninemile

0 to 4 inches-grayish brown very cobbly clay loam
4 to 10 inches-grayish brown gravelly clay
10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Typical Profile of Felcher
0 to 10 inches-light brownish gray stony clay loam
10 to 22 inches-yellowish brown very gravelly clay loam
22 inches-basalt
Properties and Qualities of Felcher
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Brace soils on hills
- Carvix soils on stream terraces
- Rock outcrop

Major Soil Limitations

Ninemile and Felcher-depth to bedrock, available water capacity Ninemile—depth to a claypan, surface rock fragments Felcher-water erosion, slope, surface stones

Use and Management

Livestock Grazing

Ninemile and Felcher

- Depth to bedrock limits the construction of water impoundments.

Ninemile

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The claypan restricts the rooting depth.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Felcher

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

233-Noname-Dickle complex, 3 to 12 percent slopes Composition

Noname and similar soils-45 percent
Dickle and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Basalt and andesite
Elevation: 6,200 to 7,100 feet
Rangeland ecological site and characteristic vegetation: Noname—(Rocky Ridges
$16-35 P Z$) curl-leaf mountain mahogany, mountain big sagebrush, whortleleaf
snowberry, Idaho fescue; Dickle-(Claypan 16-25PZ) low sagebrush, Idaho
fescue, onespike oatgrass
Climatic factors:
Mean annual precipitation-16 to 35 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days
Typical Profile of Noname
0 to 3 inches—pale brown stony clay loam
3 to 12 inches-yellowish brown clay loam
12 inches-andesite
Properties and Qualities of Noname
Depth: 4 to 14 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water-slight; wind—slight
Typical Profile of Dickle
0 to 3 inches—light brownish gray very cobbly clay loam
3 to 6 inches-grayish brown clay loam
6 to 14 inches-brown clay loam
14 inches-basalt
Properties and Qualities of Dickle
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow

Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind-slight

Contrasting Inclusions

- Hackwood soils in concave areas of mountains
- Welch soils along drainageways of mountains
- Rock outcrop

Major Soil Limitations

Noname and Dickle—depth to bedrock, cold climate, available water capacity, surface rock fragments

Use and Management

Livestock Grazing

Noname and Dickle

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The suitability for seeding is very poor because of the low available water capacity, depth to bedrock, surface rock fragments, and short growing season.

Noname

- As the site deteriorates, mountain big sagebrush, mountain brome, and bottlebrush squirreltail increase and basin wildrye, Idaho fescue, and western needlegrass decrease.
- Excessive use of the mountain mahogany within reach of grazing animals reduces its productivity and potential for regeneration.

Dickle

- As the site deteriorates, low sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and fescue and onespike oatgrass decrease.

234-Noname-Duff-Rock outcrop complex, 20 to 80 percent slopes

Composition

Noname and similar soils-40 percent
Duff and similar soils-30 percent
Rock outcrop-20 percent
Contrasting inclusions-10 percent

Setting

Landform: Mountains
Slope features: Concave and convex
Parent material: Noname and Duff-colluvium and residuum
Geology: Basalt and andesite
Elevation: 6,300 to 9,200 feet

Rangeland ecological site and characteristic vegetation: Noname—(Rocky Ridges 16-35PZ) curl-leaf mountain mahogany, mountain big sagebrush, whortleleaf snowberry, Idaho fescue; Duff-(Subalpine Slopes 16-35PZ) mountain big sagebrush, Idaho fescue, whortleleaf snowberry

Climatic factors:

Mean annual precipitation-16 to 35 inches
Mean annual air temperature-40 to 43 degrees F Frost-free period-30 to 60 days

Typical Profile of Noname

0 to 3 inches—pale brown very stony loam
3 to 12 inches-yellowish brown clay loam
12 inches-andesite

Properties and Qualities of Noname

Depth: 4 to 14 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water—severe; wind—slight

Typical Profile of Duff

0 to 8 inches-very dark grayish brown very stony loam
8 to 24 inches-very dark grayish brown loam
24 to 43 inches-dark brown very gravelly loam
43 inches-fractured basalt

Properties and Qualities of Duff

Depth: 40 to 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—severe; wind—slight

Contrasting Inclusions

- Dickle soils on mountains
- Welch soils along drainageways of mountains

Major Soil Limitations

Noname and Duff-water erosion, slope, surface stones, cold climate Noname-depth to bedrock

Use and Management

Livestock Grazing

Noname and Duff

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope and stones on the surface restrict the operation of equipment.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- The suitability for seeding is very poor because of the steepness of slope, surface stones, and short growing season.

Noname

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, mountain big sagebrush, mountain brome, and bottlebrush squirreltail increase and basin wildrye, Idaho fescue, and western needlegrass decrease.
- Excessive use of the mountain mahogany within reach of grazing animals reduces its productivity and potential for regeneration.
Duff
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.

235-Norad silt loam, 0 to 1 percent slopes

Composition

Norad and similar soils- 85 percent Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,300 to 4,600 feet
Rangeland ecological site and characteristic vegetation: (Silty 6-10PZ) winterfat, sickle saltbush, Indian ricegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature- 45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 3 inches-light brownish gray silt loam
3 to 7 inches-pale brown silty clay loam
7 to 23 inches-light brownish gray silty clay loam
23 to 34 inches-pale brown silty clay loam
34 to 46 inches-very pale brown silt loam
46 to 52 inches-white silt loam
52 to 61 inches-light gray loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 13 inches
Hazard of erosion: Water-slight; wind-slight
Contrasting Inclusions

- Spangenburg, Berdugo, and Langslet soils on lake terraces

Major Soil Limitation

Corrosivity

Use and Management

Livestock Grazing

- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, shadscale and bottlebrush squirreltail increase and winterfat and Indian ricegrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is fair because of droughtiness.

236-Norad-Spangenburg complex, 0 to 2 percent slopes

Composition

Norad and similar soils-45 percent
Spangenburg and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Norad—lake terraces; Spangenburg—lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,500 to 4,600 feet
Rangeland ecological site and characteristic vegetation: Norad—(Silty 6-10PZ) winterfat, sickle saltbush, Indian ricegrass; Spangenburg-(Dry Ponded Clay 6-10PZ) basin big sagebrush, beardless wildrye, basin wildrye, bottlebrush squirreltail
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Norad

0 to 3 inches-light brownish gray silt loam
3 to 7 inches-pale brown silty clay loam
7 to 23 inches-light brownish gray silty clay loam
23 to 34 inches-pale brown silty clay loam
34 to 46 inches-very pale brown silt loam
46 to 52 inches-white silt loam
52 to 61 inches-light gray loam
Properties and Qualities of Norad
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 13 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High

Typical Profile of Spangenburg

0 to 2 inches-light brownish gray silt loam
2 to 6 inches-pale brown and pale yellowish brown silty clay
6 to 15 inches-yellowish brown silty clay
15 to 34 inches-pale brown silty clay loam
34 to 60 inches-very pale brown loam

Properties and Qualities of Spangenburg

Depth: 2 to 10 inches to a claypan and more than 60 inches to bedrock
Drainage class: Moderately well drained
Permeability: Slow
Ponding: Present in spring
Water table: Present in spring and late in winter
Available water capacity: About 11 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Berdugo and Langslet soils on lake terraces
- Boulder Lake soils in depressions of lake terraces

Major Soil Limitations

Norad—corrosivity
Spangenburg—shrink-swell potential, wetness, corrosivity, depth to a claypan

Use and Management
 Livestock Grazing

Norad and Spangenburg

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Norad

- As the site deteriorates, shadscale and bottlebrush squirreltail increase and winterfat and Indian ricegrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is fair because of droughtiness.

Spangenburg

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush and rabbitbrush increase and basin wildrye and beardless wildrye decrease.
- The suitability for seeding is poor because of the depth to the claypan.

237-Nuss stony loam, 20 to 40 percent south slopes

Composition

Nuss and similar soils-85 percent
Contrasting inclusions-15 percent

Position on landform: South- and west-facing side slopes
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 4,200 to 6,000 feet
Rangeland ecological site and characteristic vegetation: (SR Mountain Shallow South
12-16PZ) mountain big sagebrush, bluebunch wheatgrass, Sandberg bluegrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 4 inches-grayish brown stony loam
4 to 12 inches-dark grayish brown gravelly loam
12 to 15 inches-dark grayish brown cobbly loam
15 inches-fractured basalt

Soil Properties and Qualities

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Teguro soils on higher slopes of hillsides
- Merlin soils on convex slopes of hillsides
- Rock outcrop and Rubble land

Major Soil Limitations

Water erosion, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity.

238-Nuss-Merlin complex, 20 to 40 percent north slopes Composition

Nuss and similar soils-60 percent
Merlin and similar soils-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: North- and east-facing side slopes
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,200 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Nuss-(SR Mountain
Shallow North 12-16PZ) mountain big sagebrush, Idaho fescue,
bluebunch wheatgrass, Sandberg bluegrass; Merlin-(JD Mountain Claypan
12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, onespike oatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Nuss
0 to 4 inches-grayish brown stony loam
4 to 12 inches-dark grayish brown gravelly loam
12 to 15 inches-dark grayish brown cobbly loam
15 inches-fractured basalt

Properties and Qualities of Nuss

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Merlin
0 to 7 inches-brown very cobbly clay loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Properties and Qualities of Merlin

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Doyn soils on hills adjacent to areas of Rock outcrop
- Lambring soils on mountains
- Rock outcrop

Major Soil Limitations

Nuss and Merlin-water erosion, depth to bedrock, available water capacity Merlin-depth to a claypan, shrink-swell potential, surface rock fragments

Use and Management

Livestock Grazing

Nuss and Merlin

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- Maintaining adequate plant cover minimizes the risk of water erosion.

Nuss

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity.

Merlin

- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the low available water capacity, depth to a claypan, and surface rock fragments.

239-Nuss-Rock outcrop complex, 20 to 40 percent south slopes

Composition

Nuss and similar soils-55 percent
Rock outcrop-30 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills

Position on landform: South- and west-facing side slopes
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 4,200 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Nuss-(SR Mountain
Shallow South 12-16PZ) mountain big sagebrush, bluebunch wheatgrass, Sandberg bluegrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Nuss

0 to 4 inches-grayish brown stony loam
4 to 12 inches-dark grayish brown gravelly loam
12 to 15 inches-dark grayish brown cobbly loam
15 inches-fractured basalt
Properties and Qualities of Nuss
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Ateron and Observation soils on hills

Major Soil Limitations

Water erosion, depth to bedrock, available water capacity
Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and areas of Rock outcrop.

240-Observation stony loam, 2 to 20 percent slopes Composition

Observation and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff Elevation: 4,800 to 5,300 feet
Rangeland ecological site and characteristic vegetation: (SR Mahogany Mountain Loam 14-18PZ) curl-leaf mountain mahogany, ponderosa pine, antelope bitterbrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-14 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 4 inches—dark grayish brown stony loam
4 to 8 inches—brown cobbly loam
8 to 18 inches-dark yellowish brown clay loam
18 to 23 inches-dark yellowish brown clay
23 inches-fractured basalt

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Erakatak, Gaib, Merlin, and Vitale soils on hills
- Cumulic Haploxerolls in swales and drainageways
- Doyn soils on plateaus and hills
- Rock outcrop and Rubble land

Major Soil Limitations

Depth to bedrock, shrink-swell potential

Use and Management

Livestock Grazing

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- Excessive use of the mountain mahogany within reach of grazing animals reduces its productivity and potential for regeneration.
- The suitability for seeding is fair because of the surface stones.

241-Observation-Rock outcrop complex, 5 to 20 percent slopes

Composition

Observation and similar soils-65 percent
Rock outcrop-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains and hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,200 to 5,200 feet
Rangeland ecological site and characteristic vegetation: Observation-(SR Mountain
Clayey 12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass

Climatic factors:

Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Observation
0 to 4 inches—dark grayish brown stony loam
4 to 8 inches—brown cobbly loam
8 to 18 inches-dark yellowish brown clay loam
18 to 23 inches-dark yellowish brown clay
23 inches-fractured basalt
Properties and Qualities of Observation
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind-slight
Shrink-swell potential: High

Contrasting Inclusions

- Doyn, Egyptcreek, Erakatak, Gaib, Merlin, and Teguro soils on hills
- Soils that are similar to Hackwood soils and are on mountains
- Cumulic Haploxerolls on stream terraces

Major Soil Limitations

Depth to bedrock, shrink-swell potential

Use and Management

Livestock Grazing

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is fair because of the surface stones and areas of Rock outcrop.

242—Observation-Royst-Merlin complex, 2 to 30 percent slopes

Composition

Observation and similar soils-45 percent
Royst and similar soils- 30 percent
Merlin and similar soils- 15 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Colluvium and residuum

Geology: Basalt, andesite, and welded tuff
Elevation: 4,700 to 5,400 feet
Rangeland ecological site and characteristic vegetation: Observation-(SR Mountain
Clayey 12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass;
Royst-(SR Dry Pine 14-16PZ) ponderosa pine, western juniper, mountain big sagebrush, Idaho fescue, bluebunch wheatgrass; Merlin-(JD Mountain Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, onespike oatgrass
Climatic factors:
Mean annual precipitation-14 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Observation
0 to 4 inches—dark grayish brown stony loam
4 to 8 inches-brown cobbly loam
8 to 18 inches-dark yellowish brown clay loam
18 to 23 inches-dark yellowish brown clay
23 inches-fractured basalt
Properties and Qualities of Observation
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Royst

0 to 3 inches—dark grayish brown very cobbly loam
3 to 7 inches-dark grayish brown cobbly loam
7 to 22 inches-brown very stony clay loam
22 to 23 inches-weathered tuff
23 inches-fractured welded tuff

Properties and Qualities of Royst

Depth: 20 to 35 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Typical Profile of Merlin
0 to 7 inches—brown very stony loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff
Properties and Qualities of Merlin
Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches

Hazard of erosion: Water—slight; wind—slight Shrink-swell potential: High

Contrasting Inclusions

- Ateron and Egyptcreek soils on hills

Major Soil Limitations

Observation, Royst, and Merlin—shrink-swell potential, depth to bedrock
Royst and Merlin-available water capacity
Royst-rock fragments
Merlin—surface stones, depth to a claypan

Use and Management

Livestock Grazing

Observation, Royst, and Merlin

- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Depth to bedrock limits the construction of water impoundments.

Observation

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- This soil is susceptible to invasion by western juniper.
- The suitability for seeding is fair because of the surface stones.

Royst

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- The suitability for seeding is poor because of the low available water capacity and cobbles on the surface.

Merlin

- The very stony surface layer restricts the operation of ground seeding equipment.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the surface stones, low available water capacity, and depth to the claypan.

Forest Products

Royst

- Roads and landings are difficult to construct because of the rock fragments and depth to bedrock.
- Operating wheeled or tracked equipment efficiently is limited by the rock fragments.
- Surface mechanical site preparation is limited by the surface rock fragments.
- The surface rock fragments and stones in the subsoil limit the effective use of equipment for deep mechanical site preparation and mechanical planting.
- Planting by hand is difficult because of the rock fragments.
- The seedling mortality rate is above normal because of the low available water capacity.
- Because of the surface rock fragments, fires of moderate fireline intensity may damage the soil. Consider alternative techniques if prescribed burning is used.

243-Observation-Teguro complex, 2 to 20 percent slopes

 CompositionObservation and similar soils-50 percent
Teguro and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and loess
Geology: Basalt and welded tuff
Elevation: 4,800 to 5,400 feet
Rangeland ecological site and characteristic vegetation: Observation-
(SR Mahogany Mountain Loam 14-18PZ) curl-leaf mountain mahogany, ponderosa pine, antelope bitterbrush, Idaho fescue, bluebunch wheatgrass;
Teguro-(JD Shrubby Mountain Clayey 12-16PZ) antelope bitterbrush, mountain big sagebrush, Idaho fescue

Climatic factors:

Mean annual precipitation-14 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Observation
0 to 4 inches—dark grayish brown very gravelly loam
4 to 8 inches-brown cobbly loam
8 to 18 inches-dark yellowish brown clay loam
18 to 23 inches-dark yellowish brown clay
23 inches-fractured basalt
Properties and Qualities of Observation
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Teguro

0 to 2 inches-grayish brown very cobbly loam
2 to 5 inches-grayish brown loam
5 to 10 inches-brown cobbly clay loam
10 to 14 inches-yellowish brown cobbly clay loam
14 inches-welded tuff

Properties and Qualities of Teguro

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Lambring soils on hillsides and canyonsides
- Erakatak, Gaib, and Merlin soils on hills
- Cumulic Haploxerolls in swales and drainageways
- Doyn soils on plateaus and hills
- Rock outcrop and Rubble land

Major Soil Limitations

Observation and Teguro-depth to bedrock
Observation-shrink-swell potential
Teguro-available water capacity, surface rock fragments

Use and Management

Livestock Grazing

Observation and Teguro

- Depth to bedrock limits the construction of water impoundments.

Observation

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- Excessive use of the mountain mahogany within reach of grazing animals reduces its productivity and potential for regeneration.
- The suitability for seeding is good.

Teguro

- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

244-Observation-Lambring-Rock outcrop association, 20 to 50 percent slopes

Composition
Observation and similar soils-50 percent
Lambring and similar soils-25 percent
Rock outcrop-15 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills and mountains

Position on landform: Observation—south- and west-facing side slopes; Lambring-north- and east-facing side slopes
Parent material: Observation-colluvium and residuum; Lambring-colluvium
Geology: Basalt and welded tuff
Elevation: 4,200 to 5,900 feet
Rangeland ecological site and characteristic vegetation: Observation-(SR Mountain South 12-16PZ) mountain big sagebrush, bluebunch wheatgrass, Idaho fescue; Lambring-(JD Shrubby Mountain North 12-16PZ) antelope bitterbrush, mountain big sagebrush, whortleleaf snowberry, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Observation
0 to 4 inches—dark grayish brown very stony loam
4 to 8 inches-brown cobbly loam
8 to 18 inches-dark yellowish brown clay loam
18 to 23 inches-dark yellowish brown clay
23 inches-fractured basalt

Properties and Qualities of Observation

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Typical Profile of Lambring
0 to 7 inches—dark grayish brown very stony loam
7 to 21 inches-brown gravelly loam
21 to 60 inches-brown very cobbly loam

Properties and Qualities of Lambring

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Erakatak soils on hills and mountains
- Arcia, Egyptcreek, and Teguro soils on hills

Major Soil Limitations

Observation and Lambring-water erosion, slope, surface stones Observation-depth to bedrock, shrink-swell potential

Use and Management

Livestock Grazing

Observation and Lambring

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- The suitability for seeding is poor because of the surface stones and steepness of slope.

Observation

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.

Lambring

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.

245-Olac-Atlow complex, 2 to 10 percent slopes
 Composition

Olac and similar soils-55 percent
Atlow and similar soils-30 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum
Geology: Basalt
Elevation: 4,200 to 5,000 feet
Rangeland ecological site and characteristic vegetation: Olac-(Thin Surface 8-14PZ) black sagebrush, bottlebrush squirreltail, Sandberg bluegrass; Atlow-(Shallow Loam 8-10PZ) Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Olac

0 to 4 inches-light brownish gray very cobbly fine sandy loam
4 to 10 inches-pale brown very cobbly clay loam
10 to 13 inches-light yellowish brown extremely cobbly clay loam
13 inches-highly fractured basalt

Properties and Qualities of Olac

Depth: 10 to 14 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch

Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High

Typical Profile of Atlow

0 to 3 inches-light brownish gray very stony loam
3 to 11 inches-brown very cobbly clay loam
11 inches-basalt

Properties and Qualities of Atlow

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water-slight; wind—slight

Contrasting Inclusions

- Deppy soils on old lake terraces
- Kerrfield and Anawalt soils on hills
- Rock outcrop

Major Soil Limitations

Olac and Atlow—available water capacity, depth to bedrock Olac-wind erosion, corrosivity
Atlow-surface stones

Use and Management

Livestock Grazing

Olac and Atlow

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- A well-developed erosion pavement can limit the reestablishment of plants.
- This unit is suited to grazing in winter.

Olac

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, Sandberg bluegrass and rabbitbrush increase and black sagebrush, bottlebrush squirreltail, and needlegrasses decrease.
- The suitability for seeding is very poor because of the low available water capacity and depth to bedrock.
Atlow
- The very stony surface layer restricts the operation of ground seeding equipment.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- The suitability for seeding is very poor because of the low available water capacity, surface stones, and depth to bedrock.

246-Opie silt loam, 0 to 1 percent slopes

Composition

Opie and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Sodic Meadow) alkali sacaton, inland saltgrass, Sandberg bluegrass

Climatic factors:

Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 7 inches-gray silt loam
7 to 10 inches-gray silty clay loam
10 to 16 inches-gray silt loam
16 to 26 inches-dark gray silty clay loam
26 to 44 inches-gray and dark grayish brown silt loam
44 to 64 inches-light brownish gray gravelly loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present late in winter through early in summer
Permeability: Moderately slow
Available water capacity: About 7 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Strong
Alkalinity: Moderate
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Fury, Skidoosprings, and Widowspring soils on lake plains

Major Soil Limitations

Wetness, salinity, alkalinity, corrosivity, frost action

Use and Management

Irrigated Hayland

- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- The seasonal high water table provides supplemental water for adapted plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.
- Providing adequate drainage is difficult because most areas have poor outlets.
- Salt-tolerant plants are the most suitable for planting.
- Proper irrigation water management and adequate drainage are needed to leach the salts below the rooting zone.
- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heave.

Livestock Grazing

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Trampling by livestock when the soil is wet or saturated damages plants and causes soil compaction and displacement.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, inland saltgrass, Baltic rush, and black greasewood increase and alkali sacaton and Sandberg bluegrass decrease.
- The suitability for seeding is very poor because of the strong salinity and moderate alkalinity.

247-Oreneva gravelly loam, 0 to 12 percent slopes Composition

Oreneva and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum
Geology: Welded tuff
Elevation: 4,200 to 6,200 feet
Rangeland ecological site and characteristic vegetation: (Loamy 10-12PZ) Wyoming
big sagebrush, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches—pale brown gravelly loam
2 to 10 inches-brown clay loam
10 to 21 inches-light yellowish brown very gravelly loam
21 inches-welded tuff

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High

Contrasting Inclusions

- Actem, Anawalt, and Raz soils on hills and plateaus
- Rock outcrop

Major Soil Limitations

Depth to bedrock, corrosivity

Use and Management

Livestock Grazing

- Depth to bedrock limits the construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is good.

248-Outerkirk sandy loam, 1 to 4 percent slopes

Composition

Outerkirk and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Alluvial fans
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 3,900 to 4,600 feet
Rangeland ecological site and characteristic vegetation: (Sodic Fan 6-10PZ) basin big sagebrush, black greasewood, Indian ricegrass, basin wildrye
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 6 inches-light brownish gray sandy loam
6 to 23 inches-light gray sandy loam
23 to 29 inches-pale brown gravelly sandy loam
29 to 51 inches-very pale brown loamy sand
51 to 60 inches-brown loamy sand

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow over rapid
Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High

Contrasting Inclusions

- Davey, McConnel, and Spangenburg soils on lake terraces

Major Soil Limitations

Wind erosion, seepage, corrosivity

Use and Management

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, black greasewood, and bottlebrush squirreltail increase and basin wildrye and Indian ricegrass decrease.
- The suitability for seeding is very poor because of droughtiness.

249—Outerkirk sandy loam, silty substratum, 2 to 6 percent slopes

Composition

Outerkirk and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Alluvial fans
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 3,900 to 4,600 feet
Rangeland ecological site and characteristic vegetation: (Desert Loam 6-10PZ) shadscale, bud sagebrush, Indian ricegrass, bottlebrush squirreltail
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 4 inches-light brownish gray sandy loam
4 to 23 inches-light gray sandy loam
23 to 27 inches-pale brown gravelly sandy loam
27 to 42 inches-very pale brown loamy sand
42 to 60 inches-brown silty clay loam
Soil Properties and Qualities
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 8 inches
Hazard of erosion: Water—slight; wind-moderate
Corrosivity to steel: High

Contrasting Inclusions

- Davey soils on lake terraces
- Droval soils on lake plains

Major Soil Limitations

Wind erosion, corrosivity

Use and Management

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, shadscale, annual forbs, and cheatgrass increase and bud sagebrush, Indian ricegrass, and bottlebrush squirreltail decrease.
- A well-developed erosion pavement can limit the reestablishment of plants.
- The suitability for seeding is very poor because of droughtiness.

250-Outerkirk-Defenbaugh association, 1 to 4 percent slopes

Composition

Outerkirk and similar soils-55 percent
Defenbaugh and similar soils-30 percent
Contrasting inclusions-15 percent

Setting

Landform: Alluvial fans
Position on landform: Outerkirk—upper slopes; Defenbaugh—lower slopes
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 3,900 to 4,600 feet
Rangeland ecological site and characteristic vegetation: Outerkirk—(Sodic Fan $6-10 P Z)$ basin big sagebrush, black greasewood, Indian ricegrass, basin wildrye; Defenbaugh-(Low Sodic Terrace 6-10PZ) black greasewood, shadscale, spiny hopsage, bottlebrush squirreltail, bud sagebrush
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Outerkirk

0 to 6 inches-light brownish gray sandy loam
6 to 23 inches-light gray sandy loam
23 to 29 inches-pale brown gravelly sandy loam
29 to 51 inches-very pale brown loamy sand
51 to 60 inches-brown loamy sand
Properties and Qualities of Outerkirk
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow over rapid

Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High
Typical Profile of Defenbaugh
0 to 5 inches—pale brown loam
5 to 16 inches-light yellowish brown clay loam
16 to 29 inches-yellowish brown clay loam
29 to 47 inches-light yellowish brown very fine sandy loam
47 to 53 inches-yellowish brown sandy loam
53 to 62 inches-light yellowish brown loam
Properties and Qualities of Defenbaugh
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 9 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High

Contrasting Inclusions

- Alvodest soils on lake plains
- Davey and Dixon soils on lake terraces

Major Soil Limitations
Outerkirk and Defenbaugh—salinity, corrosivity
Outerkirk—wind erosion, seepage

Use and Management

Livestock Grazing

Outerkirk and Defenbaugh

- The suitability for seeding is very poor because of droughtiness.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Outerkirk

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, black greasewood, and bottlebrush squirreltail increase and basin wildrye and Indian ricegrass decrease.

Defenbaugh

- As the site deteriorates, shadscale, black greasewood, and bottlebrush squirreltail increase and bud sagebrush, basin wildrye, and beardless wildrye decrease.
- This soil is susceptible to invasion by halogeton, povertyweed, Russian thistle, and cheatgrass.

251—Ozamis silt loam, 0 to 1 percent slopes Composition

Ozamis and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Sodic Meadow) alkali sacaton, inland saltgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 5 inches-very dark grayish brown silt loam
5 to 11 inches—dark gray silt loam
11 to 19 inches-grayish brown clay loam
19 to 50-light brownish gray loam and clay loam
50 to 60 inches-light brownish gray sandy loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present in spring and early in summer
Permeability: Moderately slow
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Potential frost action: High
Contrasting Inclusions

- Alvodest and Droval soils on lake plains
- Defenbaugh soils on alluvial fans
- Dixon soils on lake terraces

Major Soil Limitations

Wetness, corrosivity, frost action

Use and Management

Irrigated Hayland

- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- The seasonal high water table provides supplemental water for adapted plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.
- Providing adequate drainage is difficult because most areas have poor outlets.
- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heave.

Livestock Grazing

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Grazing when the soil is wet results in compaction of the surface layer. A compacted surface layer may result in excessive runoff and restricted plant growth.
- Trampling by livestock when the soil is wet or saturated damages plants and causes soil compaction and displacement.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, inland saltgrass, Baltic rush, and black greasewood increase and alkali sacaton and Sandberg bluegrass decrease.
- The suitability for seeding is good.

252—Pearlwise stony loam, 30 to 65 percent north slopes

Composition

Pearlwise and similar soils- 85 percent Contrasting inclusions-15 percent

Setting

Landform: Mountains

Position on landform: North- and east-facing side slopes
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 5,400 to 6,300 feet
Rangeland ecological site and characteristic vegetation: (Rocky Ridges 12-16PZ)
curl-leaf mountain mahogany, mountain big sagebrush, skyline bluegrass, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 6 inches-very dark grayish brown stony loam
6 to 22 inches-very dark grayish brown clay loam
22 inches-basalt

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water-moderate; wind—slight
Contrasting Inclusions

- Hackwood soils in concave areas
- Riddleranch soils on low-lying, south-facing side slopes
- Noname soils on high-lying, north-facing side slopes
- Rock outcrop

Major Soil Limitations

Water erosion, slope, depth to bedrock

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- As the site deteriorates, big sagebrush and bottlebrush squirreltail increase and basin wildrye, skyline bluegrass, and western needlegrass decrease.
- Excessive use of the mountain mahogany within reach of grazing animals reduces its productivity and potential for regeneration.
- The suitability for seeding is very poor because of the steepness of slope.

253—Pernty gravelly silt loam, 3 to 15 percent slopes

Composition

Pernty and similar soils- 85 percent
Contrasting inclusions- 15 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains

Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Basalt and rhyolite
Elevation: 4,500 to 6,000 feet
Rangeland ecological site and characteristic vegetation: (Droughty Loam 11-13PZ)
basin big sagebrush, Idaho fescue, Thurber needlegrass
Climatic factors:
Mean annual precipitation-11 to 13 inches
Mean annual air temperature- 40 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 3 inches-grayish brown gravelly silt loam
3 to 8 inches-grayish brown cobbly loam
8 to 15 inches-brown very cobbly loam
15 inches-rhyolite

Soil Properties and Qualities

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water-slight; wind-slight

Contrasting Inclusions

- Madeline soils on north-facing hillsides
- Ninemile soils on plateaus
- Carryback soils on hills
- Carvix soils in swales

Major Soil Limitations

Depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and needlegrasses, Idaho fescue, and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity.

254-Pernty gravelly silt loam, 15 to 40 percent south slopes

Composition

Pernty and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains

Position on landform: South- and west-facing side slopes
Parent material: Colluvium and residuum
Geology: Basalt and rhyolite
Elevation: 4,000 to 6,000 feet
Rangeland ecological site and characteristic vegetation: (South Slopes 12-16PZ)
mountain big sagebrush, antelope bitterbrush, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature- 40 to 45 degrees F Frost-free period-50 to 80 days

Typical Profile

0 to 3 inches-grayish brown gravelly silt loam
3 to 8 inches-grayish brown cobbly loam
8 to 15 inches-brown very cobbly loam
15 inches-rhyolite

Soil Properties and Qualities

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water-moderate; wind-slight

Contrasting Inclusions

- Lambring soils on north-facing hillsides
- Ninemile soils on plateaus
- Carryback soils on hills

Major Soil Limitations

Water erosion, slope, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass and western juniper.
- The suitability for seeding is poor because of the low available water capacity.

255-Pernty cobbly loam, 30 to 50 percent north slopes Composition

Pernty and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: North- and east-facing side slopes
Parent material: Colluvium and residuum
Geology: Basalt and rhyolite
Elevation: 5,200 to 7,000 feet
Rangeland ecological site and characteristic vegetation: (Shallow North 12-16PZ)
low sagebrush, Idaho fescue, bluebunch wheatgrass

Climatic factors:

Mean annual precipitation-12 to 16 inches
Mean annual air temperature- 40 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 3 inches-grayish brown cobbly loam
3 to 8 inches-grayish brown cobbly loam
8 to 15 inches-brown very cobbly loam
15 inches-rhyolite

Soil Properties and Qualities

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water-moderate; wind-slight

Contrasting Inclusions

- Pernty soils on south-facing side slopes
- Ninemile soils on plateaus
- Carryback soils on hills
- Rock outcrop

Major Soil Limitations

Water erosion, slope, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment and the construction of water impoundments.
- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The suitability for seeding is poor because of the low available water capacity and steepness of slope.

256-Pernty-Rock outcrop complex, 30 to 70 percent south slopes

Composition

Pernty and similar soils-60 percent
Rock outcrop-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: South- and west-facing side slopes
Parent material: Colluvium and residuum
Geology: Basalt and rhyolite
Elevation: 4,000 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Pernty-(South Slopes
12-16PZ) mountain big sagebrush, antelope bitterbrush, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Pernty

0 to 3 inches-grayish brown gravelly silt loam
3 to 8 inches-grayish brown cobbly loam
8 to 15 inches-brown very cobbly loam
15 inches-rhyolite
Properties and Qualities of Pernty
Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water-severe; wind—slight

Contrasting Inclusions

- Lambring soils on north-facing mountainsides

Major Soil Limitations

Slope, depth to bedrock, water erosion, available water capacity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment and the construction of water impoundments.
- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass and western juniper.
- The suitability for seeding is poor because of the low available water capacity and steepness of slope.

257—Pernty-Westbutte-Ninemile association, 5 to 50 percent slopes

Composition

Pernty and similar soils-40 percent
 Westbutte and similar soils-25 percent
 Ninemile and similar soils-20 percent
 Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Pernty—south- and west-facing side slopes; Westbutte-north- and east-facing side slopes; Ninemile-plane and convex slopes
Parent material: Colluvium and residuum
Geology: Basalt and rhyolite
Elevation: 4,000 to 7,000 feet
Rangeland ecological site and characteristic vegetation: Pernty-(South Slopes
12-16PZ) mountain big sagebrush, antelope bitterbrush, bluebunch wheatgrass;
Westbutte-(North Slopes 12-16PZ) mountain big sagebrush, Idaho fescue;
Ninemile-(Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature- 40 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Pernty
0 to 3 inches-grayish brown gravelly silt loam
3 to 8 inches-grayish brown cobbly loam

8 to 15 inches-brown very cobbly loam
15 inches-rhyolite

Properties and Qualities of Pernty

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Westbutte
0 to 12 inches-dark grayish brown extremely stony loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt

Properties and Qualities of Westbutte

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Ninemile

0 to 4 inches-grayish brown very cobbly clay loam
4 to 10 inches-grayish brown gravelly clay 10 to 16 inches-brown cobbly clay
16 inches-fractured basalt

Properties and Qualities of Ninemile

Depth: 2 to 7 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Carryback soils on plateaus and hills
- Rock outcrop

Major Soil Limitations

Pernty, Westbutte, and Ninemile—depth to bedrock, available water capacity Pernty and Westbutte-slope, water erosion Westbutte—surface stones Ninemile—depth to a claypan, shrink-swell potential

Use and Management

Livestock Grazing

Pernty and Westbutte

- Steepness of slope restricts the operation of ground seeding equipment.
- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to bedrock and steepness of slope limit the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.

Pernty and Ninemile

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.

Pernty

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass and western juniper.
- The suitability for seeding is very poor because of the low available water capacity and steepness of slope.

Westbutte

- The extremely stony surface layer prohibits the operation of ground seeding equipment and limits livestock movement and the distribution of grazing.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass and western juniper.
- The suitability for seeding is very poor because of the surface stones, low available water capacity, and steepness of slope.

Ninemile

- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- This soil is susceptible to invasion by cheatgrass and medusahead and by western juniper.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the low available water capacity.

258—Pits

This unit consists of sand, gravel, cinder, and borrow pits, and quarries. The sand and gravel pits are on Pleistocene lake and beach terraces. They are a major source of aggregate used in the construction of roads. The cinder and borrow pits and quarries are on foothills and plateaus. They are a good source of various kinds of rock that is used for most of the roads built in the survey area. Neither an ecological site nor a plant association has been assigned to this unit.

259-Playas

Composition

Playas-95 percent
Contrasting inclusions-5 percent

Setting

Landform: Lake plains
Slope features: Plane and concave

Parent material: Lacustrine sediment
Elevation: 4,000 to 5,100 feet
Climatic factors:
Mean annual precipitation-7 to 14 inches
Mean annual air temperature-40 to 49 degrees F
Frost-free period-50 to 100 days

Typical Profile of Playas

0 to 60 inches-stratified loamy, silty, and clayey alluvial sediment (fig. 9)

Properties and Qualities of Playas

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: May be present throughout the year
Water table: May be present throughout the year
Permeability: Very slow
Hazard of erosion: Water—slight; wind—slight to severe
Salinity: Slight to strong
Alkalinity: Slight to strong
Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Figure 9.-View of the Alvord Desert, which is a large area of Playas. Summit of Steens Mountain in background.

Other Features

- The areas of Playas that have slight salinity and alkalinity are on basalt plateaus and are associated with the Swalesilver soil.
- The areas of Playas that have strong salinity and alkalinity are in lacustrine lake basins of valley floors and are associated with the Alvodest and Boravall soils.
- In spring, Playas typically contain surface water from runoff. During summer and fall, the water slowly evaporates or percolates through the areas of Playas and thus they appear as nonvegetated areas on the maps. Depending on the climatic cycle, the areas of Playas may contain surface water year round or have none at all.

Contrasting Inclusions

- Alvodest soils on lake plains with hummocks of overblown sand

Major Limitations

Available water capacity, wind erosion, wetness, shrink-swell potential, salinity, alkalinity, corrosivity

Use and Management

Wildlife Habitat

- This unit provides habitat for wetland wildlife.
- Excess salts and sodium in the surface result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the surface reduce the water intake rate.
- Crusting of the surface reduces infiltration and results in ponding.

260—Playas-Thenarrows complex, 0 to 2 percent slopes

Composition

Playas and similar soils-60 percent
Thenarrows and similar soils-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,090 to 4,105 feet
Rangeland ecological site and characteristic vegetation: Thenarrows-(Sodic
Meadow) inland saltgrass, Sandberg bluegrass, alkali sacaton
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Playas
0 to 60 inches-stratified loamy, silty, and clayey lacustrine sediment

Properties and Qualities of Playas

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: May be present throughout the year
Water table: Present throughout the year

Permeability: Very slow
Hazard of erosion: Water——slight; wind—slight to severe
Salinity: Strong
Alkalinity: Strong
Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Typical Profile of Thenarrows

0 to 14 inches-dark gray sandy loam
14 to 22 inches-dark grayish brown loamy sand
22 to 54 inches-light brownish gray sandy loam
54 to 60 inches-grayish brown loamy sand
Properties and Qualities of Thenarrows
Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately rapid
Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—moderate
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Sandgap soils on sand dunes
- Duckclub soils in convex areas of lake plains

Major Limitations

Wetness, alkalinity, corrosivity, wind erosion, seepage

Use and Management

Livestock Grazing

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soil is wet or saturated damages plants and causes soil compaction and displacement.
- Excess salts and sodium result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- As the site deteriorates, inland saltgrass, Baltic rush, and black greasewood increase and alkali sacaton and Sandberg bluegrass decrease.
- The suitability for seeding is very poor because of the strong alkalinity.

261—Poall silt loam, 2 to 20 percent slopes

Composition

Poall and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum
Geology: Tuffaceous sedimentary rock and diatomaceous earth
Elevation: 3,400 to 4,200 feet
Rangeland ecological site and characteristic vegetation: (SR Clayey 9-12PZ)
bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 8 inches-light brownish gray silt loam
8 to 17 inches-yellowish brown clay
17 to 33 inches-pale brown clay loam
33 to 45 inches-pale brown clay loam
45 to 65 inches-light yellowish brown gravelly clay loam

Soil Properties and Qualities

Depth: 3 to 10 inches to a claypan and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 10 inches
Hazard of erosion: Water-slight; wind-slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Legler soils on stream terraces
- Longcreek and Gumble soils and Torriorthents on hills
- Bucklake soils on north-facing hillsides
- Rock outcrop

Major Soil Limitations

Depth to a claypan, shrink-swell potential, corrosivity

Use and Management

Livestock Grazing

- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the depth to the claypan.

262—Poall-Gumble complex, 2 to 20 percent slopes

Composition

Poall and similar soils-50 percent Gumble and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Poall—slopes of 2 to 12 percent; Gumble—slopes of 10 to 20 percent
Parent material: Residuum
Geology: Tuffaceous sedimentary rock and diatomaceous earth
Elevation: 3,400 to 3,900 feet
Rangeland ecological site and characteristic vegetation: Poall—(SR Clayey 9-12PZ) bluebunch wheatgrass; Gumble-(SR Shallow 9-12PZ) bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-9 to 12 inches Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile of Poall
0 to 8 inches-light brownish gray silt loam
8 to 17 inches-yellowish brown clay
17 to 33 inches-pale brown clay loam
33 to 45 inches-pale brown clay loam
45 to 65 inches-light yellowish brown gravelly clay loam
Properties and Qualities of Poall
Depth: 3 to 10 inches to a claypan and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Typical Profile of Gumble
0 to 3 inches-pale brown very gravelly silt loam
3 to 8 inches-pale brown loam
8 to 14 inches-pale brown clay loam
14 to 16 inches-light yellowish brown silty clay loam
16 inches-tuffaceous sedimentary rock

Properties and Qualities of Gumble

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches

Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Legler soils on stream terraces
- Longcreek soils and Torriorthents on hills
- Bucklake soils on north-facing hillslopes
- Rock outcrop

Major Soil Limitations

Poall and Gumble-shrink-swell potential, corrosivity
Poall-depth to a claypan
Gumble-depth to bedrock, available water capacity

Use and Management
 Livestock Grazing

Poall and Gumble

- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- The upper part of the soils is saturated following snowmelt.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Poall

- The claypan restricts the rooting depth.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the depth to the claypan.

Gumble

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the low available water capacity.

263—Pomerening very gravelly loamy sand, 2 to 20 percent slopes

Composition
Pomerening and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills (fig. 10)
Slope features: Concave and convex
Parent material: Cinders and ash

Figure 10.-Area of Pomerening very gravelly loamy sand, 2 to 20 percent slopes, in the Diamond Craters Outstanding Natural Area.

Geology: Basalt
Elevation: 4,100 to 4,700 feet
Rangeland ecological site and characteristic vegetation: (Sandy Loam 10-12PZ) basin big sagebrush, needleandthread, Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 4 inches—reddish gray very gravelly loamy sand
4 to 9 inches—reddish brown very gravelly loamy coarse sand
9 to 62 inches-weak red gravelly loamy coarse sand

Soil Properties and Qualities

Depth: More than 60 inches to bedrock Drainage class: Excessively drained Permeability: Very rapid
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—moderate

Contrasting Inclusions

- Flank soils on hills
- Rock outcrop

Major Soil Limitations

Available water capacity, wind erosion, seepage

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- As the site deteriorates, big sagebrush increases and Indian ricegrass and needlegrasses decrease.
- The suitability for seeding is poor because of the low available water capacity.

264—Pomerening-Flank-Lava flows complex, 2 to 20 percent slopes

Composition

Pomerening and similar soils-40 percent
Flank and similar soils-25 percent
Lava flows-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Pomerening and Flank—side slopes; Lava flows—pressure ridges
Parent material: Cinders and ash
Geology: Basalt
Elevation: 4,100 to 4,700 feet
Rangeland ecological site and characteristic vegetation: Pomerening-(Sandy Loam 10-12PZ) basin big sagebrush, needleandthread, Thurber needlegrass; Flank(Shallow Lava 10-12PZ) basin big sagebrush, Thurber needlegrass, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Pomerening
0 to 4 inches—reddish gray very gravelly sandy loam
4 to 9 inches-reddish brown very gravelly loamy coarse sand
9 to 62 inches-weak red gravelly loamy coarse sand

Properties and Qualities of Pomerening

Depth: More than 60 inches to bedrock
Drainage class: Excessively drained
Permeability: Very rapid
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight

Typical Profile of Flank

0 to 1 inch—dark grayish brown very gravelly sandy loam
1 to 9 inches-dark brown very gravelly sandy loam
9 inches-basalt
Properties and Qualities of Flank
Depth: 4 to 15 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Felcher soils on hills

Major Soil Limitations

Pomerening and Flank—available water capacity
Pomerening-seepage
Flank—depth to bedrock

Use and Management

Livestock Grazing

Pomerening and Flank

- The low available water capacity of the surface layer limits seedling survival.
- The areas of Lava flows restrict the movement of livestock.

Pomerening

- The risk of seepage limits the construction of water impoundments.
- As the site deteriorates, big sagebrush increases and Indian ricegrass and needlegrasses decrease.
- The suitability for seeding is poor because of the low available water capacity.

Flank

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- This soil is susceptible to invasion by cheatgrass.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- The suitability for seeding is very poor because of the low available water capacity and depth to bedrock.

265—Porterfield loam, 2 to 20 percent slopes

Composition

Porterfield and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex

Parent material: Residuum and colluvium
Geology: Tuffaceous sedimentary rock and diatomaceous earth
Elevation: 3,400 to 4,200 feet
Rangeland ecological site and characteristic vegetation: (SR Shallow 9-12PZ)
Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 6 inches-light brownish gray loam
6 to 14 inches-pale brown loam
14 inches-diatomaceous earth
Soil Properties and Qualities
Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Soils in the Upton Mountain area that are underlain by basalt and welded tuff
- Rock outcrop
- Legler soils on stream terraces
- Risley soils on hills

Major Soil Limitations

Depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the low available water capacity.

266—Porterfield very stony loam, 20 to 40 percent south slopes

Composition

Porterfield and similar soils-85 percent Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: South- and west-facing side slopes

Parent material: Residuum and colluvium
Geology: Tuffaceous sedimentary rock and diatomaceous earth
Elevation: 3,400 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (SR Shallow South 9-12PZ)
Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 6 inches-light brownish gray very stony loam
6 to 14 inches-pale brown loam
14 inches-diatomaceous earth
Soil Properties and Qualities
Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Westbutte soils on north-facing hillsides
- Arcia soils on hills at higher elevations
- Risley soils on footslopes of hills

Major Soil Limitations

Water erosion, surface stones, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The very stony surface layer restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

267-Porterfield-Tincan-Rock outcrop association, 20 to 60 percent slopes

Composition
Porterfield and similar soils-50 percent
Tincan and similar soils-20 percent

Rock outcrop-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Porterfield—south- and west-facing side slopes; Tincan— north- and east-facing side slopes
Parent material: Residuum and colluvium
Geology: Porterfield and Tincan-tuffaceous sedimentary rock and diatomaceous earth
Elevation: 3,400 to 4,600 feet
Rangeland ecological site and characteristic vegetation: Porterfield-
(SR Shallow South 9-12PZ) Wyoming big sagebrush, bluebunch
wheatgrass, Thurber needlegrass; Tincan-(SR Mountain North 9-12PZ)
Wyoming big sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F Frost-free period-80 to 100 days

Typical Profile of Porterfield

0 to 6 inches-light brownish gray very stony loam
6 to 14 inches-pale brown loam
14 inches-diatomaceous earth

Properties and Qualities of Porterfield

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Tincan
0 to 16 inches-brown gravelly silt loam
16 inches-diatomaceous earth

Properties and Qualities of Tincan

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Westbutte soils on north-facing hillsides
- Arcia soils at higher elevations on hills
- Madeline soils on hillsides

Major Soil Limitations

Porterfield and Tincan-water erosion, slope, depth to bedrock Porterfield—surface stones

Use and Management

Livestock Grazing

Porterfield and Tincan

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.

Porterfield

- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the steepness of slope.

Tincan

- Steepness of slope restricts the operation of ground seeding equipment.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the steepness of slope.

268—Poujade very fine sandy loam, 0 to 2 percent slopes

Composition

Poujade and similar soils-85 percent
Contrasting inclusions- 15 percent

Setting

Landform: Low lake terraces
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,100 to 4,200 feet
Rangeland ecological site and characteristic vegetation: (Sodic Terrace 6-10PZ) basin
big sagebrush, spiny hopsage, black greasewood, Indian ricegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 4 inches-light brownish gray very fine sandy loam
4 to 6 inches-light brownish gray loam
6 to 9 inches-light brownish gray silty clay loam
9 to 13 inches-light yellowish brown silty clay loam
13 to 40 inches-light gray loam

40 to 58 inches-white silty clay loam and loam
58 to 65 inches-light gray fine sandy loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Moderate
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High
Contrasting Inclusions

- Ausmus and Skidoosprings soils on lake plains
- Leathers soils on lake terraces

Major Soil Limitations

Wind erosion, alkalinity, corrosivity

Use and Management

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush increases and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity.

269—Poujade very fine sandy loam, 2 to 5 percent slopes

Composition

Poujade and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Low lake terraces
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Dry Basin) basin big sagebrush, black greasewood, basin wildrye
Climatic factors:
Mean annual precipitation-8 to 10 inches

Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 4 inches-light brownish gray very fine sandy loam
4 to 6 inches-light brownish gray loam
6 to 9 inches-light brownish gray silty clay loam
9 to 13 inches-light yellowish brown silty clay loam
13 to 40 inches-light gray loam
40 to 58 inches-white silty clay loam and loam
58 to 65 inches-light gray fine sandy loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Moderate
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High

Contrasting Inclusions

- Ausmus and Lolak soils on lake plains
- Crowcamp soils on low lake terraces
- Lawen soils on high lake terraces

Major Soil Limitations

Wind erosion, alkalinity, corrosivity

Use and Management

Irrigated Hayland

- Alkali-tolerant plants are the most suitable for planting. Sulphur amendments are needed if alfalfa or other crops are grown.
- Practices that help to control wind erosion include planting crops at right angles to the prevailing wind, maintaining crop residue on the soil surface, planting field windbreaks, stripcropping, planting cover crops, using minimum tillage, minimizing the areas of barren soil, and leaving the soil surface rough.

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush increases and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity.

270—Poujade-Ausmus complex, 0 to 2 percent slopes

Composition

Poujade and similar soils-50 percent Ausmus and similar soils-35 percent Contrasting inclusions-15 percent

Setting
Landform: Poujade—low lake terraces; Ausmus—lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: Poujade—(Dry Basin) basin big sagebrush, black greasewood, basin wildrye; Ausmus (Sodic Bottom) black greasewood, basin wildrye, inland saltgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Poujade

0 to 4 inches-light brownish gray very fine sandy loam
4 to 6 inches-light brownish gray loam
6 to 9 inches-light brownish gray silty clay loam
9 to 13 inches-light yellowish brown silty clay loam
13 to 40 inches-light gray loam
40 to 58 inches-white silty clay loam and loam
58 to 65 inches-light gray fine sandy loam

Properties and Qualities of Poujade

Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Moderate
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High

Typical Profile of Ausmus

0 to 2 inches-light brownish gray fine sandy loam
2 to 16 inches-light brownish gray silty clay loam
16 to 29 inches-light brownish gray silt loam
29 to 69 inches-light yellowish brown loam

Properties and Qualities of Ausmus

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 3 inches

Hazard of erosion: Water—slight; wind—moderate
Salinity: Strong
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High
Contrasting Inclusions

- Crowcamp and Lolak soils on lake plains
- Lawen soils on high lake terraces

Major Soil Limitations

Poujade and Ausmus-wind erosion, alkalinity, corrosivity Ausmus-salinity, wetness

Use and Management
 Livestock Grazing

Poujade and Ausmus

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.

Poujade

- As the site deteriorates, big sagebrush increases and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity.

Ausmus

- As the site deteriorates, inland saltgrass and black greasewood increase and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity and salinity.

271—Raz cobbly fine sandy loam, 1 to 10 percent slopes Composition

Raz and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Colluvium and old alluvium
Geology: Welded tuff and basalt
Elevation: 4,400 to 4,900 feet
Rangeland ecological site and characteristic vegetation: (Sandy Loam 10-12PZ)
basin big sagebrush, needleandthread, Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-pale brown cobbly fine sandy loam
2 to 7 inches-light gray gravelly loam
7 to 12 inches-light gray loam
12 to 23 inches-indurated duripan
23 inches-welded tuff

Soil Properties and Qualities

Depth: 10 to 18 inches to a hardpan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—moderate
Shrink-swell potential: Moderate
Corrosivity to steel: High
Potential frost action: Moderate
Contrasting Inclusions

- Anawalt, Brace, and Fourwheel soils on hills
- Rock outcrop

Major Soil Limitations

Wind erosion, depth to bedrock, depth to a hardpan, corrosivity

Use and Management

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Depth to bedrock limits the construction of water impoundments.
- The cemented hardpan restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, big sagebrush and greasewood increase and Indian ricegrass and needlegrasses decrease.
- The suitability for seeding is poor because of the low available water capacity.

272—Raz-Brace complex, 2 to 20 percent slopes Composition

Raz and similar soils-50 percent Brace and similar soils-35 percent Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Colluvium and old alluvium
Geology: Basalt and welded tuff
Elevation: 4,100 to 5,800 feet

Rangeland ecological site and characteristic vegetation: Raz and Brace-(Loamy
10-12PZ) Wyoming big sagebrush, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Raz
0 to 2 inches—pale brown very cobbly loam
2 to 7 inches-light gray gravelly clay loam
7 to 12 inches-light gray clay loam
12 to 23 inches-indurated duripan
23 inches-basalt

Properties and Qualities of Raz

Depth: 10 to 18 inches to a hardpan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High

Typical Profile of Brace

0 to 6 inches—pale brown stony loam
6 to 13 inches-pale brown clay loam
13 to 21 inches-very pale brown loam
21 to 32 inches-yellow loam
32 to 36 inches-indurated duripan
36 inches-fractured basalt
Properties and Qualities of Brace
Depth: 20 to 37 inches to a hardpan and 22 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Actem soils on hills and plateaus
- Swalesilver soils in depressions of plateaus
- Playas

Major Soil Limitations

Raz and Brace-water erosion, depth to bedrock, depth to a hardpan, surface rock fragments
Raz-corrosivity, available water capacity

Use and Management

Livestock Grazing

Raz and Brace

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush,
and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.

Raz

- The cemented hardpan restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The upper part of the soil is saturated following snowmelt.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Brace

- Depth to the hardpan limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The suitability for seeding is fair because of the surface rock fragments.

273-Raz-Brace complex, Iow precipitation, 2 to 20 percent slopes

Composition

Raz and similar soils-50 percent Brace and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Colluvium and old alluvium
Geology: Basalt and welded tuff
Elevation: 4,400 to 5,800 feet
Rangeland ecological site and characteristic vegetation: Raz and Brace-(Shallow Loam 8-10PZ) Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass, bluebunch wheatgrass, spiny hopsage
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Raz
0 to 2 inches—pale brown very cobbly loam
2 to 7 inches-light gray gravelly clay loam
7 to 12 inches-light gray clay loam
12 to 23 inches-indurated duripan
23 inches-basalt

Properties and Qualities of Raz

Depth: 10 to 18 inches to a hardpan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches

Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High

Typical Profile of Brace

0 to 6 inches—pale brown stony loam
6 to 13 inches-pale brown clay loam
13 to 21 inches-very pale brown loam
21 to 32 inches-yellow loam
32 to 36 inches-indurated duripan
36 inches-fractured basalt
Properties and Qualities of Brace
Depth: 20 to 37 inches to a hardpan and 22 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Catlow soils on terraces
- Actem soils on hills and plateaus
- Swalesilver soils in depressions of plateaus
- Rock outcrop

Major Soil Limitations

Raz and Brace-water erosion, depth to bedrock, depth to a hardpan, surface rock fragments
Raz-corrosivity, available water capacity

Use and Management

Livestock Grazing

Raz and Brace

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- A well-developed erosion pavement can limit the reestablishment of plants.

Raz

- The cemented hardpan restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The upper part of the soil is saturated following snowmelt.
- The suitability for seeding is poor because of droughtiness, the low available water capacity, and the surface rock fragments.

Brace

- Depth to hardpan limits the construction of water impoundments.
- The suitability for seeding is poor because of droughtiness and the surface rock fragments.

274—Reallis sandy loam, 3 to 8 percent slopes

Composition

Reallis and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,000 to 4,600 feet
Rangeland ecological site and characteristic vegetation: (Sandy Loam 10-12PZ)
basin big sagebrush, needleandthread, Thurber needlegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 9 inches-light brownish gray sandy loam
9 to 17 inches-light brownish gray sandy loam
17 to 27 inches-light gray sandy loam
27 to 36 inches-light gray loamy sand
36 to 60 inches-multicolored loamy sand

Soil Properties and Qualities

Depth: 17 to 35 inches to hard, firm, brittle layer and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 6 inches
Hazard of erosion: Water-slight; wind-moderate
Corrosivity to steel: High
Contrasting Inclusions

- Ausmus soils on lake plains
- Lawen, Poujade, and Sandgap soils on lake terraces
- Vergas soils on alluvial fans
- Oreneva soils on hills

Major Soil Limitations

Wind erosion, seepage, corrosivity

Use and Management

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush increases and Indian ricegrass and needlegrasses decrease.
- The suitability for seeding is good.

Irrigated Hayland

- Because the infiltration rate is moderately rapid, sprinkler irrigation is best suited to this soil.
- This soil is well suited to use as irrigated hayland.

275-Reallis fine sandy loam, 0 to 3 percent slopes

Composition

Reallis and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,100 to 5,800 feet
Rangeland ecological site and characteristic vegetation: (Loamy 10-12PZ) Wyoming
big sagebrush, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 9 inches-light brownish gray fine sandy loam
9 to 17 inches-light brownish gray sandy loam
17 to 27 inches-light gray sandy loam
27 to 36 inches-light gray loamy sand
36 to 60 inches-multicolored loamy sand

Soil Properties and Qualities

Depth: 17 to 35 inches to a hard, firm, brittle layer and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High
Contrasting Inclusions

- Ausmus, Lawen, and Poujade soils on lake terraces
- Sandgap soils on beach terraces

Major Soil Limitations
Wind erosion, seepage, corrosivity

Use and Management

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is good.

Irrigated Hayland

- Because the infiltration rate is moderately rapid, sprinkler irrigation is best suited to this soil.
- This soil is well suited to use as irrigated hayland.

276-Reese loam, 0 to 1 percent slopes

Composition

Reese and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,400 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Lake Terrace) beardless wildrye
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 10 inches—dark brown and brown loam
10 to 20 inches-brown clay loam
20 to 33 inches—brown loam
33 to 44 inches-light brownish gray coarse sandy loam
44 to 60 inches-light brownish gray loam
Soil Properties and Qualities
Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in winter and spring
Water table: Present in winter and spring
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Strong
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Boravall soils on lake plains
- Enko soils on lake terraces

Major Soil Limitations

Available water capacity, wetness, salinity, alkalinity, corrosivity

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soil is wet or saturated damages plants and causes soil compaction and displacement.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, beardless wildrye decreases and the soil becomes susceptible to invasion by goosefoot and povertyweed.
- The suitability for seeding is very poor because of the strong salinity and alkalinity.

277-Reluctan loam, 2 to 20 percent slopes

Composition

Reluctan and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum
Geology: Basalt and welded tuff
Elevation: 4,000 to 5,600 feet
Rangeland ecological site and characteristic vegetation: (Droughty Loam 11-13PZ)
basin big sagebrush, Idaho fescue, Thurber needlegrass
Climatic factors:
Mean annual precipitation-11 to 13 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches—brown loam
2 to 9 inches-brown sandy loam
9 to 15 inches-brown sandy clay loam

15 to 26 inches-light brownish gray sandy clay loam 26 inches-basalt

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High
Contrasting Inclusions

- Carryback and Ninemile soils on hills and plateaus
- Westbutte soils on north-facing hillsides

Major Soil Limitations

Depth to bedrock, wind erosion, corrosivity

Use and Management

Livestock Grazing

- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and needlegrasses, Idaho fescue, and bluebunch wheatgrass decrease.
- The suitability for seeding is good.

278-Reluctan very stony silt loam, 2 to 20 percent slopes

Composition

Reluctan and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Plane and convex
Parent material: Residuum
Geology: Basalt and welded tuff
Elevation: 4,000 to 5,000 feet
Rangeland ecological site and characteristic vegetation: (Droughty Loam 11-13PZ)
basin big sagebrush, Idaho fescue, Thurber needlegrass
Climatic factors:
Mean annual precipitation-11 to 13 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-brown very stony silt loam
2 to 9 inches-brown sandy loam

9 to 15 inches-brown sandy clay loam
15 to 26 inches-light brownish gray sandy clay loam
26 inches-basalt

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High

Contrasting Inclusions

- Brace soils on plateaus
- Reallis soils on terraces
- Vergas soils on fans

Major Soil Limitations

Surface stones, depth to bedrock, corrosivity

Use and Management

- The very stony surface layer restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and needlegrasses, Idaho fescue, and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the surface stones.

279—Riddleranch-Lambring-Rock outcrop complex, 20 to 50 percent slopes

Composition

Riddleranch and similar soils-40 percent
Lambring and similar soils-30 percent
Rock outcrop-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: Riddleranch—south- and west-facing side slopes; Lambring— north- and east-facing side slopes
Parent material: Colluvium
Geology: Basalt and welded tuff
Elevation: 4,200 to 5,100 feet
Rangeland ecological site and characteristic vegetation: Riddleranch—(Droughty South Slopes 11-13PZ) basin big sagebrush, bluebunch wheatgrass, Thurber needlegrass; Lambring-(North Slopes 12-16PZ) mountain big sagebrush, Idaho fescue
Climatic factors:
Mean annual precipitation-11 to 13 inches

Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Riddleranch
0 to 7 inches—brown very stony sandy loam
7 to 16 inches-brown very cobbly loam
16 to 27 inches-brown extremely stony loam
27 inches-basalt

Properties and Qualities of Riddleranch

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Lambring
0 to 7 inches-dark grayish brown very stony loam
7 to 21 inches-brown gravelly loam
21 to 60 inches-brown very cobbly loam

Properties and Qualities of Lambring

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Pearlwise soils on north-facing hillsides
- Coztur and Robson soils on hillsides

Major Soil Limitations

Riddleranch and Lambring-water erosion, slope, surface stones Riddleranch—depth to bedrock, available water capacity

Use and Management

Livestock Grazing

Riddleranch and Lambring

- The low available water capacity of the surface layer limits seedling survival.
- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.

Riddleranch

- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity, surface stones, and steepness of slope.

Lambring

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the surface stones and steepness of slope.

280—Riddleranch-Rock outcrop complex, 20 to 70 percent south slopes

Composition
Riddleranch and similar soils-50 percent
Rock outcrop-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: South- and west-facing side slopes
Parent material: Colluvium
Geology: Basalt and welded tuff
Elevation: 4,200 to 6,300 feet
Rangeland ecological site and characteristic vegetation: Riddleranch—(Droughty South Slopes 11-13PZ) basin big sagebrush, bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-11 to 13 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Riddleranch
0 to 7 inches-brown very stony loam
7 to 16 inches-brown very cobbly loam
16 to 27 inches-brown extremely stony loam
27 inches-basalt
Properties and Qualities of Riddleranch
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—severe; wind—slight

Contrasting Inclusions

- Pearlwise soils on north-facing hillsides
- Coztur and Robson soils on hillsides
- Lambring soils on north-facing mountainsides

Major Soil Limitations

Riddleranch-water erosion, slope, surface stones, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- The soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the steepness of slope, surface stones, and low available water capacity.

281—Rinconflat stony loam, 3 to 10 percent slopes
 Composition

Rinconflat and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Alluvial fans
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,600 to 5,700 feet
Rangeland ecological site and characteristic vegetation: (Loamy 10-12PZ) Wyoming
big sagebrush, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 4 inches-pale brown stony loam 4 to 13 inches-yellowish brown gravelly loam
13 to 23 inches-yellowish brown very cobbly loam
23 to 29 inches-yellowish brown very gravelly loam
29 to 57 inches-pale brown cobbly sandy loam
57 to 61 inches-yellowish brown very cobbly sandy clay loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water-slight; wind-slight
Corrosivity to steel: High

Contrasting Inclusions

- Carvix and Stampede soils on stream terraces
- Felcher soils on south-facing hillsides

Major Soil Limitations

Surface rock fragments, corrosivity

Use and Management

Livestock Grazing

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Surface rock fragments may restrict the operation of equipment.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is fair because of the surface rock fragments.

282—Rio King loam, 1 to 6 percent slopes

Composition

Rio King and similar soils- 85 percent Contrasting inclusions-15 percent

Setting

Landform: Stream terraces

Slope features: Convex

Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Loamy Bottom) basin wildrye
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature- 45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 17 inches-brown loam
17 to 27 inches-brown sandy loam
27 to 45 inches-yellowish brown very fine sandy loam
45 to 64 inches-yellowish brown sandy loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Water table: Present in spring
Permeability: Moderate
Available water capacity: About 10 inches
Hazard of erosion: Water-slight; wind-slight
Corrosivity to steel: High

Contrasting Inclusions

- Davey soils on lake terraces
- Droval and Ozamis soils on lake plains

Major Soil Limitation

Corrosivity

Use and Management
 Irrigated Hayland

- This soil is well suited to irrigated hayland.

Livestock Grazing

- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The suitability for seeding is good.

283—Rio King-Droval complex, 0 to 2 percent slopes

Composition

Rio King and similar soils- 55 percent
Droval and similar soils-35 percent
Contrasting inclusions-10 percent

Setting

Landform: Rio King—stream terraces; Droval—lake plains
Position on landform: Rio King—slopes of 1 to 2 percent; Droval—slopes of 0 to 1 percent
Parent material: Rio King—alluvium; Droval—lacustrine sediment
Geology: Mixed igneous rock
Elevation: 4,100 to 4,400 feet
Rangeland ecological site and characteristic vegetation: Rio King-(Loamy Bottom) basin wildrye; Droval—(Sodic Bottom) black greasewood, basin wildrye, inland saltgrass
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Rio King

0 to 17 inches-brown loam
17 to 27 inches-brown sandy loam
27 to 45 inches-yellowish brown very fine sandy loam
45 to 64 inches-yellowish brown sandy loam

Properties and Qualities of Rio King

Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Water table: Present in spring
Permeability: Moderate
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High

Typical Profile of Droval

0 to 4 inches-light brownish gray loam
4 to 11 inches-grayish brown silty clay
11 to 22 inches-light brownish gray silty clay
22 to 32 inches-grayish brown clay
32 to 46 inches-pale brown silty clay
46 to 61 inches-pale brown clay
61 inches_highly fractured lacustrine sediment

Properties and Qualities of Droval

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring
Water table: Present in winter and spring
Permeability: Slow
Available water capacity: About 7 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Strong
Alkalinity: Strong
Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Dixon soils on lake terraces
- Ozamis soils on lake plains

Major Soil Limitations

Rio King and Droval—corrosivity
Droval-shrink-swell potential, salinity, alkalinity, wetness
Use and Management
Irrigated Hayland

Rio King

- This soil is well suited to irrigated hayland.

Droval

- The salinity and alkalinity limit the types of crops that can be grown.
- Salt- and alkali-tolerant plants are the most suitable for planting.
- If alfalfa or other crops are grown, sulphur amendments are needed because of the strong alkalinity of the soil.
- Proper irrigation water management and adequate drainage are needed to leach the salts below the rooting zone.

Livestock Grazing

Rio King and Droval

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Rio King

- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- As streambanks become unstable, channels deepen and widen and the subsurface waterflow is reduced, resulting in a drier site with decreased production and increased density of upland shrubs.
- As the site deteriorates, big sagebrush and bluegrasses increase and basin wildrye and willows decrease.
- The suitability for seeding is good.

Droval

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Crusting of the soil surface reduces infiltration, causes ponding, and restricts seedling emergence and survival.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- This unit is suited to grazing in winter.
- The surface of the soil becomes highly sodic with continued deterioration of the site.
- As the site deteriorates, inland saltgrass and black greasewood increase and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity and salinity.

284—Risley-Gumble complex, 2 to 20 percent slopes Composition

Risley and similar soils-45 percent
Gumble and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills

Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Tuffaceous sedimentary rock and diatomaceous earth
Elevation: 3,500 to 4,500 feet
Rangeland ecological site and characteristic vegetation: Risley-(SR Clayey 9-12PZ)
bluebunch wheatgrass; Gumble-(SR Shallow 9-12PZ) bluebunch wheatgrass,
Thurber needlegrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Risley

0 to 3 inches-light brownish gray gravelly loam
3 to 12 inches-grayish brown clay
12 to 25 inches-light olive brown gravelly clay
25 to 37 inches-light yellowish brown gravelly clay loam

37 to 39 inches-pale yellow very gravelly sandy clay loam
39 inches-tuffaceous sedimentary rock

Properties and Qualities of Risley

Depth: 1 to 11 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Typical Profile of Gumble

0 to 3 inches-pale brown very gravelly silt loam
3 to 8 inches-pale brown loam
8 to 14 inches-pale brown clay loam
14 to 16 inches-light yellowish brown silty clay loam
16 inches-tuffaceous sedimentary rock
Properties and Qualities of Gumble
Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Contrasting Inclusions

- Legler soils on stream terraces
- Longcreek soils and Torriorthents on hills
- Rock outcrop

Major Soil Limitations

Risley and Gumble—depth to bedrock, shrink-swell potential, corrosivity
Risley—depth to a claypan
Gumble—available water capacity

Use and Management

Livestock Grazing

Risley and Gumble

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- The upper part of the soils is saturated following snowmelt.

Risley

- The claypan restricts the rooting depth.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the depth to the claypan.

Gumble

- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the low available water capacity.

285—Risley-Gumble-Torriorthents complex, 2 to 25 percent slopes

Composition

Risley and similar soils-40 percent
Gumble and similar soils-25 percent
Torriorthents and similar soils-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Tuffaceous sedimentary rock and diatomaceous earth
Elevation: 3,600 to 4,100 feet
Rangeland ecological site and characteristic vegetation: Risley-(SR Clayey 9-12PZ) bluebunch wheatgrass; Gumble-(SR Shallow 9-12PZ) bluebunch wheatgrass, Thurber needlegrass; Torriorthents-(SR Shallow Escarpment 9-12PZ) Wyoming big sagebrush, squaw apple, bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile of Risley
0 to 3 inches-light brownish gray silty clay loam
3 to 12 inches-grayish brown clay
12 to 25 inches-light olive brown gravelly clay
25 to 37 inches-light yellowish brown gravelly clay loam
37 to 39 inches-pale yellow very gravelly sandy clay loam
39 inches-tuffaceous sedimentary rock
Properties and Qualities of Risley
Depth: 1 to 11 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 5 inches
Hazard of erosion: Water-slight; wind-slight
Shrink-swell potential: High
Corrosivity to steel: High
Typical Profile of Gumble
0 to 3 inches-pale brown very cobbly loam
3 to 8 inches-pale brown loam
8 to 14 inches-pale brown clay loam

14 to 16 inches-light yellowish brown silty clay loam
16 inches-tuffaceous sedimentary rock

Properties and Qualities of Gumble

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Reference Profile of Torriorthents

0 to 7 inches-light brownish gray silty clay loam
7 inches-diatomaceous earth

Properties and Qualities of Torriorthents

Depth: 4 to 14 inches to bedrock
Drainage class: Well drained
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Rock outcrop
- Legler soils on stream terraces

Major Soil Limitations

Risley, Gumble, and Torriorthents-depth to bedrock
Risley and Gumble—shrink-swell potential, corrosivity
Gumble and Torriorthents-available water capacity
Risley—depth to a claypan
Gumble-surface rock fragments
Use and Management

Livestock Grazing

Risley, Gumble, and Torriorthents

- The upper part of the soils is saturated following snowmelt.

Risley and Gumble

- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Gumble and Torriorthents

- The low available water capacity of the surface layer limits seedling survival.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.

Risley

- Depth to bedrock limits the construction of water impoundments.
- The claypan restricts the rooting depth.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is very poor because of the depth to the claypan.

Gumble

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Torriorthents

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the low available water capacity and depth to bedrock.

286—Risley-Rock outcrop complex, 5 to 20 percent slopes

Composition

Risley and similar soils-60 percent
Rock outcrop-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Risley—tuffaceous sedimentary rock and diatomaceous earth; Rock outcrop—basalt dikes
Elevation: 3,500 to 4,200 feet
Rangeland ecological site and characteristic vegetation: Risley—(SR Clayey 9-12PZ)
bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile of Risley
0 to 3 inches-light brownish gray very stony loam
3 to 12 inches-grayish brown clay
12 to 25 inches-light olive brown gravelly clay
25 to 37 inches-light yellowish brown gravelly clay loam
37 to 39 inches-pale yellow very gravelly sandy clay loam
39 inches-tuffaceous sedimentary rock

Properties and Qualities of Risley

Depth: 1 to 11 inches to a claypan and 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow

Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Legler soils on stream terraces
- Longcreek soils and Torriorthents on hills
- Mahoon soils on steep, south-facing hillsides

Major Soil Limitations

Risley—surface stones, depth to bedrock, depth to a claypan, shrink-swell potential, corrosivity

Use and Management

Livestock Grazing

- The very stony surface layer and areas of Rock outcrop restrict the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the depth to the claypan and surface stones.

287—Robson-Anawalt complex, 2 to 15 percent slopes

Composition

Robson and similar soils-45 percent
Anawalt and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt and welded tuff
Elevation: 5,700 to 6,200 feet
Rangeland ecological site and characteristic vegetation: Robson-(Clayey 10-12PZ)
Wyoming big sagebrush, bluebunch wheatgrass; Anawalt-(Claypan 10-12PZ)
low sagebrush, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Robson

0 to 4 inches-light brownish gray cobbly clay loam
4 to 13 inches-brown very gravelly clay
13 inches-basalt

Properties and Qualities of Robson

Depth: 12 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Anawalt

0 to 2 inches-light brownish gray gravelly loam
2 to 11 inches-light brownish gray clay loam
11 to 16 inches-brownish yellow clay
16 inches-fractured welded tuff

Properties and Qualities of Anawalt

Depth: 4 to 11 inches to a claypan and 12 to 20 inches to bedrock Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Fitzwater soils on north- and east-facing hillsides
- Carvix soils on stream terraces
- Rock outcrop and Rubble land

Major Soil Limitations

Robson and Anawalt—depth to bedrock, shrink-swell potential
Robson—available water capacity
Anawalt—depth to a claypan, corrosivity

Use and Management

Livestock Grazing

Robson and Anawalt

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Allow the soils to drain adequately before grazing to minimize compaction of the soils and damage to plants.

Robson

- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- The suitability for seeding is very poor because of the low available water capacity.

Anawalt

- The claypan restricts the rooting depth.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the depth to the claypan.

288-Robson-Fourwheel complex, 3 to 30 percent slopes

Composition

Robson and similar soils-45 percent
Fourwheel and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Robson—slopes of 10 to 30 percent; Fourwheel—slopes of 3 to 12 percent
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,400 to 6,500 feet
Rangeland ecological site and characteristic vegetation: Robson and Fourwheel-
(Clayey 10-12PZ) Wyoming big sagebrush, bluebunch wheatgrass

Climatic factors:

Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Robson
0 to 4 inches-light brownish gray very cobbly clay loam 4 to 13 inches-brown very gravelly clay 13 inches-basalt

Properties and Qualities of Robson

Depth: 12 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High

Typical Profile of Fourwheel

0 to 7 inches-gray and light brownish gray clay loam
7 to 14 inches-dark yellowish brown clay
14 to 22 inches-yellowish brown clay
22 inches-basalt

Properties and Qualities of Fourwheel

Depth: 4 to 11 inches to a claypan and 20 to 40 inches to bedrock Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Anawalt and Coztur soils on hills and plateaus
- Rock outcrop

Major Soil Limitations

Robson and Fourwheel-depth to bedrock, shrink-swell potential
Robson-available water capacity, water erosion
Fourwheel—depth to a claypan
Use and Management
Livestock Grazing

Robson and Fourwheel

- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- These soils are susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.

Robson

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The low available water capacity of the surface layer limits seedling survival.
- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The suitability for seeding is very poor because of the low available water capacity.

Fourwheel

- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The suitability for seeding is poor because of the depth to the claypan.

289—Robson-Felcher association, 3 to 70 percent slopes

Composition

Robson and similar soils-55 percent
Felcher and similar soils-30 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Robson-slopes of 3 to 25 percent; Felcher—south- and westfacing slopes of 25 to 70 percent

Parent material: Colluvium and residuum
Geology: Basalt, andesite, and welded tuff
Elevation: 4,500 to 6,200 feet
Rangeland ecological site and characteristic vegetation: Robson-(Clayey 10-12PZ)
Wyoming big sagebrush, bluebunch wheatgrass; Felcher-(South Slopes
8-12PZ) Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 100 days
Typical Profile of Robson
0 to 4 inches-light brownish gray very cobbly clay loam
4 to 13 inches-brown very gravelly clay
13 inches-basalt

Properties and Qualities of Robson

Depth: 12 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Typical Profile of Felcher
0 to 10 inches-light brownish gray very cobbly loam 10 to 22 inches-yellowish brown very gravelly clay loam 22 inches-basalt

Properties and Qualities of Felcher
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water-severe; wind—slight

Contrasting Inclusions

- Brace soils on hills
- Fitzwater soils on north-facing hillsides
- Rock outcrop and Rubble land

Major Soil Limitations

Robson and Felcher-water erosion, depth to bedrock
Robson-available water capacity, shrink-swell potential Felcher-slope

Use and Management

Livestock Grazing

Robson and Felcher

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Depth to bedrock and steepness of slope limit the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.

Robson

- The low available water capacity of the surface layer limits seedling survival.
- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is very poor because of the low available water capacity.

Felcher

- Steepness of slope restricts the operation of ground seeding equipment.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- The suitability for seeding is very poor because of the steepness of slope.

290—Roca very cobbly clay loam, 15 to 40 percent south slopes

Composition

Roca and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: South- and west-facing side slopes
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and rhyolite
Elevation: 4,200 to 5,800 feet
Rangeland ecological site and characteristic vegetation: (South Slopes 8-12PZ)
Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 8 inches-pale brown very cobbly clay loam
8 to 12 inches-yellowish brown very gravelly clay loam
12 to 16 inches-brown very gravelly clay
16 to 22 inches-light brown very cobbly clay loam
22 inches-basalt

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow

Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Contrasting Inclusions

- Robson and Reluctan soils on hills

Major Soil Limitations

Available water capacity, water erosion, depth to bedrock, shrink-swell potential, corrosivity, surface rock fragments

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- The low available water capacity of the surface layer limits seedling survival.
- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

291—Rock outcrop and Rubble land, 20 to 60 percent slopes

Composition

Rock outcrop-60 percent
Rubble land-30 percent
Contrasting inclusions-10 percent

Setting

Landform: Mountains and hills fig. 11)
Geology: Igneous rock
Elevation: 4,000 to 8,000 feet
Climatic factors:
Mean annual precipitation-10 to 40 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-30 to 80 days

Contrasting Inclusions

- Westbutte soils on north-facing side slopes
- Felcher soils on south-facing side slopes

Major Uses
Watershed and wildlife habitat

Figure 11.-Area of Rock outcrop and Rubble land, 20 to 60 percent slopes, which provides important habitat for raptors and prey species.

292—Rock outcrop-Baconcamp complex, 30 to 80 percent slopes

Composition

Rock outcrop-50 percent
Baconcamp and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: South- and north-facing side slopes
Parent material: Colluvium
Geology: Basalt and andesite
Elevation: 5,100 to 9,700 feet
Rangeland ecological site and characteristic vegetation: Baconcamp-(Subalpine
Slopes 16-35PZ) mountain big sagebrush, whortleleaf snowberry, Idaho fescue
Climatic factors:
Mean annual precipitation-14 to 40 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile of Baconcamp

0 to 4 inches-very dark grayish brown very gravelly loam 4 to 20 inches-very dark grayish brown gravelly loam 20 to 35 inches-very dark grayish brown very gravelly loam 35 inches-fractured basalt

Properties and Qualities of Baconcamp
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water—severe; wind—slight
Contrasting Inclusions

- Krackle soils on side slopes
- Welch soils in swales and along drainageways

Major Soil Limitations

Water erosion, slope, depth to bedrock, cold climate

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Because of the snowpack, specially designed fences, such as laydown fences, should be constructed.
- As the site deteriorates, mountain big sagebrush, mountain brome, bottlebrush squirreltail and bluegrasses increase and fescue and needlegrasses decrease.
- The suitability for seeding is very poor because of the steepness of slope, short growing season, and areas of Rock outcrop.

293—Royst-Merlin complex, 2 to 20 percent slopes

 CompositionRoyst and similar soils-65 percent
Merlin and similar soils-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, welded tuff, and andesite
Elevation: 4,700 to 5,400 feet
Rangeland ecological site and characteristic vegetation: Royst-(SR Dry Pine 14-16PZ) ponderosa pine, western juniper, mountain big sagebrush, Idaho fescue, bluebunch wheatgrass; Merlin-(JD Mountain Claypan 12-16PZ) low sagebrush, Idaho fescue, bluebunch wheatgrass, onespike oatgrass

Climatic factors:

Mean annual precipitation-14 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Royst

0 to 3 inches-dark grayish brown very cobbly loam
3 to 7 inches-dark grayish brown cobbly loam
7 to 22 inches-brown very stony clay loam
22 to 23 inches-weathered tuff
23 inches-fractured welded tuff
Properties and Qualities of Royst
Depth: 20 to 35 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Merlin

0 to 7 inches—brown very cobbly loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Properties and Qualities of Merlin

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Observation and Ticino soils hills and plateaus
- Anatone soils on hills
- Rock outcrop

Major Soil Limitations

Royst and Merlin—surface rock fragments, depth to bedrock, shrink-swell potential, available water capacity
Merlin—depth to a claypan

Use and Management

Livestock Grazing

Royst and Merlin

- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Depth to bedrock limits the construction of water impoundments.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Royst

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.

Merlin

- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The claypan restricts the rooting depth.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.

Forest Products

Royst

- Efficient operation of wheeled or tracked equipment is limited by the surface rock fragments.
- Surface mechanical site preparation is difficult because of the surface rock fragments.
- The surface rock fragments limit the effective use of equipment for deep mechanical site preparation and mechanical planting.
- Planting by hand is difficult because of the surface rock fragments.
- The seedling mortality rate is above normal because of the low available water capacity.
- Because of the surface rock fragments, fires of moderate fireline intensity may damage the soil. Consider alternative techniques if prescribed burning is used.

294—Rubble land-Nuss-Ateron association, 20 to 60 percent slopes

Composition

Rubble land- 35 percent
Nuss and similar soils- 30 percent
Ateron and similar soils-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Nuss-south- and west-facing side slopes; Ateron-north- and east-facing side slopes
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,000 to 5,000 feet
Rangeland ecological site and characteristic vegetation: Nuss-(SR Mountain
Shallow South 12-16PZ) mountain big sagebrush, bluebunch wheatgrass, Sandberg bluegrass, Thurber needlegrass; Ateron-(SR Mountain Shallow North 12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-12 to 16 inches

Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Nuss
0 to 4 inches-grayish brown stony loam
4 to 12 inches-dark grayish brown gravelly loam
12 to 15 inches-dark grayish brown cobbly loam
15 inches-fractured basalt

Properties and Qualities of Nuss

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Ateron
0 to 5 inches-dark grayish brown extremely stony silt loam
5 to 12 inches-grayish brown very cobbly clay loam
12 to 18 inches-grayish brown extremely stony clay 18 inches-highly fractured basalt

Properties and Qualities of Ateron

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight
Shrink-swell potential: High
Contrasting Inclusions

- Doyn and Westbutte soils on hills
- Roschene soils on stream terraces

Major Soil Limitations

Nuss and Ateron-water erosion, depth to bedrock, available water capacity, slope Ateron-surface stones, shrink-swell potential

Use and Management

Livestock Grazing

Nuss and Ateron

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.

Nuss

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is very poor because of the steepness of slope.

Ateron

- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- The extremely stony soil surface limits livestock movement and the distribution of grazing.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the surface stones and steepness of slope.

295—Sagehen-Rock outcrop complex, 5 to 30 percent slopes

Composition

Sagehen and similar soils- 75 percent
Rock outcrop-10 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains and hills
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Basalt and andesite
Elevation: 5,400 to 6,600 feet
Rangeland ecological site and characteristic vegetation: Sagehen-
(Claypan 10-12PZ) low sagebrush, bluebunch wheatgrass, Sandberg
bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

> Typical Profile of Sagehen

0 to 10 inches-light brownish gray stony clay loam
10 to 19 inches-brown very gravelly clay loam
19 inches—basalt

Properties and Qualities of Sagehen

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Lonely and Robson soils on hillsides

Major Soil Limitations
Sagehen-depth to bedrock, available water capacity

Use and Management
 Livestock Grazing

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity.

296-Sagehen-Rock outcrop complex, 30 to 70 percent slopes

Composition

Sagehen and similar soils-75 percent
Rock outcrop-10 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Basalt and andesite
Elevation: 5,400 to 7,100 feet
Rangeland ecological site and characteristic vegetation: Sagehen-(Claypan 10-12PZ) low sagebrush, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature- 43 to 45 degrees F Frost-free period-50 to 80 days

Typical Profile of Sagehen
0 to 10 inches-light brownish gray stony clay loam
10 to 19 inches-brown very gravelly clay loam
19 inches-basalt

Properties and Qualities of Sagehen

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water-severe; wind-slight

Contrasting Inclusions

- Lonely and Robson soils on hillsides

Major Soil Limitations

Sagehen-water erosion, slope, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is very poor because of the steepness of slope.

297-Sandgap sand, 3 to 8 percent slopes

Composition

Sandgap and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Sand dunes on lake plains
Slope features: Convex and plane
Parent material: Eolian sand
Geology: Mixed igneous rock
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Sandy Loam 10-12PZ)
basin big sagebrush, needleandthread, Thurber needlegrass

Climatic factors:

Mean annual precipitation-8 to 10 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-light brownish gray sand
2 to 6 inches-light brownish gray loamy sand
6 to 19 inches-yellowish brown loamy sand
19 to 30 inches-pale brown loamy sand
30 to 45 inches-light brownish gray loamy sand
45 to 60 inches-very pale brown sandy loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Somewhat excessively drained
Permeability: Moderate
Available water capacity: About 4 inches
Hazard of erosion: Water-slight; wind-severe
Corrosivity to steel: High

Contrasting Inclusions

- Poujade soils on low lake terraces
- Reallis soils on lake terraces
- Actem and Lonely soils on hills and plateaus

Major Soil Limitations

Available water capacity, corrosivity, wind erosion, seepage

Use and Management

Livestock Grazing

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The low available water capacity of the surface layer limits seedling survival.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- As the site deteriorates, big sagebrush increases and Indian ricegrass and needlegrasses decrease.
- The suitability for seeding is poor because of the low available water capacity of the surface layer.

298-Sandgap sand, 1 to 4 percent slopes, flooded Composition

Sandgap and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,090 to 4,106 feet
Rangeland ecological site and characteristic vegetation: (Sodic Dunes) basin big sagebrush, black greasewood, Indian ricegrass, needleandthread
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-light brownish gray sand
2 to 6 inches-light brownish gray loamy sand
6 to 19 inches-yellowish brown loamy sand
19 to 30 inches-pale brown loamy sand
30 to 45 inches-light brownish gray loamy sand
45 to 60 inches-very pale brown sandy loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Somewhat excessively drained
Frequency of ponding: Rare
Permeability: Moderate

Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—severe
Corrosivity to steel: High
Contrasting Inclusions

- Duckclub and Thenarrows soils on lake plains
- Playas

Major Soil Limitations

Available water capacity, wind erosion, seepage, corrosivity

Use and Management

Livestock Grazing

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The low available water capacity of the surface layer limits seedling survival.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- Severe site deterioration leads to unstable areas of windblown sand.
- As the site deteriorates, black greasewood and inland saltgrass increase and basin wildrye, Indian ricegrass, and needlegrasses decrease.
- This soil is susceptible to invasion by halogeton, povertyweed, and Russian thistle.
- The suitability for seeding is poor because of the low available water capacity of the surface layer.

299—Seharney cobbly silt loam, 3 to 12 percent slopes

Composition

Seharney and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum
Geology: Basalt and andesite
Elevation: 4,200 to 5,000 feet
Rangeland ecological site and characteristic vegetation: (Shallow Loam 8-10PZ)
Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass, bluebunch
wheatgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-light gray cobbly silt loam
2 to 5 inches—pale brown silt loam
5 to 11 inches-pale brown cobbly silt loam
11 to 17 inches-very pale brown very cobbly silt loam
17 to 24 inches-very pale brown strongly cemented duripan
24 inches-fractured basalt

Soil Properties and Qualities

Depth: 10 to 20 inches to a hardpan and 20 to 30 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water-slight; wind-slight

Contrasting Inclusions

- Raz and Robson soils on hills and plateaus
- Rock outcrop

Major Soil Limitations

Depth to bedrock, depth to a hardpan, available water capacity

Use and Management

Livestock Grazing

- Depth to bedrock limits the construction of water impoundments.
- The cemented hardpan restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- This unit is suited to grazing in winter.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- A well-developed erosion pavement can limit the reestablishment of plants.
- The suitability for seeding is poor because of the low available water capacity.

300—Skedaddle-Atlow-Rock outcrop complex, 5 to 30 percent slopes

Composition

Skedaddle and similar soils-45 percent
Atlow and similar soils-30 percent
Rock outcrop- 15 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills
Position on landform: Skedaddle—side slopes; Atlow—ridges
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and rhyolite
Elevation: 4,300 to 5,300 feet
Rangeland ecological site and characteristic vegetation: Skedaddle-(Desert Loam
6-10PZ) shadscale, bud sagebrush, Indian ricegrass; Atlow-(Shallow Loam 8-10PZ) Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Skedaddle

0 to 3 inches-light brownish gray very cobbly clay loam
3 to 8 inches-grayish brown very cobbly clay loam
8 to 11 inches-light brown very cobbly clay loam
11 inches-fractured basalt
Properties and Qualities of Skedaddle
Depth: 7 to 12 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Atlow

0 to 3 inches-light brownish gray very stony loam
3 to 11 inches-brown very cobbly clay loam
11 inches-basalt
Properties and Qualities of Atlow
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Vining soils on hills
- McConnel soils on lake terraces
- Rock outcrop

Major Soil Limitations

Skedaddle and Atlow-water erosion, depth to bedrock, available water capacity Atlow-surface stones

Use and Management

Livestock Grazing

Skedaddle and Atlow

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- This unit is suited to grazing in winter.
- A well-developed erosion pavement can limit the reestablishment of plants.
- The suitability for seeding is very poor because of the low available water capacity, depth to bedrock, and areas of Rock outcrop.

Skedaddle

- As the site deteriorates, shadscale, annual forbs, and cheatgrass increase and bud sagebrush, Indian ricegrass, and bottlebrush squirreltail decrease.

Atlow

- The very stony surface layer restricts the operation of ground seeding equipment.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.

301—Skedaddle-Atlow-Rock outcrop complex, 30 to 50 percent slopes

Composition

Skedaddle and similar soils-45 percent
Atlow and similar soils-30 percent
Rock outcrop- 15 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills
Position on landform: Skedaddle—side slopes; Atlow—ridges
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and rhyolite
Elevation: 4,300 to 5,200 feet
Rangeland ecological site and characteristic vegetation: Skedaddle—(Droughty
Shallow Slopes 6-10PZ) shadscale, bud sagebrush, Indian ricegrass; Atlow-
(Shallow Loamy Slopes 6-10PZ) Wyoming big sagebrush, Indian ricegrass,
Thurber needlegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Skedaddle

0 to 3 inches-light brownish gray very cobbly clay loam
3 to 8 inches-grayish brown very cobbly clay loam
8 to 11 inches-light brown very cobbly clay loam
11 inches-fractured basalt

Properties and Qualities of Skedaddle

Depth: 7 to 12 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Atlow

0 to 3 inches-light brownish gray very stony loam
3 to 11 inches-brown very cobbly clay loam
11 inches-basalt

Properties and Qualities of Atlow

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Vining soils on hills
- McConnel soils on lake terraces

Major Soil Limitations

Skedaddle and Atlow-water erosion, slope, depth to bedrock, available water capacity
Atlow-surface stones

Use and Management

Livestock Grazing

Skedaddle and Atlow

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Steepness of slope and the areas of Rock outcrop restrict the operation of ground seeding equipment.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- A well-developed erosion pavement can limit the reestablishment of plants.
- The suitability for seeding is very poor because of the low available water capacity, depth to bedrock, steepness of slope, and areas of Rock outcrop.
- This unit is suited to grazing in winter.

Skedaddle

- As the site deteriorates, shadscale, Sandberg bluegrass, and bottlebrush squirreltail increase and bud sagebrush and Indian ricegrass decrease.

Atlow

- As the site deteriorates, big sagebrush and bottlebrush squirreltail increase and Indian ricegrass and needlegrasses decrease.

302—Skedaddle-Rock outcrop complex, 40 to 70 percent slopes

Composition

Skedaddle and similar soils-70 percent
Rock outcrop- 15 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and mountains
Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and rhyolite
Elevation: 4,300 to 5,000 feet
Rangeland ecological site and characteristic vegetation: Skedaddle—(Droughty
Shallow Slopes 6-10PZ) shadscale, bud sagebrush, Indian ricegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Skedaddle

0 to 3 inches-light brownish gray very cobbly clay loam
3 to 8 inches-grayish brown very cobbly clay loam
8 to 11 inches-light brown very cobbly clay loam
11 inches-fractured basalt
Properties and Qualities of Skedaddle
Depth: 7 to 12 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water-severe; wind-slight
Contrasting Inclusions

- Actem and Atlow soils on mountainsides and hillsides
- Rock outcrop

Major Soil Limitations

Water erosion, slope, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- This unit is suited to grazing in winter.
- As the site deteriorates, shadscale, Sandberg bluegrass, and bottlebrush squirreltail increase and bud sagebrush and Indian ricegrass decrease.
- A well-developed erosion pavement can limit the reestablishment of plants.
- The suitability for seeding is very poor because of the low available water capacity, depth to bedrock, steepness of slope, and areas of Rock outcrop.

303-Skedaddle association, 30 to 50 percent slopes

Composition

Skedaddle, south slopes, and similar soils-45 percent Skedaddle, north slopes, and similar soils-40 percent Contrasting inclusions-15 percent

Setting

Landform: Hills and mountains
Position on landform: Skedaddle, south slopes-south- and west-facing side slopes;
Skedaddle, north slopes-north- and east-facing side slopes
Parent material: Colluvium and residuum
Geology: Basalt, andesite, and rhyolite
Elevation: 4,200 to 5,300 feet

Rangeland ecological site and characteristic vegetation: Skedaddle, south slopes-
(South Slopes 6-10PZ) ephedra, purple sage, desert needlegrass, Indian
ricegrass; Skedaddle, north slopes-(North Slopes 6-10PZ) Wyoming big
sagebrush, bluebunch wheatgrass, Thurber needlegrass

Climatic factors:

Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Skedaddle, South Slopes

0 to 3 inches-light brownish gray very gravelly sandy loam
3 to 8 inches-grayish brown very cobbly clay loam
8 to 11 inches-light brown very cobbly clay loam
11 inches-fractured basalt

Typical Profile of Skedaddle, North Slopes

0 to 3 inches-light brownish gray very cobbly clay loam
3 to 8 inches-grayish brown very cobbly clay loam
8 to 11 inches-light brown very cobbly clay loam
11 inches-fractured basalt

Properties and Qualities of Skedaddle, South and North Slopes

Depth: 7 to 12 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—moderate (south slopes)

Contrasting Inclusions

- Actem and Atlow soils on hills
- McConnel soils on lake terraces
- Rock outcrop

Major Soil Limitations

Skedaddle, south and north slopes—water erosion, slope, depth to bedrock, available water capacity
Skedaddle, south slopes-wind erosion

Use and Management

Livestock Grazing

Skedaddle, south and north slopes

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- This unit is suited to grazing in winter.
- A well-developed erosion pavement can limit the reestablishment of plants.
- The suitability for seeding is very poor because of the low available water capacity, steepness of slope, and depth to bedrock.

Skedaddle, south slopes

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- As the site deteriorates, ephedra and purple sage increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.

Skedaddle, north slopes

- As the site deteriorates, ephedra and big sagebrush increase and bluebunch wheatgrass and Thurber needlegrass decrease.

304-Skidoosprings sandy loam, 0 to 3 percent slopes

Composition

Skidoosprings and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Concave and convex
Parent material: Lacustrine sediment
Elevation: 4,100 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Sodic Bottom) black
greasewood, basin wildrye, inland saltgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 11 inches-pale brown sandy loam
11 to 41 inches-pale brown sandy loam
41 to 49 inches-indurated duripan
49 to 60 inches-very pale brown coarse sandy loam

Soil Properties and Qualities

Depth: 40 to 50 inches to a hardpan and more than 60 inches to bedrock Drainage class: Moderately well drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately rapid
Available water capacity: About 2 inches
Hazard of erosion: Water-slight; wind-moderate
Salinity: Moderate
Alkalinity: Strong
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Crowcamp, Fury, Opie, and Widowspring soils on lake plains

Major Soil Limitations

Wind erosion, wetness, seepage, frost action, salinity, alkalinity, corrosivity

Use and Management

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- The risk of seepage limits the construction of water impoundments.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, inland saltgrass and black greasewood increase and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity and moderate salinity.

305—Skidoosprings sandy loam, 0 to 1 percent slopes, flooded

Composition

Skidoosprings and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,090 to 4,106 feet
Rangeland ecological site and characteristic vegetation: (Sodic Bottom) black greasewood, basin wildrye, inland saltgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 11 inches-pale brown sandy loam
11 to 41 inches-pale brown sandy loam
41 to 49 inches-indurated duripan
49 to 60 inches-very pale brown coarse sandy loam

Soil Properties and Qualities

Depth: 40 to 50 inches to a hardpan and more than 60 inches to bedrock
Drainage class: Moderately well drained
Frequency of ponding: Rare
Water table: Present in spring
Permeability: Moderately rapid
Available water capacity: About 2 inches
Hazard of erosion: Water-slight; wind-moderate
Salinity: Moderate

Alkalinity: Strong

Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Duckclub and Thenarrows soils on lake plains
- Poujade soils on low lake terraces

Major Soil Limitations

Wind erosion, wetness, seepage, salinity, alkalinity, corrosivity, frost action

Use and Management

Livestock Grazing

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- The risk of seepage limits the construction of water impoundments.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, inland saltgrass and black greasewood increase and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity and moderate salinity.

306—Skunkfarm-Cumulic Haploxerolls complex, 0 to 2 percent slopes

Composition

Skunkfarm and similar soils-65 percent
Cumulic Haploxerolls and similar soils-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Position on landform: Skunkfarm—plane areas; Cumulic Haploxerolls—concave and convex areas adjacent to streambanks
Parent material: Lacustrine sediment
Elevation: 4,100 to 4,200 feet
Rangeland ecological site and characteristic vegetation: Skunkfarm-(Basin Dry Meadow) beardless wildrye; Cumulic Haploxerolls-(Basin Willow) sandbar willow, yellow willow, broadleaf arrowhead
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Skunkfarm

0 to 2 inches-very dark grayish brown silt loam
2 to 13 inches-very dark grayish brown and brown clay loam

13 to 18 inches-pale brown clay loam
18 to 29 inches-pale brown loam
29 to 60 inches-brown fine sandy loam

Properties and Qualities of Skunkfarm

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 9 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Potential frost action: High

Reference Profile of Cumulic Haploxerolls

0 to 5 inches-dark grayish brown loam
5 to 25 inches-dark gray loam
25 to 54 inches-light brownish gray loam
54 to 60 inches-light brownish gray very gravelly sandy loam

Properties and Qualities of Cumulic Haploxerolls

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Water table: Present in spring
Ponding: Present in spring
Permeability: Moderate
Available water capacity: Variable
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Fury, Housefield, and Doubleo soils on lake plains

Major Soil Limitations

Skunkfarm and Cumulic Haploxerolls-wetness
Skunkfarm—corrosivity, frost action

Use and Management

Irrigated Hayland

- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heave.
- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- The seasonal high water table provides supplemental water for adapted plants.
- This unit provides important food and cover for wetland wildlife.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.

Livestock Grazing

- Grazing when the soils are wet results in compaction of the surface layer. A compacted surface layer may result in restricted plant growth.
- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The suitability for seeding is good.

307—Skunkfarm-Doubleo complex, 0 to 1 percent slopes

Composition

Skunkfarm and similar soils-45 percent

Doubleo and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Skunkfarm—plane; Doubleo—plane and concave
Parent material: Lacustrine sediment
Elevation: 4,120 to 4,200 feet
Rangeland ecological site and characteristic vegetation: Skunkfarm-(Basin Dry
Meadow) beardless wildrye; Doubleo-(Semi-Wet Marsh) cattail
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Skunkfarm

0 to 2 inches-very dark grayish brown silt loam
2 to 13 inches-very dark grayish brown and brown clay loam
13 to 18 inches-pale brown clay loam
18 to 29 inches-pale brown loam
29 to 60 inches-brown fine sandy loam

Properties and Qualities of Skunkfarm

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 9 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Potential frost action: High
Typical Profile of Doubleo
0 to 3 inches—dark grayish brown loam
3 to 10 inches-dark gray silty clay
10 to 20 inches—dark grayish brown clay
20 to 28 inches-gray clay loam
28 to 45 inches-light brownish gray fine sandy loam
45 to 60 inches-pale brown loam

Properties and Qualities of Doubleo

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring and summer
Water table: Present in spring and summer
Permeability: Very slow
Available water capacity: About 9 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Fury, Housefield, and Skidoosprings soils on lake plains
- Mcbain soils on low lake terraces

Major Soil Limitations

Skunkfarm and Doubleo-wetness, corrosivity, frost action Doubleo—shrink-swell potential

Use and Management

Irrigated Hayland

- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heave.
- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- The seasonal high water table provides supplemental water for adapted plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.

Livestock Grazing

Skunkfarm and Doubleo

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soils are wet or saturated damages plants and causes soil compaction and displacement.
- Grazing when the soils are wet results in compaction of the surface layer. A compacted surface layer may result in excessive runoff and restricted plant growth.
- Grazing should be managed to maintain or increase the abundance of plants that help to keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Skunkfarm

- The suitability for seeding is good.

Doubleo

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- The suitability for seeding is very poor because of wetness.

308—Skunkfarm-Mcbain-Doubleo complex, 0 to 2 percent slopes

Composition

Skunkfarm and similar soils-35 percent
Mcbain and similar soils-30 percent
Doubleo and similar soils-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Skunkfarm and Doubleo—lake plains; Mcbain—low lake terraces Slope features: Skunkfarm—plane; Mcbain—convex; Doubleo—plane and concave Parent material: Lacustrine sediment

Elevation: 4,100 to 4,200 feet

Rangeland ecological site and characteristic vegetation: Skunkfarm-(Basin Dry
Meadow) beardless wildrye; Mcbain-(Dry Floodplain) basin big sagebrush, basin wildrye, beardless wildrye; Doubleo-(Semi-Wet Marsh) cattail
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Skunkfarm

0 to 2 inches-very dark grayish brown silt loam
2 to 13 inches-very dark grayish brown and brown clay loam
13 to 18 inches-pale brown clay loam
18 to 29 inches-pale brown loam
29 to 60 inches-brown fine sandy loam
Properties and Qualities of Skunkfarm
Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 9 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Potential frost action: High
Typical Profile of Mcbain
0 to 5 inches—light brownish gray silt loam
5 to 22 inches-pale brown and light gray loam
22 to 27 inches-light brownish gray clay loam
27 to 37 inches—pale brown very fine sandy loam
37 to 43 inches-grayish brown clay loam
43 to 60 inches-pale brown loam
Properties and Qualities of Mcbain
Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Water table: Present in spring
Permeability: Moderately slow

Available water capacity: About 7 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Strong
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High

Typical Profile of Doubleo

0 to 3 inches—dark grayish brown loam
3 to 10 inches-dark gray silty clay
10 to 20 inches-dark grayish brown clay
20 to 28 inches-gray clay loam
28 to 45 inches-light brownish gray fine sandy loam
45 to 60 inches-pale brown loam

Properties and Qualities of Doubleo

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring and summer
Water table: Present in spring and summer
Permeability: Very slow
Available water capacity: About 9 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Fury, Housefield, and Skidoosprings soils on lake plains

Major Soil Limitations

Skunkfarm, Mcbain, and Doubleo-corrosivity Skunkfarm and Doubleo-wetness, frost action Mcbain—salinity, alkalinity Doubleo—shrink-swell potential

Use and Management

Irrigated Hayland

Skunkfarm and Doubleo

- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heave.
- Ponding and a seasonal high water table restrict haying and grazing. Soil wetness increases the risk of winterkill of plants.
- Grazing when the soil is wet results in compaction of the surface layer. A compacted surface layer may result in restricted plant growth.
- The seasonal high water table provides supplemental water for adapted plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.

Mcbain

- The salinity and alkalinity limit the types of crops that can be grown.
- Salt- and alkali-tolerant plants are the most suitable for planting.
- Proper irrigation water management and adequate drainage are needed to leach the salts below the rooting zone.

Livestock Grazing

Skunkfarm, Mcbain, and Doubleo

- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.

Skunkfarm and Doubleo

- These soils provide important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soils are wet or saturated damages plants and causes soil compaction and displacement.
- Grazing should be managed to maintain or increase the abundance of plants that help to keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.

Skunkfarm

- The suitability for seeding is good.

Mcbain

- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- As the site deteriorates, big sagebrush and rabbitbrush increase and basin wildrye and beardless wildrye decrease.
- The suitability for seeding is very poor because of the strong salinity and alkalinity.

Doubleo

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- The suitability for seeding is very poor because of wetness.

309—Skunkfarm-Skidoosprings complex, 0 to 2 percent slopes

Composition

Skunkfarm and similar soils-60 percent

Skidoosprings and similar soils-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Skunkfarm—plane and convex; Skidoosprings—plane and concave Parent material: Lacustrine sediment Elevation: 4,115 to 4,120 feet
Rangeland ecological site and characteristic vegetation: Skunkfarm-(Basin Dry Meadow) beardless wildrye; Skidoosprings-(Sodic Bottom) black greasewood, basin wildrye, inland saltgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Skunkfarm

0 to 2 inches-very dark grayish brown silt loam
2 to 13 inches-very dark grayish brown and brown clay loam
13 to 18 inches-pale brown clay loam
18 to 29 inches-pale brown loam
29 to 60 inches-brown fine sandy loam

Properties and Qualities of Skunkfarm

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 9 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Potential frost action: High
Typical Profile of Skidoosprings
0 to 11 inches-pale brown sandy loam
11 to 41 inches-pale brown sandy loam
41 to 49 inches-indurated duripan
49 to 60 inches-very pale brown coarse sandy loam
Properties and Qualities of Skidoosprings
Depth: 40 to 50 inches to a hardpan and more than 60 inches to bedrock
Drainage class: Moderately well drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately rapid
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Moderate
Alkalinity: Strong
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Doubleo, Fury, and Housefield soils on lake plains
- Mcbain soils on low lake terraces

Major Soil Limitations

Skunkfarm and Skidoosprings-corrosivity, frost action, wetness
Skidoosprings-wind erosion, seepage, salinity, alkalinity

Use and Management

Irrigated Hayland

Skunkfarm and Skidoosprings

- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heave.
- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- The seasonal high water table provides supplemental water for adapted plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.

Skidoosprings

- The salinity and alkalinity limit the types of crops that can be grown.
- Salt- and alkali-tolerant plants are the most suitable for planting.
- If alfalfa or other crops are grown, sulphur amendments are needed because of the strong alkalinity of the soil.
- Proper irrigation water management and adequate drainage are needed to leach the salts below the rooting zone.
- Practices that help to control wind erosion include planting crops at right angles to the prevailing wind, maintaining crop residue on the soil surface, planting field windbreaks, stripcropping, planting cover crops, using minimum tillage, minimizing the areas of barren soil, and leaving the soil surface rough.

Livestock Grazing

Skunkfarm and Skidoosprings

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Grazing when the soils are wet results in compaction of the surface layer. A compacted surface layer may result in excessive runoff and restricted plant growth.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Skunkfarm

- Grazing should be managed to maintain or increase the abundance of plants that help to keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- The suitability for seeding is good.

Skidoosprings

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- As the site deteriorates, inland saltgrass and black greasewood increase and basin wildrye decreases.
- The suitability for seeding is very poor because of the strong alkalinity and moderate salinity.

310—Spangenburg silty clay loam, 0 to 1 percent slopes
 Composition

Spangenburg and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,500 to 4,600 feet

Rangeland ecological site and characteristic vegetation: (Clayey Playette) Wyoming
big sagebrush, bottlebrush squirreltail, Thurber needlegrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 2 inches-light brownish gray silty clay loam
2 to 6 inches—pale brown and pale yellowish brown silty clay
6 to 15 inches-yellowish brown silty clay
15 to 34 inches-pale brown silty clay loam
34 to 60 inches-very pale brown loam

Soil Properties and Qualities

Depth: 2 to 10 inches to a claypan and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 11 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Swaler, Swalesilver, and Boulder Lake soils in depressions of lake terraces
- Fury soils on lake plains

Major Soil Limitations

Depth to a claypan, shrink-swell potential, corrosivity

Use and Management

Livestock Grazing

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush increases and Indian ricegrass and needlegrasses decrease.
- This soil is susceptible to invasion by povertyweed and Russian thistle.
- The suitability for seeding is poor because of the depth to the claypan.

311-Spangenburg silty clay loam, moist, 0 to 1 percent slopes

Composition

Spangenburg and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane
Parent material: Lacustrine sediment

Elevation: 4,500 to 4,600 feet
Rangeland ecological site and characteristic vegetation: (Dry Floodplain) basin big sagebrush, basin wildrye, beardless wildrye
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 10 inches-light brownish gray silty clay loam
10 to 15 inches-yellowish brown silty clay
15 to 34 inches-pale brown silty clay loam
34 to 60 inches-very pale brown loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 11 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Swaler, Swalesilver, and Boulder Lake soils in depressions of lake terraces
- Fury soils on lake plains

Major Soil Limitations

Shrink-swell potential, corrosivity

Use and Management

Irrigated Hayland

- The slow permeability of the clayey layer restricts water percolation. During the period of snowmelt and runoff in spring, the soil surface becomes saturated. To avoid soil compaction or rutting and to maintain soil tilth, the use of equipment should be deferred until the soil is adequately drained.

Livestock Grazing

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and rabbitbrush increase and basin wildrye and beardless wildrye decrease.

312—Spangenburg silty clay loam, thick surface, 0 to 2 percent slopes

Composition
Spangenburg and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,500 to 4,600 feet
Rangeland ecological site and characteristic vegetation: (Loamy 8-10PZ)
Wyoming big sagebrush, Indian ricegrass, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 10 inches-light brownish gray silty clay loam
10 to 15 inches-yellowish brown silty clay
15 to 34 inches-pale brown silty clay loam
34 to 60 inches-very pale brown loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 11 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Norad and Berdugo soils on lake terraces
- Swaler, Swalesilver, and Boulder Lake soils in depressions of lake terraces

Major Soil Limitations

Shrink-swell potential, corrosivity

Use and Management

Irrigated Hayland

- The slow permeability of the clayey layer restricts water percolation. During the period of snowmelt and runoff in spring, the soil surface becomes saturated. To avoid soil compaction or rutting and to maintain soil tilth, the use of equipment should be deferred until the soil is adequately drained.

Livestock Grazing

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.

313-Srednic-Aval complex, 2 to 20 percent slopes

Composition

Srednic and similar soils-60 percent
Aval and similar soils-30 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Cinders and eolian sand
Geology: Basalt and welded tuff
Elevation: 4,100 to 4,700 feet
Rangeland ecological site and characteristic vegetation: (Sandy Loam 10-12PZ)
basin big sagebrush, needleandthread, Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Srednic
0 to 2 inches-brown very gravelly coarse sandy loam
2 to 6 inches-brown gravelly loam
6 to 17 inches-brown gravelly sandy loam
17 to 25 inches-pale brown gravelly loam
25 to 27 inches-light gray, white, and very pale brown strongly cemented duripan
27 to 30 inches-light gray, white, and very pale brown indurated duripan
30 inches-welded tuff
Properties and Qualities of Srednic
Depth: 20 to 40 inches to a hardpan and 25 to 50 inches to bedrock Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 3 inches
Hazard of erosion: Water-slight; wind-slight

Typical Profile of Aval

0 to 2 inches-dark grayish brown very gravelly coarse sandy loam
2 to 7 inches-grayish brown gravelly sandy loam
7 to 18 inches-brown gravelly coarse sandy loam
18 inches-welded tuff

Properties and Qualities of Aval

Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water-slight; wind-slight
Contrasting Inclusions

- Vining soils on hills
- Rock outcrop

Major Soil Limitations

Srednic and Aval-water erosion, available water capacity, depth to bedrock Srednic-depth to a hardpan

Use and Management

Livestock Grazing

Srednic and Aval

- The low available water capacity of the surface layer limits seedling survival.
- As the site deteriorates, big sagebrush increases and Indian ricegrass and needlegrasses decrease.

Srednic

- Depth to the hardpan and to bedrock limit the construction of water impoundments.
- The suitability for seeding is poor because of the low available water capacity.

Aval

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- The suitability for seeding is very poor because of the low available water capacity.

314—Stampede loam, 1 to 5 percent slopes

Composition
Stampede and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Stream terraces
Slope features: Convex
Parent material: Old alluvium
Geology: Mixed igneous rock
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Droughty Loam 11-13PZ)
basin big sagebrush, Idaho fescue, Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 3 inches—brown loam
3 to 11 inches—brown clay loam
11 to 19 inches-yellowish brown clay
19 to 23 inches-very pale brown very gravelly sandy clay loam
23 to 33 inches-indurated duripan
33 to 60 inches-pale brown gravelly sandy loam

Soil Properties and Qualities

Depth: 20 to 40 inches to a duripan and more than 60 inches to bedrock Drainage class: Well drained

Permeability: Very slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Pernty soils on hillsides
- Carvix soils on stream terraces
- Enko soils on lake terraces

Major Soil Limitations

Depth to a hardpan, shrink-swell potential, corrosivity, available water capacity

Use and Management
 Livestock Grazing

- Depth to the hardpan limits the construction of water impoundments.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and needlegrasses, Idaho fescue, and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity.

315-Swaler silt loam, 0 to 1 percent slopes

Composition

Swaler and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Position on landform: Depressions
Parent material: Lacustrine sediment
Elevation: 4,500 to 4,600 feet
Rangeland ecological site and characteristic vegetation: (Loamy 10-12PZ) Wyoming
big sagebrush, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 10 inches-light gray silt loam
10 to 18 inches-light brownish gray silty clay
18 to 27 inches-brown silty clay
27 to 60 inches-pale brown silty clay loam

Soil Properties and Qualities

Depth: 3 to 14 inches to a claypan and more than 60 inches to bedrock Drainage class: Moderately well drained

Frequency of ponding: Rare
Permeability: Very slow
Available water capacity: About 12 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Swalesilver soils in closed depressions of plateaus
- Carryback soils on hills

Major Soil Limitations

Shrink-swell potential, corrosivity, depth to a claypan

Use and Management

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- The claypan restricts the rooting depth.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the depth to the claypan.

316-Swaler-Swalesilver association, 0 to 2 percent slopes

Composition

Swaler and similar soils-70 percent Swalesilver and similar soils-20 percent
Contrasting inclusions-10 percent

Setting

Landform: Plateaus
Slope features: Swaler—plane; Swalesilver—concave
Parent material: Lacustrine sediment
Elevation: 4,200 to 5,700 feet
Rangeland ecological site and characteristic vegetation: Swaler—(Loamy 10-12PZ)
Wyoming big sagebrush, Thurber needlegrass, bluebunch wheatgrass;
Swalesilver-(Ponded Clay) silver sagebrush, Sandberg bluegrass, beardless
wildrye
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Swaler

0 to 10 inches-light gray silt loam
10 to 18 inches-light brownish gray silty clay
18 to 27 inches-brown silty clay
27 to 60 inches-pale brown silty clay loam

Properties and Qualities of Swaler

Depth: 3 to 14 inches to a claypan and more than 60 inches to bedrock Drainage class: Moderately well drained
Frequency of ponding: Rare
Permeability: Very slow
Available water capacity: About 12 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Typical Profile of Swalesilver

0 to 3 inches-very pale brown silt loam
3 to 6 inches-light gray silt loam
6 to 18 inches-light brownish gray clay
18 to 23 inches-light brownish gray clay
23 to 49 inches-light gray silt loam
49 to 61 inches-pale yellow silt loam
Properties and Qualities of Swalesilver
Depth: 2 to 11 inches to a claypan and more than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring
Water table: Present late in winter and in spring
Permeability: Very slow
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Playas
- Reallis soils on lake terraces

Major Soil Limitations

Swaler and Swalesilver—shrink-swell potential, corrosivity, depth to a claypan Swalesilver-wetness

Use and Management

Livestock Grazing

Swaler and Swalesilver

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- The claypan restricts the rooting depth.

Swaler

- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the depth to the claypan.

Swalesilver

- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- Silver sagebrush resprouts following fire.
- As the site deteriorates, silver sagebrush increases and Sandberg bluegrass decreases.
- This soil is susceptible to invasion by povertyweed.
- The suitability for seeding is very poor because of the depth to the claypan.

317-Swalesilver silt loam, 0 to 2 percent slopes

Composition

Swalesilver and similar soils-85 percent
Contrasting inclusions-15 percent
\section*{Setting}
Landform: Plateaus (fig. 12)
Position on landform: Depressions
Parent material: Lacustrine sediment
Elevation: 4,200 to 5,700 feet
Rangeland ecological site and characteristic vegetation: (Ponded Clay) silver sagebrush, Sandberg bluegrass, beardless wildrye
Climatic factors:
Mean annual precipitation-10 to 14 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 3 inches-very pale brown silt loam
3 to 6 inches-light gray silt loam
6 to 18 inches-light brownish gray clay

Figure 12.-Area of Swalesilver silt loam, 0 to 2 percent slopes. This soil is ponded in spring.

18 to 23 inches-light brownish gray clay
23 to 49 inches-light gray silt loam
49 to 61 inches-pale yellow silt loam

Soil Properties and Qualities

Depth: 2 to 11 inches to a claypan and more than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring
Water table: Present late in winter and in spring
Permeability: Very slow
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Playas
- Reallis soils on lake terraces
- Swaler soils in depressions of higher terraces

Major Soil Limitations

Wetness, shrink-swell potential, corrosivity, depth to a claypan

Use and Management

Livestock Grazing

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- The claypan restricts the rooting depth.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- Silver sagebrush resprouts following fire.
- As the site deteriorates, silver sagebrush increases and Sandberg bluegrass decreases.
- This soil is susceptible to invasion by povertyweed.
- The suitability for seeding is very poor because of the depth to the claypan.

318-Swalesilver silt loam, dry, 0 to 2 percent slopes Composition

Swalesilver and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Position on landform: Depressions
Parent material: Lacustrine sediment
Elevation: 4,400 to 5,300 feet
Rangeland ecological site and characteristic vegetation: (Shallow Swale 10-14PZ)
low sagebrush, Sandberg bluegrass

Climatic factors:

Mean annual precipitation-10 to 14 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 3 inches-very pale brown silt loam
3 to 6 inches-light gray silt loam
6 to 18 inches-light brownish gray clay
18 to 23 inches-light brownish gray clay
23 to 49 inches-light gray silt loam
49 to 61 inches-pale yellow silt loam

Soil Properties and Qualities

Depth: 2 to 11 inches to a claypan and more than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Frequency of ponding: Rare
Water table: Present late in winter and in spring
Permeability: Very slow
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Contrasting Inclusions

- Vergas soils on alluvial fans
- Playas

Major Soil Limitations

Depth to claypan, wetness, shrink-swell potential, corrosivity

Use and Management

Livestock Grazing

- The claypan restricts the rooting depth.
- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, low sagebrush increases and Sandberg bluegrass decreases.
- The suitability for seeding is very poor because of the depth to the claypan.

319—Swalesilver silt loam, 0 to 1 percent slopes, flooded Composition

Swalesilver and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane

Parent material: Lacustrine sediment

Elevation: 4,090 to 4,106 feet

Rangeland ecological site and characteristic vegetation: (Ponded Clay) silver
sagebrush, Sandberg bluegrass, beardless wildrye
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 3 inches-very pale brown silt loam
3 to 6 inches-light gray silt loam
6 to 18 inches-light brownish gray clay
18 to 23 inches-light brownish gray clay
23 to 49 inches-light gray silt loam
49 to 61 inches-pale yellow silt loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Frequency of ponding: Rare
Water table: Present late in winter and early in spring
Permeability: Very slow
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Contrasting Inclusions

- Duckclub and Thenarrows soils on lake plains

Major Soil Limitations

Depth to a claypan, wetness, shrink-swell potential, corrosivity

Use and Management

Irrigated Hayland

- The very slow permeability of the clayey layer restricts water percolation. During the period of snowmelt and runoff in spring, the soil surface becomes saturated. To avoid soil compaction or rutting and to maintain soil tilth, the use of equipment should be deferred until the soil is adequately drained.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.
- Providing adequate drainage is difficult because most areas have poor outlets.

Livestock Grazing

- The claypan restricts the rooting depth.
- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Silver sagebrush resprouts following fire.
- As the site deteriorates, silver sagebrush increases and Sandberg bluegrass decreases.
- This soil is susceptible to invasion by povertyweed.
- The suitability for seeding is very poor because of the depth to the claypan.

320-Teguro gravelly loam, 5 to 20 percent slopes

Composition

Teguro and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt and welded tuff
Elevation: 5,200 to 5,900 feet
Rangeland ecological site and characteristic vegetation: (Loamy 12-16PZ) mountain
big sagebrush, Idaho fescue, Thurber needlegrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-grayish brown gravelly loam
2 to 5 inches-grayish brown loam
5 to 10 inches-brown cobbly clay loam
10 to 14 inches-yellowish brown cobbly clay loam
14 inches-welded tuff
Soil Properties and Qualities
Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Wagontire soils on fans
- Borobey soils on terraces
- Rock outcrop

Major Soil Limitations

Depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity.

321-Teguro very cobbly loam, 2 to 20 percent slopes

Composition

Teguro and similar soils-90 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt and welded tuff
Elevation: 4,100 to 5,400 feet
Rangeland ecological site and characteristic vegetation: (JD Shrubby Mountain
Clayey 12-16PZ) antelope bitterbrush, mountain big sagebrush, Idaho fescue Climatic factors:

Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-grayish brown very cobbly loam
2 to 5 inches-grayish brown loam
5 to 10 inches-brown cobbly clay loam
10 to 14 inches-yellowish brown cobbly clay loam
14 inches-welded tuff

Soil Properties and Qualities

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Merlin and Vitale soils on hills and plateaus
- Westbutte soils on north-facing hillsides
- Rock outcrop

Major Soil Limitations

Depth to bedrock, available water capacity, surface rock fragments

Use and Management

Livestock Grazing

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and

Idaho fescue, bluebunch wheatgrass, onespike oatgrass, and antelope bitterbrush decrease.

- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

322-Teguro very stony loam, thin surface, 2 to 20 percent slopes

Composition

Teguro and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt and welded tuff
Elevation: 4,500 to 6,100 feet
Rangeland ecological site and characteristic vegetation: (SR Mountain Shallow
12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 2 inches-grayish brown very stony loam
2 to 5 inches-grayish brown loam
5 to 10 inches-brown cobbly clay loam
10 to 14 inches-yellowish brown cobbly clay loam
14 inches-welded tuff

Soil Properties and Qualities

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Merlin and Vitale soils on hills
- Westbutte soils on steep, north-facing hillsides
- Rock outcrop

Major Soil Limitations

Surface stones, depth to bedrock, available water capacity

Use and Management

Livestock Grazing

- The very stony surface layer restricts the operation of ground seeding equipment.
- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- This unit commonly supports a sparse stand of perennial grasses; however, forbs become abundant if precipitation is favorable.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue decreases.
- The suitability for seeding is very poor because of the low available water capacity and surface stones.

323-Teguro-Anatone complex, 2 to 20 percent slopes Composition

Teguro and similar soils-45 percent
Anatone, moist, and similar soils-40 percent
Contrasting inclusions-15 percent
Setting
Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt and welded tuff
Elevation: 5,200 to 5,800 feet
Rangeland ecological site and characteristic vegetation: Teguro-(SR Mountain
Shallow 12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass;
Anatone-(SR Dry Pine 14-16PZ) ponderosa pine, western juniper, mountain big sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-14 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Teguro

0 to 2 inches-grayish brown very gravelly loam
2 to 5 inches-grayish brown loam
5 to 10 inches-brown cobbly clay loam
10 to 14 inches-yellowish brown cobbly clay loam
14 inches-welded tuff
Properties and Qualities of Teguro
Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight

Typical Profile of Anatone, Moist

0 to 8 inches-grayish brown very gravelly loam
8 to 14 inches-brown very gravelly loam
14 inches-fractured welded tuff
Properties and Qualities of Anatone, Moist
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderate

Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Doyn, Gaib, Merlin, Observation, and Ticino soils on hills
- Rock outcrop and Rubble land

Major Soil Limitations
Depth to bedrock, available water capacity

Use and Management

Livestock Grazing

Teguro and Anatone

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue decreases.
- The suitability for seeding is very poor because of the low available water capacity.

Forest Products

Anatone

- Roads and landings are very difficult to construct because of the shallow depth to bedrock.
- The shallow soil depth prevents the use of equipment.
- The seedling mortality rate is high because of the low available water capacity.
- The risk of windthrow is high because of the shallow depth to bedrock.

324-Teguro-Ateron complex, 2 to 20 percent slopes

Composition

Teguro and similar soils-55 percent
Ateron and similar soils-30 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, welded tuff, and andesite
Elevation: 5,100 to 5,800 feet
Rangeland ecological site and characteristic vegetation: Teguro-(SR Mountain
Shallow 12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass;
Ateron-(SR Mahogany Mountain Loam 14-18PZ) curl-leaf mountain mahogany, ponderosa pine, antelope bitterbrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-14 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Teguro
0 to 2 inches-grayish brown very cobbly loam

2 to 5 inches-grayish brown loam
5 to 10 inches-brown cobbly clay loam
10 to 14 inches-yellowish brown cobbly clay loam
14 inches-welded tuff
Properties and Qualities of Teguro
Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight

Typical Profile of Ateron

0 to 5 inches-dark grayish brown very stony loam
5 to 12 inches-grayish brown very cobbly clay loam
12 to 18 inches-grayish brown extremely stony clay
18 inches-highly fractured basalt
Properties and Qualities of Ateron
Depth: 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Doyn, Gaib, Merlin, Observation, and Ticino soils on hills
- Rock outcrop and Rubble land
- Welch soils in drainageways

Major Soil Limitations

Teguro and Ateron—available water capacity, surface rock fragments, depth to bedrock
Ateron—shrink-swell potential

Use and Management

Livestock Grazing

Teguro and Ateron

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The surface rock fragments restrict the operation of ground seeding equipment.

Teguro

- This soil commonly supports a sparse stand of perennial grasses; however, forbs become abundant if precipitation is favorable.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue decreases.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Ateron

- The upper part of the soil is saturated following snowmelt.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- Excessive use of the mountain mahogany within reach of grazing animals reduces its productivity and potential for regeneration.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

325-Thenarrows-Duckclub complex, 0 to 1 percent slopes

Composition

Thenarrows and similar soils-50 percent
Duckclub and similar soils-40 percent
Contrasting inclusions-10 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,090 to 4,105 feet
Rangeland ecological site and characteristic vegetation: Thenarrows-(Sodic
Meadow) alkali sacaton, inland saltgrass, Sandberg bluegrass; Duckclub-
(Sodic Lake Terrace) black greasewood, inland saltgrass, Lemmon's alkaligrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Thenarrows

0 to 14 inches-dark gray sandy loam
14 to 22 inches—dark grayish brown loamy sand
22 to 54 inches-light brownish gray sandy loam
54 to 60 inches-grayish brown loamy sand
Properties and Qualities of Thenarrows
Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately rapid
Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Slight
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Typical Profile of Duckclub

0 to 27 inches-dark grayish brown loamy fine sand
27 to 32 inches-dark grayish brown fine sandy loam

32 to 41 inches-light brownish gray sandy clay loam
41 to 51 inches-light brownish gray loam
51 to 63 inches-olive brown loamy fine sand
Properties and Qualities of Duckclub
Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Frequency of ponding: Rare
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—severe
Salinity: Moderate
Alkalinity: Strong
Corrosivity to steel: High

Contrasting Inclusions

- Sandgap soils on sand dunes
- Homefield soils on lake plains

Major Soil Limitations
Wind erosion, wetness, corrosivity, alkalinity, seepage

Use and Management

Livestock Grazing

Thenarrows and Duckclub

- The risk of seepage limits the construction of water impoundments.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soils are wet or saturated damages plants and causes soil compaction and displacement.
- The suitability for seeding is very poor because of the strong alkalinity.

Thenarrows

- As the site deteriorates, inland saltgrass, Baltic rush, and black greasewood increase and alkali sacaton and Sandberg bluegrass decrease.

Duckclub

- As the site deteriorates, black greasewood increases and Lemmon's alkaligrass and inland saltgrass decrease.

326-Thenarrows-Duckclub-Dentdraw complex, 0 to 2 percent slopes

Composition

Thenarrows and similar soils-50 percent

Duckclub and similar soils-20 percent Dentdraw and similar soils-20 percent Contrasting inclusions-10 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,090 to 4,105 feet
Rangeland ecological site and characteristic vegetation: Thenarrows-(Sodic
Meadow) alkali sacaton, inland saltgrass, Sandberg bluegrass; Duckclub-
(Sodic Lake Terrace) black greasewood, inland saltgrass, Lemmon's alkaligrass;
Dentdraw-(Sodic Meadow) alkali sacaton, inland saltgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Thenarrows

0 to 14 inches-dark gray sandy loam
14 to 22 inches—dark grayish brown loamy sand
22 to 54 inches-light brownish gray sandy loam
54 to 60 inches-grayish brown loamy sand
Properties and Qualities of Thenarrows
Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately rapid
Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Slight
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Typical Profile of Duckclub

0 to 27 inches-dark grayish brown loamy fine sand
27 to 32 inches-dark grayish brown fine sandy loam
32 to 41 inches-light brownish gray sandy clay loam
41 to 51 inches-light brownish gray loam
51 to 63 inches-olive brown loamy fine sand
Properties and Qualities of Duckclub
Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Frequency of ponding: Rare
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—severe
Salinity: Moderate

Alkalinity: Strong

Corrosivity to steel: High

Typical Profile of Dentdraw

0 to 6 inches-very dark grayish brown silt loam
6 to 9 inches-dark olive gray fine sandy loam
9 to 18 inches-dark olive gray silt loam and fine sandy loam
18 to 27 inches-light olive gray clay loam
27 to 42 inches-light olive brown sandy loam
42 to 60 inches-olive brown loamy fine sand

Properties and Qualities of Dentdraw

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present late in winter through summer
Permeability: Moderately slow
Available water capacity: About 5 inches
Hazard of erosion: Water-slight; wind-slight
Salinity: Slight
Alkalinity: Strong
Corrosivity to steel: High
Potential frost action: High

Contrasting Inclusions

- Sandgap soils on sand dunes
- Homefield soils on lake plains

Major Soil Limitations

Wind erosion, wetness, corrosivity, alkalinity, seepage

Use and Management

Livestock Grazing

Thenarrows, Duckclub, and Dentdraw

- Excess salts and sodium in the soils result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soils are wet or saturated damages plants and causes soil compaction and displacement.
- The risk of seepage limits the construction of water impoundments.
- The suitability for seeding is very poor because of the strong alkalinity.

Thenarrows and Dentdraw

- As the site deteriorates, inland saltgrass, Baltic rush, and black greasewood increase and alkali sacaton and Sandberg bluegrass decrease.

Duckclub

- As the site deteriorates, black greasewood increases and Lemmon's alkaligrass and inland saltgrass decrease.
- This soil is susceptible to invasion by foxtail barley and kochia.

327-Thenarrows-Duckclub-Sandgap complex, 0 to 4 percent slopes

Composition

Thenarrows and similar soils-35 percent
Duckclub and similar soils-35 percent
Sandgap and similar soils-20 percent
Contrasting inclusions-10 percent

Setting

Landform: Thenarrows and Duckclub—lake plains; Sandgap—sand dunes of lake plains
Position on landform: Thenarrows and Duckclub—plane areas with slopes of 0 to 1 percent; Sandgap-convex areas with slopes of 1 to 4 percent
Parent material: Thenarrows and Duckclub—lacustrine sediment; Sandgap—eolian sand
Elevation: 4,095 to 4,100 feet
Rangeland ecological site and characteristic vegetation: Thenarrows-(Sodic Meadow) alkali sacaton, inland saltgrass, Sandberg bluegrass; Duckclub(Sodic Lake Terrace) black greasewood, inland saltgrass, Lemmon's alkaligrass; Sandgap-(Sodic Dunes) basin big sagebrush, black greasewood, Indian ricegrass, needleandthread
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F Frost-free period-50 to 80 days

Typical Profile of Thenarrows

0 to 14 inches—dark gray sandy loam
14 to 22 inches—dark grayish brown loamy sand
22 to 54 inches-light brownish gray sandy loam
54 to 60 inches-grayish brown loamy sand

Properties and Qualities of Thenarrows

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Moderately rapid
Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—moderate
Salinity: Moderate
Alkalinity: Strong
Corrosivity to concrete: High
Corrosivity to steel: High
Potential frost action: High

Typical Profile of Duckclub

0 to 27 inches—dark grayish brown loamy fine sand 27 to 32 inches-dark grayish brown fine sandy loam 32 to 41 inches-light brownish gray sandy clay loam 41 to 51 inches-light brownish gray loam 51 to 63 inches-olive brown loamy fine sand

Properties and Qualities of Duckclub
Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Frequency of ponding: Rare
Water table: Present in spring
Permeability: Moderately slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—severe
Salinity: Moderate
Alkalinity: Strong
Corrosivity to steel: High
Typical Profile of Sandgap soil
0 to 2 inches-light brownish gray sand
2 to 6 inches-light brownish gray loamy sand
6 to 19 inches-yellowish brown loamy sand
19 to 30 inches-pale brown loamy sand
30 to 45 inches-light brownish gray loamy sand
45 to 60 inches-very pale brown sandy loam
Properties and Qualities of Sandgap
Depth: More than 60 inches to bedrock
Drainage class: Somewhat excessively drained
Permeability: Moderate
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—severe
Corrosivity to steel: High

Contrasting Inclusions

- Homefield soils on lake plains

Major Soil Limitations

Thenarrows, Duckclub, and Sandgap-wind erosion, seepage, corrosivity
Thenarrows and Duckclub-alkalinity, wetness
Sandgap-available water capacity

Use and Management

Livestock Grazing

Thenarrows, Duckclub, and Sandgap

- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.

Thenarrows and Duckclub

- Excess salts and sodium in the soils result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- These soils provide important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soils are wet or saturated damages plants and causes soil compaction and displacement.

Thenarrows

- As the site deteriorates, inland saltgrass, Baltic rush, and black greasewood increase and alkali sacaton and Sandberg bluegrass decrease.
- The suitability for seeding is very poor because of the strong alkalinity.

Duckclub

- As the site deteriorates, black greasewood increases and Lemmon's alkaligrass and inland saltgrass decrease.
- The suitability for seeding is very poor because of the strong alkalinity.

Sandgap

- The low available water capacity of the surface layer limits seedling survival.
- Severe site deterioration leads to unstable areas of windblown sand.
- As the site deteriorates, black greasewood and inland saltgrass increase and basin wildrye, Indian ricegrass, and needlegrasses decrease.
- This soil is susceptible to invasion by halogeton, povertyweed, and Russian thistle.
- The suitability for seeding is poor because of the low available water capacity of the surface layer.

328-Ticino-Merlin complex, 2 to 10 percent slopes

Composition

Ticino and similar soils-45 percent
Merlin and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum
Geology: Basalt and welded tuff
Elevation: 4,400 to 5,100 feet
Rangeland ecological site and characteristic vegetation: Ticino-(JD Shrubby
Mountain Clayey 12-16PZ) antelope bitterbrush, mountain big sagebrush, Idaho
fescue; Merlin-(JD Mountain Claypan 12-16PZ) low sagebrush, Idaho fescue,
bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature- 40 to 43 degrees F
Frost-free period-50 to 80 days

Typical Profile of Ticino

0 to 9 inches-dark grayish brown cobbly loam 9 to 26 inches-pale brown sandy clay loam 26 to 29 inches-very pale brown weathered tuff 29 inches-fractured welded tuff

Properties and Qualities of Ticino

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Typical Profile of Merlin
0 to 7 inches-brown stony loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Properties and Qualities of Merlin

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Ateron and Teguro soils on hills
- Westbutte soils on north-facing side slopes
- Observation soils on south-facing side slopes
- Rock outcrop

Major Soil Limitations

Ticino and Merlin-depth to bedrock
Merlin—depth to a claypan, shrink-swell potential, available water capacity

Use and Management

Livestock Grazing

Ticino and Merlin

- Depth to bedrock limits the construction of water impoundments.

Ticino

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- The suitability for seeding is good.

Merlin

- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The claypan restricts the rooting depth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the low available water capacity and depth to the claypan.

329-Ticino-Observation complex, 2 to 20 percent slopes

Composition

Ticino and similar soils-60 percent Observation and similar soils-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Ticino—residuum; Observation—colluvium and residuum
Geology: Welded tuff, andesite, and basalt
Elevation: 4,200 to 5,200 feet
Rangeland ecological site and characteristic vegetation: Ticino-(JD Shrubby Mountain Clayey 12-16PZ) antelope bitterbrush, mountain big sagebrush, Idaho fescue; Observation-(SR Mahogany Mountain Loam 14-18PZ) curl-leaf mountain mahogany, ponderosa pine, antelope bitterbrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-14 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Ticino
0 to 9 inches-dark grayish brown gravelly loam
9 to 26 inches-pale brown sandy clay loam
26 to 29 inches-very pale brown weathered tuff
29 inches-fractured welded tuff
Properties and Qualities of Ticino
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Typical Profile of Observation
0 to 4 inches-dark grayish brown stony loam
4 to 8 inches-brown cobbly loam
8 to 18 inches-dark yellowish brown clay loam
18 to 23 inches-dark yellowish brown clay
23 inches-fractured basalt
Properties and Qualities of Observation
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Contrasting Inclusions

- Ateron, Merlin, and Teguro soils on hills
- Erakatak and Westbutte soils on north- and south-facing side slopes

Major Soil Limitations

Ticino and Observation-depth to bedrock
Observation-shrink-swell potential

Use and Management

Livestock Grazing

Ticino and Observation

- Depth to bedrock limits the construction of water impoundments.

Ticino

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- This soil is susceptible to invasion by western juniper.
- The suitability for seeding is good.

Observation

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- If frequent fires occur, western juniper decreases and ponderosa pine increases.
- The suitability for seeding is fair because of the surface stones.

330—Ticino-Rock outcrop complex, 2 to 20 percent slopes

Composition

Ticino and similar soils- 65 percent
Rock outcrop-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills

Slope features: Concave and convex
Parent material: Residuum
Geology: Welded tuff
Elevation: 4,700 to 5,000 feet
Rangeland ecological site and characteristic vegetation: Ticino-(SR Mahogany Mountain Loam 14-18PZ) curl-leaf mountain mahogany, ponderosa pine, antelope bitterbrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation- 14 to 18 inches Mean annual air temperature- 40 to 43 degrees F Frost-free period-50 to 80 days

Typical Profile of Ticino

0 to 9 inches-dark grayish brown cobbly loam
9 to 26 inches-pale brown sandy clay loam
26 to 29 inches-very pale brown weathered tuff
29 inches-fractured welded tuff

Properties and Qualities of Ticino

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Doyn, Erakatak, Gaib, Merlin, and Teguro soils on hills
- Welch soils in drainageways

Major Soil Limitations

Depth to bedrock

Use and Management
 Livestock Grazing

- The areas of Rock outcrop restrict the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- Excessive use of the mountain mahogany within reach of grazing animals reduces its productivity and potential for regeneration.
- The suitability for seeding is fair because of the areas of Rock outcrop.

331-Toll sand, 2 to 15 percent slopes

Composition

Toll and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Dunes
Slope features: Convex
Parent material: Eolian sand
Geology: Mixed igneous rock
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Dunes) basin big
sagebrush, needleandthread, Indian ricegrass, basin wildrye, beardless wildrye
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 13 inches-yellowish brown sand
13 to 60 inches-light yellowish brown sand

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Somewhat excessively drained
Permeability: Rapid
Available water capacity: About 4 inches
Hazard of erosion: Water-slight; wind-severe

Contrasting Inclusions

- Norad, Catlow, Berdugo, and Spangenburg soils on lake terraces

Major Soil Limitations

Wind erosion, permeability

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- This unit is suited to grazing in winter.
- As the site deteriorates, big sagebrush, rabbitbrush, and bottlebrush squirreltail increase and basin wildrye, Indian ricegrass, and needlegrasses decrease.
- Severe deterioration leads to unstable areas of windblown sand.
- The suitability for seeding is poor because of the sandy surface layer and rapid permeability.

332-Toll-Nevador complex, 0 to 15 percent slopes

Composition

Toll and similar soils-45 percent
Nevador and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Alluvial fans and lake terraces
Position on landform: Toll—dunes with slopes of 2 to 15 percent; Nevador-slopes of 0 to 8 percent
Parent material: Toll—eolian sand; Nevador-alluvium
Geology: Mixed igneous rock
Elevation: 4,500 to 4,800 feet
Rangeland ecological site and characteristic vegetation: Toll-(Dunes) basin big sagebrush, needleandthread, Indian ricegrass, basin wildrye, beardless wildrye; Nevador-(Sandy Loam 8-10PZ) basin big sagebrush, needleandthread, Indian ricegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile of Toll
0 to 13 inches-yellowish brown sand
13 to 60 inches-light yellowish brown sand

Properties and Qualities of Toll

Depth: More than 60 inches to bedrock
Drainage class: Somewhat excessively drained
Permeability: Rapid
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—severe

Typical Profile of Nevador

0 to 3 inches-very pale brown sandy loam
3 to 7 inches-light gray loam
7 to 14 inches-yellowish brown clay loam
14 to 18 inches-brownish yellow clay loam
18 to 32 inches-very pale brown sandy loam
32 to 62 inches-very pale brown gravelly sandy loam
Properties and Qualities of Nevador
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 6 inches
Hazard of erosion: Water—slight; wind—moderate
Corrosivity to steel: High
Contrasting Inclusions

- Spangenburg soils in basins
- Mesman soils on lake terraces
- Outerkirk soils on fan terraces

Major Soil Limitations

Toll and Nevador-wind erosion
Toll—permeability
Nevador-corrosivity

Use and Management

Livestock Grazing

Toll and Nevador

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- This unit is suited to grazing in winter.

Toll

- The low available water capacity of the surface layer limits seedling survival.
- The risk of seepage limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, rabbitbrush, and bottlebrush squirreltail increase and basin wildrye, Indian ricegrass, and needlegrasses decrease.
- Severe deterioration leads to unstable areas of windblown sand.
- The suitability for seeding is poor because of the sandy surface layer and rapid permeability.

Nevador

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, bottlebrush squirreltail, and Sandberg bluegrass increase and Indian ricegrass and needlegrasses decrease.
- The suitability for seeding is poor because of droughtiness.

333-Torriorthents-Gumble complex, 2 to 35 percent slopes

Composition
Torriorthents and similar soils-50 percent

Gumble and similar soils-40 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Tuffaceous sedimentary rock
Elevation: 3,600 to 4,100 feet
Rangeland ecological site and characteristic vegetation: Torriorthents—(SR Shallow
Escarpment 9-12PZ) Wyoming big sagebrush, squaw apple, bluebunch
wheatgrass, Thurber needlegrass; Gumble-(SR Shallow 9-12PZ) bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Reference Profile of Torriorthents
0 to 7 inches-light brownish gray extremely gravelly loam
7 inches-diatomaceous earth

Properties and Qualities of Torriorthents

Depth: 4 to 14 inches to bedrock
Drainage class: Well drained
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight
Typical Profile of Gumble
0 to 3 inches-pale brown very gravelly silt loam
3 to 8 inches-pale brown loam
8 to 14 inches-pale brown clay loam
14 to 16 inches-light yellowish brown silty clay loam
16 inches-tuffaceous sedimentary rock

Properties and Qualities of Gumble

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High
Contrasting Inclusions

- Risley soils on hills
- Rock outcrop

Major Soil Limitations

Torriorthents and Gumble—depth to bedrock, available water capacity
Gumble—shrink-swell potential, corrosivity

Use and Management

Livestock Grazing

Torriorthents and Gumble

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.

Torriorthents

- The low available water capacity of the surface layer limits seedling survival.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the low available water capacity and depth to bedrock.

Gumble

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the low available water capacity.

334-Tumtum cobbly loam, 4 to 15 percent slopes Composition

Tumtum and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Old lake terraces
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,200 to 5,200 feet
Rangeland ecological site and characteristic vegetation: (Shallow Loam 8-10PZ)
Wyoming big sagebrush, Thurber needlegrass, Indian ricegrass, bluebunch
wheatgrass
Climatic factors:
Mean annual precipitation-7 to 10 inches
Mean annual air temperature- 45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 2 inches-light brownish gray cobbly loam
2 to 12 inches-yellowish brown clay loam

12 to 25 inches-indurated duripan
25 to 60 inches-light yellowish brown gravelly sandy loam

Soil Properties and Qualities

Depth: 9 to 18 inches to a hardpan and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow over rapid
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High

Contrasting Inclusions

- Deppy soils on old lake terraces
- Outerkirk soils on alluvial terraces
- Rock outcrop

Major Soil Limitations

Seepage, depth to a hardpan, corrosivity, available water capacity

Use and Management

Livestock Grazing

- The risk of seepage limits the construction of water impoundments.
- The cemented hardpan restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- A well-developed erosion pavement can limit the reestablishment of plants.
- The suitability for seeding is poor because of the low available water capacity.

335-Tumtum cobbly loam, high precipitation, 2 to 8 percent slopes

Composition

Tumtum and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Old lake terraces
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 3,400 to 4,200 feet
Rangeland ecological site and characteristic vegetation: (SR Shallow 9-12PZ)
Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass

Climatic factors:
Mean annual precipitation-10 to 11 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days
Typical Profile
0 to 2 inches-light brownish gray cobbly loam
2 to 12 inches-yellowish brown clay loam
12 to 25 inches-indurated duripan
25 to 60 inches-light yellowish brown gravelly sandy loam

Soil Properties and Qualities

Depth: 9 to 18 inches to a hardpan and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow over rapid
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Contrasting Inclusions

- Poall and Drewsey soils on hills
- Lambranch soils on alluvial fans
- Legler soils along drainageways

Major Soil Limitations

Depth to hardpan, seepage, corrosivity, available water capacity

Use and Management

Livestock Grazing

- The cemented hardpan restricts the rooting depth and limits the construction of water impoundments.
- The risk of seepage limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the low available water capacity.

336-Turpin sandy clay loam, 0 to 1 percent slopes Composition

Turpin and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane

Parent material: Lacustrine sediment

Elevation: 4,400 to 4,500 feet

Rangeland ecological site and characteristic vegetation: (Low Sodic Terrace 6-10PZ)
black greasewood, shadscale, spiny hopsage, bottlebrush squirreltail, bud
sagebrush
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 4 inches-pale brown sandy clay loam
4 to 8 inches-light gray silt loam
8 to 13 inches-pale brown clay loam
13 to 25 inches-light brownish gray clay loam
25 to 38 inches-pale brown clay loam
38 to 48 inches-light gray clay loam
48 to 60 inches-very pale brown clay loam
Soil Properties and Qualities
Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Ponding: Present late in winter and in spring
Water table: Present late in winter and in spring
Permeability: Slow
Available water capacity: About 5 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Moderate
Alkalinity: Strong
Corrosivity to steel: High

Contrasting Inclusions

- Alvodest soils on lake plains
- Norad soils on lake terraces
- Playas

Major Soil Limitations

Wetness, salinity, alkalinity, corrosivity

Use and Management

Livestock Grazing

- This unit provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Crusting of the soil surface reduces infiltration, results in ponding, and restricts seedling emergence and survival.
- This unit is suited to grazing in winter.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, shadscale, black greasewood, and bottlebrush squirreltail increase and bud sagebrush, basin wildrye, and beardless wildrye decrease.
- This soil is susceptible to invasion by halogeton, povertyweed, Russian thistle, and cheatgrass.
- The suitability for seeding is poor because of the strong alkalinity and moderate salinity.

337-Vanwyper-Rock outcrop complex, 45 to 80 percent north slopes

Composition

Vanwyper and similar soils-65 percent
Rock outcrop-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: North- and east-facing side slopes
Parent material: Colluvium and residuum
Geology: Andesite
Elevation: 5,000 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Vanwyper-(North
Slopes 6-10PZ) Wyoming big sagebrush, bluebunch wheatgrass, Thurber needlegrass
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-45 to 47 degrees F
Frost-free period-50 to 80 days
Typical Profile of Vanwyper
0 to 3 inches-light brownish gray extremely stony silty clay loam
3 to 15 inches-brown cobbly clay
15 to 24 inches-brown very gravelly clay loam
24 inches-fractured andesite

Properties and Qualities of Vanwyper

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—severe; wind—slight
Shrink-swell potential: High
Contrasting Inclusions

- Actem, Atlow, and Skedaddle soils on hills

Major Soil Limitations

Available water capacity, water erosion, slope, surface stones, depth to bedrock, shrink-swell potential

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope, stones on the surface, and the areas of Rock outcrop restrict the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, ephedra and big sagebrush increase and bluebunch wheatgrass and Thurber needlegrass decrease.
- The suitability for seeding is very poor because of the surface stones, steepness of slope, low available water capacity, and areas of Rock outcrop.

338-Vergas gravelly loam, 0 to 3 percent slopes Composition

Vergas and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Alluvial fans
Slope features: Plane
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,200 to 6,000 feet
Rangeland ecological site and characteristic vegetation: (Loamy 10-12PZ)
Wyoming big sagebrush, Thurber needlegrass, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 6 inches-light brownish gray gravelly loam
6 to 14 inches-yellowish brown gravelly sandy clay loam
14 to 20 inches-light yellowish brown gravelly loamy sand
20 to 62 inches-light yellowish brown extremely gravelly coarse sand

Soil Properties and Qualities

Depth: 14 to 35 inches to a hard, brittle layer and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow over very rapid
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: Moderate
Corrosivity to steel: High
Potential frost action: Moderate
Contrasting Inclusions

- Brace soils on plateaus
- Reallis soils on beach terraces
- Wolverine soils on dunes
- Swalesilver soils on lakebeds

Major Soil Limitations
Seepage, corrosivity

Use and Management

Livestock Grazing

- The risk of seepage limits the construction of water impoundments.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is good.

339-Vil silt loam, 2 to 20 percent slopes

Composition

Vil and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Stream terraces
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,000 to 5,000 feet
Rangeland ecological site and characteristic vegetation: (Loamy 10-12PZ) Wyoming
big sagebrush, Thurber needlegrass, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 6 inches-brown silt loam
6 to 9 inches-brown loam
9 to 13 inches-pale brown clay loam
13 to 16 inches-light yellowish brown gravelly clay loam
16 to 37 inches-indurated duripan
37 to 60 inches-light yellowish brown very gravelly sandy loam

Soil Properties and Qualities

Depth: 15 to 20 inches to a duripan and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water-slight; wind-slight

Contrasting Inclusions

- Gradon soils on fan terraces
- Swalesilver soils in depressions

Major Soil Limitations

Depth to a hardpan, available water capacity

Use and Management

Livestock Grazing

- Depth to the hardpan limits the construction of water impoundments and restricts rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity.

340-Vining loam, 2 to 20 percent slopes

Composition

Vining and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Eolian deposits over residuum
Geology: Tuffaceous sedimentary rock
Elevation: 4,000 to 5,000 feet
Rangeland ecological site and characteristic vegetation: (Loamy 10-12PZ) Wyoming
big sagebrush, Thurber needlegrass, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature- 45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile

0 to 2 inches-light brownish gray loam
2 to 13 inches-light yellowish brown sandy loam
13 to 29 inches-pale brown sandy loam
29 inches-tuffaceous sedimentary rock

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately rapid
Available water capacity: About 3 inches
Hazard of erosion: Water-slight; wind-slight

Contrasting Inclusions

- Reallis and Poujade soils on lake terraces
- Seharney soils on hills

Major Soil Limitation
Depth to bedrock

Use and Management

Livestock Grazing

- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is good.

341-Vining-Tuffo complex, 5 to 30 percent slopes Composition

Vining and similar soils-55 percent
Tuffo and similar soils-30 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: Vining-north- and east-facing side slopes; Tuffo-south- and west-facing side slopes
Parent material: Vining-eolian deposits over residuum; Tuffo-colluvium and residuum
Geology: Vining-tuffaceous sedimentary rock; Tuffo—ashflow tuff
Elevation: 4,200 to 5,000 feet
Rangeland ecological site and characteristic vegetation: Vining-(Loamy 8-10PZ)
Wyoming big sagebrush, Indian ricegrass, Thurber needlegrass, bluebunch
wheatgrass; Tuffo-(South Slopes 6-10PZ) ephedra, purple sage, desert needlegrass, Indian ricegrass, bluebunch wheatgrass, Wyoming big sagebrush
Climatic factors:
Mean annual precipitation-8 to 10 inches Mean annual air temperature- 45 to 49 degrees F Frost-free period-80 to 100 days

Typical Profile of Vining

0 to 2 inches-light brownish gray loamy sand 2 to 13 inches-light yellowish brown sandy loam 13 to 29 inches-pale brown sandy loam
29 inches-tuffaceous sedimentary rock
Properties and Qualities of Vining
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately rapid
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind-severe

Typical Profile of Tuffo

0 to 2 inches-pale brown fine sandy loam
2 to 7 inches-light brownish gray fine sandy loam
7 inches-weathered ashflow tuff

Properties and Qualities of Tuffo

Depth: 4 to 14 inches to bedrock
Drainage class: Somewhat excessively drained
Permeability: Moderately rapid
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—moderate

Contrasting Inclusions

- Enko and Norad soils on lake terraces
- Rock outcrop

Major Soil Limitations

Vining and Tuffo—depth to bedrock, wind erosion
Tuffo—available water capacity
Use and Management
Livestock Grazing

Vining and Tuffo

- Maintaining adequate plant cover minimizes the risk of wind erosion.
- This unit is suited to grazing in winter.

Vining

- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush and bottlebrush squirreltail increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- The suitability for seeding is poor because of the low available water capacity of the surface layer.

Tuffo

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, ephedra and purple sage increase and bluebunch wheatgrass, Indian ricegrass, and needlegrasses decrease.
- The suitability for seeding is very poor because of the low available water capacity and depth to bedrock.

342-Vitale very stony loam, 5 to 20 percent slopes Composition

Vitale and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 4,200 to 6,100 feet
Rangeland ecological site and characteristic vegetation: (SR Mountain Clayey
12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass

Climatic factors:

Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 3 inches-brown very stony loam
3 to 12 inches-brown cobbly loam
12 to 21 inches-light yellowish brown very cobbly clay loam
21 to 26 inches-pale brown very cobbly sandy clay loam
26 inches-basalt

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Doyn, Erakatak, Merlin, and Royst soils on hills
- Cumulic Haploxerolls in drainageways
- Rock outcrop and Rubble land

Major Soil Limitations

Surface stones, depth to bedrock, available water capacity

Use and Management

Livestock grazing

- The very stony surface layer restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

343-Vitale-Merlin complex, 2 to 20 percent slopes

 CompositionVitale and similar soils-50 percent Merlin and similar soils-35 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 4,600 to 5,600 feet
Rangeland ecological site and characteristic vegetation: Vitale—(SR Mountain Clayey
12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass;
Merlin-(JD Mountain Claypan 12-16PZ) low sagebrush, Idaho fescue,
bluebunch wheatgrass

Climatic factors:

Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Vitale

0 to 3 inches-brown very cobbly loam
3 to 12 inches-brown cobbly loam
12 to 21 inches-light yellowish brown very cobbly clay loam
21 to 26 inches-pale brown very cobbly sandy clay loam
26 inches-basalt

Properties and Qualities of Vitale

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Typical Profile of Merlin
0 to 7 inches-brown very cobbly loam
7 to 12 inches-yellowish brown clay loam
12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Properties and Qualities of Merlin

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Contrasting Inclusions

- Doyn, Erakatak, and Royst soils on hills
- Cumulic Haploxerolls in drainageways
- Rock outcrop and Rubble land

Major Soil Limitations

Vitale and Merlin—surface rock fragments, depth to bedrock, available water capacity Merlin—depth to a claypan, shrink-swell potential

Use and Management

Livestock Grazing

Vitale and Merlin

- In a disturbed or deteriorated condition, these soils are susceptible to invasion by medusahead.
- Depth to bedrock limits the construction of water impoundments.

Vitale

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Merlin

- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The claypan restricts the rooting depth.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity, depth to a claypan, and surface rock fragments.

344-Vitale-Merlin-Doyn complex, 2 to 20 percent slopes

Composition

Vitale and similar soils-35 percent
Merlin and similar soils-30 percent
Doyn and similar soils-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 3,900 to 5,200 feet
Rangeland ecological site and characteristic vegetation: Vitale-(SR Mountain Clayey
12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass;
Merlin-(JD Mountain Claypan 12-16PZ) low sagebrush, Idaho fescue,
bluebunch wheatgrass; Doyn-(SR Mountain Very Shallow 12-16PZ) stiff
sagebrush, onespike oatgrass, Sandberg bluegrass, Idaho fescue

Climatic factors:

Mean annual precipitation-12 to 16 inches
Mean annual air temperature- 40 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Vitale

0 to 3 inches-brown gravelly loam
3 to 12 inches-brown cobbly loam
12 to 21 inches-light yellowish brown very cobbly clay loam
21 to 26 inches-pale brown very cobbly sandy clay loam
26 inches-basalt
Properties and Qualities of Vitale
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight

Typical Profile of Merlin

0 to 7 inches—brown very cobbly loam
7 to 12 inches-yellowish brown clay loam

12 to 18 inches-light yellowish brown clay
18 inches-fractured welded tuff

Properties and Qualities of Merlin

Depth: 2 to 14 inches to a claypan and 10 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High

Typical Profile of Doyn

0 to 2 inches-brown very stony loam
2 to 8 inches-brown cobbly loam
8 inches-basalt
Properties and Qualities of Doyn
Depth: 4 to 10 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Erakatak and Royst soils on hills
- Rock outcrop

Major Soil Limitations

Vitale, Merlin, and Doyn—available water capacity, depth to bedrock Merlin-depth to a claypan, shrink-swell potential, surface rock fragments Doyn-surface stones

Use and Management

Livestock Grazing

Merlin and Doyn

- Bedrock restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.

Vitale

- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is fair because of the low available water capacity.

Merlin

- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the low available water capacity, depth to the claypan, and surface rock fragments.

Doyn

- The very stony surface restricts the operation of ground seeding equipment.
- This soil commonly supports a sparse stand of perennial grasses; however, forbs become abundant if precipitation is favorable.
- As the site deteriorates, stiff sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and onespike oatgrass decrease.
- The suitability for seeding is very poor because of the low available water capacity, depth to bedrock, and surface stones.

345-Vitale-Observation complex, 2 to 20 percent slopes

Composition

Vitale and similar soils-60 percent
Observation and similar soils-30 percent
Contrasting inclusions-10 percent

Setting

Landform: Hills and plateaus
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,900 to 5,400 feet
Rangeland ecological site and characteristic vegetation: Vitale—(SR Mountain Clayey
12-16PZ) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass;
Observation-(SR Mahogany Mountain Loam 14-18PZ) curl-leaf mountain
mahogany, ponderosa pine, antelope bitterbrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-14 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Vitale
0 to 3 inches-brown very cobbly loam
3 to 12 inches-brown cobbly loam
12 to 21 inches-light yellowish brown very cobbly clay loam
21 to 26 inches-pale brown very cobbly sandy clay loam
26 inches-basalt
Properties and Qualities of Vitale
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight

Typical Profile of Observation

0 to 4 inches-dark grayish brown very gravelly loam
4 to 8 inches-brown cobbly loam 8 to 18 inches-dark yellowish brown clay loam
18 to 23 inches-dark yellowish brown clay
23 inches-fractured basalt

Properties and Qualities of Observation

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Contrasting Inclusions

- Westbutte soils on north-facing hillsides
- Gaib, Doyn, and Merlin soils on hills
- Cumulic Haploxerolls in swales and drainageways
- Rock outcrop and Rubble land

Major Soil Limitations
Vitale and Observation-depth to bedrock
Vitale—surface rock fragments, available water capacity
Observation—shrink-swell potential

Use and Management

Livestock Grazing

Vitale and Observation

- Depth to bedrock limits the construction of water impoundments.

Vitale

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity and surface rock fragments.

Observation

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- Excessive use of the mountain mahogany within reach of grazing animals reduces its productivity and potential for regeneration.
- The suitability for seeding is good.

346-Vitale-Rock outcrop complex, 20 to 60 percent south slopes

Composition

Vitale and similar soils-65 percent
Rock outcrop-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Position on landform: South- and west-facing side slopes
Parent material: Residuum and colluvium
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 4,600 to 5,300 feet
Rangeland ecological site and characteristic vegetation: Vitale—(JD Shrubby Mountain South 12-16PZ) antelope bitterbrush, mountain big sagebrush, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Vitale
0 to 3 inches-brown very stony loam
3 to 12 inches-brown cobbly loam
12 to 21 inches-light yellowish brown very cobbly clay loam
21 to 26 inches-pale brown very cobbly sandy clay loam
26 inches-basalt

Properties and Qualities of Vitale

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Merlin soils on hills
- Erakatak soils on north-facing hillsides
- Anatone soils on ridges

Major Soil Limitations

Vitale-water erosion, slope, surface stones, depth to bedrock

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope, stones on the surface, and the areas of Rock outcrop restrict the operation of ground seeding equipment.
- Depth to bedrock and steepness of slope limit the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- As the site deteriorates, big sagebrush increases and basin wildrye decreases.
- The suitability for seeding is very poor because of the steepness of slope, low available water capacity, surface stones, and areas of Rock outcrop.

347-Voltage silt loam, 0 to 2 percent slopes
 Composition

Voltage and similar soils- 85 percent
Contrasting inclusions-15 percent

Setting

Landform: Low lake terraces
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Dry Floodplain) basin big sagebrush, basin wildrye, beardless wildrye
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 4 inches-light brownish gray silt loam
4 to 23 inches-pale brown and light brownish gray silt loam
23 to 38 inches-light gray loam and fine sandy loam
38 to 64 inches_pale brown fine sandy loam
Soil Properties and Qualities
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Moderate
Alkalinity: Moderate
Corrosivity to concrete: High
Corrosivity to steel: High
Contrasting Inclusions

- Crowcamp and Opie soils on lake plains

Major Soil Limitations

Salinity, alkalinity, corrosivity

Use and Management

Irrigated Hayland

- Salt-tolerant plants are the most suitable for planting.
- Proper irrigation water management and adequate drainage are needed to leach the salts below the rooting zone.

Livestock Grazing

- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and rabbitbrush increase and basin wildrye and beardless wildrye decrease.
- The suitability for seeding is fair because of the moderate salinity and alkalinity.

348-Voltage-Crowcamp complex, 0 to 2 percent slopes

Composition

Voltage and similar soils- 60 percent
Crowcamp and similar soils-25 percent
Contrasting inclusions-15 percent

Setting

Landform: Voltage—low lake terraces; Crowcamp-lake plains Slope features: Voltage-plane and convex; Crowcamp-plane Parent material: Lacustrine sediment

Elevation: 4,000 to 4,500 feet

Rangeland ecological site and characteristic vegetation: Voltage-(Dry Floodplain) basin big sagebrush, basin wildrye, beardless wildrye; Crowcamp-(Ponded Clay) silver sagebrush, Sandberg bluegrass, beardless wildrye

Climatic factors:

Mean annual precipitation-8 to 10 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Voltage

0 to 4 inches-light brownish gray silt loam
4 to 23 inches-pale brown and light brownish gray silt loam
23 to 38 inches-light gray loam and fine sandy loam
38 to 64 inches-pale brown fine sandy loam
Properties and Qualities of Voltage
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 10 inches
Hazard of erosion: Water-slight; wind-slight
Salinity: Moderate
Alkalinity: Moderate
Corrosivity to concrete: High
Corrosivity to steel: High

Typical Profile of Crowcamp

0 to 3 inches-gray silt loam
3 to 30 inches-grayish brown and dark gray clay
30 to 53 inches-grayish brown and light olive gray loam
53 to 68 inches-light olive gray very gravelly loam
Properties and Qualities of Crowcamp
Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Ponding: Present in spring
Water table: Present in spring
Permeability: Slow
Available water capacity: About 9 inches
Hazard of erosion: Water-slight; wind-slight

Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High
Contrasting Inclusions

- Ausmus and Lolak soils on lake plains
- Poujade soils on low lake terraces

Major Soil Limitations

Voltage and Crowcamp-corrosivity
Voltage-salinity, alkalinity
Crowcamp-wetness, shrink-swell potential

Use and Management

Irrigated Hayland

Voltage

- Salt-tolerant plants are the most suitable for planting.
- Proper irrigation water management and adequate drainage are needed to leach the salts below the rooting zone.

Crowcamp

- Ponding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- Ponding and a seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.
- Providing adequate drainage is difficult because most areas have poor outlets.

Livestock Grazing

Voltage and Crowcamp

- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.

Voltage

- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- As the site deteriorates, big sagebrush and rabbitbrush increase and basin wildrye and beardless wildrye decrease.
- The suitability for seeding is fair because of the moderate salinity and alkalinity.

Crowcamp

- This soil provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Grazing when the soil is wet results in compaction of the surface layer. A compacted surface layer may result in excessive runoff and restricted plant growth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Silver sagebrush resprouts following fire.
- As the site deteriorates, silver sagebrush increases and Sandberg bluegrass decreases.
- This soil is susceptible to invasion by povertyweed.
- The suitability for seeding is good.

349-Voltage-Crowcamp complex, 0 to 2 percent slopes, flooded

Composition

Voltage and similar soils-45 percent
Crowcamp and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Voltage—low lake terraces; Crowcamp—low plains Slope features: Voltage-concave and convex; Crowcamp-concave Parent material: Lacustrine sediment
Elevation: 4,090 to 4,106 feet
Rangeland ecological site and characteristic vegetation: Voltage-(Dry Floodplain)
basin big sagebrush, basin wildrye, beardless wildrye; Crowcamp-(Ponded
Clay) silver sagebrush, Sandberg bluegrass, beardless wildrye

Climatic factors:

Mean annual precipitation-8 to 10 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Voltage

0 to 4 inches-light brownish gray silty clay loam
4 to 23 inches-pale brown and light brownish gray silt loam
23 to 38 inches-light gray loam and fine sandy loam
38 to 64 inches-pale brown fine sandy loam
Properties and Qualities of Voltage
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 10 inches
Hazard of erosion: Water-slight; wind-slight
Salinity: Moderate
Alkalinity: Moderate
Corrosivity to concrete: High
Corrosivity to steel: High

Typical Profile of Crowcamp

0 to 3 inches-gray silty clay loam
3 to 30 inches-grayish brown and dark gray clay
30 to 53 inches-grayish brown and light olive gray loam
53 to 68 inches-light olive gray very gravelly loam
Properties and Qualities of Crowcamp
Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Frequency of ponding: Rare
Water table: Present in spring
Permeability: Slow
Available water capacity: About 9 inches
Hazard of erosion: Water-slight; wind-slight

Shrink-swell potential: High
Corrosivity to concrete: High
Corrosivity to steel: High
Contrasting Inclusions

- Ausmus, Homefield, and Thenarrows soils on lake plains
- Poujade soils on low lake terraces

Major Soil Limitations

Voltage and Crowcamp-corrosivity
Voltage-salinity, alkalinity
Crowcamp-wetness, shrink-swell potential

Use and Management

Livestock Grazing

Voltage and Crowcamp

- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.

Voltage

- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- As the site deteriorates, big sagebrush and rabbitbrush increase and basin wildrye and beardless wildrye decrease.
- The suitability for seeding is fair because of the moderate salinity and alkalinity.

Crowcamp

- This soil provides important food and cover for wetland wildlife.
- Deferred grazing improves habitat for migrating waterfowl.
- Grazing when the soil is wet results in compaction of the surface layer. A compacted surface layer may result in excessive runoff and restricted plant growth.
- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- Silver sagebrush resprouts following fire.
- As the site deteriorates, silver sagebrush increases and Sandberg bluegrass decreases.
- This soil is susceptible to invasion by povertyweed.
- The suitability for seeding is good.

350-Voltage-Widowspring complex, 0 to 2 percent slopes Composition

Voltage and similar soils-65 percent
Widowspring and similar soils-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Voltage—low lake terraces; Widowspring—lake plains Slope features: Voltage-plane and convex; Widowspring—plane Parent material: Lacustrine sediment Elevation: 4,000 to 4,500 feet Rangeland ecological site and characteristic vegetation: Voltage-(Dry Floodplain)
basin big sagebrush, basin wildrye, beardless wildrye; Widowspring-(Loamy
Bottom) basin big sagebrush, basin wildrye

Climatic factors:

Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Voltage
0 to 4 inches-light brownish gray silt loam
4 to 23 inches-pale brown and light brownish gray silt loam
23 to 38 inches-light gray loam and fine sandy loam
38 to 64 inches-pale brown fine sandy loam
Properties and Qualities of Voltage
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Salinity: Moderate
Alkalinity: Moderate
Corrosivity to concrete: High
Corrosivity to steel: High

Typical Profile of Widowspring

0 to 7 inches—dark grayish brown silt loam
7 to 22 inches-grayish brown silt loam
22 to 43 inches-brown silt loam
43 to 63 inches-yellowish brown loam
Properties and Qualities of Widowspring
Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Frequency of ponding: Rare
Water table: Present in winter and spring
Permeability: Moderately slow
Available water capacity: About 12 inches
Hazard of erosion: Water—slight; wind—slight
Potential frost action: High

Contrasting Inclusions

- Ausmus, Crowcamp, and Opie soils on lake plains

Major Soil Limitations

Voltage—salinity, alkalinity, corrosivity
Widowspring-frost action, wetness

Use and Management

Livestock Grazing

Voltage

- Excess salts and sodium in the soil result in an imbalance of nutrients and create a caustic root environment.
- Dispersion and crusting of the soil surface reduce the water intake rate, restricting seedling emergence and survival.
- Because of the high corrosivity to uncoated steel and concrete, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and rabbitbrush increase and basin wildrye and beardless wildrye decrease.
- The suitability for seeding is fair because of the moderate salinity and alkalinity.

Widowspring

- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, big sagebrush increases and basin wildrye decreases.
- The suitability for seeding is good.

Irrigated Hayland

Voltage

- Salt-tolerant plants are the most suitable for planting.
- Proper irrigation water management and adequate drainage are needed to leach the salts below the rooting zone.

Widowspring

- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost heave.

351-Wagontire gravelly clay loam, 2 to 20 percent slopes

Composition

Wagontire and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Alluvial fans
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,000 to 5,000 feet
Rangeland ecological site and characteristic vegetation: (Claypan 10-12PZ) low sagebrush, bluebunch wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 15 inches-brown gravelly clay loam
15 to 40 inches-indurated duripan
40 to 60 inches-light yellowish brown very gravelly sandy loam

Soil Properties and Qualities

Depth: 14 to 20 inches to a duripan and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High

Contrasting Inclusions

- Vil soils on alluvial fans
- Actem soils on plateaus
- Pernty and Reluctan soils on hills

Major Soil Limitations

Depth to a hardpan, corrosivity, available water capacity

Use and Management

- The cemented hardpan restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.
- The suitability for seeding is poor because of the low available water capacity.

352-Wagontire-Vil complex, 2 to 20 percent slopes

Composition

Wagontire and similar soils-55 percent
Vil and similar soils-30 percent
Contrasting inclusions-15 percent

Setting

Landform: Stream terraces
Slope features: Concave and convex
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,000 to 5,000 feet
Rangeland ecological site and characteristic vegetation: Wagontire—(Claypan
10-12PZ) low sagebrush, bluebunch wheatgrass, Sandberg bluegrass; Vil-
(Loamy 10-12PZ) Wyoming big sagebrush, Thurber needlegrass, bluebunch
wheatgrass, Sandberg bluegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Wagontire

0 to 15 inches-brown gravelly clay loam
15 to 40 inches-indurated duripan
40 to 60 inches-light yellowish brown very gravelly sandy loam
Properties and Qualities of Wagontire
Depth: 14 to 20 inches to a duripan and more than 60 inches to bedrock Drainage class: Well drained

Permeability: Slow
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High

Typical Profile of Vil

0 to 6 inches-brown silt loam
6 to 9 inches-brown loam
9 to 13 inches-pale brown clay loam
13 to 16 inches-light yellowish brown gravelly clay loam
16 to 37 inches-indurated duripan
37 to 60 inches-light yellowish brown very gravelly sandy loam

Properties and Qualities of Vil

Depth: 15 to 20 inches to a duripan and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 3 inches
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Actem soils on plateaus
- Pernty and Reluctan soils on hills

Major Soil Limitations

Wagontire and Vil—depth to a hardpan, available water capacity
Wagontire-corrosivity

Use and Management

Livestock Grazing

Wagontire and Vil

- The cemented hardpan restricts the rooting depth and limits the construction of water impoundments.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- The upper part of the soils is saturated following snowmelt.
- Allow the soils to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- The suitability for seeding is poor because of the low available water capacity.

Wagontire

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and bluebunch wheatgrass decreases.

Vil

- This soil is susceptible to invasion by cheatgrass.
- As the site deteriorates, bottlebrush squirreltail, Sandberg bluegrass, rabbitbrush, and big sagebrush increase and Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass decrease.

353-Waspo-Poall complex, 2 to 8 percent slopes

Composition

Waspo and similar soils-45 percent
Poall and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum
Geology: Waspo—siltstone; Poall—tuffaceous sedimentary rock and diatomaceous earth
Elevation: 3,400 to 4,000 feet
Rangeland ecological site and characteristic vegetation: Waspo-(SR Adobeland 9-12PZ) basin wildrye, bluebunch wheatgrass; Poall—(SR Clayey 9-12PZ) bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Waspo

0 to 25 inches-light olive brown clay
25 inches-moderately cemented siltstone

Properties and Qualities of Waspo

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Very slow
Available water capacity: About 4 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Typical Profile of Poall

0 to 8 inches—light brownish gray silt loam
8 to 17 inches-yellowish brown clay
17 to 33 inches-pale brown clay loam
33 to 45 inches-pale brown clay loam
45 to 65 inches-light yellowish brown gravelly clay loam
Properties and Qualities of Poall
Depth: 3 to 10 inches to a claypan and more than 60 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Shrink-swell potential: High
Corrosivity to steel: High

Contrasting Inclusions

- Legler soils on stream terraces
- Atlow and Gumble soils and Torriorthents on hills
- Bucklake soils on north-facing hillsides
- Rock outcrop

Major Soil Limitations

Waspo and Poall—shrink-swell potential, corrosivity
Waspo-depth to bedrock
Poall—depth to a claypan

Use and Management

Livestock Grazing

Waspo and Poall

- The heavy-textured soils expand when wet and contract when dry, which may damage structures and fences.
- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.

Waspo

- Depth to bedrock limits the construction of water impoundments.
- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, big sagebrush increases and basin wildrye and bluebunch wheatgrass decrease.
- The suitability for seeding is fair because of the clayey surface layer.

Poall

- The claypan restricts the rooting depth.
- The upper part of the soil is saturated following snowmelt.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass decreases.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- The suitability for seeding is poor because of the depth to the claypan.

354-Water

This map unit consists of lakes, rivers, and reservoirs. Depressions or linear areas that contained water are shown on the publication maps as Water. The extent or presence of these areas can fluctuate greatly from year to year. During periods of high precipitation or runoff from snowmelt, the areas of Water increase. During periods of drought, the areas of Water decrease. In any given year, the areas of Water shown on the maps may appear as soil. Conversely, areas of soil or Playas adjacent to areas of Water may be under water or appear as areas of Water.

355-Welch silt loam, cold, 0 to 5 percent slopes Composition

[^2]
Setting

Landform: Mountain valleys
Slope features: Plane
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 5,500 to 9,000 feet
Rangeland ecological site and characteristic vegetation: (Subalpine Meadow) tufted hairgrass, sedge, willow
Climatic factors:
Mean annual precipitation-12 to 35 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-30 to 60 days

Typical Profile

0 to 9 inches-grayish brown silt loam
9 to 34 inches-gray and dark gray silt loam
34 to 60 inches-light brownish gray loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring and early in summer
Water table: Present in winter, spring, and summer
Permeability: Moderately slow
Available water capacity: About 11 inches
Hazard of erosion: Water—slight; wind—slight
Potential frost action: High
Contrasting Inclusions

- Leemorris and Baconcamp soils on mountainsides
- Hackwood soils in swales of mountainsides and footslopes

Major Soil Limitations

Wetness, frost action

Use and Management

Livestock Grazing

- This unit provides important food and cover for wildlife.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soil is wet or saturated damages plants and causes soil compaction and displacement.
- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- As streambanks become unstable, channels deepen and widen and the subsurface waterflow is reduced, resulting in a drier site with decreased production and increased density of upland shrubs.
- As the site deteriorates, sedges, rushes, cinquefoil, bluegrasses, and reedgrass increase and tufted hairgrass decreases.
- The suitability for seeding is good.

356-Welch silt loam, cool, 0 to 5 percent slopes

Composition

Welch and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountain valleys
Slope features: Plane
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 5,500 to 6,400 feet
Rangeland ecological site and characteristic vegetation: (Wet Meadow) tufted hairgrass
Climatic factors:
Mean annual precipitation-12 to 18 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 9 inches-grayish brown silt loam
9 to 34 inches-gray and dark gray silt loam
34 to 60 inches-light brownish gray loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Ponding: Present in spring
Water table: Present in winter, spring, and summer
Permeability: Moderately slow
Available water capacity: About 11 inches
Hazard of erosion: Water-slight; wind-slight
Potential frost action: High

Contrasting Inclusions

- Leemorris and Baconcamp soils on mountainsides
- Hackwood soils in swales of mountainsides and footslopes

Major Soil Limitations
Wetness, frost action

Use and Management
 Livestock Grazing

- This unit provides important food and cover for wildlife.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soil is wet or saturated damages plants and causes soil compaction and displacement.
- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- As streambanks become unstable, channels deepen and widen and the subsurface waterflow is reduced, resulting in a drier site with decreased production and increased density of upland shrubs.
- As the site deteriorates, sedges, rushes, cinquefoil, bluegrasses, and reedgrass increase and tufted hairgrass decreases.
- The suitability for seeding is good.

357-Welch-Roschene-Cumulic Haploxerolls complex, 0 to 3 percent slopes

Composition

Welch and similar soils-40 percent
Roschene and similar soils-25 percent
Cumulic Haploxerolls and similar soils-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Stream terraces
Position on landform: Welch—depressions; Roschene—plane areas; Cumulic Haploxerolls—areas adjacent to streams
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,500 to 5,500 feet
Rangeland ecological site and characteristic vegetation: Welch—(Mountain Meadow) tufted hairgrass; Roschene-(Mountain Loamy Bottom) willow, basin wildrye; Cumulic Haploxerolls-(Willow-Riparian) willow, sedge, tufted hairgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Welch

0 to 5 inches-grayish brown loam
5 to 34 inches-gray and dark gray silt loam
34 to 60 inches-light brownish gray loam

Properties and Qualities of Welch

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Water table: Present late in winter, in spring, and early in summer
Flooding: Present in spring
Permeability: Moderately slow
Available water capacity: About 11 inches
Hazard of erosion: Water—slight; wind—slight
Potential frost action: High
Typical Profile of Roschene
0 to 18 inches-grayish brown loam
18 to 36 inches-grayish brown clay loam
36 to 62 inches-pale brown clay loam

Properties and Qualities of Roschene

Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Water table: Present late in winter, in spring, and early in summer
Flooding: Present in spring

Permeability: Moderately slow
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Reference Profile of Cumulic Haploxerolls
0 to 5 inches—dark grayish brown loam
5 to 25 inches-dark gray loam
25 to 54 inches-light brownish gray loam
54 to 60 inches-light brownish gray very gravelly sandy loam
Properties and Qualities of Cumulic Haploxerolls
Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Water table: Present in spring
Flooding: Present in spring
Permeability: Moderate
Available water capacity: Variable
Hazard of erosion: Water—slight; wind—slight

Contrasting Inclusions

- Minam soils along higher gradient stream terraces
- Erakatak soils on hills
- Brunzell soils on stream terraces

Major Soil Limitations

Welch, Roschene, and Cumulic Haploxerolls-wetness
Welch-frost action
Roschene-corrosivity

Use and Management

Livestock Grazing

Welch, Roschene, and Cumulic Haploxerolls

- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soils are wet or saturated damages plants and causes soil compaction and displacement.
- As streambanks become unstable, channels deepen and widen and the subsurface waterflow is reduced, resulting in a drier site with decreased production and increased density of upland shrubs.
- The suitability for seeding is good.

Welch

- As the site deteriorates, sedges, rushes, cinquefoil, and bluegrasses increase and tufted hairgrass decreases.
- Sedges are most abundant in wet areas, and hairgrass is most abundant in drier areas.

Roschene

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and bluegrasses increase and basin wildrye and willows decrease.
- Willows decrease as the depth to the water table increases.
- This soil is susceptible to invasion by western juniper.

Cumulic Haploxerolls

- As the site deteriorates, big sagebrush, bluegrasses, rushes, and sedges increase and willows and tufted hairgrass decrease.

Irrigated Hayland

Welch, Roschene, and Cumulic Haploxerolls

- This unit is well suited to use as irrigated hayland.

Welch

- A seasonal high water table restricts haying and grazing. Wetness increases the risk of winterkill of plants.
- The seasonal high water table provides supplemental water for adapted plants.
- This unit provides important food and cover for wetland wildlife.
- The seasonal high water table limits the choice of forage plants to varieties adapted to wet conditions.
- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost action.

358-Wenas-Loupence-Cumulic Haploxerolls complex, 0 to 3 percent slopes

Composition

Wenas and similar soils-50 percent
Loupence and similar soils-25 percent
Cumulic Haploxerolls and similar soils-15 percent
Contrasting inclusions-10 percent

Setting

Landform: Stream terraces
Position on landform: Wenas—depressions; Loupence—plane areas; Cumulic Haploxerolls—areas adjacent to streams
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 3,500 to 3,900 feet
Rangeland ecological site and characteristic vegetation: Wenas-(Meadow) tufted hairgrass, sedge; Loupence-(Loamy Bottom) basin wildrye; Cumulic
Haploxerolls-(Willow-Riparian) willow, sedge, tufted hairgrass

Climatic factors:

Mean annual precipitation-9 to 12 inches
Mean annual air temperature-45 to 49 degrees F
Frost-free period-80 to 100 days

Typical Profile of Wenas

0 to 10 inches-dark grayish brown clay loam
10 to 21 inches-grayish brown fine sandy loam
21 to 53 inches-grayish brown loam
53 to 63 inches-grayish brown gravelly loam
63 to 67 inches-grayish brown very gravelly loamy sand

Properties and Qualities of Wenas

Depth: More than 60 inches to bedrock
Drainage class: Poorly drained
Water table: Present late in winter, in spring, and early in summer
Flooding: Present in spring
Permeability: Moderately slow
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Potential frost action: High
Typical Profile of Loupence
0 to 49 inches-grayish brown silt loam
49 to 60 inches-brown sandy loam
Properties and Qualities of Loupence
Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Water table: Present late in winter, in spring, and early in summer
Flooding: Present in spring
Permeability: Moderate
Available water capacity: About 11 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High
Potential frost action: High

Reference Profile of Cumulic Haploxerolls

0 to 5 inches—dark grayish brown loam
5 to 25 inches-dark gray loam
25 to 54 inches-light brownish gray loam
54 to 60 inches-light brownish gray very gravelly sandy loam

Properties and Qualities of Cumulic Haploxerolls

Depth: More than 60 inches to bedrock
Drainage class: Somewhat poorly drained
Water table: Present in spring
Flooding: Present in spring
Permeability: Moderate
Available water capacity: Variable
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Final soils on stream terraces
- Lambranch soils on alluvial fans

Major Soil Limitations
Wenas, Loupence, and Cumulic Haploxerolls-wetness
Wenas and Loupence-frost action
Loupence-corrosivity

Use and Management

Irrigated Hayland
Wenas, Loupence, and Cumulic Haploxerolls

- This unit is well suited to use as irrigated hayland.
- Flooding and a seasonal high water table restrict haying and grazing. Wetness increases the risk of winterkill of plants.
- The seasonal high water table provides supplemental water for adapted plants.
- This unit provides important food and cover for wetland wildlife.
- Flooding and the seasonal high water table limit the choice of forage plants to varieties adapted to wet conditions.
- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost action.

Livestock Grazing

Wenas, Loupence, and Cumulic Haploxerolls

- Grazing should be managed to maintain or increase the abundance of plants that help to stabilize streambanks and keep water temperatures moderate.
- Grazing early in the season allows for sufficient regrowth of plants before runoff in spring.
- Allow the soils to drain adequately before grazing to minimize compaction of the soils and damage to plants.
- Saturated soil conditions make fences unstable and limit their placement.
- Trampling by livestock when the soils are wet or saturated damages plants and causes soil compaction and displacement.
- As streambanks become unstable, channels deepen and widen and the subsurface waterflow is reduced, resulting in a drier site with decreased production and increased density of upland shrubs.
- The suitability for seeding is good.

Wenas

- As the site deteriorates, sedges, rushes, cinquefoil, and bluegrasses increase and tufted hairgrass decreases.

Loupence

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush and bluegrasses increase and basin wildrye and willows decrease.

Cumulic Haploxerolls

- As the site deteriorates, big sagebrush, bluegrasses, rushes, and sedges increase and willows and tufted hairgrass decrease.

359-Westbutte very stony loam, 20 to 50 percent north slopes

Composition

Westbutte and similar soils- 85 percent

Contrasting inclusions-15 percent

Setting

Landform: Mountains

Slope features: Concave and convex
Parent material: Colluvium and residuum
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 5,200 to 6,400 feet
Rangeland ecological site and characteristic vegetation: (Gravelly North Slopes
$12-16 \mathrm{PZ}$) threetip sagebrush, Idaho fescue

Climatic factors:

Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 12 inches—dark grayish brown very stony loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Erakatak, Ninemile, and Pearlwise soils on mountains
- Rock outcrop

Major Soil Limitations
Water erosion, available water capacity, slope, surface stones, depth to bedrock

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and skyline bluegrass and Idaho fescue decrease.
- Threetip sagebrush resprouts after burning.
- The suitability for seeding is very poor because of the steepness of slope and surface stones.

360-Westbutte extremely stony loam, 5 to 25 percent slopes

Composition

Westbutte and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills
Slope features: Concave and convex
Parent material: Residuum and colluvium
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 5,200 to 6,200 feet
Rangeland ecological site and characteristic vegetation: (Loamy 12-16PZ) mountain big sagebrush, Idaho fescue, Thurber needlegrass

Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile
0 to 12 inches—dark grayish brown extremely stony loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt

Soil Properties and Qualities

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—slight; wind—slight
Contrasting Inclusions

- Ninemile soils on hills
- Carvix soils on stream terraces
- Rock outcrop and Rubble land

Major Soil Limitations

Available water capacity, surface stones, depth to bedrock

Use and Management

Livestock Grazing

- The extremely stony surface layer prohibits the operation of ground seeding equipment.
- The extremely stony soil surface limits livestock movement and the distribution of grazing.
- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the surface stones.

361-Westbutte-Bocker complex, 20 to 60 percent slopes

Composition

Westbutte and similar soils-45 percent
Bocker and similar soils-40 percent
Contrasting inclusions-15 percent

Setting

Landform: Hills and plateaus
Position on landform: Westbutte—north- and east-facing side slopes and concave areas; Bocker-convex areas
Parent material: Colluvium and residuum
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 4,600 to 6,400 feet
Rangeland ecological site and characteristic vegetation: Westbutte—(North Slopes

12-16PZ) mountain big sagebrush, Idaho fescue; Bocker-(Shallow North
12-16PZ) low sagebrush, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F Frost-free period-50 to 80 days

Typical Profile of Westbutte
0 to 12 inches—dark grayish brown extremely stony loam
12 to 24 inches—brown very cobbly loam
24 inches-basalt

Properties and Qualities of Westbutte

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Bocker

0 to 3 inches-pale brown extremely stony loam
3 to 7 inches-brown very stony loam
7 inches-basalt

Properties and Qualities of Bocker

Depth: 4 to 10 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 1 inch
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Pearlwise soils on hills
- Carvix soils on stream terraces
- Rock outcrop and Rubble land

Major Soil Limitations

Westbutte and Bocker—available water capacity, water erosion, slope, surface stones, depth to bedrock

Use and Management

Livestock Grazing

Westbutte and Bocker

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- The extremely stony surface layer prohibits the operation of ground seeding equipment and limits livestock movement and the distribution of grazing.
- Depth to bedrock limits the construction of water impoundments.

Westbutte

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the surface stones and steepness of slope.

Bocker

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the very shallow soil depth limits the placement of fence posts.
- The upper part of the soil is saturated following snowmelt.
- This soil is susceptible to invasion by cheatgrass and medusahead.
- As the site deteriorates, low sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is very poor because of the low available water capacity, depth to bedrock, surface stones, and steepness of slope.

362-Westbutte-Lambring-Rock outcrop complex, 35 to 65 percent north slopes

Composition

> Westbutte and similar soils-40 percent
> Lambring and similar soils-25 percent
> Rock outcrop-20 percent
> Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: North- and east-facing side slopes
Parent material: Westbutte—residuum and colluvium; Lambring—colluvium
Geology: Basalt and welded tuff
Elevation: 5,200 to 6,500 feet
Rangeland ecological site and characteristic vegetation: Westbutte and Lambring-
(North Slopes 12-16PZ) mountain big sagebrush, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Westbutte
0 to 12 inches-dark grayish brown extremely stony loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt

Properties and Qualities of Westbutte

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Lambring

0 to 7 inches—dark grayish brown very cobbly loam
7 to 21 inches-brown gravelly loam
21 to 60 inches-brown very cobbly loam

Properties and Qualities of Lambring

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Ninemile and Pearlwise soils on mountains

Major Soil Limitations

Westbutte and Lambring-water erosion, slope Westbutte—available water capacity, surface stones, depth to bedrock

Use and Management

Livestock Grazing

Westbutte and Lambring

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Steepness of slope restricts the operation of ground seeding equipment.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- These soils are susceptible to invasion by cheatgrass.

Westbutte

- The extremely stony surface layer restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- The suitability for seeding is very poor because of the steepness of slope and surface stones.

Lambring

- The suitability for seeding is very poor because of the steepness of slope.

363-Westbutte-Rock outcrop complex, 20 to 60 percent north slopes

Composition

Westbutte and similar soils-75 percent
Rock outcrop-15 percent
Contrasting inclusions-10 percent
\section*{Setting}
Landform: Mountains
Position on landform: North- and east-facing side slopes
Parent material: Residuum and colluvium
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 4,100 to 6,000 feet
Rangeland ecological site and characteristic vegetation: (SR Mountain North
$12-16 \mathrm{PZ}$) mountain big sagebrush, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches

Mean annual air temperature-40 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Westbutte
0 to 12 inches-dark grayish brown very stony loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt

Properties and Qualities of Westbutte

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Doyn, Erakatak, Merlin, Observation, and Royst soils on hills
- Roschene soils on stream terraces

Major Soil Limitations

Available water capacity, water erosion, slope, surface stones, depth to bedrock

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is very poor because of the steepness of slope.

364-Westbutte-Rock outcrop complex, 20 to 60 percent south slopes

Composition

Westbutte and similar soils-65 percent

Rock outcrop similar soils-20 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: South- and west-facing side slopes
Parent material: Residuum and colluvium
Geology: Basalt, andesite, rhyolite, and welded tuff
Elevation: 4,200 to 5,100 feet
Rangeland ecological site and characteristic vegetation: Westbutte-(SR Mountain
South 12-16PZ) mountain big sagebrush, bluebunch wheatgrass, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches

Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Westbutte
0 to 12 inches-dark grayish brown very stony loam
12 to 24 inches—brown very cobbly loam
24 inches-basalt

Properties and Qualities of Westbutte

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Contrasting Inclusions

- Lambring soils on north-facing mountainsides
- Carryback and Pearlwise soils on mountainsides

Major Soil Limitations

Available water capacity, water erosion, slope, surface stones, depth to bedrock

Use and Management

Livestock Grazing

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is very poor because of the steepness of slope.

365-Westbutte-Lambring-Rock outcrop association, 20 to 60 percent slopes

Composition

Westbutte and similar soils-40 percent
Lambring and similar soils-35 percent
Rock outcrop-15 percent
Contrasting inclusions-10 percent

Setting

Landform: Mountains
Position on landform: Westbutte—south- and west-facing side slopes; Lambring— north- and east-facing side slopes
Parent material: Westbutte—colluvium and residuum; Lambring-colluvium
Geology: Basalt and welded tuff
Elevation: 4,100 to 5,600 feet
Rangeland ecological site and characteristic vegetation: Westbutte—(SR Mountain

South 12-16PZ) mountain big sagebrush, bluebunch wheatgrass, Idaho fescue; Lambring-(SR Mountain North 12-16PZ) mountain big sagebrush, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-43 to 45 degrees F Frost-free period-50 to 80 days

Typical Profile of Westbutte

0 to 12 inches—dark grayish brown very cobbly loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt

Properties and Qualities of Westbutte

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Lambring

0 to 7 inches—dark grayish brown very stony loam
7 to 21 inches-brown gravelly loam
21 to 60 inches-brown very cobbly loam
Properties and Qualities of Lambring
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Merlin, Observation, and Ticino soils on hills

Major Soil Limitations

Westbutte and Lambring-water erosion, slope, surface rock fragments Westbutte—depth to bedrock, available water capacity

Use and Management

Livestock Grazing

Westbutte and Lambring

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope and the surface rock fragments restrict the operation of ground seeding equipment.
- The suitability for seeding is very poor because of the steepness of slope.

Westbutte

- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.

Lambring

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.

366-Westbutte-Lambring-Rock outcrop association, cool, 20 to 60 percent slopes

Composition

Westbutte and similar soils- 40 percent
Lambring and similar soils-30 percent
Rock outcrop-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: Westbutte-south- and west-facing side slopes; Lambring-north- and east-facing side slopes
Parent material: Westbutte-residuum and colluvium; Lambring-colluvium
Geology: Basalt and welded tuff
Elevation: 4,700 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Westbutte-(SR Mountain
South 12-16PZ) mountain big sagebrush, bluebunch wheatgrass, Idaho fescue;
Lambring-(SR Mahogany Rockland 12+PZ) curl-leaf mountain mahogany, western juniper, antelope bitterbrush, bluebunch wheatgrass, Idaho fescue
Climatic factors:
Mean annual precipitation-14 to 16 inches
Mean annual air temperature-40 to 43 degrees F
Frost-free period-50 to 80 days
Typical Profile of Westbutte
0 to 12 inches-dark grayish brown very cobbly loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt
Properties and Qualities of Westbutte
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water-moderate; wind—slight
Typical Profile of Lambring
0 to 7 inches-dark grayish brown very stony loam
7 to 21 inches-brown gravelly loam
21 to 60 inches-brown very cobbly loam

Properties and Qualities of Lambring

Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—moderate; wind-slight

Contrasting Inclusions

- Nuss, Observation, and Ticino soils on hillsides

Major Soil Limitations

Westbutte and Lambring-water erosion, slope, surface rock fragments Westbutte—depth to bedrock, available water capacity

Use and Management
Livestock Grazing

Westbutte and Lambring

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope and rock fragments on the surface restrict the operation of ground seeding equipment.
- The suitability for seeding is very poor because of the steepness of slope.

Westbutte

- Depth to bedrock and steepness of slope limit the construction of water impoundments.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.

Lambring

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.

367-Westbutte-Lambring-Rock outcrop association, moist, 20 to 60 percent slopes

Composition

Westbutte and similar soils-40 percent
Lambring and similar soils-30 percent
Rock outcrop-15 percent
Contrasting inclusions-15 percent

Setting

Landform: Mountains
Position on landform: Westbutte—south- and west-facing side slopes; Lambring-north- and east-facing side slopes
Parent material: Westbutte—colluvium and residuum; Lambring-colluvium
Geology: Basalt and welded tuff
Elevation: 4,300 to 5,100 feet
Rangeland ecological site and characteristic vegetation: Westbutte—(SR Mountain
South 12-16PZ) mountain big sagebrush, bluebunch wheatgrass, Idaho fescue;
Lambring-(JD Shrubby Mountain North 12-16PZ) antelope bitterbrush, mountain big sagebrush, whortleleaf snowberry, Idaho fescue
Climatic factors:
Mean annual precipitation-12 to 16 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile of Westbutte

0 to 12 inches-dark grayish brown very stony loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt
Properties and Qualities of Westbutte
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Lambring

0 to 7 inches-dark grayish brown very stony loam
7 to 21 inches-brown gravelly loam
21 to 60 inches-brown very cobbly loam
Properties and Qualities of Lambring
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 6 inches
Hazard of erosion: Water—moderate; wind—slight
Contrasting Inclusions

- Nuss and Ticino soils on hillsides
- Observation soils on canyonsides, hillsides, and escarpments

Major Soil Limitations

Westbutte and Lambring-water erosion, slope, surface stones Westbutte—depth to bedrock, available water capacity

Use and Management

Livestock Grazing

Westbutte and Lambring

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Steepness of slope and stones on the surface restrict the operation of ground seeding equipment.

Westbutte

- Depth to bedrock limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the low available water capacity, surface stones, and steepness of slope.

Lambring

- As the site deteriorates, big sagebrush and Sandberg bluegrass increase and Idaho fescue, bluebunch wheatgrass, and antelope bitterbrush decrease.
- The suitability for seeding is poor because of the surface stones and steepness of slope.

368-Westbutte-Observation association, 5 to 40 percent slopes

Composition
Westbutte and similar soils-50 percent Observation and similar soils-40 percent Contrasting inclusions-10 percent

Setting

Landform: Mountains and hills
Position on landform: Westbutte-north- and east-facing slopes of 20 to 40 percent; Observation-side slopes of 5 to 20 percent
Parent material: Residuum and colluvium
Geology: Basalt, andesite, and welded tuff
Elevation: 4,200 to 6,000 feet
Rangeland ecological site and characteristic vegetation: Westbutte-(SR Mountain
North 12-16PZ) mountain big sagebrush, Idaho fescue; Observation-(SR
Mountain Clayey $12-16 \mathrm{PZ}$) mountain big sagebrush, Idaho fescue, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches Mean annual air temperature- 40 to 43 degrees F Frost-free period-50 to 80 days

Typical Profile of Westbutte

0 to 12 inches-dark grayish brown very stony loam
12 to 24 inches-brown very cobbly loam
24 inches-basalt

Properties and Qualities of Westbutte

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight
Typical Profile of Observation
0 to 4 inches-dark grayish brown very stony loam
4 to 8 inches-brown cobbly loam
8 to 18 inches-dark yellowish brown clay loam
18 to 23 inches-dark yellowish brown clay
23 inches-fractured basalt
Properties and Qualities of Observation
Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Slow
Available water capacity: About 3 inches
Hazard of erosion: Water-slight; wind-slight
Shrink-swell potential: High
Contrasting Inclusions

- Merlin soils on hills
- Pearlwise soils on north- and east-facing mountainsides
- Minam soils in drainageways
- Rock outcrop and Rubble land

Major Soil Limitations

Westbutte and Observation-surface stones, depth to bedrock Westbutte-available water capacity, water erosion Observation—shrink-swell potential

Use and Management

Livestock Grazing

Westbutte and Observation

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- The very stony surface layer restricts the operation of ground seeding equipment.
- Depth to bedrock limits the construction of water impoundments.

Westbutte

- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

Observation

- The heavy-textured soil expands when wet and contracts when dry, which may damage structures and fences.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- In a disturbed or deteriorated condition, this soil is susceptible to invasion by medusahead.
- The suitability for seeding is poor because of the surface stones.

369-Westbutte-Rock outcrop-Pernty association, 20 to 40 percent slopes

Composition

Westbutte and similar soils-35 percent
Rock outcrop-30 percent
Pernty and similar soils-25 percent
Contrasting inclusions-10 percent
\section*{Setting}
Landform: Hills
Position on landform: Westbutte—north- and east-facing side slopes; Pernty— south- and west-facing side slopes
Parent material: Residuum and colluvium
Geology: Basalt and rhyolite
Elevation: 4,600 to 5,400 feet
Rangeland ecological site and characteristic vegetation: Westbutte—(North Slopes
12-16PZ) mountain big sagebrush, Idaho fescue; Pernty-(South Slopes
12-16PZ) mountain big sagebrush, antelope bitterbrush, bluebunch wheatgrass
Climatic factors:
Mean annual precipitation-12 to 16 inches

Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days
Typical Profile of Westbutte
0 to 12 inches-dark grayish brown very stony loam
12 to 24 inches—brown very cobbly loam
24 inches-basalt

Properties and Qualities of Westbutte

Depth: 20 to 40 inches to bedrock
Drainage class: Well drained
Permeability: Moderate
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—slight

Typical Profile of Pernty

0 to 3 inches-grayish brown gravelly sandy loam
3 to 8 inches-grayish brown cobbly loam
8 to 15 inches-brown very cobbly loam
15 inches-rhyolite

Properties and Qualities of Pernty

Depth: 14 to 20 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 2 inches
Hazard of erosion: Water—moderate; wind—moderate

Contrasting Inclusions

- Ninemile and Pearlwise soils on hills
- Carvix soils on stream terraces
- Bocker soils on north-facing hillsides
- Rubble land

Major Soil Limitations

Westbutte and Pernty—available water capacity, water erosion, depth to bedrock Westbutte—surface stones

Use and Management

Livestock Grazing

Westbutte and Pernty

- Construction of waterbars prevents gullying on roads, trails, and pipelines.
- Maintaining adequate plant cover minimizes the risk of water erosion.
- Depth to bedrock limits the construction of water impoundments.

Westbutte

- The very stony surface layer restricts the operation of ground seeding equipment.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and Idaho fescue and bluebunch wheatgrass decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity and surface stones.

Pernty

- Bedrock restricts the rooting depth.
- Special design is needed for fences because the shallow soil depth limits the placement of fence posts.
- As the site deteriorates, big sagebrush, Sandberg bluegrass, and bottlebrush squirreltail increase and bluebunch wheatgrass and needlegrasses decrease.
- This soil is susceptible to invasion by cheatgrass.
- The suitability for seeding is poor because of the low available water capacity.

370—Widowspring silt loam, 0 to 2 percent slopes Composition

Widowspring and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake plains
Slope features: Plane
Parent material: Lacustrine sediment
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Loamy Bottom) basin big sagebrush, basin wildrye
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 7 inches-dark grayish brown silt loam
7 to 22 inches-grayish brown silt loam
22 to 43 inches-brown silt loam
43 to 63 inches-yellowish brown loam

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Moderately well drained
Frequency of ponding: Rare
Water table: Present in winter and spring
Permeability: Moderately slow
Available water capacity: About 12 inches
Hazard of erosion: Water-slight; wind-slight
Potential frost action: High
Contrasting Inclusions

- Crowcamp, Degarmo, Fury, Opie, and Skidoosprings soils on lake plains

Major Soil Limitations
Frost action, wetness

Use and Management

Livestock Grazing

- Allow the soil to drain adequately before grazing to minimize compaction of the soil and damage to plants.
- As the site deteriorates, big sagebrush increases and basin wildrye decreases.
- The suitability for seeding is good.

Irrigated Hayland

- There is a risk of winterkill of plants and damage to seedlings because of the high hazard of frost action.

371—Windybutte silt loam, 2 to 5 percent slopes

Composition

Windybutte and similar soils-85 percent
Contrasting inclusions-15 percent

Setting

Landform: Lake terraces
Slope features: Plane
Parent material: Alluvium
Geology: Mixed igneous rock
Elevation: 4,000 to 4,200 feet
Rangeland ecological site and characteristic vegetation: (Silt Loam Terrace 10-12PZ)
basin big sagebrush, bluebunch wheatgrass, basin wildrye, Thurber needlegrass
Climatic factors:
Mean annual precipitation-10 to 12 inches
Mean annual air temperature-43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 7 inches-grayish brown silt loam
7 to 13 inches-brown silty clay loam
13 to 17 inches-pale brown loam
17 to 60 inches_pale brown and very pale brown loam
Soil Properties and Qualities
Depth: More than 60 inches to bedrock
Drainage class: Well drained
Permeability: Moderately slow
Available water capacity: About 10 inches
Hazard of erosion: Water—slight; wind—slight
Corrosivity to steel: High

Contrasting Inclusions

- Kegler and Lawen soils on lake terraces
- Carvix soils on stream terraces

Major Soil Limitation
Corrosivity

Use and Management

Irrigated Hayland

- This unit is well suited to use as irrigated hayland.

Livestock Grazing

- Because of the high corrosivity to uncoated steel, noncorrosive material or treatments should be used for structures.
- As the site deteriorates, big sagebrush increases and bluebunch wheatgrass and basin wildrye decrease.
- The suitability for seeding is good.

372—Wolverine fine sand, 2 to 15 percent slopes
 Composition

Wolverine and similar soils- 85 percent Contrasting inclusions-15 percent

Setting

Landform: Dunes

Slope features: Concave and convex
Parent material: Eolian sand
Geology: Mixed igneous rock
Elevation: 4,000 to 4,500 feet
Rangeland ecological site and characteristic vegetation: (Dunes) basin big
sagebrush, needleandthread, Indian ricegrass, basin wildrye, beardless wildrye
Climatic factors:
Mean annual precipitation-8 to 10 inches
Mean annual air temperature- 43 to 45 degrees F
Frost-free period-50 to 80 days

Typical Profile

0 to 6 inches-brown fine sand
6 to 37 inches-brown sand
37 to 70 inches-light brownish gray sand

Soil Properties and Qualities

Depth: More than 60 inches to bedrock
Drainage class: Somewhat excessively drained
Permeability: Very rapid
Available water capacity: About 4 inches
Hazard of erosion: Water-slight; wind-severe

Contrasting Inclusions

- Poujade and Reallis soils on lake terraces

Major Soil Limitations

Available water capacity, wind erosion, seepage

Use and Management

Livestock Grazing

- The low available water capacity of the surface layer limits seedling survival.
- Maintaining adequate plant cover minimizes the risk of wind erosion.
- The risk of seepage limits the construction of water impoundments.
- As the site deteriorates, big sagebrush, rabbitbrush, and bottlebrush squirreltail increase and basin wildrye, Indian ricegrass, and needlegrasses decrease.
- Severe deterioration leads to unstable areas of windblown sand.
- The suitability for seeding is poor because of the low available water capacity of the sandy surface layer.

373—Denied Access

This map unit consists of areas where the landowner denied access to the land for the purpose of soil mapping.

Use and Management of the Soils

This soil survey is an inventory and evaluation of the soils in the survey area. It can be used to adjust land uses to the limitations and potentials of natural resources and the environment. Also, it can help to prevent soil-related failures in land uses.

In preparing a soil survey, soil scientists, conservationists, engineers, and others collect extensive field data about the nature and behavioral characteristics of the soils. They collect data on erosion, droughtiness, flooding, and other factors that affect various soil uses and management. Field experience and collected data on soil properties and performance are used as a basis in predicting soil behavior.

Information in this section can be used to plan the use and management of soils for crops and pasture; as rangeland and forestland; and as sites for buildings, sanitary facilities, highways and other transportation systems, and parks and other recreational facilities. It can be used to identify the potentials and limitations of each soil for specific land uses and to help prevent construction failures caused by unfavorable soil properties.

Planners and others using soil survey information can evaluate the effect of specific land uses on productivity and on the environment in all or part of the survey area. The survey can help planners to maintain or create a land use pattern in harmony with the natural soil.

Contractors can use this survey to locate sources of sand and gravel, roadfill, and topsoil. They can use it to identify areas where bedrock, wetness, or very firm soil layers can cause difficulty in excavation.

Health officials, highway officials, engineers, and others may also find this survey useful. The survey can help them plan the safe disposal of wastes and locate sites for recreational uses.

Interpretive Ratings

The interpretive tables in this survey rate the soils in the survey area for various uses. Many of the tables identify the limitations that affect specified uses and indicate the severity of those limitations. The ratings in these tables are both verbal and numerical.

Rating Class Terms

Rating classes are expressed in the tables in terms that indicate the extent to which the soils are limited by all of the soil features that affect a specified use or in terms that indicate the suitability of the soils for the use. Thus, the tables may show limitation classes or suitability classes. Terms for the limitation classes are not limited, somewhat limited, and very limited. The suitability ratings are expressed as well suited, moderately suited, poorly suited, and unsuited or as good, fair, and poor.

Numerical Ratings

Numerical ratings in the tables indicate the relative severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use and the point at which the soil feature is not a limitation. The limitations
appear in order from the most limiting to the least limiting. Thus, if more than one limitation is identified, the most severe limitation is listed first and the least severe one is listed last.

Crops and Pasture

General management needed for crops and pasture is suggested in this section. The estimated yields of the main crops and pasture plants are listed, the system of land capability classification used by the Natural Resources Conservation Service is explained, and prime farmland is described.

Planners of management systems for individual fields or farms should consider the detailed information given in the description of each soil under the heading "Detailed Soil Map Units." Specific information can be obtained from the local office of the Natural Resources Conservation Service or the Cooperative Extension Service.

The survey area has about 135,000 acres of irrigated cropland and about 335,000 acres of pastureland and hayland. Crops grown include alfalfa, grass hay, and pasture grasses.

Wind erosion is a concern on the eastern side of Harney Basin. Erosion control practices are needed to minimize the risk of wind erosion in cropland areas. The critical wind erosion period is late in winter through early in summer. The Wolverine, Reallis, Enko, and Lawen soils are particularly subject to wind erosion. Plant cover and residue should be maintained on the soil surface during the critical wind erosion period. Alfalfa and grass-legume pasture should be included in the rotation to help build up the content of organic matter in the soil and to protect the soil from wind erosion. Conservation tillage leaves plant residue on the soil surface. Tillage equipment that leaves residue on the surface includes sweeps, chisels, and other implements that do not invert or pulverize the soil. Tillage operations should be conducted at right angles to the prevailing wind, which generally is from the west in most of the survey area. Irrigation can be used to moisten the soil surface and protect it from blowing during the critical wind erosion period. Moist soil particles tend to adhere together and are more resistant to blowing. Tilling when the soil is moist helps to keep the surface rough, thus reducing the risk of wind erosion.

Irrigation systems include use of center pivot, hand line, and side-wheel sprinklers; gated pipe; ditch water distribution; and wild flooding. Low-pressure center pivot sprinkler systems are becoming more popular because of the high cost of energy.

The frequency, duration, and amount of water applied can be controlled easily with these irrigation systems. Center pivot sprinkler systems are particularly well adapted to sandy soils, such as those of the Wolverine, Reallis, Enko, and Lawen series. These soils have a high infiltration rate and moderate or low available water capacity.

Many soils in Harney Basin have a silt loam surface or subsoil that has slow permeability. These soils require light, frequent applications of irrigation water. Irrigation water must be applied carefully to minimize runoff and water erosion.

Soils on nearly level stream terraces are not subject to as much runoff as are the steeper upland soils; however, water management is still important on these soils. Overirrigation leaches plant nutrients, creates a high water table, and in some areas results in an accumulation of salt on the soil surface.

The poorly drained Fury and Ozamis soils have a seasonal high water table. Planting and harvesting of field crops on soils that have a water table close to the surface are significantly restricted. These soils are almost exclusively used for pasture and hay.

As the large lakes of the last Ice Age dried, salts were concentrated and deposited in some of the soils in the basins. The Ausmus, Lolak, and Poujade soils have excess sodium and a high pH value (more than 8.5). These sodic soils have a nutrient
imbalance and a caustic root environment. Crusting caused by the content of sodium reduces the water intake rate, impedes seedling emergence, and restricts seedling survival. A high content of salt is within the root zone in some of these lake basin soils. Practices that can be used to overcome these problems include application of organic material, application of acid-producing fertilizers such as ammonium nitrate and ammonium sulfate, and application of sulphur compounds. Planting crops that can tolerate the saline and sodic conditions can improve the physical condition of the soil. Salt-tolerant crops include barley, Canada wildrye, crested wheatgrass, birdsfoot trefoil, fawn fescue, meadow foxtail, and tall wheatgrass. The kind and amount of fertilizer used should be based on soil tests, the needs of the crop grown, and expected yields.

Yields per Acre

The average yields per acre that can be expected of the principal irrigated crops under a high level of management are shown in table 5. In any given year, yields may be higher or lower than those indicated in the table because of variations in rainfall and other climatic factors. The land capability classification of the soils in the survey area also is shown in the table.

The yields are based mainly on the experience and records of farmers, conservationists, and extension agents. Available yield data from nearby counties and results of field trials and demonstrations also are considered.

The management needed to obtain the indicated yields of the various crops depends on the kind of soil and the crop. Management can include drainage, erosion control, and protection from flooding; the proper planting and seeding rates; suitable high-yielding crop varieties; appropriate and timely tillage; control of weeds, plant diseases, and harmful insects; favorable soil reaction and optimum levels of nitrogen, phosphorus, potassium, and trace elements for each crop; effective use of crop residue, barnyard manure, and green manure crops; and harvesting that ensures the smallest possible loss.

It is assumed that the irrigation system is adapted to the soils and to the crops grown, that good-quality irrigation water is uniformly applied as needed, and that tillage is kept to a minimum.

The estimated yields reflect the productive capacity of each soil for each of the principal crops. Yields are likely to increase as new production technology is developed. The productivity of a given soil compared with that of other soils, however, is not likely to change.

Crops other than those shown in table 5 are grown in the survey area, but estimated yields are not listed because the acreage of such crops is small. The local office of the Natural Resources Conservation Service or of the Cooperative Extension Service can provide information about the management and productivity of the soils for those crops.

Land Capability Classification

Land capability classification shows, in a general way, the suitability of soils for most kinds of field crops. Crops that require special management are excluded. The soils are grouped according to their limitations for field crops, the risk of damage if they are used for crops, and the way they respond to management. The criteria used in grouping the soils do not include major and generally expensive landforming that would change slope, depth, or other characteristics of the soils, nor do they include possible but unlikely major reclamation projects. Capability classification is not a substitute for interpretations designed to show suitability and limitations of groups of soils for rangeland, for forestland, or for engineering purposes.

In the capability system (USDA, 1961), soils are generally grouped at two levelscapability class and subclass.

Capability classes, the broadest groups, are designated by the numbers 1 through 8. The numbers indicate progressively greater limitations and narrower choices for practical use. The classes are defined as follows:

Class 1 soils have slight limitations that restrict their use.
Class 2 soils have moderate limitations that restrict the choice of plants or that require moderate conservation practices.

Class 3 soils have severe limitations that restrict the choice of plants or that require special conservation practices, or both.

Class 4 soils have very severe limitations that restrict the choice of plants or that require very careful management, or both.

Class 5 soils are subject to little or no erosion but have other limitations, impractical to remove, that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 6 soils have severe limitations that make them generally unsuitable for cultivation and that restrict their use mainly to pasture, rangeland, forestland, or wildlife habitat.

Class 7 soils have very severe limitations that make them unsuitable for cultivation and that restrict their use mainly to grazing, forestland, or wildlife habitat.

Class 8 soils and miscellaneous areas have limitations that preclude commercial plant production and that restrict their use to recreational purposes, wildlife habitat, watershed, or esthetic purposes.

Capability subclasses are soil groups within one class. They are designated by adding a small letter, e, w, s, or c, to the class numeral, for example, $2 e$. The letter e shows that the main hazard is the risk of erosion unless close-growing plant cover is maintained; w shows that water in or on the soil interferes with plant growth or cultivation (in some soils the wetness can be partly corrected by artificial drainage); s shows that the soil is limited mainly because it is shallow, droughty, or stony; and c, used in only some parts of the United States, shows that the chief limitation is climate that is very cold or very dry.

In class 1 there are no subclasses because the soils of this class have few limitations. Class 5 contains only the subclasses indicated by w, s, or c because the soils in class 5 are subject to little or no erosion. They have other limitations that restrict their use to pasture, rangeland, forestland, wildlife habitat, or recreation.

The capability classification of the soils in this survey area is given in table 5 .

Prime Farmland

Prime farmland is one of several kinds of important farmland defined by the U.S. Department of Agriculture. It is of major importance in meeting the Nation's short- and long-range needs for food and fiber. Because the supply of high-quality farmland is limited, the U.S. Department of Agriculture recognizes that responsible levels of government, as well as individuals, should encourage and facilitate the wise use of our Nation's prime farmland.

Prime farmland, as defined by the U.S. Department of Agriculture, is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is available for these uses. It could be cultivated land, pastureland, forestland, or other land, but it is not urban or built-up land or water areas. The soil qualities, growing season, and moisture supply are those needed for the soil to economically produce sustained high yields of crops when proper management, including water management, and acceptable farming methods are applied. In general, prime farmland has an adequate and dependable supply of moisture from precipitation or irrigation, a favorable temperature and growing season, acceptable acidity or alkalinity, an acceptable salt and sodium content, and few or no rocks. It is permeable to water and air. It is not excessively erodible or saturated with water for long periods, and it either is not frequently flooded
during the growing season or is protected from flooding. Slope ranges mainly from 0 to 3 percent. More detailed information about the criteria for prime farmland is available at the local office of the Natural Resources Conservation Service.

A recent trend in land use in some parts of the survey area has been the loss of some prime farmland to other uses. The loss of prime farmland to other uses puts pressure on marginal lands, which generally are more erodible, droughty, and less productive and cannot be easily cultivated.

The map units in the survey area that are considered prime farmland are listed in this section. This list does not constitute a recommendation for a particular land use. On the soils included in the list, measures that overcome a hazard or limitation, such as wetness and droughtiness, are needed. Onsite evaluation is needed to determine whether or not the hazard or limitation has been overcome by corrective measures. The extent of each listed map unit is shown in table 4. The location is shown on the detailed soil maps. The soil qualities that affect use and management are described under the heading "Detailed Soil Map Units."

The map units that meet the requirements for prime farmland if irrigated are:
71 Defenbaugh loam, 0 to 2 percent slopes

310 Spangenburg silty clay loam, 0 to 1 p
311 Spangenburg silty clay loam, moist, 0 to 1 percent slopes
312 Spangenburg silty clay loam, thick surface, 0 to 2 percent slopes
358 Wenas-Loupence-Cumulic Haploxerolls complex, 0 to 3 percent slopes (if drained)

Rangeland

Alan V. Bahn, rangeland management specialist, Natural Resources Conservation Service, prepared this section.

The rangeland in the survey area is in the Northern Great Basin, and it lies between the forested hills and mountains of the northern part of Harney County and the Nevada border. Approximately 60 percent of the survey area is rangeland. The rangeland is in a variety of climatic regimes, ranging from warm, low-elevation lake basins and valleys to high-elevation plateaus and fault-block mountain ranges. Seasonal livestock and wildlife use patterns reflect the variability of the rangeland; the warm lake basins and bottomlands provide excellent forage in winter and spring and the high plateaus and mountains provide quality forage in summer. The inherent productivity of the lower elevation, moist flood plains and meadows is especially high.

The vegetation produced on rangeland and other land types helps to control erosion, conserve water, and maintain watersheds; provides habitat for wildlife; and offers scenic and recreational value. Rangeland is an integral part of healthy watersheds. Rangeland plants protect and stabilize soils during runoff. They contribute to soil structure and improve the soil water intake rate. Clean water slowly
released from uplands over an extended period of time, recharged aquifers, and excellent condition riparian areas are indicators of healthy rangeland.

Historical use of the rangeland in the survey area has been extensive and varied. Northern Great Basin and Plateau cultures have inhabited the area from the end of the last cold glacial period through the transition to the present warm period. Native people such as the Northern Paiute lived a nomadic hunting and gathering lifestyle. The annual cycle of movement was based on the correct timing for hunting and gathering various species. A seasonal cycle could include mountain root camps in spring; salmon fishing and camas, seed, and berry gathering in summer; and hunting in fall. The natural setting to which Oregon's Great Basin people were adapted was a rich one. It was extreme and demanding yet generous to those who knew it well.

Domestic livestock have grazed in the survey area since the late 1800's. Major ranching operations were established prior to and during the homestead era. In 1872 Peter French extended his ranch from the Blitzen Valley to much of the western side of the Steens Mountain. On the eastern side of the mountain, John Devine established a large operation centered on the Alvord Ranch. Other large ranches included the Wild Horse, Kueny, and Roaring Springs Ranches. Migrant sheep operations were a major part of the ranching history. Large flocks were pastured throughout the year, progressing from the lower elevation mixed desert shrub sites in winter and early in spring to the higher elevation pastures in summer. Livestock numbers were highest in the early 1900's. The impact of the ranches on the rangeland became apparent with areas of severe overgrazing. Subsequently, management systems were applied and legislation was enacted to protect the rangeland.

Wildlife use patterns and numbers on rangeland have varied considerably. Before 1900, wildlife numbers were low. California bighorn sheep and Rocky Mountain elk were eliminated from their historic range. Improved wildlife management since that time has resulted in an increase in the number and diversity of wildlife. Bighorn sheep have been reintroduced to the Steens Mountain and elk herds have expanded into the northern part of Harney County. Establishment of the Malheur National Wildlife Refuge on the old Pete French Ranch along the Blitzen River has been beneficial to migratory waterfowl. The Hart Mountain Refuge bordering the southwest part of Harney County has benefited antelope and sage grouse. Improved livestock management practices, seedings, water developments, and prescribed grazing systems have had a favorable impact on wildlife populations.

Rangeland Ecological Sites and Forestland Plant Associations

The relationship between the soils and vegetation was established during this survey. Each detailed soil map unit component has been correlated to a rangeland ecological site or a forestland plant association, given in the section "Detailed Soil Map Units" and in table 6. A rangeland ecological site or forestland plant association is a distinctive kind of land with specific physical characteristics that differs from other kinds of land in its ability to produce a distinctive kind and amount of vegetation. It is the product of all environmental factors responsible for its development-soils, climate, landscape position, time, and living organisms. Each ecological site or plant association is recognized and described on the basis of the characteristics that differentiate it from other sites in its ability to produce and support a characteristic plant community.

Historic climax plant community data for each ecological site is also given in table 6. This data includes historic climax plant community species, species composition, and annual production. The historic plant community is the plant community that existed on a site at or prior to European settlement. It is a plant community that is well adapted to the unique combination of environmental factors associated with a given site.

Rangeland Plant Community Dynamics

Primary plant succession occurs as the historical development of an ecological site takes place. Plant succession is the progressive replacement of plant communities on an ecological site that leads to a climax or characteristic plant community. Succession occurs over time and is a result of environmental factors, including natural disturbances. Retrogression is the degradation or shift away from the historic plant community and is a reflection of changes in site conditions. Commonly, site condition changes are irreversible and a different vegetative state develops. This state may be relatively stable and resistant to change, such as low-quality annual range, or it may be a high-quality range seeding.

Range similarity index is a rating used to evaluate an ecological site. It is based on the comparison of the present plant community to either the historic climax plant community or another vegetative state community. The similarity index is the percentage of a specific vegetative state plant community that is presently on the site. It provides an indication of the extent of change needed to establish the desired or historic climax plant community.

Range trend is the direction of the change on a site. The plant community may be either moving toward or away from the historic climax plant community or the desired plant community. This trend provides information needed to ensure that the direction of change will enhance the site and meet the objectives of the manager. As a monitoring guideline it can be used to evaluate the success of a prescribed grazing system and to determine needed refinements.

Further information about the range similarity index and rangeland trend is available in chapter 4 of the "National Range and Pasture Handbook" http:// www.nrcs.usda.gov/technical.

Prescribed Grazing Systems

Prescribed grazing is the management of livestock and other browsing animals to achieve specific objectives. It is based on landowner objectives, resource capabilities, and conservation needs. It is used to maintain or improve the health and vigor of selected plants; maintain a stable and desired plant community; provide food, cover, and shelter for livestock and wildlife; improve water quality and quantity; ensure a healthy sustainable soil condition; and promote economic stability.

The major considerations in planning and implementing a prescribed grazing system are limitations in site production and the sensitivity of the key species. A key species is one that serves as a guide to plant community use, health, and trend. It is a palatable species that furnishes excellent forage and at site potential makes up a high percentage of the plant community. Thurber needlegrass and bluebunch wheatgrass are excellent examples of key species in lower lying 7 - to 12 -inch precipitation zones, and Idaho fescue is an example of a key species in higher lying 12- to 16 -inch precipitation zones. Bud sagebrush is an example of a desert shrub key species, and antelope bitterbrush is an example of an excellent shrub key species.

The frequency of defoliation and season of grazing are based on the growth rate, physiological stage of growth, and planned response of key species. It is important to determine whether the key species has adequate vigor and stand density, whether deferment is needed to increase vigor and seed production, and the proper frequency of deferment and effects of rotations. These are basic in determining the response time of key species.

Grazing management practices are used to achieve plant community objectives. Practices include deferment, rest, rotation, proper season of use, proper length of use, and planned use levels. The timing and length of the period of grazing, level of forage use, and use of resting or deferred grazing until after critical periods of plant growth affect plant responses. The effectiveness and acceleration of upward trends
are achieved through repeated deferment and use of other high-response management practices. Desired results are achieved by applying these practices in a well-thought-out sequence and monitoring them over a period of years.

Facilitating practices are used to augment management practices. Accelerated upward trends, improved livestock distribution, and increased production can be achieved with these practices. Foremost of the facilitating improvement practices are water development and cross fencing. Both of these practices help to improve rotations and livestock distribution. Accelerating practices include juniper control and seeding areas in poor condition where desired perennial bunchgrasses are absent. These practices increase production and lengthen the green forage period. Weed control is imperative for optimum sustained production. In areas of grazeable forestland, thinning benefits both the forage and forest resources.

Livestock management involves many range practices. The key to proper management is a grazing system designed to consider plant and animal requirements, topography, and management objectives. Objectives are based on the maintenance or improvement of soil, water, and vegetative resources. If the management objective precludes a higher range site similarity index or site potential because of economic considerations or other considerations, resource maintenance at a sustainable level is imperative. An even or upward trend is required. The level of management should be consistent with the limitations of the vegetative site. At a minimum it should protect the soil and plant resource base, provide for water conservation, and promote improved water quality.

Wildlife extensively use areas of rangeland and forestland for food and cover. The survey area has an excellent balance of seasonal habitat. The higher lying plateaus, meadows, and mountains provide excellent habitat in summer, and the lower lying plateaus and basins provide excellent habitat in winter. Forage late in summer and in fall is most limited on the extensive plateaus because of the droughtiness in summer, limited nutritional quality of feed, and lack of perennial water.

Bud sagebrush, spiny hopsage, fourwing saltbush, bitterbrush, and other palatable shrubs are excellent indicators of the range condition for game. Because these shrubs provide food and cover for many wildlife species, they are subject to overgrazing in areas of critical winter and spring range. Heavy use indicators include complete use of annual twig growth, presence of decadent plants, lack of young shrubs, old uniform-aged stands, and "lollypop" growth on taller shrubs with no basal stem reproduction. Balancing wildlife numbers with habitat capabilities is critical. With the proper level of use, stands of healthy shrubs of varying ages will result.

The habitat and feed requirements for wildlife species are seasonal. Big sagebrush provides important feed and cover in winter to antelope, mule deer, sage grouse, and other species. Mountain sagebrush and Wyoming big sagebrush are preferred forage subspecies. Wyoming big sagebrush provides nearly 100 percent of the food for sage grouse in winter. Nesting cover for sage grouse and other wildlife species is provided by areas that support sagebrush and have about 20 percent or more herbaceous cover.

Understanding the nutritional requirements and patterns of use of individual wildlife species is important. Emergent forbs that are high in protein are needed early in spring for good hatches of sage grouse and early development of the chicks. In areas where western juniper has encroached, use by sage grouse will decrease while use by other wildlife species may increase.

Riparian areas provide important and diverse wildlife habitat. Perennial riparian areas are or have the potential to become dominated by shrubs. Healthy riparian areas have vigorous complex communities of shrubs, forbs, grasses, and grasslike plants. They provide a buffer during periods of high flows and a connection to the flood plain and contribute to the quality of good instream aquatic habitat. The potential for improvement of riparian habitat is excellent with proper management of existing
riparian vegetation and with seeding and planting to adapted native and introduced species. Riparian vegetative recovery time is relatively short because of the presence of a perennial or shallow water table. In areas of severe channel alteration and degradation, longer periods of time and additional effort is required to improve riparian areas. Recovery time is dependent on the severity of the channel alteration and degradation.

Management Interpretations for Uses of Rangeland

Rangeland is fragile by nature because of the limitations in climate, topography, and soil characteristics. Each of these limitations alone or in combination can make an area unsuitable or less suitable for a particular grazing practice. Important limitations that affect grazing management are given in the section "Detailed Soil Map Units" and are described in the following paragraphs.

Aspect.-Aspect is the direction in which a slope faces. The soils on north-facing slopes are cooler, deeper, and more productive for a given precipitation range than are those on south-facing slopes. Depending on elevation, north-facing slopes generally are well suited to grazing by livestock and wildlife late in spring and in summer. South-facing slopes provide excellent range in spring, but they are poorly suited to livestock grazing in summer. South-facing slopes are very important to big game in winter because less snow accumulates on these slopes and they are the first to green up in spring. Both southeast- and west-facing slopes have vegetative site characteristics similar to those of south-facing slopes.

Slope.-The steepness of slope affects livestock use and the feasibility of applying improvement practices. Slopes of 30 percent or less are most preferred by livestock. Areas that have slopes of more than about 50 percent receive very little use even if forage is abundant. Limited livestock use on steep slopes normally is anticipated, and stocking rates are adjusted accordingly. Use of ground equipment is impractical on slopes of more than 30 percent.

Effect of droughtiness or cold temperatures.-Droughtiness in soils reduces the production of forage and limits the choice of species for reseeding. Soils are droughty as a result of low annual precipitation or low available water capacity. Soil characteristics such as coarse texture, shallow depth, or a high content of rock fragments reduce the available water capacity of a soil. Cold temperatures limit the length of the growing season for plants, suppress plant growth, and delay plant development.

Surface stones and cobbles.-The amount of stones and cobbles on the soil surface can influence both grazing management and the potential for revegetation. Some soils have so many stones and cobbles on the surface that livestock avoid them whenever possible. The amount of stones on the soil surface also limits the feasibility of mechanical seedbed preparation and seeding.

Surface texture.-Certain soil surface textures limit use. Soils that have a sandy surface texture are subject to a high hazard of wind erosion. Grazing on these soils should occur late in fall, in winter, and early in spring when the soils are moist and the risk of wind erosion is lowest. Soils that have a silty surface texture and a low content of organic matter are subject to crusting. The formation of a vesicular crust reduces infiltration and seedling emergence. Soils that have a clayey surface texture have a very slow infiltration rate and very slow permeability. In a cold environment, silty and clayey soils are subject to frost heaving. Vegetation is subject to trampling and crown damage if it is grazed when the soils are wet in winter and spring.

High water table.-A high water table occurs seasonally or year round in some soils. Wetness in soils, even if saturated within the root zone for a brief period, impacts the composition and production of vegetation. This is readily apparent in soils that are ponded or have a high water table at or near the surface. Under these conditions, grazing can result in compaction and displacement of the soils and crown
damage to plants. Wet soils are seasonally restricted for mechanical site preparation and are subject to erosion from concentrated flows. Seeding techniques need to be tailored to site conditions, and the species selected must be tolerant of seasonal wetness.

Rock outcrop and escarpments.-Rock outcrop and escarpments occur throughout the survey area. They occur most typically on steep south-, east-, and west-facing slopes. They commonly are formed from geologic faults, glacial action, or exposed sedimentary and igneous rock. Rock outcrop and escarpments can be several hundred feet in length and 10 to several hundred feet in height. They act as physical barriers to domestic livestock and many species of wildlife by preventing or restricting vertical movement. Some wildlife species prefer habitat associated with areas of Rock outcrop and escarpments. Raptors and bighorn sheep, for example, make good use of these areas.

Loss of site potential.-Some of the soils in the survey area have lost a significant amount of the surface layer through wind or water erosion. The loss of this layer can cause major changes in the composition of the plant community. This irreversible change in the plant community is most evident in shallow soils and soils that have a claypan, where the topsoil is thin and the underlying subsoil has slow permeability and is restrictive to root growth. Depending on the extent of the erosion, losses in total production can range from 25 to 50 percent or more.

Restrictions to water developments.-Livestock water developments are needed in most of the grazed areas in the survey area. Spring developments and wells can provide excellent high-quality water in a timely manner. Stock ponds are more limited in terms of quality and seasonal use. They require a careful feasibility study. To prevent a loss of water from the subsoil, stock ponds should be used only on soils that have slow permeability. Soils that are coarse grained, high in content of rock fragments, or shallow to bedrock are poorly suited to pond construction. Because adequate runoff is needed to fill stock ponds, the infrequent runoff typical of areas of low precipitation commonly precludes pond construction in these areas.

General Vegetation Map

The survey area is in four major land resource areas (MLRAs) (USDA, 1981)— Malheur High Plateau (MLRA D23), Humboldt Area (MLRA D24), Upper Snake River Lava Plains and Hills (MLRA B10), and Northern Rocky Mountains (MLRA E43). A major land resource area is a geographically associated land resource unit that is characterized by a particular pattern of soils, climate, water resources, and land uses. MLRAs D23 and D24 are typical of the intermountain fault-block basin and range topography of the survey area.

MLRA D23 is characterized by shrub-steppe grassland. Within the survey area, it is known as the Oregon High Desert. Precipitation is 8 to 11 inches in the cold basins, 10 to 12 inches in the extensive plateaus areas, and 12 to 16 inches on the buttes and higher plateaus. On the higher fault-block mountains, the precipitation is 16 to 40 inches. The area has cold (frigid or cryic) soil temperatures throughout. The surface layer of the soils is loamy, and the soils typically are moderately deep or shallow. Elevation ranges from about 4,000 to 9,700 feet. The vegetation typically is bunchgrass grassland with an open sagebrush overstory. The dominant bunchgrasses are Thurber needlegrass, bluebunch wheatgrass, and Idaho fescue. Big sagebrush occurs on the moderately deep soils, and low sagebrush occurs on the shallow soils that have a claypan. Western juniper invades in the higher 12 - to 16 -inch precipitation zone.

MLRA D24 within the survey area is primarily in the warm basins. It is characterized by mixed desert shrub grassland. The precipitation ranges from 7 to 10 inches. The area has warm (mesic) soil temperatures throughout. The surface layer of the soils typically is loamy. Soil depth is variable. Elevation ranges from 3,400 to 5,500
feet. Vegetation is variable. Stands of saltgrass/greasewood are adjacent to open playas at low elevations, stands of basin wildrye are on flood plains, mixed desert shrubs are on sodic soils and in areas of low precipitation, and big sagebrush with needlegrasses, Indian ricegrass, and other bunchgrasses are in sandy areas.

MLRA B10 within the survey area is in the Malheur drainageway and along the forest border, in the northern part of the survey area. It is characterized by shrubsteppe grassland. Precipitation ranges from 9 to 12 inches at the lower elevations to 12 to 18 inches on the higher plateaus. The area has warm (mesic) soil temperatures at the lower elevations and cold (frigid) soil temperatures at the higher elevations. The soils typically have a silty clay loam to silt loam surface layer over a fine textured subsoil. Soil depth is moderately deep to very shallow. Elevation ranges from 3,400 to 6,600 feet. The vegetation typically is bunchgrass grassland with an open sagebrush overstory. The dominant bunchgrasses are bluebunch wheatgrass in the warmer, low-elevation areas and Idaho fescue in the cooler, upland areas. Big sagebrush occurs in areas of moderately deep soils, and stiff sagebrush occurs in areas of very shallow soils. Western juniper invades in the higher 12- to 18 -inch precipitation zone.

MLRA E43 within the survey area is on the higher plateaus, hills, and mountains at the northern end of the survey area. It is characterized by woodland vegetation. Minor amounts of open grassland are confined to the lower precipitation areas, meadows, and shallow soils. Precipitation ranges from 16 to 20 inches. The area has cold (frigid) soil temperatures throughout. The soils typically are loamy and are moderately deep or shallow. Elevation ranges from 5,400 to 6,500 feet. The vegetation is dominantly ponderosa pine with an open understory of grasses, grasslike plants, and small shrubs.

The rangeland ecological sites and forestland plant associations within the survey area can be placed into thirteen general plant association groups. Grouping is based on similarities in climate, landform, soil, and vegetation. The location and extent of these groups are shown on the General Vegetation Map. A description of each group follows.

1-Saline-sodic lake plains and playas.-Playas occupy the lowest positions in lake basins. They typically are clayey, seasonally dry and wet, have a water table at varying depths, and are subject to surface ponding. On highly saline-sodic playas, vegetation is absent. The Alvord Desert is an example. Surrounding the playas, saltgrass infringes on seasonally moist saline-sodic flats. Greasewood is present on small mounds or hummocks. Greasewood/saltgrass associations are dominant. As the distance from the playas increases, eolian and alluvial deposits of soil material accumulate over the sodic soil surface. Typically, an overlay of loam only a few inches thick results in significant changes in the plant community. Basin wildrye becomes more prevalent as the depth of the overlay increases and sodium salts in the soil decrease. Greasewood/basin wildrye/saltgrass associations are dominant. Soils that support these plant associations include those of the Alvodest, Droval, and Ausmus series.

2-Saline-sodic lake terraces and fans.-Low terraces typically are around lake basins. Mixed desert shrub associations occur on dry saline-sodic lake terraces and fans. These associations are most prevalent in Pueblo Valley with lesser amounts adjacent to Harney and Malheur Lakes. A mixture of shrubs adapted to the sodic conditions make up these associations. The shrubs include greasewood, shadscale, bud sagebrush, and spiny hopsage and to a lesser extent basin big sagebrush. Soils that support these plant associations include those of the Defenbaugh, Turpin, Icene, and Mesman series.

3-Marshes, meadows, and stream terraces.-Very poorly drained to somewhat poorly drained soils in marshes near lakes and along rivers that support dominantly bulrush associations near open water and burreed and cattail associations farther away from the open water areas. Meadows support dominantly Nebraska sedge,

Baltic rush, and beardless wildrye associations. Soils that support these plant associations include those of the Jimgreen, Housefield, Doubleo, Skunkfarm, and Fury series.

Very deep, moderately well drained soils on stream terraces along perennial rivers and streams are highly productive. Basin wildrye associations historically have been dominant in these areas. These associations are common along the Silvies, Blitzen, and Malheur River drainageways. Basin big sagebrush is minor because of recurring fire. Because of its deep, extensive root system, basin wildrye production is directly correlated to the extent and duration of surface and subsurface water. Soils that support these plant associations include those of the Widowspring, Loupence, Roschene, and Rio King series.

4-Well drained to somewhat poorly drained, very deep, loamy and clayey lake terraces.-Soils that are on loamy lake terraces and have a nonsodic subsoil support basin big sagebrush/basin wildrye associations. These soils are subject to seasonal ponding and are less productive than the soils on stream terraces. As a result of the ponding, they consist of stratified, compacted loam and clay. They are free of sodium salts except in the lowest positions. Soils that support these plant associations include those of the Dixon, Spangenburg, and Mcbain series.

Soils that are on loamy lake terraces and have a sodic subsoil support basin big sagebrush/greasewood/basin wildrye associations. These associations historically were prevalent in many of the lake basins. They are typical on the terraces east of Burns, toward Crane. The associations reflect the presence of a nonsaline surface layer over a sodic subsoil. Sodic soil conditions typically increase as depth increases. The production of basin wildrye increases as wetness increases. Soils that support these plant associations include those of the Poujade and Voltage series.

Frequent ponding occurs in nonsaline-nonsodic swales in the basins. The surface layer generally is clayey or silty. Silver sagebrush and Nevada bluegrass typically grow in these areas. Nevada bluegrass historically is dominant in the swales and on the outer fringe of the swales. The center part of the swales typically is devoid of vegetation. Silver sagebrush increases if the areas are overgrazed. Soils that support this plant association include those of the Crowcamp and Swalesilver series. In less frequently ponded swales, beardless wildrye is more abundant. Beardless wildrye reflects a more droughty condition, and it typically is in areas such as those near the old townsite of Blitzen, in Catlow Valley.

On the nonsaline-nonsodic clayey soils of terraces, the vegetation is dominantly sparse stands of Wyoming big sagebrush and Sandberg bluegrass with minor amounts of other grasses. These areas can be extensive. They are ponded for only a very short period in spring. A typical area is south-central Catlow Valley. The soils are clayey with a strong vesicular crust. Saltgrass and other salt-adapted species are absent. As the thickness of the loam surface layer increases, the abundance of basin wildrye increases. Soils that support these plant associations include those of the Spangenburg and Berdugo series.

5-Well drained, very deep, silty lake terraces.-Winterfat plant associations occur on dry silty terraces at the southern end of Catlow Valley and to a lesser extent in eastern Pueblo Valley. These unique and productive plant associations are confined to very deep silty soils. Clayey swale areas that are subject to intermittent, short-duration ponding dominantly support basin big sagebrush and beardless wildrye. Soils that support these plant associations include those of the Norad, Spangenburg, and Morfitt series.

6-Well drained and somewhat excessively drained, very deep, loamy and sandy lake terraces.-Basin big sagebrush/needleandthread associations occur on sandy to loamy terraces and dunes around the fringes of lake basins. The abundance of Thurber needlegrass increases in areas where the surface layer is more loamy. In warmer lower precipitation areas, Indian ricegrass and sand dropseed are more
abundant on sandy soils and dunelike hummocks. An example is in the 7 - to 10 -inch precipitation zone at the south end of the survey area, in Pueblo Valley. In eastern Pueblo Valley, isolated small areas of coarse textured sandy soils with deep rooting potential support fourwing saltbush. Similar small dune areas in Catlow Valley support bitterbrush. Soils that support these plant associations include those of the Davey, Lawen, Enko, and Wolverine series.

7-Well drained, shallow and moderately deep, loamy lake terraces and plateaus.-Terraces and plateaus in the 7 - to 10 -inch precipitation zone are characterized by two distinct plant associations. Shadscale/bud sagebrush associations occur extensively on the shallow, slightly sodic soils east of Fields, toward Whitehorse and on north to Burns Junction. Interspersed with this association in areas of less sodic soils and equally as extensive is the Wyoming big sagebrush/ Thurber needlegrass association. The abundance of Thurber needlegrass, Indian ricegrass, and bluebunch wheatgrass has decreased greatly as a result of overgrazing. Annuals invade the overgrazed areas, and an erosion pavement develops in the interspaces.

Mixed desert shrub associations occur on the plateaus and terraces adjacent to the Pueblo Mountains. These associations reflect the droughty, low precipitation conditions and strong alkalinity of the soils. Wyoming big sagebrush, shadscale, spiny hopsage, and ephedra make up these associations. Grasses include desert needlegrass and Thurber needlegrass on the south-facing slopes and bluebunch wheatgrass on the north-facing slopes.

Soils that support these plant associations include those of the Deppy, Skedaddle, Tumtum, and Atlow series and the low precipitation phases of the Raz and Brace series.

8-Warm hills.-Wyoming big sagebrush and bluebunch wheatgrass associations occur on the warm hills of the Upper Malheur drainageway, near Warm Springs Reservoir. Precipitation is about 9 to 12 inches. Bluebunch wheatgrass is prevalent on soils that have a silt loam to clay loam surface layer, which is typical of the soils in this area. Thurber needlegrass is more prevalent on soils that have a coarser textured surface layer, which is characteristic of those on the cold, dry plateaus and hills farther south and west. As in similar low precipitation areas, Wyoming big sagebrush and Idaho fescue associations are dominant on the north-facing slopes. Soils that support these plant associations include those of the Mahoon, Risley, Poall, Gumble, and Modoc series.

9-Cold, dry plateaus and hills.-This is the most extensive plant association group within the survey area. Precipitation is about 10 to 12 inches. The vegetation is characterized by two distinct historical plant associations that are directly dependent on soil depth. Wyoming big sagebrush/Thurber needlegrass-bluebunch wheatgrass associations occur on the loamy, moderately deep soils. Low sagebrush/Thurber needlegrass-bluebunch wheatgrass associations occur on the soils that are shallow to a claypan. Both of these association types are extensive. Thurber needlegrass is common throughout, but it is more prevalent on soils that have a coarser textured surface layer. Western juniper typically is absent. Soils that support these plant associations include those of the Raz, Anawalt, Swaler, Brace, and Wagontire series and the dry phase of the Ninemile series.

10-Cold, moist southern and central plateaus and hills.-The plateaus and hills in the central and southern parts of the survey area are in a 12- to 16 -inch precipitation zone. They are characterized by two distinct historical plant associations that are dependent on soil depth. Mountain big sagebrush/Idaho fescue-Thurber needlegrass associations occur on the loamy, moderately deep soils. Low sagebrush/ Idaho fescue-Thurber needlegrass associations occur on the soils that are shallow to a claypan. Both of these association types are extensive. Thurber needlegrass is common throughout, but it is most prevalent in areas that have a coarser textured
surface layer. Western juniper is present on these hills and plateaus because of the absence of fire. Soils that support these plant associations include those of the Carryback and Teguro series and the moist phase of the Ninemile series.

11-Cold, moist northern hills and mountains.-The hills and mountains in the northern part of the survey area, bordering the forestland, are also in a 12- to 16-inch precipitation zone. This area differs from the southern and central plateaus and hills in that the soils have a higher content of silt and clay in the surface layer. Idaho fescue is more prevalent on these surfaces, and Thurber needlegrass is less abundant. Bluebunch wheatgrass is confined to the south-facing slopes in this precipitation zone.

Three distinct historical plant associations that are dependent on soil depth are present in this area. Mountain big sagebrush/Idaho fescue associations are on the moderately deep clay loam soils. Low sagebrush/Idaho fescue and stiff sagebrush/ Idaho fescue plant associations are on the soils that are shallow to a claypan and are underlain by bedrock. These associations are extensive. Western juniper is present in this area because of the absence of fire. Soils that support these plant associations include those of the Observation, Vitale, Merlin, Ateron, and Doyn series.

12-Cold, wet mountains.-Cold mountains, including the Steens and Trout Creek Mountains, are in the higher 16- to 40 -inch precipitation zone. A progression of plant associations occurs as precipitation increases. On Steens Loop Road, mountain big sagebrush uniformly decreases in stature as elevation increases. It is absent at the higher elevations. On moderately deep soils, the plant associations progress from mountain big sagebrush/Idaho fescue /sheep fescue to mountain big sagebrush/ sheep fescue to rough fescue at the high elevations. Sheep fescue/skyline bluegrass associations occur on shallow soils at the high ridgeline. Juniper is absent at the higher elevations. Tufted hairgrass is in meadows and seep areas. Aspen groves are present in concave areas, such as in the vicinity of Fish Lake and in the Trout Creek Mountains. Soils that support these plant associations include those of the Baconcamp, Clamp, Dickle, and Hackwood series.

13-Forestland.-Forests and forest fringe areas occur on hills and mountains at the north end of the survey area. Ponderosa pine/mountain big sagebrush/Idaho fescue associations are dominant in the fringe areas. Antelope bitterbrush is a typical component of these associations. Western juniper is present because of the absence of fire. Mountain mahogany occurs on the shallow rocky outcroppings. As the moisture increases, ponderosa pine/elk sedge associations become prevalent and sagebrush, bitterbrush, and juniper are absent. Soils that support these plant associations include those of the Royst, Gaib, Egyptcreek, and Klicker series.

Riparian Areas

Riparian areas occur throughout the survey area. They provide forage, help to maintain good water quality, and provide critical wildlife habitat. As a form of wetland transition between permanently saturated wetland and upland areas, riparian areas occur along streams, lakes, and marshy areas. They are dynamically changing areas with relatively young soils. The plant communities reflect the depth and duration of the subsurface moisture.

Because willow species are highly dependent on temperature and moisture, they progressively change from tall willows along lower elevation rivers and streams to short willows along higher elevation streams. Willows typically are the dominant shrub component. Successional changes are readily seen with the appearance of coyote willow on point bars. Alder typically occurs on higher gradient gravelly streambanks. Subject to constant flow changes, riparian areas dissipate energy, filter sediment, improve ground-water recharge, and provide habitat for numerous aquatic and terrestrial wildlife species.

Ecological Sites, Plant Associations, and Characteristic Plant Communities

In areas that have similar climate and topography, differences in the kind and amount of rangeland or forest understory vegetation are closely related to the kind of soil. Effective management is based on the relationship between the soils and vegetation and water.

Table 6 shows, for each soil that supports vegetation suitable for grazing, the ecological site or plant association; the total annual production of vegetation in favorable, normal, and unfavorable years; the characteristic vegetation; and the average percentage of each species. An explanation of the column headings in the table follows.

An ecological site or plant association is the product of all the environmental factors responsible for its development. It has characteristic soils that have developed over time throughout the soil development process; a characteristic hydrology, particularly infiltration and runoff, that has developed over time; and a characteristic plant community (kind and amount of vegetation). The hydrology of the site is influenced by development of the soil and plant community. The vegetation, soils, and hydrology are all interrelated. Each is influenced by the others and influences the development of the others. The plant community on a site is typified by an association of species that differs from that of other sites in the kind and/or proportion of species or in total production. Descriptions of ecological sites are provided in the Field Office Technical Guide, which is available in local offices of the Natural Resources Conservation Service. Descriptions of plant associations are provided in the publication "Plant Associations of the Blue and Ochoco Mountains" (Johnson and Clausnitzer, 1991).

Total dry-weight production is the amount of vegetation that can be expected to grow annually in a well managed area that is supporting the potential natural plant community. It includes all vegetation, whether or not it is palatable to grazing animals. It includes the current year's growth of leaves, twigs, and fruits of woody plants. It does not include the increase in stem diameter of trees and shrubs. It is expressed in pounds per acre of air-dry vegetation for favorable, normal, and unfavorable years. In a favorable year, the amount and distribution of precipitation and the temperatures make growing conditions substantially better than average. In a normal year, growing conditions are about average. In an unfavorable year, growing conditions are well below average, generally because of low available soil moisture. Yields are adjusted to a common percent of air-dry moisture content.

Characteristic vegetation-the grasses, forbs, and shrubs that make up most of the historic climax plant community on each soil-is listed by common name. Under composition, the expected percentage is given as dry weight for rangeland and as cover for forestland for each species making up the characteristic vegetation.

Forestland Management and Productivity

Craig Zeigler, State woodland specialist, National Resources Conservation Service, prepared this section.

Less than 1 percent of the survey area is classified as commercial forestland. The towns of Burns and Hines are recognized as the centers of the forest products industry in Harney County. The county has one wood products manufacturing company. The Forest Service, Bureau of Land Management, Oregon Department of Forestry, and Malheur Wildlife Refuge provide fire protection.

The productivity of the forest is closely related to the soil properties. The content of rock fragments, depth to bedrock, rooting depth, content of clay in the subsoil, and steepness of slope influence forest management.

Two principal forest cover types are recognized in the forested areas of the survey area-Interior Ponderosa Pine and Interior Douglas Fir. The soils of the Interior Ponderosa Pine type are shallow to deep over bedrock and are well drained. The vegetation includes, but is not limited to, ponderosa pine, western juniper, snowberry, elk sedge, pinegrass, Idaho fescue, bluebunch wheatgrass, lupine, and yarrow.

The Interior Douglas Fir type typically occurs on cool, north-facing hillsides. It is associated with soils of the Klicker series. The vegetation includes, but is not limited to, Douglas fir, ponderosa pine, grand fir, lodgepole pine, snowberry, serviceberry, Oregongrape, pinegrass, elk sedge, heartleaf arnica, and woodland strawberry.

Repeated fires in the survey area once favored the establishment of ponderosa pine and lodgepole pine. Controlled fires and silvicultural treatments are now being used to maintain seral species in many managed stands.

The majority of the forestland in the survey area provides forage for livestock and wildlife. A low amount of forage is available under many timber stands, and the palatability ranges from low to high. The ponderosa pine stands can produce high-quality bunchgrass.

Timber management practices can improve the production for livestock. Harvesting timber creates openings that provide transitory range until the replanted tree seedlings shade out the undergrowth (30 to 50 years). This temporary range contributes significantly to the amount of forage for livestock. Transitory range also makes it possible to distribute livestock away from traditional concentration areas, such as riparian areas, and onto sites that have received little, if any, use by livestock.

Many diseases and insects may present problems in individual tree stands and affect the forested areas. The amount of damage varies dramatically from year to year. In some areas, dwarf mistletoe (Arceuthobium spp.) is a minor parasite on ponderosa pine and Douglas fir. Mistletoe infestations make trees more susceptible to other diseases. Laminated root rot (Phylinius weiri) is a serious disease of Douglas fir. Other diseases are also present and at any given time may be a serious problem in individual stands. The insect that presents the most serious problem is the mountain pine beetle (Dendroctonus ponderosae). It primarily attacks pine trees that are 10 to 16 inches in diameter at breast height. Another similar pest is the western pine beetle (Dendroctonus brevicomis). Managing the stands for the development of healthy trees will protect the stands against these pests. The pine engraver (Ips pini) breeds in slash piles, and outbreaks occur in years of drought. Occasionally, large populations of Douglas fir tussock moth (Hemerocampa pseudotsugata) are present and can kill Douglas fir and grand fir trees in stressed stands. The fir engraver (Scolytus trails) is a native bark beetle that primarily attacks true firs. It presents the most significant bark beetle problem for white fir. Outbreaks occur at irregular intervals, generally following drought or defoliation, which lowers the resistance of the trees. This beetle can cause severe mortality of trees. In Douglas fir habitat types, the western spruce budworm (Choristoneura occidentalis) can be a major defoliator in stressed stands. Wide spacing of trees helps to deter invasion. Fomes rootrot (Fomes anosa) and brown stringy rot (Echinodontium tinctorium) are two of the many fungi that attack live white fir trees. Wounds from fire and mechanical activities are the most significant entry points for fungi.

Soil surveys are important to woodland managers as they seek ways to increase the productivity of the woodland. Certain soils respond better to fertilization, some are susceptible to landslides and erosion after roadbuilding and harvesting, and others require special efforts to harvest and reforest (USDA, National Forestry Manual).

Forestland Management

Tables 7 a and 7b give, for each soil that supports forestland, ratings for a number of concerns that should be considered in forestland management. Information on
each of the management concerns is given in the following paragraphs.

Potential erosion hazard (off-road)

Definition: The hazard or risk of soil loss in off-road or off-trail areas after disturbance activities that expose the soil surface.

Nature of activity: Sheet and rill erosion in areas where the soil surface is exposed as a result of various activities such as silvicultural practices, grazing, mining, and installation of firebreaks or as a result of fire.

Types of disturbance: Activities that result in exposure of 50 to 75 percent of the affected area. Clean tillage and other similar activities that disturb as much as nearly 100 percent of the area and change the character of the soil surface are not considered in the rating.

Causes of disturbance: Equipment and uncontrolled grazing.
Resource conditions: Fifty to seventy-five percent of the mineral surface layer is exposed and roughened (Histosols are excluded from evaluation). Individual precipitation or storm events are not considered in the rating.

Other features: This interpretation is for sheet and rill erosion; gully erosion is not considered. The ratings do not include a sediment production/delivery ratio or streambank or streambed erosion for watercourses. The effect of ground-disturbing activities on the amount of surface or subsurface runoff is not evaluated.

Limitation classes: A rating of slight indicates that erosion is unlikely under ordinary climatic conditions. A rating of moderate indicates that some erosion is likely and measures to control erosion may be needed. A rating of severe indicates that erosion is very likely. Measures to control erosion for reestablishment of vegetation in exposed areas and structural measures are needed. A rating of very severe indicates that significant erosion is expected, loss of soil productivity and offsite damage are likely, and measures needed to control erosion are costly and generally impractical.

Management implications: A rating of moderate, severe, or very severe may indicate the need for use of special harvesting systems and/or alternative site preparation techniques and timing.

Soil rutting hazard

Definition: The hazard or risk of ruts developing in the uppermost soil layers as a result of the operation of forest equipment. Soil displacement and puddling (soil deformation and compaction) may occur simultaneously with rutting.

Nature of activity: Operation of equipment (3 to 10 passes) on forested sites when the soil moisture content is near field capacity or on forested sites that have a year-round water table at a depth of less than 12 inches.

Type of disturbance/depth: Depth of ruts commonly range from 2 to 24 inches, depending in part on the weight of the equipment (including carried or pulled loads) and the shape and size of the wheels.

Type of equipment: Standard rubber-tired vehicles (nonflotation tires).
Resource conditions: Soils that have slopes and other characteristics that allow for use of ground-based equipment. An unfrozen surface condition (thawed to a depth of at least 24 inches) and a lack of organic material or vegetation on the surface are assumed. A year-round water table at a depth of less than 12 inches is considered.

Other features: This interpretation includes soil displacement and puddling, which can affect the esthetics, groundwater hydrology, and productivity of the site.

Limitation classes: A rating of slight indicates that little, if any, rutting will occur. The season of use generally is not restricted, and special equipment is not needed. A rating of moderate indicates that rutting is likely. Seasonal restrictions for use of wheeled and tracked equipment should be considered. Roads may need additional rock in the subgrade and surface grade. A rating of severe indicates that rutting
occurs readily. Extreme caution is advised during harvest and in areas where mechanical methods of slash disposal and site preparation are used. Roads likely will need additional rock in the subgrade and surface grade. Some restorative activities, such as ripping, likely will be needed.

Management implications: A rating of moderate or severe indicates that roads will need additional rock in the subgrade and surface grade for year-round use and/or indicates the need to consider restrictions on the use of wheeled and tracked equipment and to closely monitor the location of roads and skid trails, mechanical slash disposal, and site preparation activities. In areas where excessive rutting has occurred, use of the access system may be restricted or plant recovery rates may be delayed. Rutting in sloping areas may result in channelization of surface water and may affect hydrology.

Suitability for roads and landings (natural surface)

Definition: Suitability of the natural surface of the soil for use as roads and landings for trucks that transport logs and other wood products from the site.

Nature of activity: Efficient use of equipment for the temporary storage, handling, and safe transport of forest products.

Type of disturbance/depth: Vegetation and debris are cleared from an area sufficient in size for a road or landing. Typically, 100 percent of the soil surface is disturbed, resulting in rutting, puddling, or displacement to a depth of as much as 18 inches.

Types of equipment: Grapple hooks, skidders, loaders, cable yarders, and trucks ranging from $1 / 2$-ton capability to those that are capable of transporting entire logs.

Resource condition: The landscape is assessed in its natural setting (without cuts and fills). Only areas that have slopes of less than 20 percent are considered. Nonsoil obstacles, such as slash, are not considered in the ratings. Use occurs during customary periods for the local area. The soils are not frozen or covered with snow. Flooding, ponding, and presence of a high water table are considered in the rating.

Scale of application: Roads generally are less than 1 mile in length, and the running surface is as much as 20 feet wide. Log landings generally are $1 / 2$ acre in size or less.

Suitability classes: A rating of suited indicates few, if any, restrictions to use for natural surface roads and log landings. A rating of moderately suited indicates one or more restrictions. A rating of poorly suited indicates one or more restrictions generally make use of the site for natural surface roads and log landings very difficult or unsafe.

Management implications: A rating of moderately suited or poorly suited may indicate the need for surfacing, properly designed drainage systems, or use of alternate routes.

Construction limitations for roads and landings

Definition: Limitations for constructing haul roads and log landings.
Nature of activity: Earth-moving activities used to meet the standards and specifications for haul roads and log landings.

Type of disturbance/depth: Excavation, removal, and shaping of native soil material to develop haul roads and log landings for forest harvesting and other management activities. Cuts and fills are less than 10 feet deep.

Types of equipment: Bladed crawler tractors, excavators, graders, and other primary construction equipment are considered.

Resource conditions: Construction activities occur during customary periods for the local area. The soils are moist; they are not frozen, covered with snow, saturated, ponded, or flooded. A year-round high water table, year-round ponding, and permafrost are considered in the rating.

Scale of application: Roads are as much as 1 mile in length, and the running surface is as much as 20 feet wide.

Limitation classes: A rating of slight indicates few, if any, limitations for construction activities. A rating of moderate indicates that one or more limitations will cause some difficulty. A rating of severe indicates that one or more limitations make construction of haul roads and log landings very difficult and/or costly.

Management implications: A rating of moderate or severe may indicate the need to use alternate routes and construction methods and the need to limit the period of operation.

Operability of wheeled and tracked equipment

Definition: The suitability for operating ground-based wheeled and tracked harvesting equipment.

Nature of activity: Off-road transport or harvest of logs and/or wood products by ground-based wheeled and tracked equipment.

Type of disturbance/depth: Activities typically disturb 35 to 75 percent of the surface, resulting in rutting, puddling, or displacement to a depth of as much as 18 inches.

Types of equipment: Standard rubber-tired skidders and bulldozers used for ground-based harvesting and transport.

Resource condition: Non-soil obstacles, such as slash, are not considered in the ratings. Activities occur during customary periods for the local area. The soils are moist; they are not frozen, covered with snow, saturated, ponded, or flooded. A yearround high water table is considered in the rating.

Suitability classes: A rating of well suited indicates that use of equipment normally is not restricted. A rating of moderately suited indicates that one or more restrictions reduce the effective and safe use of equipment. A rating of poorly suited indicates that one or more restrictions make the use of equipment impractical or unsafe.

Management implications: A rating of moderately suited or poorly suited may indicate a need for choosing the proper equipment or for timing the operations to avoid seasonal limitations.

Mechanical site preparation (surface)

Definition: The suitability of using surface-altering soil tillage equipment.
Nature of activity: Modification of the soil surface to prepare a site for planting or seeding.

Type of disturbance/depth: Generally, as much as 50 to 75 percent of the site is affected to a depth of as much as 12 inches. Features and characteristics of the soil to a depth of 12 inches are considered.

Types of equipment: Brush rakes, chisels, disks, and other similar implements pulled by bulldozers or tractors (D6/D7, 150-horsepower tractor or equivalent).

Resource conditions: Non-soil obstacles, such as slash, are not considered in the ratings. Activities occur during customary periods for the local area. Only natural restrictive layers are considered; layers compacted as a result of harvesting or other site activities are not considered. The soils are moist; they are not frozen, covered with snow, saturated, ponded, or flooded. A year-round high water table and yearround ponding are considered in the rating.

Suitability classes: A rating of suited indicates that equipment use normally is not restricted. A rating of poorly suited indicates that one or more restrictions reduce the effective and safe use of equipment. A rating of unsuited indicates that one or more restrictions generally prevent the effective and safe use of equipment.

Management implications: A rating of poorly suited or unsuited indicates the need to closely monitor mechanical slash disposal and site preparation activities or to use alternative methods.

Mechanical site preparation (deep)

Definition: The suitability of using deep soil tillage equipment.

Nature of activity: Subsoiling, ripping, and other subsurface soil disturbance across the slope.

Type of disturbance/depth: Generally, as much as 50 to 75 percent of the site is disturbed to a depth of 36 inches to break up restrictive or compacted layers and increase infiltration for plant growth. Features and characteristics of the soil to a depth of 36 inches are considered.

Types of equipment: Rippers, subsoilers, and other implements pulled by bulldozers (D8 or equivalent) that till to a depth of more than 12 inches.

Resource conditions: Non-soil obstacles, such as slash, are not considered in the ratings. Activities occur during customary periods for the local area. Only natural restrictive layers are considered; layers compacted as a result of harvesting or other site activities are not considered. The soils are moist; they are not frozen, covered with snow, saturated, ponded, or flooded. A year-round high water table and yearround ponding are considered in the rating.

Suitability classes: A rating of suited indicates that equipment use normally is not restricted. A rating of poorly suited indicates that one or more restrictions reduce the effective and safe use of equipment. A rating of unsuited indicates that one or more restrictions generally prevent sufficient deep mechanical site preparation.

Management implications: A rating of unsuited indicates that mitigating activities are not feasible; therefore, soil-compacting operations should be avoided.

Suitability for hand planting

Definition: The expected difficulty of hand planting.
Nature of activity: Proper placement of the root system of tree and shrub seedlings during the customary local planting times. Bareroot stock, tublings, containerized stock, and cuttings are considered in the rating.

Type of disturbance/depth: Roots are placed to a depth of as much as 12 inches.
Types of equipment: Spades, dibbles, planting bars, or other similar planting tools. Human-held power equipment, such as power augers, is not considered.

Resource conditions: Non-soil obstacles, such as slash, are not present. Necessary site preparation is completed before the suitability for hand planting is assessed. Planting activities occur during customary periods for the local area. Only natural restrictive layers are considered; layers compacted as a result of harvesting or other site activities are not considered. The soils are moist; they are not frozen, covered with snow, saturated, ponded, or flooded. A year-round high water table and year-round ponding are considered in the rating.

Suitability classes: A rating of well suited indicates that hand planting normally is not restricted and planting rates are not affected. A rating of moderately suited indicates that one or more restrictions impede planting and reduce planting rates. A rating of poorly suited indicates that one or more restrictions severely impede planting and reduce planting rates. A rating of unsuited indicates that site factors and features prevent the proper planting of seedlings.

Management implications: A rating of moderately suited or poorly suited indicates that overcoming the obstacles likely will result in increased planting costs.

Suitability for mechanical planting

Definition: Difficulty of planting trees or shrubs with a mechanical planter.
Nature of activity: Proper placement of the root system of tree and shrub seedlings during the customary local planting times. Bareroot stock, tublings, containerized stock, and cuttings are considered in the rating.

Type of disturbance/depth: Mechanical planters create narrow furrows or trenches as much as 12 inches deep and are operated on the contour or across the slope.

Type of equipment: Mechanical planter on a 3-point hitch pulled by sufficiently powerful equipment. The planter has a coulter, shank or trench "shoe," and packing wheels.

Resource conditions: Non-soil obstacles, such as slash, are not present. The necessary site preparation is completed before the suitability for mechanical planting is assessed. Planting activities occur during customary periods for the local area. Only natural restrictive layers are considered; layers compacted as a result of harvesting or other site activities are not considered. The soils are moist; they are not frozen, covered with snow, saturated, ponded, or flooded. A year-round high water table and year-round ponding are considered in the rating.

Suitability classes: A rating of well suited indicates that there are few, if any, restrictions to mechanical planting and planting rates are not affected. A rating of moderately suited indicates that one or more restrictions impede planting and reduce planting rates. A rating of poorly suited indicates that one or more restrictions severely impede planting and reduce planting rates. A rating of unsuited indicates that site factors and features prevent mechanical planting of seedlings.

Management implications: A rating of moderately suited or poorly suited indicates that overcoming the obstacles likely will result in increased planting costs or that use of hand planting should be considered.

Seedling mortality

Definition: The likelihood of death of naturally occurring or planted tree seedlings as influenced by soil characteristics, physiographic features, and climatic conditions.

Nature of activity: Tree seedlings have sufficient moisture and nutrients in a nontoxic rooting medium to survive through the establishment period.

Type of disturbance/depth: The upper 20 inches of the soil is evaluated. Site preparation normally precedes planting. The immediate area around the seedling is assumed to be free of vegetation; the effect of competing plants is not considered. Seedling root length typically is 10 to 14 inches. Seedlings can be planted by hand or machine.

Resource conditions: Acceptable-sized seedlings of adapted species are properly planted during a time of sufficient soil moisture and temperature to ensure initial root growth. Equivalent acceptable-sized seedlings are assumed for naturally occurring seedlings of adapted species.

Other factors: The effects of an overstory tree canopy (more than 15 feet in height) or adjacent competing plants (less than 15 feet in height) are not considered nor are pests that can affect seedlings. Near-normal monthly and yearly climatic conditions are assumed. Planting of slips or poles is not considered. Adapted species that are tolerant of wetness are not evaluated specifically unless all the adapted species are tolerant of wetness.

Rating classes: A rating of low indicates that seedlings are expected to develop normally and become established. A rating of medium indicates that root development is sufficiently retarded by one or more site factors that death of some seedlings (as many as 1 in 3) occurs and establishment of surviving seedlings is delayed. A rating of high indicates that seedlings are not expected to survive (at least 2 in 3 die) unless special treatment or management is used.

Management implications: A rating of medium or high may indicate the need to use larger than normal planting stock, special site preparation, seedling protection, natural regeneration harvest methods, surface drainage, or reinforcement planting.

Damage to Soil by Fire

Definition: The risk that fire will have a negative impact on the soil nutrients and the physical and biotic soil characteristics.

Nature of disturbance: Fires (prescribed or wildfire) of moderate fireline intensity (116 to $520 \mathrm{Btu} / \mathrm{sec} / \mathrm{ft}$), common in a clearcut slash burn.

Type of disturbance/depth: Fires provide the necessary heat to remove the duff layer, thus exposing the mineral soil, and to consume organic matter in the upper part of the soil.

Resource conditions: Depth—Soils that have a thin surface layer may lack the capacity to safely absorb the effects of fire. Areas that have a thin surface layer may be prone to slow recovery. Slope-Areas that have steep slopes are more likely to erode if the protective duff layer is removed. Texture-Soil texture and the content of coarse fragments affect soil erodibility and the recovery rate and productivity of vegetation. Medium-textured soils have a higher inherent available water capacity and thus are more likely to be cooler and have a higher potential productivity. Soils that are high in content of coarse fragments may transmit heat to a greater depth in a shorter amount of time. Organic matter-Soils that are less than 2 percent organic matter commonly are in harsh sites and are prone to slow recovery rates. Soils that are high in content of organic matter generally are more resistant to sheet and till erosion and have a higher available water capacity.

Limitation classes: A rating of slight indicates that little, if any, negative impact to the soil characteristics is expected from fires of moderate fireline intensity. A rating of moderate indicates that negative impacts to the soil characteristics may occur as a result of fires of moderate fireline intensity. A rating of severe indicates that negative impacts to the soil characteristics are expected as a result of fires of moderate fireline intensity.

Management implications: A rating of moderate or severe may indicate the need to consider burning in winter, using alternate lighting techniques, monitoring the fuel moisture content, yarding of unmerchantable material, eliminating prescribed burns, or using erosion control measures following burning.

Forestland Productivity

Table 8 summarizes the productivity of common trees on a specific soil. The potential productivity is calculated by using the site index, which is determined by taking height and age measurements on selected trees within stands of a given species. The procedures are given in the site index publications for ponderosa pine, grand fir, and Douglas fir (Meyer, 1961; Cochran, 1979a; Cochran, 1979b). The site index applies to fully stocked, even-aged stands. The highest timber yields can be expected from map units with the highest site indexes. Site index values are converted into estimated yields at various ages by using the appropriate yield tables. Trees are listed in the order of their general occurrence as observed on the map unit.

Ponderosa pine, Douglas fir, and white fir are the species preferred for wood production in the survey area. Commercial value, topographic position, survival and growth potential, and natural plant community are some of the factors that can influence the choice of adapted trees for reforestation.

Recreation

Recreation is very important to the economy of the survey area. Fishing for trout in the streams, rivers, lakes, and reservoirs is popular. Some reservoirs have a bass fishery. Bird watching is an increasingly popular activity, particularly in spring. Harney Basin and the Malheur National Wildlife Refuge host a tremendous number and variety of migratory waterfowl. The glaciated valleys and high mountain vistas of Steens Mountain attract many sightseers each year. The Diamond Craters Outstanding Natural Area is an area of relatively recent volcanic eruptions. The volcanic features are a result of activity as recent as 17,000 years ago. The varied and abundant wildlife in the survey area attract photographers, hunters, and tourists to the area.

The soils of the survey area are rated in table 9 according to limitations that affect their suitability for recreation. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that
affect the recreational uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

The ratings in the tables are based on restrictive soil features, such as wetness, slope, and texture of the surface layer. Susceptibility to flooding is considered. Not considered in the ratings, but important in evaluating a site, are the location and accessibility of the area, the size and shape of the area and its scenic quality, vegetation, access to water, potential water impoundment sites, and access to public sewer lines. The capacity of the soil to absorb septic tank effluent and the ability of the soil to support vegetation also are important. Soils that are subject to flooding are limited for recreational uses by the duration and intensity of flooding and the season when flooding occurs. In planning recreational facilities, onsite assessment of the height, duration, intensity, and frequency of flooding is essential.

The information in table 9 can be supplemented by other information in this survey, for example, interpretations for building site development, construction materials, sanitary facilities, and water management.

Camp areas require site preparation, such as shaping and leveling the tent and parking areas, stabilizing roads and intensively used areas, and installing sanitary facilities and utility lines. Camp areas are subject to heavy foot traffic and some vehicular traffic. The ratings are based on the soil properties that affect the ease of developing camp areas and the performance of the areas after development. Slope, stoniness, and depth to bedrock or a cemented pan are the main concerns affecting the development of camp areas. The soil properties that affect the performance of the areas after development are those that influence trafficability and promote the growth of vegetation, especially in heavily used areas. For good trafficability, the surface of camp areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Picnic areas are subject to heavy foot traffic. Most vehicular traffic is confined to access roads and parking areas. The ratings are based on the soil properties that affect the ease of developing picnic areas and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of picnic areas. For good trafficability, the surface of picnic areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a cemented pan, permeability, and toxic substances in the soil.

Paths and trails for hiking and horseback riding should require little or no slope modification through cutting and filling. The ratings are based on the soil properties that affect trafficability and erodibility. These properties are stoniness, depth to a water table, ponding, flooding, slope, and texture of the surface layer.

Wildlife Habitat

Rod Blacker, U.S. Fish and Wildlife Service, helped to prepare this section.
The survey area supports a considerable variety of wildlife species. The large closed lake basins contain a large proportion of the wetlands in Oregon. These areas are on the Pacific Flyway for migrating waterfowl. The high desert valleys, plateaus, and mountains provide extensive habitat for many wildlife species.

The Jimgreen, Fury, Housefield, Homefield, and Opie soils provide shallow water marsh habitat. Migratory birds that use this habitat include swans, geese, ducks, eagles, grebes, terns, curlews and other shorebirds, and sandhill crane. Glossy ibis colonize the marshes while egrets, cormorants, and herons nest in the trees. Twelve species of ducks, western Canada goose, and the rare trumpeter swan regularly nest in the survey area, including in the Malheur National Wildlife Refuge. White pelican nest in areas of the Thenarrows, Duckclub, and Sandgap soils on the islands of Malheur Lake. The highly productive marshes produce large quantities of invertebrates that support fish and wildlife at higher food levels. These invertebrates and flying insects are feed for more than a dozen species of bats, including the big brown, little brown, Yuma myotis, hoary, pallid, and Townsend's big-eared bats.

In the valleys and basins, soils on stream terraces and low lake terraces provide habitat for riparian and upland wildlife species. Soils in these areas include those of the Fury, Ozamis, Skunkfarm, Roschene, Wenas, and Skidoosprings series. Besides the waterfowl, these meadow areas support large populations of rodents that are an important food source for many predatory birds and mammals. Prey species include long-tailed vole, white-footed mouse, kangaroo rat, Belding's ground squirrel, and shrews. Smaller populations of porcupines and chipmunks also use these areas. Fish inhabiting the perennial streams include the native redband trout, introduced carp, mountain whitefish, bridge-lipped sucker, sculpin, red-sided shiner, dace, Lahonton cutthroat trout, tui chub, and introduced rainbow trout. Brook trout, bass, and other fish are found in some of the reservoirs and lakes.

The plateaus, hills, and mountains provide important habitat for mule deer and pronghorn antelope. Feral horses also inhabit these areas. Elk live in the mountains and in some areas of the desert plateaus. Beaver, skunks, raccoons, muskrats, mink, long-tailed weasel, cottontail rabbit, jackrabbit, coyotes, and bobcats are common, and sightings of rare kit fox and cougar are rare. Typical soils in these areas are those of the Raz, Brace, Lonely, Pearlwise, Gaib, and Baconcamp series. Upland areas also support introduced species, such as ring-necked pheasant, Hungarian partridge, and chukar, along with native sage grouse, Mourning dove, and valley quail. Low sagebrush communities are important as leks, or mating areas, for sage grouse. Soils that support low sagebrush are those of the Anawalt, Ninemile, Carryback, Merlin, Sagehen, and Wagontire series.

The Rock outcrop and Rubble land in the survey area provide important habitat for golden eagle, red-tailed hawk, prairie falcon, great horned owl, long-eared owl, barn owl, chukar, and yellow-bellied marmot. Bighorn sheep inhabit the very steep, rocky escarpments of Steens Mountain.

Engineering

This section provides information for planning land uses related to urban development and to water management. Soils are rated for various uses, and the most limiting features are identified. Ratings are given for building site development, sanitary facilities, construction materials, and water management. The ratings are based on observed performance of the soils and on the data in the tables described under the heading "Soil Properties."

Information in this section is intended for land use planning, for evaluating land use alternatives, and for planning site investigations prior to design and construction. The information, however, has limitations. For example, estimates and other data generally apply only to that part of the soil between the surface and a depth of 5 to 7 feet. Because of the map scale, small areas of different soils may be included within the mapped areas of a specific soil.

The information is not site specific and does not eliminate the need for onsite investigation of the soils or for testing and analysis by personnel experienced in the design and construction of engineering works.

Government ordinances and regulations that restrict certain land uses or impose specific design criteria were not considered in preparing the information in this section. Local ordinances and regulations should be considered in planning, in site selection, and in design.

Soil properties, site features, and observed performance were considered in determining the ratings in this section. During the fieldwork for this soil survey, determinations were made about particle-size distribution, liquid limit, plasticity index, soil reaction, depth to bedrock, hardness of bedrock within 5 to 7 feet of the surface, soil wetness, depth to a water table, ponding, slope, likelihood of flooding, natural soil structure aggregation, and soil density. Data were collected about kinds of clay minerals, mineralogy of the sand and silt fractions, and the kinds of adsorbed cations. Estimates were made for erodibility, permeability, corrosivity, shrink-swell potential, available water capacity, and other behavioral characteristics affecting engineering uses.

This information can be used to evaluate the potential of areas for residential, commercial, industrial, and recreational uses; make preliminary estimates of construction conditions; evaluate alternative routes for roads, streets, highways, pipelines, and underground cables; evaluate alternative sites for sanitary landfills, septic tank absorption fields, and sewage lagoons; plan detailed onsite investigations of soils and geology; locate potential sources of gravel, sand, earthfill, and topsoil; plan drainage systems, irrigation systems, ponds, terraces, and other structures for soil and water conservation; and predict performance of proposed small structures and pavements by comparing the performance of existing similar structures on the same or similar soils.

The information in the tables, along with the soil maps, the soil descriptions, and other data provided in this survey, can be used to make additional interpretations.

Some of the terms used in this soil survey have a special meaning in soil science and are defined in the Glossary.

Building Site Development

Soil properties influence the development of building sites, including the selection of the site, the design of the structure, construction, performance after construction, and maintenance. Table 10 shows the degree and kind of soil limitations that affect dwellings with basements, local roads and streets, and shallow excavations.

The ratings in the tables are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect building site development. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Dwellings are single-family houses of three stories or less. For dwellings with basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of about 7 feet. The ratings for dwellings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a water table, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility. Compressibility is inferred from the Unified classification. The properties that affect the ease and amount of excavation include depth to a water table, ponding, flooding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Local roads and streets have an all-weather surface and carry automobile and light truck traffic all year. They have a subgrade of cut or fill soil material; a base of gravel, crushed rock, or soil material stabilized by lime or cement; and a surface of flexible material (asphalt), rigid material (concrete), or gravel with a binder. The ratings are based on the soil properties that affect the ease of excavation and grading and the traffic-supporting capacity. The properties that affect the ease of excavation and grading are depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, depth to a water table, ponding, flooding, the amount of large stones, and slope. The properties that affect the traffic-supporting capacity are soil strength (as inferred from the AASHTO group index number), subsidence, linear extensibility (shrink-swell potential), the potential for frost action, depth to a water table, and ponding.

Shallow excavations are trenches or holes dug to a maximum depth of 5 or feet for graves, utility lines, open ditches, or other purposes. The ratings are based on the soil properties that influence the ease of digging and the resistance to sloughing. Depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, the amount of large stones, and dense layers influence the ease of digging, filling, and compacting. Depth to the seasonal high water table, flooding, and ponding may restrict the period when excavations can be made. Slope influences the ease of using machinery. Soil texture, depth to the water table, and linear extensibility (shrink-swell potential) influence the resistance to sloughing.

Sanitary Facilities

Table 11 shows the degree and kind of soil limitations that affect septic tank absorption fields and trench sanitary landfills. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Septic tank absorption fields are areas in which effluent from a septic tank is
distributed into the soil through subsurface tiles or perforated pipe. Only that part of the soil between depths of 24 and 60 inches is evaluated. The ratings are based on the soil properties that affect absorption of the effluent, construction and maintenance of the system, and public health. Permeability, depth to a water table, ponding, depth to bedrock or a cemented pan, and flooding affect absorption of the effluent. Stones and boulders, ice, and bedrock or a cemented pan interfere with installation. Subsidence interferes with installation and maintenance. Excessive slope may cause lateral seepage and surfacing of the effluent in downslope areas.

Some soils are underlain by loose sand and gravel or fractured bedrock at a depth of less than 4 feet below the distribution lines. In these soils the absorption field may not adequately filter the effluent, particularly when the system is new. As a result, the ground water may become contaminated.

A trench sanitary landfill is an area where solid waste is placed in successive layers in an excavated trench. The waste is spread, compacted, and covered daily with a thin layer of soil excavated at the site. When the trench is full, a final cover of soil material at least 2 feet thick is placed over the landfill. The ratings in the table are based on the soil properties that affect the risk of pollution, the ease of excavation, trafficability, and revegetation. These properties include permeability, depth to bedrock or a cemented pan, depth to a water table, ponding, slope, flooding, texture, stones and boulders, highly organic layers, soil reaction, and content of salts and sodium. Unless otherwise stated, the ratings apply only to that part of the soil within a depth of about 6 feet. For deeper trenches, onsite investigation may be needed.

Hard, nonrippable bedrock, creviced bedrock, or highly permeable strata in or directly below the proposed trench bottom can affect the ease of excavation and the hazard of ground-water pollution. Slope affects construction of the trenches and the movement of surface water around the landfill. It also affects the construction and performance of roads in areas of the landfill.

Soil texture and consistence affect the ease with which the trench is dug and the ease with which the soil can be used as daily or final cover. They determine the workability of the soil when dry and when wet. Soils that are plastic and sticky when wet are difficult to excavate, grade, or compact and are difficult to place as a uniformly thick cover over a layer of refuse.

The soil material used as the final cover for a trench landfill should be suitable for plants. It should not have excess sodium or salts and should not be too acid. The surface layer generally has the best workability, the highest content of organic matter, and the best potential for plants. Material from the surface layer should be stockpiled for use as the final cover.

Construction Materials

Table 12 gives information about the soils as potential sources of gravel, sand, and topsoil. Normal compaction, minor processing, and other standard construction practices are assumed.

Sand and gravel are natural aggregates suitable for commercial use with a minimum of processing. They are used in many kinds of construction. Specifications for each use vary widely. In table 12, only the likelihood of finding material in suitable quantity is evaluated. The suitability of the material for specific purposes is not evaluated, nor are factors that affect excavation of the material. The properties used to evaluate the soil as a source of sand or gravel are gradation of grain sizes (as indicated by the Unified classification of the soil), the thickness of suitable material, and the content of rock fragments. If the bottom layer of the soil contains sand or gravel, the soil is considered a likely source regardless of thickness. The assumption is that the sand or gravel layer below the depth of observation exceeds the minimum thickness.

The soils are rated good, fair, or poor as potential sources of sand and gravel. A
rating of good or fair means that the source material is likely to be in or below the soil. The bottom layer and the thickest layer of the soils are assigned numerical ratings. These ratings indicate the likelihood that the layer is a source of sand or gravel. The numbers 0.00 to 0.07 indicate that the layer is a poor source. The numbers 0.75 to 1.00 indicate that the layer is a good source. A number between 0.08 and 0.74 indicates the degree to which the layer is a likely source.

The soils are rated good, fair, or poor as a potential source of topsoil. The features that limit the soils as a source are specified in the tables. The numerical ratings given after the specified features indicate the degree to which the features limit the soils as a source topsoil. The lower the number, the greater the limitation.

Topsoil is used to cover an area so that vegetation can be established and maintained. The upper 40 inches of a soil is evaluated for use as topsoil. Also evaluated is the reclamation potential of the borrow area. The ratings are based on the soil properties that affect plant growth; the ease of excavating, loading, and spreading the material; and reclamation of the borrow area. Toxic substances, soil reaction, and the properties that are inferred from soil texture, such as available water capacity and fertility, affect plant growth. The ease of excavating, loading, and spreading is affected by rock fragments, slope, depth to a water table, soil texture, and thickness of suitable material. Reclamation of the borrow area is affected by slope, depth to a water table, rock fragments, depth to bedrock or a cemented pan, and toxic material.

The surface layer of most soils is generally preferred for topsoil because of its organic matter content. Organic matter greatly increases the absorption and retention of moisture and nutrients for plant growth.

Water Management

Table 13 gives information on the soil properties and site features that affect water management. The degree and kind of soil limitations are given for pond reservoir areas; embankments, dikes, and levees; and aquifer-fed excavated ponds. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00 . They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Pond reservoir areas hold water behind a dam or embankment. Soils best suited to this use have low seepage potential in the upper 60 inches. The seepage potential is determined by the permeability of the soil and the depth to fractured bedrock or other permeable material. Excessive slope can affect the storage capacity of the reservoir area.

Embankments, dikes, and levees are raised structures of soil material, generally less than 20 feet high, constructed to impound water or to protect land against overflow. Embankments that have zoned construction (core and shell) are not considered. In this table, the soils are rated as a source of material for embankment fill. The ratings apply to the soil material below the surface layer to a depth of about 5
feet. It is assumed that soil layers will be uniformly mixed and compacted during construction.

The ratings do not indicate the ability of the natural soil to support an embankment. Soil properties to a depth even greater than the height of the embankment can affect performance and safety of the embankment. Generally, deeper onsite investigation is needed to determine these properties.

Soil material in embankments must be resistant to seepage, piping, and erosion and have favorable compaction characteristics. Unfavorable features include less than 5 feet of suitable material and a high content of stones or boulders, organic matter, or salts or sodium. A high water table affects the amount of usable material. It also affects trafficability.

Aquifer-fed excavated ponds are pits or dugouts that extend to a ground-water aquifer or to a depth below a permanent water table. Excluded are ponds that are fed only by surface runoff and embankment ponds that impound water 3 feet or more above the original surface. Excavated ponds are affected by depth to a permanent water table, permeability of the aquifer, and quality of the water as inferred from the salinity of the soil. Depth to bedrock and the content of large stones affect the ease of excavation.

Soil Properties

Data relating to soil properties are collected during the course of the soil survey. Soil properties are ascertained by field examination of the soils. During the survey, many shallow borings are made and examined to identify and classify the soils and to delineate them on the soil maps. Samples are taken from some typical profiles and tested in the laboratory.

Estimates of soil properties are based on field examinations, on laboratory tests of samples from the survey area, and on laboratory tests of samples of similar soils in nearby areas (USDA, 1996). Tests verify field observations, verify properties that cannot be estimated accurately by field observation, and help to characterize key soils.

The estimates of soil properties are shown in tables. They include engineering index properties, physical and chemical properties, and pertinent soil and water features.

Engineering Index Properties

Table 14 gives the engineering classifications and the range of index properties for the layers of each soil in the survey area.

Depth to the upper and lower boundaries of each layer is indicated.
Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly." Textural terms are defined in the Glossary.

Classification of the soils is determined according to the Unified soil classification system (ASTM, 2001) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2000).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages
are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420 , and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and plasticity index (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

The estimates of particle-size distribution, liquid limit, and plasticity index are generally rounded to the nearest 5 percent. Thus, if the ranges of gradation and Atterberg limits extend a marginal amount (1 or 2 percentage points) across classification boundaries, the classification in the marginal zone is generally omitted in the table.

Physical Properties

Table 15 shows estimates of some physical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.
Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In table 15, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrink-swell potential, permeability, plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at $1 / 3-$ or $1 / 10-\mathrm{bar}(33 \mathrm{kPa}$ or 10 kPa) moisture tension. Weight is determined after the soil is dried at 105 degrees C. In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute shrink-swell potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. Depending on soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.

Permeability ($K_{\text {sat }}$) refers to the ability of a soil to transmit water or air. The term "permeability," as used in soil surveys, indicates saturated hydraulic conductivity $\left(\mathrm{K}_{\text {sat }}\right)$. The estimates in the table indicate the rate of water movement, in inches per
hour, when the soil is saturated. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Permeability is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Linear extensibility refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. It is an expression of the volume change between the water content of the clod at $1 / 3$ - or $1 / 10$-bar tension (33 kPa or 10 kPa tension) and oven dryness. The volume change is reported in the table as percent change for the whole soil. Volume change is influenced by the amount and type of clay minerals in the soil.

Linear extensibility is used to determine the shrink-swell potential of soils. The shrink-swell potential is low if the soil has a linear extensibility of less than 3 percent; moderate if 3 to 6 percent; high if 6 to 9 percent; and very high if more than 9 percent. If the linear extensibility is more than 3 , shrinking and swelling can cause damage to buildings, roads, and other structures and to plant roots. Special design commonly is needed.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In table 15, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of organic matter in a soil can be maintained by returning crop residue to the soil. Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms.

Erosion factors are shown in table 15 as the K factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of several factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and permeability. Values of K range from 0.02 to 0.69 . Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor Kw indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Erosion factor $K f$ indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size.

Erosion factor T is an estimate of the maximum average annual rate of soil erosion by wind or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible.

Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter,
and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

Chemical Properties

Table 16 shows estimates of some chemical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.
Cation-exchange capacity is the total amount of extractable bases that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. Soils having a low cation-exchange capacity hold fewer cations and may require more frequent applications of fertilizer than soils having a high cation-exchange capacity. The ability to retain cations reduces the hazard of ground-water pollution.

Soil reaction is a measure of acidity or alkalinity. The pH of each soil horizon is based on many field tests. For many soils, values have been verified by laboratory analyses. Soil reaction is important in selecting crops and other plants, in evaluating soil amendments for fertility and stabilization, and in determining the risk of corrosion.

Calcium carbonate equivalent is the percent of carbonates, by weight, in the fraction of the soil less than 2 millimeters in size. The availability of plant nutrients is influenced by the amount of carbonates in the soil. Incorporating nitrogen fertilizer into calcareous soils helps to prevent nitrite accumulation and ammonium-N volatilization.

Salinity is a measure of soluble salts in the soil at saturation. It is expressed as the electrical conductivity of the saturation extract, in millimhos per centimeter at 25 degrees C. Estimates are based on field and laboratory measurements at representative sites of nonirrigated soils. The salinity of irrigated soils is affected by the quality of the irrigation water and by the frequency of water application. Hence, the salinity of soils in individual fields can differ greatly from the value given in the table. Salinity affects the suitability of a soil for crop production, the stability of soil if used as construction material, and the potential of the soil to corrode metal and concrete.

Sodium adsorption ratio (SAR) is a measure of the amount of sodium (Na) relative to calcium (Ca) and magnesium (Mg) in the water extract from saturated soil paste. It is the ratio of the Na concentration divided by the square root of one-half of the $\mathrm{Ca}+\mathrm{Mg}$ concentration. Soils that have SAR values of 13 or more may be characterized by an increased dispersion of organic matter and clay particles, reduced permeability and aeration, and a general degradation of soil structure.

Water Features

Table 17 gives estimates of various water features. The estimates are used in land use planning that involves engineering considerations.

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The four hydrologic soil groups are:
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These
consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

The months in the table indicate the portion of the year in which the feature is most likely to be a concern.

Water table refers to a saturated zone in the soil. Table 17 indicates, by month, depth to the top (upper limit) and base (lower limit) of the saturated zone in most years. Estimates of the upper and lower limits are based mainly on observations of the water table at selected sites and on evidence of a saturated zone, namely grayish colors or mottles (redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.

Ponding is standing water in a closed depression. Unless a drainage system is installed, the water is removed only by percolation, transpiration, or evaporation. Table 17 indicates surface water depth and the duration and frequency of ponding. Duration is expressed as very brief if less than 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days. Frequency is expressed as none, rare, occasional, and frequent. None means that ponding is not probable; rare that it is unlikely but possible under unusual weather conditions (the chance of ponding is nearly 0 percent to 5 percent in any year); occasional that it occurs, on the average, once or less in 2 years (the chance of ponding is 5 to 50 percent in any year); and frequent that it occurs, on the average, more than once in 2 years (the chance of ponding is more than 50 percent in any year).

Flooding is the temporary inundation of an area caused by overflowing streams, by runoff from adjacent slopes, or by tides. Water standing for short periods after rainfall or snowmelt is not considered flooding, and water standing in swamps and marshes is considered ponding rather than flooding.

Duration and frequency are estimated. Duration is expressed as extremely brief if 0.1 hour to 4 hours, very brief if 4 hours to 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days. Frequency is expressed as none, very rare, rare, occasional, frequent, and very frequent. None means that flooding is not probable; very rare that it is very unlikely but possible under extremely unusual weather conditions (the chance of flooding is less than 1 percent in any year); rare that it is unlikely but possible under unusual weather conditions (the chance of flooding is 1 to 5 percent in any year); occasional that it occurs infrequently under normal weather conditions (the chance of flooding is 5 to 50 percent in any year); frequent that it is likely to occur often under normal weather conditions (the chance of flooding is more than 50 percent in any year but is less than 50 percent in all months in any year); and very frequent that it is likely to occur very often under normal weather conditions (the chance of flooding is more than 50 percent in all months of any year).

The information is based on evidence in the soil profile, namely thin strata of gravel, sand, silt, or clay deposited by floodwater; irregular decrease in organic matter content with increasing depth; and little or no horizon development.

Also considered are local information about the extent and levels of flooding and the relation of each soil on the landscape to historic floods. Information on the extent
of flooding based on soil data is less specific than that provided by detailed engineering surveys that delineate flood-prone areas at specific flood frequency levels.

Soil Features

Table 18 gives estimates of various soil features. The estimates are used in land use planning that involves engineering considerations.

A restrictive layer is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen layers. The table indicates the hardness and thickness of the restrictive layer, both of which significantly affect the ease of excavation. Depth to top is the vertical distance from the soil surface to the upper boundary of the restrictive layer.

Subsidence is the settlement of organic soils or of saturated mineral soils of very low density. Subsidence generally results from either desiccation and shrinkage or oxidation of organic material, or both, following drainage. Subsidence takes place gradually, usually over a period of several years. The table shows the expected initial subsidence, which usually is a result of drainage, and total subsidence, which results from a combination of factors.

Potential for frost action is the likelihood of upward or lateral expansion of the soil caused by the formation of segregated ice lenses (frost heave) and the subsequent collapse of the soil and loss of strength on thawing. Frost action occurs when moisture moves into the freezing zone of the soil. Temperature, texture, density, permeability, content of organic matter, and depth to the water table are the most important factors considered in evaluating the potential for frost action. It is assumed that the soil is not insulated by vegetation or snow and is not artificially drained. Silty and highly structured, clayey soils that have a high water table in winter are the most susceptible to frost action. Well drained, very gravelly, or very sandy soils are the least susceptible. Frost heave and low soil strength during thawing cause damage to pavements and other rigid structures.

Risk of corrosion pertains to potential soil-induced electrochemical or chemical action that corrodes or weakens uncoated steel or concrete. The rate of corrosion of uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Special site examination and design may be needed if the combination of factors results in a severe hazard of corrosion. The steel or concrete in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than the steel or concrete in installations that are entirely within one kind of soil or within one soil layer.

For uncoated steel, the risk of corrosion, expressed as low, moderate, or high, is based on soil drainage class, total acidity, electrical resistivity near field capacity, and electrical conductivity of the saturation extract.

For concrete, the risk of corrosion also is expressed as low, moderate, or high. It is based on soil texture, acidity, and amount of sulfates in the saturation extract.

Classification of the Soils

The system of soil classification used by the National Cooperative Soil Survey has six categories (Soil Survey Staff, 1975). Beginning with the broadest, these categories are the order, suborder, great group, subgroup, family, and series. Classification is based on soil properties observed in the field or inferred from those observations or from laboratory measurements. Table 19 shows the classification of the soils in the survey area. The categories are defined in the following paragraphs.

ORDER. Eleven soil orders are recognized. The differences among orders reflect the dominant soil-forming processes and the degree of soil formation. Each order is identified by a word ending in sol. An example is Mollisol.

SUBORDER. Each order is divided into suborders primarily on the basis of properties that influence soil genesis and are important to plant growth or properties that reflect the most important variables within the orders. The last syllable in the name of a suborder indicates the order. An example is Xeroll (Xer, meaning dry, plus oll, from Mollisol).

GREAT GROUP. Each suborder is divided into great groups on the basis of close similarities in kind, arrangement, and degree of development of pedogenic horizons; soil moisture and temperature regimes; type of saturation; and base status. Each great group is identified by the name of a suborder and by a prefix that indicates a property of the soil. An example is Argixerolls (Argi, meaning white clay, plus xeroll, the suborder of the Mollisols that has a xeric moisture regime).

SUBGROUP. Each great group has a typic subgroup. Other subgroups are intergrades or extragrades. The typic subgroup is the central concept of the great group; it is not necessarily the most extensive. Intergrades are transitions to other orders, suborders, or great groups. Extragrades have some properties that are not representative of the great group but do not indicate transitions to any other taxonomic class. Each subgroup is identified by one or more adjectives preceding the name of the great group. The adjective Typic identifies the subgroup that typifies the great group. An example is Typic Argixerolls.

FAMILY. Families are established within a subgroup on the basis of physical and chemical properties and other characteristics that affect management. Generally, the properties are those of horizons below plow depth where there is much biological activity. Among the properties and characteristics considered are particle-size class, mineralogy class, cation-exchange activity class, soil temperature regime, soil depth, and reaction class. A family name consists of the name of a subgroup preceded by terms that indicate soil properties. An example is fine, montmorillonitic, frigid Typic Argixerolls.

SERIES. The series consists of soils within a family that have horizons similar in color, texture, structure, reaction, consistence, mineral and chemical composition, and arrangement in the profile.

Taxonomic Units and Their Morphology

In this section, each taxonomic unit recognized in the survey area is described. Characteristics of the soil and the material in which it formed are identified for each unit. A pedon, a small three-dimensional area of soil, that is typical of the unit in the
survey area is described. The detailed description of each soil horizon follows standards in the "Soil Survey Manual" (Soil Survey Division Staff, 1993). Many of the technical terms used in the descriptions are defined in "Soil Taxonomy" (Soil Survey Staff, 1975) and in "Keys to Soil Taxonomy" (Soil Survey Staff, 1994). Following the pedon description is the range of important characteristics of the soils in the unit.

Actem Series

The Actem series consists of soils that are shallow to an indurated duripan and are well drained. The soils formed in old alluvium and colluvium over basalt and welded tuff. They are on plateaus and hills. Slope is 2 to 20 percent. Elevation is 4,200 to 6,000 feet. The mean annual precipitation is 8 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Clayey, montmorillonitic, frigid, shallow Xeric Argidurids
Typical pedon of Actem cobbly loam, 2 to 20 percent slopes, about 2,500 feet south and 1,800 feet west of the northeast corner of sec. 25 , T. 38 S., R. 30 E.; Acty Mountain NW quadrangle.
A-0 to 2 inches; light gray (10YR 7/2) cobbly loam, brown (10YR 4/3) moist; weak medium platy structure; hard, very friable, slightly sticky and slightly plastic; common fine and medium roots; many fine and medium vesicular pores; 10 percent gravel and 10 percent cobbles; neutral (pH 7.3); clear wavy boundary.
Bt1-2 to 7 inches; brown (10YR 5/3) clay, yellowish brown (10YR 5/4) moist; strong coarse subangular blocky structure; hard, firm, very sticky and very plastic; common fine and medium roots; many fine and medium irregular pores; common distinct clay films on faces of peds; slightly alkaline (pH 7.4); clear wavy boundary. Bt2-7 to 15 inches; light yellowish brown (10YR 6/4) clay loam, dark yellowish brown (10YR 4/4) moist; moderate medium subangular blocky structure parting to moderate fine angular blocky; hard, firm, moderately sticky and moderately plastic; common fine and medium roots; many fine irregular pores; common distinct clay films on faces of peds; strongly effervescent with disseminated carbonates; slightly alkaline (pH 7.5); clear wavy boundary.
Bkqm-15 to 20 inches; very pale brown (10YR 8/3) platy indurated duripan, pale brown (10YR 6/3) moist; massive; very rigid; few fine roots along plates; strongly effervescent with disseminated carbonates; abrupt smooth boundary.
2R-20 inches; basalt.
Thickness of the solum and depth to the duripan are 12 to 20 inches. Depth to bedrock is 20 to 30 inches. Depth to carbonates is 5 to 10 inches. Depth to the clay layer is 2 to 10 inches.

The A horizon has value of 6 or 7 dry and 3 to 5 moist, and it has chroma of 2 or 3 moist or dry. It is cobbly loam or extremely cobbly loam with 20 to 27 percent clay. The content of clay in the Bt horizon is 10 to 20 percent more than that of the A horizon.

The Bt horizon has hue of 7.5YR or 10YR. It is clay, clay loam, gravelly clay, gravelly clay loam, or cobbly clay loam. It is 35 to 45 percent clay and 0 to 35 percent gravel and cobbles. It is neutral or slightly alkaline.

The Bkqm horizon is 4 to 10 inches thick.

Alvodest Series

The Alvodest series consists of very deep, somewhat poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 3 percent.

Elevation is 4,000 to 4,600 feet. The mean annual precipitation is 7 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine, montmorillonitic, mesic Sodic Aquicambids
Typical pedon of Alvodest silty clay loam, 0 to 3 percent slopes, about 1,900 feet south and 2,100 feet west of the northeast corner of sec. 21, T. 38 S., R. 35 E.; Borax Lake quadrangle.

Aknz1-0 to 2 inches; light gray (10YR 7/2) silty clay loam, brown (10YR 4/3) moist; strong medium and fine angular blocky structure; hard, friable, moderately sticky and moderately plastic; many fine and medium roots; many very fine, fine, and medium vesicular and irregular pores and few coarse vesicular pores; strongly effervescent with disseminated carbonates; 9 percent calcium carbonate equivalent; electrical conductivity is 40 millimhos per centimeter; sodium adsorption ratio is 990; very strongly alkaline (pH 9.7); abrupt smooth boundary.
Aknz2-2 to 6 inches; light brownish gray (10YR 6/2) silty clay loam, dark brown (10YR 3/3) moist; weak fine subangular blocky structure; hard, very friable, moderately sticky and moderately plastic; many fine and medium roots; many very fine, fine, and medium irregular and vesicular pores; strongly effervescent with disseminated carbonates; 9 percent calcium carbonate equivalent; electrical conductivity is 40 millimhos per centimeter; sodium adsorption ratio is 990 ; very strongly alkaline (pH 9.5); clear smooth boundary.
Bknz1-6 to 15 inches; grayish brown (10YR 5/2) silty clay, dark brown (10YR 3/3) moist; moderate medium angular blocky structure; hard, friable, moderately sticky and moderately plastic; many fine and medium roots; many very fine and fine and common medium irregular pores; few pressure faces on faces of peds; strongly effervescent with disseminated carbonates; 9 percent calcium carbonate equivalent; electrical conductivity is 27 millimhos per centimeter; sodium adsorption ratio is 685 ; very strongly alkaline (pH 9.8); clear smooth boundary.
Bknz2-15 to 21 inches; grayish brown (10YR 5/2) silty clay, very dark grayish brown (10YR 3/2) moist; moderate medium angular blocky structure; hard, friable, moderately sticky and slightly plastic; common fine and few medium roots; many very fine and fine and common medium irregular pores; common pressure faces on faces of peds; strongly effervescent with disseminated carbonates; very strongly alkaline (pH 9.8); gradual smooth boundary.
Bknz3-21 to 42 inches; grayish brown (10YR 5/2) silty clay, very dark grayish brown (10YR $3 / 2$) moist; moderate coarse prismatic structure; hard, firm, moderately sticky and moderately plastic; common fine and medium roots; many very fine and fine and common medium irregular pores; few pressure faces on faces of peds; strongly effervescent with disseminated carbonates; 8 percent calcium carbonate equivalent; electrical conductivity is 14 millimhos per centimeter; sodium adsorption ratio is 70 ; very strongly alkaline (pH 9.9); gradual smooth boundary.
Bknz4-42 to 53 inches; light brownish gray (10YR 6/2) silty clay, very dark grayish brown (10YR 3/2) moist; moderate medium prismatic structure; hard, firm, moderately sticky and moderately plastic; few fine roots; many very fine and fine irregular pores; few pressure faces on faces of peds; strongly effervescent with disseminated carbonates; 16 percent calcium carbonate equivalent; electrical conductivity is 26 millimhos per centimeter; sodium adsorption ratio is 795; very strongly alkaline (pH 10.0); gradual smooth boundary.
Ckz-53 to 78 inches; light gray (10YR 7/2) silty clay, brown (10YR $5 / 3$) moist; massive; hard, firm, moderately sticky and moderately plastic; many very fine and fine irregular pores; strongly effervescent with disseminated carbonates; masses of salt on faces of peds; very strongly alkaline (pH 9.1).

Bedrock is at a depth of more than 60 inches. Calcium carbonate is at the surface to a depth of 10 inches. Frequent ponding occurs in winter and spring. A high water table is present in winter and spring. The particle-size control section averages 40 to 60 percent clay.

The Aknz horizon is 30 to 40 percent clay. The calcium carbonate equivalent is 5 to 10 percent. The sodium adsorption ratio is 800 to 999 . Electrical conductivity is 16 to 32 millimhos per centimeter.

The Bknz horizon is silty clay, clay, or silty clay loam with 35 to 60 percent clay. The calcium carbonate equivalent is 5 to 15 percent. Electrical conductivity is 14 to 32 millimhos per centimeter. The sodium adsorption ratio is 70 to 700 .

The Ckz horizon is loam, silty clay loam, or silty clay with 25 to 50 percent clay. The calcium carbonate equivalent is 5 to 15 percent. Electrical conductivity is 12 to 32 millimhos per centimeter. The sodium adsorption ratio is 70 to 700 .

Alyan Series

The Alyan series consists of moderately deep, well drained soils that formed in residuum derived from welded tuff, rhyolite, and ashflow tuff. The soils are on plateaus and hills. Slope is 3 to 15 percent. Elevation is 4,200 to 5,200 feet. The mean annual precipitation is 11 to 13 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine, montmorillonitic, frigid Aridic Argixerolls
Typical pedon of Alyan gravelly sandy loam, 3 to 15 percent slopes, about 600 feet south and 900 feet west of the northeast corner of sec. 32, T. 23 S., R. 29 E.; Sagehen Hill quadrangle.

A1-0 to 2 inches; brown (10YR 5/3) gravelly sandy loam, very dark grayish brown (10YR 3/2) moist; moderate medium granular structure; slightly hard, very friable, slightly sticky and slightly plastic; common very fine and fine and few medium roots; common very fine, fine, and medium irregular pores; 15 percent gravel and 5 percent cobbles; neutral (pH 7.0); clear smooth boundary.
A2—2 to 10 inches; brown (10YR 5/3) loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure parting to moderate medium granular; slightly hard, very friable, slightly sticky and slightly plastic; common very fine, fine, and medium roots; few very fine and coarse, common medium, and many fine irregular pores; 10 percent gravel; neutral (pH 7.2); abrupt smooth boundary.
Bt1-10 to 17 inches; pale brown (10YR 6/3) cobbly clay loam, brown (10YR 4/3) moist; strong coarse subangular blocky structure parting to moderate medium angular blocky; hard, firm, moderately sticky and moderately plastic; few very fine and medium and common fine roots; few very fine and common fine and medium irregular pores; common distinct clay films on faces of peds; 5 percent gravel and 10 percent cobbles; slightly alkaline (pH 7.4); clear smooth boundary.
Bt2—17 to 24 inches; light yellowish brown (10YR 6/4) cobbly clay, dark yellowish brown (10YR 4/4) moist; strong medium angular blocky structure; hard, firm, moderately sticky and moderately plastic; few fine and medium roots; few very fine, fine, and medium irregular pores; common distinct and few prominent clay films on faces of peds; 5 percent gravel and 10 percent cobbles; slightly alkaline (pH 7.6); abrupt smooth boundary.
R—24 inches; fractured ashflow tuff; fractures about 5 to 10 inches apart; horizontal bedding.

The mollic epipedon is 8 to 18 inches thick. Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 10 to 30
percent rock fragments, mainly cobbles, and 35 to 50 percent clay. The profile is neutral or slightly alkaline.

The A1 horizon is 15 to 35 percent rock fragments and 15 to 20 percent clay.
The A2 horizon is 5 to 10 percent rock fragments and 20 to 27 percent clay.
The Bt horizon is clay, gravelly clay, cobbly clay loam, or cobbly clay. It is 10 to 30 percent rock fragments and 35 to 55 percent clay.

Anatone Series

The Anatone series consists of shallow, well drained soils that formed in colluvium and residuum derived from basalt, andesite, rhyolite, and welded tuff. The soils are on hills and mountains. Slope is 2 to 60 percent. Elevation is 4,000 to 6,000 feet. The mean annual precipitation is 12 to 18 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Lithic Haploxerolls
Typical pedon of Anatone extremely gravelly loam in an area of Anatone-Egyptcreek-Rock outcrop association, 20 to 50 percent slopes; about 660 feet north and 1,980 feet west of the southeast corner of sec. 20, T. 21 S., R. 27 E.; Dry Mountain quadrangle.
A1-0 to 3 inches; grayish brown (10YR 5/2) extremely gravelly loam, very dark grayish brown (10YR $3 / 2$) moist; moderate medium granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, common fine, and few medium roots; common very fine and fine and many medium discontinuous irregular pores; 45 percent gravel, 15 percent cobbles, and 10 percent stones; neutral (pH 7.0); clear smooth boundary.
A2-3 to 8 inches; brown (10YR 5/3) extremely gravelly loam, dark brown (10YR $3 / 3$) moist; moderate medium granular structure; soft, very friable, slightly sticky and slightly plastic; common very fine, fine, and medium roots; common very fine, fine, and medium discontinuous irregular pores; 45 percent gravel and 15 percent cobbles; neutral (pH 7.2); gradual wavy boundary.
Bw-8 to 14 inches; brown (10YR 5/3) very gravelly loam, dark brown (10YR $3 / 3$) moist; weak medium subangular blocky structure parting to moderate medium granular; slightly hard, friable, moderately sticky and moderately plastic; few very fine, medium, and coarse roots and common fine roots; common very fine and fine and few medium discontinuous irregular pores; 50 percent gravel; neutral (pH 7.3); abrupt smooth boundary.

R-14 inches; fractured welded tuff.
The mollic epipedon is 7 to 18 inches thick. Thickness of the solum and depth to bedrock are 10 to 20 inches. The particle-size control section averages 35 to 60 percent rock fragments, mainly gravel, and 18 to 30 percent clay. The profile is slightly acid or neutral. A thin Cr horizon is above the R horizon in some pedons.

The A horizon is 5 to 9 inches thick. It is very gravelly loam, extremely gravelly loam, very stony loam, or stony loam. It is 35 to 80 percent rock fragments and 18 to 27 percent clay.

The Bw horizon is very gravelly loam, very gravelly sandy clay loam, or very cobbly clay loam. It is 35 to 60 percent rock fragments and 18 to 30 percent clay.

Anawalt Series

The Anawalt series consists of shallow, well drained soils that formed in residuum and colluvium derived from basalt, andesite, and welded tuff. The soils are on
plateaus and hills. Slope is 0 to 30 percent. Elevation is 4,300 to 6,200 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Clayey, montmorillonitic, frigid Lithic Xeric Haplargids
Typical pedon of Anawalt gravelly clay loam, 0 to 12 percent slopes, about 1,000 feet north and 700 feet west of the southeast corner of sec. 2, T. 41 S., R. 29 E.; Sagehen Flats quadrangle.
A1-0 to 2 inches; light brownish gray (10YR 6/2) gravelly clay loam, very dark grayish brown (10YR 3/2) moist; moderate medium platy structure; slightly hard, friable, moderately sticky and moderately plastic; many fine, common medium, and few coarse roots; many very fine and fine and common medium irregular pores; 15 percent gravel; neutral (pH 6.6); clear wavy boundary.
A2-2 to 11 inches; light brownish gray (10YR 6/2) clay loam, very dark grayish brown (10YR 3/2) moist; weak medium subangular blocky structure parting to weak fine granular; slightly hard, friable, moderately sticky and moderately plastic; many fine, common medium, and few coarse roots; many very fine and fine and common medium irregular pores; 5 percent gravel; neutral (pH 6.6); clear wavy boundary.
Bt-11 to 16 inches; brownish yellow (10YR 6/6) clay, dark yellowish brown (10YR 4/6) moist; moderate medium subangular blocky structure parting to moderate fine subangular blocky; hard, firm, very sticky and very plastic; few fine and medium roots; common fine irregular pores; many prominent clay films on faces of peds; neutral (pH 7.2); abrupt wavy boundary.
2R-16 inches; fractured welded tuff.
Thickness of the solum and depth to bedrock are 12 to 20 inches. Depth to the claypan is 4 to 11 inches. The particle-size control section averages 5 to 35 percent rock fragments, mainly gravel and cobbles, and 40 to 60 percent clay. The profile is neutral or slightly alkaline. An intermittent thin Btq horizon is in some pedons.

The A1 horizon is gravelly loam or gravelly clay loam. It is 15 to 25 percent rock fragments and 25 to 35 percent clay.

The A2 horizon is loam or clay loam. It is 5 to 15 percent rock fragments and 20 to 35 percent clay.

The Bt horizon has hue of 7.5 YR or 10 YR . It is clay or cobbly clay. It is 5 to 35 percent rock fragments and 40 to 60 percent clay.

Arcia Series

The Arcia series consists of moderately deep, well drained soils that formed in residuum and alluvium derived from basalt and welded tuff. The soils are on hills and plateaus. Slope is 2 to 30 percent. Elevation is 4,000 to 6,000 feet. The mean annual precipitation is 12 to 16 inches, and the mean annual air temperature is 40 to 45 degrees F.

Taxonomic classification: Fine, montmorillonitic, frigid Pachic Argixerolls
Typical pedon of Arcia extremely stony loam in an area of Doyn-Arcia association, 2 to 30 percent slopes; about 600 feet south and 200 feet west of the northeast corner of sec. 27, T. 21 S., R. 34 E.; Stinkingwater Pass quadrangle.

A1-0 to 4 inches; grayish brown (10YR 5/2) extremely stony loam, very dark grayish brown (10YR 3/2) moist; weak thick platy structure; soft, very friable, nonsticky and nonplastic; common very fine and few fine roots; few very fine vesicular
pores; 35 percent gravel, 30 percent cobbles, and 25 percent stones; slightly alkaline (pH 7.6); gradual smooth boundary.
A2-4 to 13 inches; grayish brown (10YR 5/2) very gravelly loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; soft, friable, slightly sticky and nonplastic; few fine and medium roots; few fine irregular pores; 30 percent gravel and 10 percent cobbles; slightly alkaline (pH 7.6); clear smooth boundary.
Bt-13 to 23 inches; brown (10YR 5/3) gravelly clay, dark brown (10YR 3/3) moist; strong medium subangular blocky structure; slightly hard, firm, moderately sticky and moderately plastic; few medium roots; few very fine irregular pores; common distinct clay films on faces of peds; 30 percent gravel; slightly alkaline (pH 7.6); clear smooth boundary.
R-23 inches; basalt.
The mollic epipedon is 20 to 30 inches thick. Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 5 to 35 percent rock fragments, mainly gravel, and 35 to 50 percent clay. The profile is neutral or slightly alkaline.

The A1 horizon is 60 to 90 percent rock fragments and 15 to 27 percent clay.
The A2 horizon is gravelly loam, very gravelly loam, or gravelly clay loam. It is 15 to 40 percent rock fragments and 20 to 30 percent clay.

The Bt horizon is clay loam, clay, or gravelly clay. It is 5 to 30 percent rock fragments and 35 to 50 percent clay.

Ateron Series

The Ateron series consists of shallow, well drained soils that formed in residuum and colluvium derived from welded tuff, basalt, and andesite. The soils are on hills, mountains, and plateaus. Slope is 2 to 60 percent. Elevation is 3,900 to 5,800 feet. The mean annual precipitation is 12 to 18 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Clayey-skeletal, montmorillonitic, frigid Lithic Argixerolls
Typical pedon of Ateron extremely stony silt loam in an area of Rubble land-NussAteron association, 20 to 60 percent slopes; about 1,200 feet north and 1,900 feet east of the southwest corner of sec. 6, T. 23 S., R. 35 E.; Coleman Mountain quadrangle.

A-0 to 5 inches; dark grayish brown (10YR 4/2) extremely stony silt loam, very dark brown (10YR $2 / 2$) moist; moderate fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine and fine roots; many very fine and fine irregular and tubular pores; 15 percent gravel, 25 percent cobbles, and 30 percent stones; neutral (pH 6.8); clear smooth boundary.
BAt-5 to 12 inches; grayish brown (10YR $5 / 2$) very cobbly clay loam, very dark grayish brown (10YR $3 / 2$) moist; moderate medium subangular blocky structure parting to moderate fine subangular blocky; hard, firm, moderately sticky and moderately plastic; common very fine and fine roots; common very fine and fine irregular and tubular pores; few faint clay films on faces of peds; 10 percent gravel, 35 percent cobbles, and 10 percent stones; neutral (pH 7.0); clear smooth boundary.
Bt-12 to 18 inches; brown (10YR 5/3) extremely stony clay, dark brown (10YR 3/3) moist; moderate fine subangular blocky structure; slightly hard, firm, moderately sticky and moderately plastic; few very fine and fine roots; common very fine and fine irregular and tubular pores; common faint clay films on faces of peds;

10 percent gravel, 35 percent cobbles, and 20 percent stones; neutral (pH 7.0); abrupt irregular boundary.
R-18 inches; highly fractured basalt.
The mollic epipedon is 7 to 14 inches thick. Thickness of the solum and depth to bedrock are 10 to 20 inches. The particle-size control section averages 35 to 60 percent rock fragments, mainly cobbles and stones, and 40 to 50 percent clay.

The A horizon is gravelly loam, very gravelly loam, very cobbly loam, very stony loam, or extremely stony silt loam. It is 15 to 70 percent rock fragments and 20 to 27 percent clay.

The Bt horizon is very cobbly clay, extremely stony clay, or very stony clay. It is 50 to 70 percent rock fragments and 40 to 50 percent clay.

Atlow Series

The Atlow series consists of shallow, well drained soils that formed in colluvium and residuum derived from basalt, rhyolite, andesite, and welded tuff. The soils are on hills. Slope is 2 to 50 percent. Elevation is 4,200 to 5,300 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, mesic Lithic Xeric Haplargids
Typical pedon of Atlow very stony loam in an area of Skedaddle-Atlow-Rock outcrop complex, 5 to 30 percent slopes; about 1,400 feet south and 800 feet east of the northwest corner of sec. 14, T. 38 S., R. 36 E.; Red Lookout Butte quadrangle.

A-0 to 3 inches; light brownish gray (10YR 6/2) very stony loam, very dark grayish brown (10YR 3/2) moist; moderate medium platy structure; slightly hard, very friable, moderately sticky and moderately plastic; few fine roots; many fine vesicular pores; 20 percent gravel, 20 percent cobbles, and 15 percent stones; slightly alkaline (pH 7.4); clear smooth boundary.
Bt1-3 to 7 inches; brown (10YR 5/3) very cobbly clay loam, dark brown (10YR 3/3) moist; weak fine subangular blocky structure; slightly hard, very friable, moderately sticky and moderately plastic; few fine roots; common fine irregular pores; few faint clay films on faces of peds; 15 percent gravel and 20 percent cobbles; slightly alkaline (pH 7.4); gradual wavy boundary.
Bt2—7 to 11 inches; brown (10YR 5/3) very cobbly clay loam, dark grayish brown (10YR 4/2) moist; weak medium subangular blocky structure; slightly hard, very friable, moderately sticky and moderately plastic; few fine roots; common fine irregular pores; few faint clay films on faces of peds; 15 percent gravel and 20 percent cobbles; slightly alkaline (pH 7.4); abrupt irregular boundary.
R—11 inches; basalt.
Thickness of the solum and depth to bedrock are 10 to 20 inches. The particle-size control section averages 35 to 50 percent rock fragments, mainly gravel and cobbles, and 27 to 35 percent clay.

The A horizon is 35 to 60 percent rock fragments and 20 to 27 percent clay.
The Bt horizon is very gravelly clay loam, very cobbly clay loam, or very cobbly sandy clay loam. It is 35 to 50 percent rock fragments and 27 to 35 percent clay.

Ausmus Series

The Ausmus series consists of very deep, somewhat poorly drained or moderately well drained soils that formed in alluvium and lacustrine sediment overblown by eolian
sand (fig. 13). The soils are on lake plains. Slope is 0 to 2 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-silty, mixed, frigid Aquic Natrargids

Typical pedon of Ausmus fine sandy loam, 0 to 1 percent slopes, flooded; about 1,000 feet west and 1,500 feet north of the southeast corner of sec. 16, T. 26 S ., R. 33 E.; Malheur Lake East quadrangle.

A-0 to 2 inches; light brownish gray ($2.5 \mathrm{Y} 6 / 2$) fine sandy loam, dark grayish brown (2.5Y 4/2) moist; weak thin and medium platy structure; soft, very friable, moderately sticky and slightly plastic; common very fine and few fine roots; many very fine irregular pores; strongly effervescent with disseminated carbonates; 16 percent calcium carbonate equivalent; sodium adsorption ratio is 18 ; electrical conductivity is 3 millimhos per centimeter; strongly alkaline (pH 8.9); abrupt smooth boundary.
Btkn-2 to 9 inches; light brownish gray (2.5Y 6/2) silty clay loam, dark grayish brown (2.5Y 4/2) moist; strong fine prismatic structure parting to strong fine angular blocky; very hard, very firm, very sticky and very plastic; common very fine and few fine roots; common very fine tubular pores; common faint clay films on faces of peds; strongly effervescent with disseminated carbonates; 20 percent calcium carbonate equivalent; sodium adsorption ratio is 70 ; electrical conductivity is 7 millimhos per centimeter; very strongly alkaline (pH 9.1); clear smooth boundary.
Bkn-9 to 16 inches; light brownish gray (2.5Y 6/2) silty clay loam, olive brown (2.5Y $4 / 3$) moist; weak medium and fine subangular blocky structure; hard, friable, moderately sticky and moderately plastic; few very fine and fine roots; common very fine tubular pores; strongly effervescent with disseminated carbonates; 21 percent calcium carbonate equivalent; sodium adsorption ratio is 187 ; electrical conductivity is 13 millimhos per centimeter; very strongly alkaline (pH 9.4); gradual smooth boundary.

Bknz1-16 to 29 inches; light brownish gray (2.5Y 6/2) silt loam, olive brown (2.5Y 4/3) moist; weak fine and medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; few fine roots; common very fine tubular pores; strongly effervescent with disseminated carbonates; 22 percent calcium carbonate equivalent; sodium adsorption ratio is 401 ; electrical conductivity is 25 millimhos per centimeter; very strongly alkaline (pH 9.7); gradual smooth boundary.
Bknz2-29 to 36 inches; light yellowish brown (2.5Y 6/3) loam, dark olive brown ($2.5 \mathrm{Y} 3 / 3$) moist; weak medium prismatic structure parting to moderate fine subangular blocky; hard, firm, slightly sticky and slightly plastic; few very fine tubular pores; few fine distinct brown (7.5YR 4/4) iron concentrations; strongly effervescent; few fine carbonate filaments; 1 percent calcium carbonate equivalent; sodium adsorption ratio is 488; electrical conductivity is 29 millimhos per centimeter; very strongly alkaline (pH 9.7); gradual smooth boundary.
Bknz3-36 to 69 inches; light yellowish brown ($2.5 \mathrm{Y} 6 / 3$) loam, dark olive brown $(2.5 \mathrm{Y} 3 / 3)$ moist; moderate fine prismatic structure parting to strong fine angular blocky; very hard, very firm, slightly sticky and slightly plastic; common very fine and fine tubular pores; common fine distinct brown (7.5YR 4/4) iron concentrations; common prominent black (10YR 2/1) manganese concentrations and common prominent continuous gray (10YR 5/1) skeletans in root channels and pores; many fine carbonate filaments; strongly effervescent; 3 percent calcium carbonate equivalent; sodium adsorption ratio is 449; electrical conductivity is 27 millimhos per centimeter; very strongly alkaline (pH 9.7).

Figure 13.-Typical profile of an Ausmus soil that formed in lacustrine sediment. Salts are at a depth of 40 to 120 centimeters.

Bedrock is at a depth of more than 60 inches. Frequent or rare ponding occurs in spring. A high water table is present in spring. The particle-size control section averages 25 to 35 percent clay and 5 to 15 percent material that is coarser than very fine sand.

The A horizon has hue of 10 YR or 2.5 Y , value of 5 or 6 dry and 3 or 4 moist, and chroma of 2 or 3 . It is strongly alkaline or very strongly alkaline. The sodium adsorption ratio is 10 to 20 .

The B horizon has hue of $10 Y R$ to $5 Y$, value of 4 to 7 dry and 3 to 5 moist, and chroma of 2 or 3 . It is very strongly alkaline. The Btkn and Bkn horizons are silty clay loam or clay loam with 27 to 35 percent clay. The sodium adsorption ratio is 20 to 200 , increasing with depth. The calcium carbonate equivalent is 10 to 20 percent, decreasing with depth. Electrical conductivity is 4 to 16 millimhos per centimeter. The Bknz horizon is silt loam or loam with 20 to 27 percent clay. The sodium adsorption ratio is 300 to 500 . The calcium carbonate equivalent is 1 to 20 percent, decreasing with depth. Electrical conductivity is 16 to 32 millimhos per centimeter.

Aval Series

The Aval series consists of shallow, well drained soils that formed in cinders and eolian sand over welded tuff and basalt. The soils are on hills. Slope is 2 to 20 percent. Elevation is 4,100 to 4,700 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Ashy, frigid Lithic Xeric Haplocambids
Typical pedon of Aval very gravelly coarse sandy loam in an area of Srednic-Aval complex, 2 to 20 percent slopes; about 2,200 feet north and 1,400 feet west of the southeast corner of sec. 15, T. 29 S., R. 32 E.; Diamond quadrangle.

A-0 to 2 inches; dark grayish brown (10YR 4/2) very gravelly coarse sandy loam, very dark brown (10YR 2/2) moist; moderate very fine and fine granular structure; soft, very friable, nonsticky and nonplastic; few very fine roots; 35 percent gravel; neutral (pH 6.6); abrupt smooth boundary.
Bw1-2 to 7 inches; grayish brown (10YR 5/2) gravelly sandy loam, very dark grayish brown (10YR $3 / 2$) moist; moderate coarse and medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and few fine and medium roots; common very fine tubular pores; 25 percent gravel; slightly alkaline (pH 7.6); clear smooth boundary.
Bw2-7 to 18 inches; brown (10YR 5/3) gravelly coarse sandy loam, very dark grayish brown (10YR 3/2) moist; weak fine and medium subangular blocky structure; soft, very friable, nonsticky and slightly plastic; common very fine and few fine, medium, and coarse roots; common very fine tubular pores; 30 percent gravel and 2 percent cobbles; slightly alkaline (pH 7.7); abrupt wavy boundary.
2R-18 inches; welded tuff.
The mollic colors are due to the parent material. Thickness of the solum and depth to bedrock are 10 to 20 inches. The particle-size control section averages 15 to 35 percent rock fragments, mainly gravel-sized cinders; 5 to 18 percent clay; and 40 to 85 percent volcanic glass.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 . It is 1 to 3 percent organic matter. It is 35 to 50 percent gravel-sized cinders and 5 to 12 percent clay.

The Bw horizon is gravelly sandy loam, gravelly loam, or gravelly coarse sandy
loam. It is 0.5 to 1.0 percent organic matter. It is 15 to 35 percent gravel-sized cinders and 5 to 18 percent clay.

Baconcamp Series

The Baconcamp series consists of moderately deep, well drained soils that formed in colluvium over basalt and andesite. The soils are on mountains. Slope is 3 to 80 percent. Elevation is 5,100 to 9,700 feet. The mean annual precipitation is 14 to 40 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Loamy-skeletal, mixed Pachic Cryoborolls
Typical pedon of Baconcamp very cobbly loam in an area of Hackwood-
Baconcamp complex, 20 to 35 percent slopes; about 700 feet south and 2,300 feet east of the northwest corner of sec. 17, T. 41 S., R. 38 E.; "The V" quadrangle.

A1-0 to 4 inches; very dark grayish brown (10YR 3/2) very cobbly loam, black (10YR 2/1) moist; moderate thin platy structure parting to weak fine granular; soft, very friable, slightly sticky and nonplastic; many very fine, fine, and medium roots; many irregular and tubular pores; 20 percent gravel, 15 percent cobbles, and 5 percent stones; slightly acid (pH 6.4); gradual wavy boundary.
A2-4 to 20 inches; very dark grayish brown (10YR 3/2) gravelly loam, black (10YR 2/1) moist; weak fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, and medium roots; many irregular and tubular pores; 15 percent gravel and 5 percent cobbles; slightly acid (pH 6.4); gradual wavy boundary.
A3-20 to 35 inches; dark grayish brown (10YR 4/2) very gravelly loam, very dark grayish brown (10YR 3/2) moist; massive; soft, very friable, slightly sticky and slightly plastic; common very fine, fine, and medium roots; many irregular and tubular pores; 45 percent gravel and 5 percent cobbles; slightly acid (pH 6.4); abrupt irregular boundary.
R-35 inches; fractured basalt.
The mollic epipedon is 20 to 40 inches thick. Depth to bedrock is 20 to 40 inches. The particle-size control section averages 35 to 50 percent rock fragments, mainly gravel and cobbles, and 18 to 30 percent clay. The profile is slightly acid or neutral.

The A1 horizon is very gravelly loam, very cobbly loam, stony loam, stony clay loam, very stony loam, or very stony clay loam. It is 20 to 50 percent rock fragments and 18 to 30 percent clay.

The A2 and A3 horizons are very gravelly loam, very cobbly loam, very gravelly clay loam, or gravelly loam. They are 15 to 50 percent rock fragments and 18 to 30 percent clay.

Berdugo Series

The Berdugo series consists of very deep, well drained soils that formed in lacustrine sediment. The soils are on lake terraces. Slope is 0 to 5 percent. Elevation is 4,500 to 5,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine, montmorillonitic, mesic Xeric Paleargids
Typical pedon of Berdugo silt loam, 0 to 3 percent slopes, about 2,300 feet south and 250 feet east of the northwest corner of sec. 35, T. 34 S., R. 30 E.; Blitzen SW quadrangle.
A-0 to 1 inch; light brownish gray (10YR 6/2) silt loam, dark grayish brown (10YR

4/2) moist; moderate medium platy structure; slightly hard, friable, moderately sticky and slightly plastic; many very fine and fine and few coarse roots; common fine vesicular pores; 10 percent gravel; neutral (pH 7.2); abrupt wavy boundary.
2Bt1-1 to 4 inches; pale brown (10YR 6/3) silty clay loam, brown (10YR 4/3) moist; moderate very fine subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; common very fine and few fine and coarse roots; common very fine tubular pores; common faint clay films on faces of peds; slightly alkaline (pH 7.8); clear wavy boundary.
2Bt2-4 to 12 inches; pale brown (10YR 6/3) silty clay loam, brown (10YR 5/3) moist; moderate medium subangular blocky structure; very hard, firm, moderately sticky and moderately plastic; common very fine and fine roots; common very fine tubular pores; common faint clay films on faces of peds; moderately alkaline $(\mathrm{pH}$ 8.0); gradual wavy boundary.

3Bkq-12 to 17 inches; pale brown (10YR 6/3) silt loam, brown (10YR 4/3) moist; weak medium subangular blocky structure; extremely hard, firm and brittle, slightly sticky and slightly plastic; few very fine and fine roots; few fine tubular pores; strongly effervescent; white (10YR 8/1) carbonates in some pores; moderately alkaline (pH 8.2); gradual wavy boundary.
3BC-17 to 26 inches; pale brown (10YR 6/3) loam, brown (10YR 4/3) moist; weak medium subangular blocky structure; slightly hard, firm, nonsticky and nonplastic; few fine roots; few fine tubular pores; moderately alkaline (pH 8.2); clear wavy boundary.
4C-26 to 39 inches; pale brown (10YR 6/3) loamy sand, dark brown (10YR 3/3) moist; massive; slightly hard, friable, nonsticky and nonplastic; common fine roots; few fine tubular pores; 10 percent gravel; moderately alkaline (pH 8.2); clear smooth boundary.
5C-39 to 45 inches; pale brown (10YR 6/3) extremely gravelly sand, dark brown (10YR 3/3) moist; massive; soft, very friable, nonsticky and nonplastic; common fine roots; 75 percent gravel and 10 percent cobbles; moderately alkaline (pH 8.2); clear wavy boundary.

6C-45 to 65 inches; pale brown (10YR 6/3) gravelly sandy loam, brown (10YR 4/3) moist; massive; slightly hard, friable, nonsticky and nonplastic; few fine roots; few fine tubular pores; 20 percent gravel; moderately alkaline (pH 8.2).
The argillic horizon is 6 to 15 inches thick. Bedrock is at a depth of more than 60 inches. The particle-size control section averages 35 to 45 percent clay. Some strata below the argillic horizon are weakly cemented.

The A horizon is neutral or slightly alkaline.
The 2Bt horizon is silty clay loam, silty clay, or clay. It is slightly alkaline or moderately alkaline.

The 3Bkq and 3BC horizons are loam, clay loam, silt loam, or very fine sandy loam. They have hue of 10 YR or 2.5 Y , value of 6 to 8 dry and 3 or 4 moist, and chroma of 2 to 4 moist or dry.

The C horizon is stratified loam, loamy sand, gravelly sandy loam, or extremely gravelly sand. It has hue of 10 YR or 2.5 Y , value of 6 to 8 dry and 3 or 4 moist, and chroma of 2 to 4 moist or dry.

Bigfrog Series

The Bigfrog series consists of soils that are very shallow and shallow to a duripan and are well drained. These soils formed in old alluvium derived from mixed igneous rock. They are on fan terraces. Slope is 8 to 40 percent. Elevation is 4,200 to 5,600 feet. The mean annual precipitation is 7 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Loamy, mixed, mesic, shallow Xeric Argidurids
Typical pedon of Bigfrog very cobbly sandy clay loam in an area of Bigfrog-Brock complex, 8 to 40 percent slopes; about 2,000 feet south and 1,800 feet west of the northeast corner of sec. 12, T. 39 S., R. 34 E.; Ladycomb Peak quadrangle.
A-0 to 3 inches; brown (10YR 5/3) very cobbly sandy clay loam, dark brown (10YR 4/3) moist; weak fine granular structure; slightly hard, very friable, slightly sticky and nonplastic; many very fine and common fine roots; many very fine and fine irregular tubular pores; 30 percent gravel and 25 percent cobbles; slightly alkaline (pH 7.6); clear smooth boundary.
Bt1-3 to 10 inches; brown (10YR 5/3) gravelly sandy clay loam, dark brown (10YR 4/3) moist; weak medium subangular blocky structure parting to weak fine subangular blocky; slightly hard, very friable, slightly sticky and slightly plastic; many very fine and common fine roots; common very fine and few fine irregular tubular pores; few faint clay films on faces of peds; 30 percent gravel; slightly alkaline (pH 7.6); clear smooth boundary.
Bt2-10 to 18 inches; pale brown (10YR 6/3) gravelly sandy clay loam, brown (10YR $4 / 3$) moist; moderate medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine and common fine roots; common very fine and fine irregular tubular pores; few faint clay films on faces of peds; 25 percent gravel and 5 percent cobbles; slightly alkaline (pH 7.8); abrupt smooth boundary.
Bkqm1-18 to 32 inches; extremely gravelly indurated duripan; massive; extremely hard, very rigid; violently effervescent with disseminated carbonates; clear smooth boundary.
Bkqm2—32 to 38 inches; extremely gravelly indurated duripan; massive; extremely hard, very rigid; slightly effervescent with disseminated carbonates; abrupt smooth boundary.
C-38 to 60 inches; stratified very gravelly sandy loam and very gravelly loamy sand.
Bedrock is at a depth of more than 60 inches. Thickness of the solum and depth to the duripan are 8 to 18 inches. The particle-size control section averages 15 to 35 percent rock fragments, mainly gravel, and 25 to 35 percent clay.

The A horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 3 or 4 moist or dry. It is 35 to 60 percent rock fragments and 20 to 30 percent clay. It is neutral or slightly alkaline.

The Bt horizon has hue of 7.5 YR or 10YR. It is gravelly clay loam or gravelly sandy clay loam. It is 15 to 35 percent rock fragments and 25 to 35 percent clay. It is slightly alkaline or moderately alkaline.

The Bkqm horizon is 6 to 20 inches thick. It has hue of 7.5 YR or 10YR. It is slightly alkaline or moderately alkaline.

The C horizon is stratified very gravelly sandy loam and very gravelly loamy sand. It is 35 to 60 percent rock fragments and 5 to 25 percent clay.

Bocker Series

The Bocker series consists of very shallow, well drained soils that formed in colluvium and residuum derived from basalt, andesite, rhyolite, and welded tuff. The soils are on hills and plateaus. Slope is 5 to 60 percent. Elevation is 4,600 to 6,600 feet. The mean annual precipitation is 12 to 16 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Lithic Haploxerolls
Typical pedon of Bocker extremely stony loam in an area of Bocker-Westbutte
complex, 5 to 25 percent slopes; about 2,700 feet north and 1,200 feet east of the southwest corner of sec. 16, T. 34 S., R. $32^{3} / 4$ E.; Ankle Creek quadrangle.

A—0 to 3 inches; pale brown (10YR 6/3) extremely stony loam, very dark grayish brown (10YR $3 / 2$) moist; moderate very thick platy structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine and fine roots; many very fine irregular pores and common very fine and fine tubular and vesicular pores; 5 percent gravel, 15 percent cobbles, and 45 percent stones; slightly acid (pH 6.2); abrupt smooth boundary.

Bw-3 to 7 inches; brown (10YR 5/3) very stony loam, very dark grayish brown (10YR $3 / 2$) moist; weak medium prismatic structure parting to moderate coarse angular blocky; slightly hard, very friable, slightly sticky and slightly plastic; few very fine and fine roots; many very fine irregular pores, common very fine tubular pores, and few very fine vesicular pores; 5 percent gravel, 15 percent cobbles, and 30 percent stones; slightly acid (pH 6.2); abrupt wavy boundary.
R-7 inches; basalt.
The mollic epipedon is 4 to 10 inches thick. Thickness of the solum and depth to bedrock are 4 to 10 inches. The particle-size control section averages 35 to 70 percent rock fragments, mainly cobbles and stones, and 20 to 27 percent clay. The profile is slightly acid or neutral.

The A horizon is 60 to 70 percent rock fragments and 20 to 27 percent clay.
The Bw horizon is very stony loam or extremely stony loam. It is 35 to 70 percent rock fragments and 20 to 27 percent clay.

Boravall Series

The Boravall series consists of very deep, poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 3 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 7 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine, montmorillonitic (calcareous), mesic Aeric Halaquepts

Typical pedon of Boravall silty clay loam in an area of Boravall-Playas complex, 0 to 3 percent slopes; about 2,600 feet south and 1,000 feet west of the northeast corner of sec. 22, T. 37 S., R. 33 E.; Borax Lake quadrangle.

Aknz-0 to 9 inches; light gray (10YR 7/1) silty clay loam, dark grayish brown (10YR 4/2) moist; weak medium subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, medium, and coarse roots; many very fine irregular pores; strongly effervescent with disseminated carbonates; sodium adsorption ratio is 674; very strongly alkaline (pH 10.5); clear wavy boundary.
Bkn-9 to 19 inches; light gray (10YR 7/2) silty clay, dark grayish brown (10YR 4/2) moist; moderate fine subangular blocky structure; soft, very friable, moderately sticky and moderately plastic; common very fine, fine, medium, and coarse roots; many very fine irregular pores; strongly effervescent with disseminated carbonates; 4 percent calcium carbonate equivalent; electrical conductivity is 2 millimhos per centimeter; sodium adsorption ratio is 30 ; very strongly alkaline (pH $9.4)$; abrupt wavy boundary.
BCkn-19 to 43 inches; very pale brown (10YR 7/3) silty clay loam, brown (10YR 4/3) moist; massive; slightly hard, friable, moderately sticky and moderately plastic; few medium roots; common very fine irregular pores; strongly effervescent with disseminated carbonates; 14 percent calcium carbonate equivalent; electrical
conductivity is 2.5 millimhos per centimeter; sodium adsorption ratio is 20; strongly alkaline (pH 8.6); abrupt wavy boundary.
2Bkg-43 to 50 inches; light gray ($5 \mathrm{Y} 7 / 1$) silty clay loam, greenish gray (5Y 5/1) moist; massive; soft, very friable, moderately sticky and moderately plastic; common medium and coarse roots; many very fine irregular and tubular pores; strongly effervescent with disseminated carbonates; moderately alkaline (pH 8.0); abrupt wavy boundary.
$2 \mathrm{Cg}-50$ to 60 inches; light gray (5Y 7/1) silty clay loam, very dark gray (5Y 3/1) moist; massive; soft, very friable, moderately sticky and moderately plastic; common medium and coarse roots; many fine irregular and tubular pores; common fine prominent yellowish brown (10YR 5/8) and few fine prominent yellow (10YR 8/8) iron concentrations; moderately alkaline (pH 8.0).

The solum is 30 to 40 inches thick. Bedrock is at a depth of more than 60 inches. Calcium carbonate is disseminated throughout the profile. Frequent ponding occurs in winter and spring. A high water table is present throughout the year. The particle-size control section averages 35 to 45 percent clay.

The A horizon is 27 to 40 percent clay. The calcium carbonate equivalent is 1 to 5 percent. The sodium adsorption ratio is 100 to 200. Electrical conductivity is 16 to 32 millimhos per centimeter.

The B and BC horizons are silty clay loam or silty clay with 35 to 50 percent clay. They are strongly alkaline or very strongly alkaline. The sodium adsorption ratio is 13 to 50 . Electrical conductivity is
2 to 4 millimhos per centimeter. The calcium carbonate equivalent is 5 to 15 percent.
The 2B and 2C horizons have hue of 10 YR or 5 Y . They are silt loam or silty clay loam with 20 to 40 percent clay. They are moderately alkaline or strongly alkaline. The sodium adsorption ratio is 5 to 13 .

Borobey Series

The Borobey series consists of very deep, somewhat excessively drained soils that formed in alluvium derived from mixed igneous rock and volcanic ash. The soils are on stream terraces. Slope is 2 to 15 percent. Elevation is 4,400 to 5,300 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Ashy, frigid Vitritorrandic Haploxerolls

Typical pedon of Borobey sandy loam, 2 to 15 percent slopes, about 2,500 feet north and 1,800 feet west of the southeast corner of sec. 5, T. 28 S., R. 25 E.; Little Juniper Mountain quadrangle.

A-0 to 3 inches; brown (10YR 5/3) sandy loam, dark brown (10YR 3/3) moist; weak medium granular structure; soft, very friable, nonsticky and nonplastic; many very fine roots; 5 percent gravel-sized pumice fragments; slightly alkaline (pH 7.8); clear wavy boundary.
AB—3 to 11 inches; brown (10YR 5/3) gravelly loam, dark brown (10YR 3/3) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and few fine roots; many very fine tubular pores; 5 percent cobble-sized pumice fragments and 10 percent gravel-sized pumice fragments; slightly alkaline (pH 7.8); gradual wavy boundary.
Bq1-11 to 23 inches; brown (10YR 5/3) sandy loam, brown (10YR 4/3) moist; moderate medium subangular blocky structure; hard, firm and brittle, nonsticky and nonplastic; common very fine roots; few fine tubular pores; 5 percent cobble-sized pumice fragments; slightly alkaline (pH 7.8); clear wavy boundary. Bq2—23 to 27 inches; brown (10YR 5/3) gravelly loamy sand, brown (10YR 4/3)
moist; massive; hard, firm and brittle, nonsticky and nonplastic; few very fine and fine roots; few fine tubular pores; 5 percent cobble-sized pumice fragments and 15 percent gravel-sized pumice fragments; slightly alkaline (pH 7.8); gradual wavy boundary.
C-27 to 60 inches; light yellowish brown (10YR 6/4) gravelly loamy sand, dark yellowish brown (10YR 4/4) moist; single grain; loose, nonsticky and nonplastic; few fine roots; few fine tubular pores; 5 percent cobble-sized pumice fragments and 15 percent gravel-sized pumice fragments; slightly alkaline (pH 7.8).
Bedrock is at a depth of more than 60 inches. Depth to the hard, firm and brittle layer is 10 to 30 inches. The profile is 5 to 30 percent ash and pumice. It is 5 to 25 percent rock fragments, mainly gravel-sized pumice fragments.

The Borobey soils in this survey area are a taxadjunct to the Borobey series because the family particle-size class is coarse-loamy.

Boulder Lake Series

The Boulder Lake series consists of very deep, somewhat poorly drained soils that formed in lacustrine sediment. The soils are in closed depressions on plateaus and on lake plains. Slope is 0 to 2 percent. Elevation is 4,500 to 6,000 feet. The mean annual precipitation is 8 to 16 inches, and the mean annual air temperature is 40 to 45 degrees F.

Taxonomic classification: Fine, montmorillonitic, frigid Xeric Epiaquerts

Typical pedon of Boulder Lake clay, 0 to 2 percent slopes, about 1,800 feet south and 2,400 feet west of the northeast corner of sec. 11, T. 34 S., R. 32 E.; Roaring Springs quadrangle.

A—0 to 1 inch; gray (10YR 5/1) clay, dark grayish brown (10YR 4/2) moist; strong fine granular structure; hard, friable, moderately sticky and moderately plastic; common very fine roots; common very fine irregular pores; slightly alkaline (pH 7.4); abrupt wavy boundary.

Bw-1 to 10 inches; grayish brown (10YR 5/2) clay, very dark brown (10YR 2/2) moist; weak very coarse prismatic structure parting to strong medium angular blocky; extremely hard, friable, very sticky and very plastic; many very fine and common fine roots; few very fine tubular pores; slightly alkaline (pH 7.4); gradual wavy boundary.
Bss1-10 to 24 inches; grayish brown (10YR 5/2) clay, very dark grayish brown (10YR 3/2) moist; few fine distinct yellowish brown (10YR 5/6) mottles; weak very coarse prismatic structure parting to moderate coarse subangular blocky; very hard, very friable, very sticky and very plastic; few fine roots; few very fine tubular pores; common intersecting slickensides; slightly alkaline (pH 7.4); clear wavy boundary.
Bss2-24 to 42 inches; grayish brown (10YR 5/2) clay, very dark grayish brown (10YR 3/2) moist; common medium distinct yellowish brown (10YR 5/6) mottles; massive; very hard, very friable, very sticky and very plastic; few very fine tubular pores; few intersecting slickensides; slightly alkaline (pH 7.6); clear wavy boundary.
Bk-42 to 62 inches; brown (10YR 5/3) silty clay loam, dark grayish brown (10YR 4/2) moist; massive; hard, friable, moderately sticky and moderately plastic; few very fine tubular pores; common medium distinct yellowish brown (10YR 5/6) iron concentrations; few thin filaments of carbonates; slightly effervescent; moderately alkaline (pH 8.0).

Bedrock is at a depth of more than 60 inches. The solum is 24 to 60 inches thick.

Frequent ponding occurs in spring. A high water table is present late in winter, in spring, and early in summer. The particle-size control section averages 40 to 60 percent clay.

The A horizon has hue of 10YR or 2.5 Y . It is clay loam or clay with 30 to 60 percent clay. It is neutral or slightly alkaline.

The Bw and Bss horizons are silty clay or clay with 40 to 60 percent clay. They are neutral or slightly alkaline.

The Bk horizon is silty clay loam or clay loam with 35 to 40 percent clay. It is slightly alkaline or moderately alkaline.

Brabble Series

The Brabble series consists of soils that are moderately deep to duripan and are well drained. The soils formed in old alluvium over fractured basalt and andesite. They are on hills. Slope is 5 to 25 percent. Elevation is 4,800 to 5,600 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-loamy, mixed, mesic Xeric Haplodurids
Typical pedon of Brabble gravelly sandy clay loam in an area of BrabbleCalderwood complex, 5 to 25 percent slopes; about 800 feet north and 1,900 feet east of the southwest corner of sec. 18, T. 37 S., R. 35 E.; Red Lookout Butte quadrangle.

A1-0 to 3 inches; grayish brown (10YR 5/2) gravelly sandy clay loam, very dark grayish brown (10YR 3/2) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; many very fine and fine roots; many very fine irregular pores; 20 percent gravel and 5 percent cobbles; neutral (pH 7.2); clear wavy boundary.
A2-3 to 9 inches; light brownish gray (10YR 6/2) sandy clay loam, very dark grayish brown (10YR 3/2) moist; moderate medium platy structure; soft, very friable, slightly sticky and nonplastic; many very fine and fine roots; many very fine vesicular, irregular, and tubular pores; 10 percent gravel; slightly alkaline (pH 7.4); gradual wavy boundary.
Bw1-9 to 18 inches; yellowish brown (10YR 5/4) clay loam, dark brown (10YR 3/3) moist; weak medium platy structure parting to moderate medium subangular blocky; slightly hard, firm, slightly sticky and slightly plastic; many very fine and fine roots; many very fine irregular and tubular pores; 10 percent gravel; slightly alkaline (pH 7.8); gradual wavy boundary.
Bw2-18 to 26 inches; light yellowish brown (10YR 6/4) loam, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, friable, nonsticky and nonplastic; common very fine and fine roots; many very fine irregular pores; 10 percent gravel; slightly alkaline (pH 7.8); clear wavy boundary.
Bk-26 to 33 inches; pale brown (10YR 6/3) loam, yellowish brown (10YR 5/4) moist; massive; slightly hard, friable, nonsticky and nonplastic; few very fine and fine roots; many very fine irregular pores; strongly effervescent with many filaments and soft masses of carbonates; 10 percent gravel; moderately alkaline (pH 7.9); clear wavy boundary.
2Bkqm-33 to 38 inches; indurated duripan; extremely hard; strongly effervescent; 10 percent gravel; clear wavy boundary.
2R-38 inches; fractured andesite.
Depth to bedrock is 30 to 50 inches. Depth to the duripan is 20 to 40 inches. Calcium carbonate is at a depth of 20 to 30 inches. The particle-size control section averages 5 to 25 percent rock fragments, mainly gravel, and 20 to 35 percent clay.

The A horizon is 5 to 30 percent rock fragments and 20 to 35 percent clay. It is neutral or slightly alkaline.

The Bw horizon is loam, clay loam, or gravelly clay loam. It is 5 to 20 percent rock fragments and 20 to 35 percent clay.

The Bk horizon is moderately alkaline or strongly alkaline.
The 2Bkqm horizon is 3 to 10 inches thick. It is 5 to 20 percent rock fragments.

Brace Series

The Brace series consists of soils that are moderately deep to a duripan and are well drained. The soils formed in colluvium and old alluvium over basalt, welded tuff, ashflow tuff, and andesite. They are on hills and plateaus. Slope is 2 to 20 percent. Elevation is 4,100 to 5,800 feet. The mean annual precipitation is 8 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-loamy, mixed, frigid Xeric Argidurids
Typical pedon of Brace stony loam in an area of Raz-Brace complex, 2 to 20 percent slopes; about 300 feet north and 2,300 feet east of the southwest corner of sec. 21, T. 38 S., R. 32 E.; Square Mountain quadrangle.
A—0 to 6 inches; pale brown (10YR 6/3) stony loam, dark brown (10YR 3/3) moist; weak medium and coarse subangular blocky structure; soft, very friable, nonsticky and nonplastic; few very fine and fine roots; many very fine, common fine, and few medium irregular and vesicular pores; 10 percent gravel, 5 percent cobbles, and 5 percent stones; slightly alkaline (pH 7.5); gradual wavy boundary.
Bt-6 to 13 inches; pale brown (10YR 6/3) clay loam, dark yellowish brown (10YR 3/4) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine, fine, and medium roots; many very fine irregular pores; common distinct clay films on faces of peds; 5 percent gravel; slightly alkaline (pH 7.6); clear wavy boundary.
Bq-13 to 21 inches; very pale brown (10YR 7/4) loam, dark yellowish brown (10YR 3/6) moist; massive; very hard, firm and brittle, nonsticky and nonplastic; few very fine roots; common very fine irregular pores and few very fine tubular pores; 5 percent gravel; slightly alkaline (pH 7.8); clear smooth boundary.
Bkq-21 to 32 inches; yellow (10YR 7/6) loam, yellowish brown (10YR 5/6) moist; massive; very hard, firm and brittle, nonsticky and nonplastic; few very fine roots; common very fine irregular and tubular pores; slightly effervescent with disseminated carbonates; 5 percent gravel; moderately alkaline (pH 8.2); clear smooth boundary.
Bkqm-32 to 36 inches; indurated duripan; extremely hard; strongly effervescent with disseminated carbonates; 20 percent gravel; clear wavy boundary.
2R-36 inches; fractured basalt.
Depth to bedrock is 22 to 40 inches. The duripan is at a depth of 20 to 37 inches. Calcium carbonate is at a depth of 21 to 30 inches. The particle-size control section averages 5 to 15 percent rock fragments, mainly gravel, and 18 to 35 percent clay. The Bq horizon is absent in some pedons.

The A horizon is cobbly fine sandy loam, stony loam, or very stony loam. It is 15 to 50 percent rock fragments and 10 to 27 percent clay. It is neutral or slightly alkaline.

The Bt horizon is sandy clay loam, loam, or clay loam. It is 5 to 15 percent rock fragments and 20 to 35 percent clay.

The Bq and Bkq horizons are sandy loam or loam. They are 5 to 15 percent rock fragments and 15 to 25 percent clay. They are slightly alkaline or moderately alkaline.

The Bkqm horizon is 2 to 10 inches thick. It is 20 to 40 percent rock fragments.

Brezniak Series

The Brezniak series consists of very shallow and shallow, well drained soils that formed in colluvium and residuum derived from basalt, andesite, and welded tuff. The soils are on plateaus and mountains. Slope is 2 to 65 percent. Elevation is 3,600 to 6,800 feet. The mean annual precipitation is 8 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Clayey, montmorillonitic, mesic Lithic Argixerolls
Typical pedon of Brezniak cobbly loam in an area of Felcher-Rock outcropBrezniak complex, 30 to 65 percent south slopes; about 1,200 feet south and 1,200 feet west of the northeast corner of sec. 27, T. $35^{1 ⁄ 2}$ S., R. $32^{1 ⁄ 2}$ E.; Skull Creek Butte quadrangle.
A-0 to 3 inches; brown (10YR 5/3) cobbly loam, dark brown (10YR 3/3) moist; weak and moderate medium platy structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; many very fine and fine tubular and irregular pores; 10 percent gravel, 15 percent cobbles, and 5 percent stones; neutral (pH 7.2); abrupt smooth boundary.
Bt1-3 to 7 inches; brown (10YR 4/3) clay, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; hard, firm, moderately sticky and moderately plastic; few very fine roots; many very fine and fine tubular and irregular pores; common faint clay films on faces of peds; neutral (pH 7.2); clear smooth boundary.
Bt2-7 to 10 inches; reddish yellow (7.5YR 6/6) clay, strong brown (7.5YR 4/6) moist; moderate medium angular blocky structure; extremely hard, firm, moderately sticky and moderately plastic; few very fine roots; many very fine and fine tubular and irregular pores; common distinct clay films on faces of peds; 10 percent stones; neutral (pH 6.8); abrupt wavy boundary.
R-10 inches; fractured basalt.
The mollic epipedon is 7 to 10 inches thick. Thickness of the solum and depth to bedrock are 7 to 12 inches. The particle-size control section averages
5 to 15 percent rock fragments, mainly gravel, and 35 to 45 percent clay.
The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 dry or moist. It is 18 to 27 percent clay.

The Bt horizon has hue of 10 YR or 7.5 YR , value of 4 to 6 dry and 2 to 4 moist, and chroma of 3 to 6 dry or moist. It is clay or clay loam with 35 to 50 percent clay.

Brock Series

The Brock series consists of soils that are shallow to a duripan and are well drained. The soils formed in old alluvium derived from mixed igneous rock. They are on fan terraces. Slope is 8 to 40 percent. Elevation is 4,200 to 5,600 feet. The mean annual precipitation is 7 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, mesic, shallow Xeric Argidurids
Typical pedon of Brock very gravelly sandy loam in an area of Bigfrog-Brock complex, 8 to 40 percent slopes; about 1,600 feet south and 1,000 feet east of the northwest corner of sec. 14, T. 38 S., R. 34 E.; Fields quadrangle.

A-0 to 3 inches; light brownish gray (10YR 6/2) very gravelly sandy loam, brown (10YR 4/3) moist; weak thin platy structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; few very fine irregular and tubular
pores; 40 percent gravel, 10 percent cobbles, and 5 percent stones; slightly alkaline (pH 7.8); abrupt smooth boundary.
Bt-3 to 7 inches; light brownish gray (10YR 6/2) very gravelly sandy clay loam, brown (10YR 4/3) moist; moderate fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; few very fine and common fine irregular and tubular pores; 25 percent gravel, 10 percent cobbles, and 5 percent stones; few faint clay films on faces of peds; moderately alkaline (pH 8.1); abrupt smooth boundary.
Bq-7 to 10 inches; pale brown (10YR 6/3) very gravelly sandy loam, brown (10YR $5 / 3$) moist; weak fine subangular blocky structure parting to weak fine granular; slightly hard, very friable, slightly sticky and nonplastic; few very fine and fine roots; few very fine and common fine irregular and tubular pores; 30 percent gravel and 10 percent cobbles; discontinuous weak silica cementation; moderately alkaline (pH 8.1); abrupt wavy boundary.
Bkqm-10 to 16 inches; extremely gravelly indurated duripan; massive; extremely hard, very rigid; strongly effervescent with common fine disseminated carbonates; abrupt smooth boundary.
C-16 to 60 inches; stratified very gravelly sandy loam and very gravelly loamy sand; moderately alkaline (pH 8.1).
Bedrock is at a depth of more than 60 inches. Thickness of the solum and depth to the duripan are 8 to 18 inches. The particle-size control section averages 40 to 70 percent rock fragments, mainly gravel, and 20 to 30 percent clay.

The A horizon is 35 to 60 percent rock fragments and 10 to 20 percent clay. It is slightly alkaline or moderately alkaline.

The Bt horizon is very gravelly sandy clay loam or extremely gravelly sandy clay loam. It is 35 to 70 percent rock fragments and 18 to 32 percent clay.

The Bkqm horizon is 4 to 12 inches thick.
The C horizon is stratified very gravelly loamy sand to very gravelly sandy loam. It is 35 to 60 percent rock fragments and 5 to 20 percent clay.

Bruncan Series

The Bruncan series consists of soils that are shallow to a duripan and are well drained. The soils formed in old alluvium over basalt. They are on plateaus. Slope is 0 to 5 percent. Elevation is 4,700 to 5,800 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Loamy, mixed, mesic, shallow Xeric Argidurids
Typical pedon of Bruncan cobbly fine sandy loam in an area of Bruncan complex, 0 to 5 percent slopes; about 660 feet south and 2,600 feet west of the northeast corner of sec. 20, T. 41 S., R. 33 E.; Oregon End Table quadrangle.

A—0 to 5 inches; light gray (10YR 7/2) cobbly fine sandy loam, dark grayish brown (10YR 4/2) moist; weak thick platy structure; soft, very friable, slightly sticky and slightly plastic; few very fine and fine roots; many very fine and fine and few medium vesicular pores; 5 percent gravel, 10 percent cobbles, and 2 percent stones; moderately alkaline (pH 8.0); abrupt smooth boundary.
Bt1—5 to 10 inches; very pale brown (10YR 7/4) clay loam, yellowish brown (10YR 5/4) moist; moderate medium subangular blocky structure parting to moderate fine subangular blocky; slightly hard, very friable, moderately sticky and moderately plastic; few very fine, fine, and medium roots; few very fine and fine irregular pores; many faint clay films on faces of peds and lining pores; 5 percent gravel; slightly alkaline (pH 7.8); clear smooth boundary.
Bt2-10 to 15 inches; light brown (7.5YR 6/4) clay loam, brown (7.5YR 5/4) moist;
weak medium platy structure parting to moderate fine subangular blocky; hard, firm, moderately sticky and moderately plastic; few very fine roots; few very fine vesicular, tubular, and irregular pores; 10 percent durinodes; common faint clay films on faces of peds and lining pores; 5 percent gravel; slightly alkaline (pH 7.8); clear broken boundary.
Bkqm-15 to 17 inches; pink (7.5YR 8/4) indurated duripan; massive; extremely hard, very rigid; strongly effervescent with disseminated carbonates; abrupt smooth boundary.
2R-17 inches; basalt.
The solum is 10 to 20 inches thick. Depth to bedrock is 13 to 30 inches. The duripan is at a depth of 11 to 20 inches. The particle-size control section averages 5 to 25 percent rock fragments, mainly gravel, and 20 to 30 percent clay.

The A horizon is 1 to 5 inches thick. It is 15 to 30 percent rock fragments and 10 to 20 percent clay. It is neutral to moderately alkaline.

The Bt horizon has hue of 7.5YR or 10YR. It is loam, clay loam, or gravelly sandy clay loam. It is 5 to 25 percent rock fragments and 20 to 30 percent clay. It is slightly alkaline or moderately alkaline.

The Bkqm horizon is 1 to 12 inches thick.

Brunzell Series

The Brunzell series consists of very deep, well drained soils that formed in alluvium derived from mixed igneous rock. The soils are in drainageways. Slope is 0 to 2 percent. Elevation is 4,600 to 5,000 feet. The mean annual precipitation is 14 to 16 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Typic Haploxerolls
Typical pedon of Brunzell gravelly loam, 0 to 2 percent slopes, about 2,000 feet north and 1,600 feet west of the southeast corner of sec. 25, T. 22 S., R. 27 E.; Egypt Canyon quadrangle.
A1-0 to 2 inches; grayish brown (10YR 5/2) gravelly loam, very dark brown (10YR $2 / 2$) moist; weak medium platy structure parting to moderate medium granular; soft, very friable, nonsticky and nonplastic; common very fine and fine and few medium roots; common very fine, fine, and medium irregular pores; 20 percent gravel; neutral (pH 6.8); clear smooth boundary.
A2-2 to 11 inches; brown (10YR 5/3) gravelly loam, dark brown (10YR 3/3) moist; moderate medium granular structure; soft, very friable, slightly sticky and slightly plastic; common very fine and fine and few medium and coarse roots; common very fine and fine and few medium irregular pores; 10 percent gravel and 5 percent cobbles; neutral (pH 7.0); gradual smooth boundary.
Bw1-11 to 18 inches; brown (10YR 5/3) gravelly sandy clay loam, dark brown (10YR $3 / 3$) moist; moderate medium subangular blocky structure parting to weak fine angular blocky; slightly hard, friable, slightly sticky and slightly plastic; few very fine and fine and common medium roots; few very fine, fine, and medium irregular pores; 20 percent gravel and 5 percent cobbles; neutral (pH 7.2); clear smooth boundary.
Bw2-18 to 30 inches; yellowish brown (10YR 5/4) very gravelly sandy clay loam, dark yellowish brown (10YR 3/4) moist; weak medium subangular blocky structure parting to weak fine angular blocky; slightly hard, friable, moderately sticky and slightly plastic; few very fine, fine, medium, and coarse roots; few very fine, fine, and medium irregular pores; 40 percent gravel, 10 percent cobbles, and 5 percent stones; neutral (pH 7.3); clear wavy boundary.
2C1-30 to 47 inches; light yellowish brown (10YR 6/4) extremely gravelly loamy
coarse sand, dark yellowish brown (10YR 4/4) moist; massive; soft, very friable, nonsticky and nonplastic; few very fine, fine, and medium roots; common very fine, fine, and medium irregular pores; 55 percent gravel, 15 percent cobbles, and 5 percent stones; slightly alkaline (pH 7.4); gradual wavy boundary.
2C2-47 to 62 inches; pale brown (10YR 6/3) extremely gravelly loamy coarse sand, brown (10YR 4/3) moist; massive; soft, very friable, nonsticky and nonplastic; few fine and medium roots; few very fine and fine irregular pores; 55 percent gravel, 15 percent cobbles, and 5 percent stones; slightly alkaline (pH 7.4).
The mollic epipedon is 10 to 20 inches thick. Depth to sand and gravel (2 C horizon) is 25 to 40 inches. Bedrock is at a depth of more than 60 inches. The particle-size control section averages 35 to 60 percent rock fragments, mainly gravel, and 20 to 30 percent clay.

The A horizon is 15 to 30 percent rock fragments and 18 to 27 percent clay.
The Bw horizon is gravelly sandy clay loam, very gravelly sandy clay loam, or very gravelly clay loam. It is 25 to 60 percent rock fragments and 20 to 30 percent clay.

The 2C horizon is very gravelly sandy loam, very gravelly loamy coarse sand, or extremely gravelly loamy coarse sand. It is 40 to 85 percent rock fragments and 5 to 18 percent clay. It is neutral or slightly alkaline.

Bucklake Series

The Bucklake series consists of moderately deep, well drained soils that formed in colluvium and residuum derived from welded tuff, rhyolite, basalt, and andesite. The soils are on hills. Slope is 20 to 50 percent. Elevation is 3,400 to 4,200 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine, montmorillonitic, mesic Aridic Argixerolls
Typical pedon of Bucklake very stony clay loam, 20 to 50 percent north slopes, about 2,100 feet north and 200 feet west of the southeast corner of sec. 14, T. 23 S., R. 36 E.; Warm Springs Creek quadrangle.

A-0 to 2 inches; brown (10YR 5/3) very stony clay loam, dark brown (10YR 3/3) moist; weak medium platy structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine roots; common very fine vesicular pores; 20 percent gravel, 10 percent cobbles, and 15 percent stones; slightly alkaline (pH 7.6); clear smooth boundary.

Bt1-2 to 16 inches; brown (10YR 4/3) gravelly clay, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; hard, firm, moderately sticky and slightly plastic; many very fine roots; few very fine irregular pores; common distinct clay films on faces of peds; 20 percent gravel; slightly alkaline (pH 7.6); clear smooth boundary.
Bt2-16 to 31 inches; yellowish brown (10YR 5/6) gravelly clay loam, dark yellowish brown (10YR $3 / 6$) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine roots; few very fine irregular pores; few faint clay films on faces of peds; 25 percent gravel; slightly alkaline (pH 7.7); clear smooth boundary.
R-31 inches; welded tuff.
The mollic epipedon is 10 to 18 inches thick. Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 5 to 30 percent rock fragments, mainly gravel, and 35 to 50 percent clay.

The A horizon is very cobbly loam or very stony clay loam. It is 35 to 50 percent rock fragments and 20 to 30 percent clay.

The Bt horizon is clay, gravelly clay, or gravelly clay loam. It is 5 to 30 percent rock fragments and 35 to 50 percent clay.

Buckwilder Series

The Buckwilder series consists of moderately deep, well drained soils that formed in colluvium and residuum derived from basalt and andesite. The soils are on mountains and plateaus. Slope is 3 to 35 percent. Elevation is 6,000 to 7,200 feet. The mean annual precipitation is 12 to 25 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Very-fine, montmorillonitic Argic Vertic Cryoborolls
Typical pedon of Buckwilder very cobbly clay loam in an area of LeemorrisBuckwilder complex, 15 to 35 percent slopes; about 1,500 feet south and 1,000 feet west of the northeast corner of sec. 12, T. 40 S., R. 34 E.; Van Horn Basin quadrangle.

A-0 to 8 inches; grayish brown (10YR 5/2) very cobbly clay loam, very dark grayish brown (10YR 3/2) moist; weak fine and medium granular structure; soft, very friable, slightly sticky and slightly plastic; common very fine and fine roots; many very fine tubular and irregular pores; 25 percent gravel and 20 percent cobbles; slightly acid (pH 6.2); abrupt wavy boundary.
2Bt1-8 to 12 inches; brown (10YR 4/3) clay, dark brown (10YR 3/3) moist; strong medium prismatic structure; very hard, very firm, moderately sticky and very plastic; few very fine and fine roots; common very fine tubular and irregular pores; common distinct clay films on faces of peds; 5 percent gravel; neutral (pH 6.8); gradual smooth boundary.
2Bt2-12 to 21 inches; brown (10YR 4/3) clay, dark brown (10YR 3/3) moist; strong medium prismatic structure; very hard, very firm, moderately sticky and very plastic; few very fine and fine roots; common very fine tubular and irregular pores; common distinct clay films on faces of peds; 5 percent gravel; neutral (pH 7.2); gradual smooth boundary.
2Btk-21 to 27 inches; dark yellowish brown (10YR 4/4) cobbly clay, brown (10YR $4 / 3$) moist; moderate coarse prismatic structure; very hard, very firm, moderately sticky and very plastic; few very fine roots; common very fine tubular and irregular pores; common distinct clay films on faces of peds; strongly effervescent with secondary carbonates on rock fragments; 10 percent gravel and 10 percent cobbles; moderately alkaline (pH 8.2); clear smooth boundary.
2R-27 inches; fractured basalt; violently effervescent with secondary carbonates along fractures

The mollic epipedon is 16 to 30 inches thick. Thickness of the solum and depth to bedrock are 20 to 40 inches. Depth to the claypan is 6 to 10 inches. Depth to secondary carbonates is 16 to 30 inches. The particle-size control section averages 5 to 25 percent rock fragments, mainly gravel and cobbles, and 60 to 75 percent clay.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 dry or moist. It is 30 to 40 percent clay and 35 to 60 percent rock fragments. It is 2 to 4 percent organic matter.

The 2 Bt horizon has value of 4 or 5 dry and chroma of 3 or 4 dry. It is 5 to 15 percent rock fragments. It is 1 to 2 percent organic matter.

The 2Btk horizon has value of 4 or 5 dry and 3 or 4 moist, and it has chroma of 3 or 4 dry or moist. It is clay or cobbly clay. It is 10 to 25 percent rock fragments. It is slightly alkaline or moderately alkaline.

Cagle Series

The Cagle series consists of moderately deep, well drained soils that formed in residuum and colluvium derived from tuffaceous sedimentary rock and diatomaceous earth. The soils are on hills. Slope is 20 to 40 percent. Elevation is 3,400 to 4,500 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine, montmorillonitic, mesic Aridic Argixerolls
Typical pedon of Cagle very stony clay loam in an area of Mahoon-Cagle complex, 10 to 40 percent slopes; about 2,100 feet north and 2,000 feet east of the southwest corner of sec. 17, T. 21 S., R. 36 E.; Upton Mountain quadrangle.

A-0 to 4 inches; brown (10YR 5/3) very stony clay loam, dark brown (10YR 3/3) moist; moderate medium platy structure parting to weak thin platy; hard, friable, moderately sticky and moderately plastic; common very fine and fine and few medium roots; common very fine and fine and few medium vesicular pores; 15 percent gravel, 10 percent cobbles, and 10 percent stones; slightly alkaline (pH 7.4); abrupt smooth boundary.
Bt1-4 to 12 inches; brown (10YR 5/3) clay, dark brown (10YR 3/3) moist; moderate medium prismatic structure parting to moderate medium angular blocky; very hard, very firm, moderately sticky and moderately plastic; common very fine and few fine and medium roots; common very fine, fine, and medium irregular and tubular pores; common distinct clay films on faces of peds; 5 percent gravel; slightly alkaline (pH 7.6); clear smooth boundary.
Bt2-12 to 24 inches; yellowish brown (10YR 5/4) clay, dark yellowish brown (10YR $3 / 4$) moist; strong medium prismatic structure parting to strong medium angular blocky; very hard, very firm, very sticky and very plastic; few very fine and fine roots; common very fine and few fine and medium irregular and tubular pores; many distinct clay films on faces of peds; 5 percent gravel; slightly alkaline (pH 7.8); clear smooth boundary.

Bt3-24 to 36 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR 3/4) moist; moderate medium subangular blocky structure parting to weak fine angular blocky; hard, firm, moderately sticky and moderately plastic; few very fine and fine roots; few fine irregular and tubular pores; common distinct clay films on faces of peds; slightly alkaline (pH 7.8); clear wavy boundary.
$\mathrm{Cr}-36$ inches; tuffaceous sedimentary rock.
The mollic epipedon is 7 to 18 inches thick. Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 5 to 35 percent rock fragments, mainly gravel, and 35 to 50 percent clay. The Bt3 horizon is absent in some pedons.

The A horizon is very gravelly loam or very stony clay loam. It is 35 to 60 percent rock fragments and 20 to 30 percent clay. It is neutral or slightly alkaline.

The Bt1 and Bt2 horizons are clay, gravelly clay loam, or gravelly clay. They are 5 to 35 percent rock fragments and 35 to 50 percent clay.

The Bt3 horizon is clay loam or gravelly clay loam. It is 5 to 35 percent rock fragments and 30 to 40 percent clay.

The Cagle soils in this survey area are a taxadjunct to the Cagle series because the subgroup is Vertic.

Calderwood Series

The Calderwood series consists of shallow, well drained soils that formed in old alluvium over fractured basalt and andesite. The soils are on hills and plateaus.

Slope is 0 to 25 percent. Elevation is 4,600 to 6,100 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, mesic Lithic Xeric Haplocambids
Typical pedon of Calderwood very gravelly loam in an area of Brabble-Calderwood complex, 5 to 25 percent slopes; about 2,300 feet south and 2,700 feet west of the northeast corner of sec. 20, T. 37 S., R. 35 E.; Red Lookout Butte quadrangle.
A-0 to 3 inches; pale brown (10YR 6/3) very gravelly loam, brown (10YR 4/3) moist; weak thin platy structure; soft, very friable, slightly sticky and slightly plastic; common very fine and fine roots; many very fine and fine vesicular and irregular pores; 45 percent gravel, 5 percent cobbles, and 5 percent stones; slightly alkaline (pH 7.4); clear smooth boundary.
Bw1-3 to 12 inches; light yellowish brown (10YR 6/4) very cobbly clay loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; slightly hard, very friable, moderately sticky and moderately plastic; common very fine and fine roots; many very fine and fine vesicular and irregular pores; 20 percent gravel, 15 percent cobbles, and 5 percent stones; slightly alkaline (pH 7.6); clear smooth boundary.
Bw2-12 to 18 inches; pale brown (10YR 6/3) very stony clay loam, brown (10YR $4 / 3$) moist; weak medium subangular blocky structure; slightly hard, very friable, moderately sticky and moderately plastic; few very fine, fine, and medium roots; many very fine and fine irregular pores; 10 percent gravel, 10 percent cobbles, and 25 percent stones; slightly alkaline (pH 7.6); gradual wavy boundary.
R-18 inches; fractured andesite; many fragments have coatings of opal on undersides.

Thickness of the solum and depth to bedrock are 12 to 20 inches. The particle-size control section averages 35 to 50 percent rock fragments, mainly cobbles and stones, and 20 to 35 percent clay.

The A horizon is very gravelly loam or cobbly loam. It is 15 to 60 percent rock fragments and 20 to 27 percent clay.

The Bw horizon is very cobbly loam, very cobbly clay loam, very stony clay loam, or very stony loam. It is 35 to 50 percent rock fragments and 20 to 35 percent clay.

Carryback Series

The Carryback series consists of moderately deep, well drained soils that formed in colluvium and residuum derived from basalt, andesite, and welded tuff. The soils are on plateaus, hills, and mountains. Slope is 2 to 50 percent. Elevation is 4,000 to 6,700 feet. The mean annual precipitation is 10 to 16 inches, and the mean annual air temperature is 40 to 45 degrees F .

Taxonomic classification: Fine, montmorillonitic, frigid Vertic Palexerolls
Typical pedon of Carryback silty clay loam in an area of Carryback complex, 2 to 20 percent slopes; about 1,000 feet south and 950 feet west of the northeast corner of sec. 26, T. 26 S., R. 35 E.; Venator quadrangle.

A1-0 to 3 inches; pale brown (10YR 6/3) silty clay loam, dark brown (10YR 3/3) moist; weak thin platy structure; slightly hard, friable, moderately sticky and moderately plastic; many fine roots; many very fine vesicular pores; 5 percent gravel; slightly alkaline (pH 7.4); abrupt smooth boundary.
A2-3 to 7 inches; brown (7.5YR 5/2) silty clay loam, dark brown (7.5YR 3/2) moist; moderate fine granular structure; slightly hard, friable, moderately sticky and
moderately plastic; many fine roots; 5 percent gravel; slightly alkaline (pH 7.4); clear smooth boundary.
2Bt1-7 to 11 inches; brown (7.5YR 5/2) clay, dark brown (7.5YR 3/2) moist; moderate very fine and fine subangular blocky structure; hard, firm, moderately sticky and moderately plastic; many fine roots; common very fine tubular pores; few faint clay films on faces of peds and in pores; 5 percent gravel; slightly alkaline (pH 7.4); clear smooth boundary.
2Bt2—11 to 17 inches; brown (7.5YR 5/2) clay, dark brown (7.5YR 3/2) moist; moderate fine subangular blocky structure; hard, firm, moderately sticky and moderately plastic; many fine roots; many very fine tubular pores; few faint clay films on faces of peds and in pores; 10 percent gravel and cobbles; slightly alkaline (pH 7.6); abrupt smooth boundary.
2Bt3-17 to 24 inches; brown (7.5YR 5/4) clay, brown (7.5YR 4/4) moist; strong fine and medium prismatic structure parting to strong fine angular blocky; hard, firm, moderately sticky and moderately plastic; common fine roots; common very fine tubular pores; many faint clay films on faces of peds and in pores; 10 percent gravel and cobbles; slightly alkaline (pH 7.4); clear wavy boundary.
3R-24 inches; basalt.
The mollic epipedon is 7 to 19 inches thick. Thickness of the solum and depth to bedrock are 20 to 40 inches. Depth to the claypan is 2 to 11 inches. The particle-size control section averages 0 to 25 percent rock fragments, mainly gravel and cobbles, and 40 to 60 percent clay. The profile has hue of 10YR or 7.5YR.

The A horizon is 2 to 11 inches thick. It has value of 5 or 6 dry and 3 moist and chroma of 2 or 3 moist or dry. It is silty clay loam, very gravelly loam, cobbly clay loam, extremely cobbly clay loam, or very stony clay loam.

The 2Bt horizon has value of 4 to 6 dry and 3 or 4 moist, and it has chroma of 2 to 4 moist or dry. It is silty clay, clay, or gravelly silty clay.

Carvix Series

The Carvix series consists of very deep, well drained soils that formed in alluvium. The soils are on stream terraces. Slope is 0 to 8 percent. Elevation is 4,000 to 4,600 feet. The mean annual precipitation is 10 to 14 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-loamy, mixed, frigid Aridic Haploxerolls

Typical pedon of Carvix silt loam, 0 to 5 percent slopes, about 1,800 feet south and 450 feet east of the northwest corner of sec. 17, T. 23 S., R. 27 E.; Riley quadrangle.

A-0 to 6 inches; brown (10YR 5/3) silt loam, dark brown (10YR $3 / 3$) moist; weak medium and thick platy structure; soft, very friable, nonsticky and slightly plastic; few very fine and medium and many fine roots; few very fine tubular pores; 5 percent gravel; strongly effervescent; slightly alkaline (pH 7.8); clear wavy boundary.
BA-6 to 19 inches; brown (10YR 5/3) silt loam, dark brown (10YR 3/3) moist; moderate fine, medium, and coarse subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; many fine and few very fine roots; common very fine irregular pores; 5 percent gravel; moderately alkaline (pH 8.0); gradual smooth boundary.
Bt1-19 to 39 inches; brown (10YR 5/3) loam, brown (10YR 4/3) moist; moderate medium and coarse subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; few fine and very fine roots; many fine and very fine irregular pores; few faint clay films lining pores; slightly alkaline (pH 7.6); clear smooth boundary.

Bt2—39 to 60 inches; yellowish brown (10YR 5/4) loam, dark yellowish brown (10YR 4/4) moist; weak medium and coarse subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; common very fine irregular pores; few faint clay films lining pores; slightly alkaline (pH 7.6).

The mollic epipedon is 10 to 20 inches thick. Thickness of the solum and depth to bedrock are more than 60 inches. The particle-size control section averages 0 to 10 percent rock fragments, mainly gravel, and 18 to 30 percent clay.

The A and BA horizons are silt loam or loam. They are 0 to 10 percent rock fragments and 15 to 27 percent clay. The upper part is neutral or slightly alkaline, and the lower part ranges to moderately alkaline. The horizons are 1 to 3 percent organic matter.

The Bt horizon is loam or clay loam. It is 18 to 30 percent clay and 0 to 10 percent rock fragments.

Catlow Series

The Catlow series consists of very deep, well drained soils that formed in colluvium and alluvium derived from mixed igneous rock. The soils are on lake terraces. Slope is 0 to 20 percent. Elevation is 4,200 to 5,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, mesic Durinodic Xeric Haplocambids

Typical pedon of Catlow very stony loam in an area of Enko-Catlow association, 2 to 20 percent slopes; about 1,000 feet north and 200 feet east of the southwest corner of sec. 8, T. 37 S., R. 32 E.; Square Mountain quadrangle.

A-0 to 3 inches; pale brown (10YR 6/3) very stony loam, dark brown (10YR 3/3) moist; weak fine granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine and fine roots; many very fine and fine vesicular and irregular pores; 20 percent gravel, 10 percent cobbles, and 15 percent stones; slightly alkaline (pH 7.4); clear smooth boundary.
AB-3 to 9 inches; brown (10YR 5/3) very stony sandy clay loam, dark brown (10YR $3 / 3$) moist; weak fine subangular blocky structure; hard, friable, moderately sticky and moderately plastic; common very fine and fine roots; many very fine vesicular and irregular pores; 15 percent gravel, 5 percent cobbles, and 15 percent stones; slightly alkaline (pH 7.5); clear wavy boundary.
Bw-9 to 22 inches; pale brown (10YR 6/3) extremely stony sandy clay loam, very dark grayish brown (10YR 3/2) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine roots; many very fine vesicular and irregular pores; 30 percent gravel, 15 percent cobbles, and 25 percent stones; slightly alkaline (pH 7.6); clear wavy boundary.
$2 \mathrm{~Bq}-22$ to 31 inches; pale brown (10YR 6/3) extremely cobbly loamy coarse sand, dark brown (10YR 3/3) moist; massive; hard, firm and brittle, nonsticky and nonplastic; few very fine, fine, and medium roots; many very fine tubular and irregular pores; few coatings of carbonates on rock fragments; 45 percent gravel, 20 percent cobbles, and 15 percent stones; slightly alkaline (pH 7.6); abrupt wavy boundary.
2C-31 to 60 inches; multicolored extremely cobbly coarse sand, dark grayish brown (10YR 4/2) moist; single grain; loose, nonsticky and nonplastic; few very fine, fine, and medium roots; many very fine and fine irregular pores; few coatings of carbonates on rock fragments; 40 percent gravel, 30 percent cobbles, and 20 percent stones; moderately alkaline (pH 8.0).

Bedrock is at a depth of more than 60 inches. Depth to the hard, firm and brittle layer is 15 to 30 inches. The particle-size control section averages 50 to 80 percent rock fragments, mainly gravel and cobbles, and 7 to 18 percent clay.

The A horizon is gravelly loam, gravelly sandy loam, or very stony loam. It is 15 to 50 percent rock fragments and 15 to 25 percent clay.

The Bw horizon is very cobbly sandy loam, very stony sandy clay loam, extremely stony sandy clay loam, gravelly sandy loam, very gravelly sandy loam, or very gravelly sandy clay loam. It is 35 to 80 percent rock fragments and 15 to 25 percent clay.

The 2 Bq horizon is very cobbly loamy sand, extremely cobbly loamy coarse sand, very cobbly sandy loam, very gravelly sandy loam, or extremely gravelly sandy loam. It is 50 to 90 percent rock fragments and 5 to 15 percent clay. It is slightly alkaline or moderately alkaline.

The 2C horizon is extremely cobbly loamy coarse sand, extremely cobbly coarse sand, very gravelly sand, or extremely gravelly sand. It is 50 to 90 percent rock fragments and 0 to 10 percent clay.

Clamp Series

The Clamp series consists of shallow, well drained soils that formed in colluvium over basalt. The soils are on mountains. Slope is 5 to 70 percent. Elevation is 5,200 to 8,600 feet. The mean annual precipitation is 12 to 35 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Loamy-skeletal, mixed Lithic Cryoborolls
Typical pedon of Clamp very stony clay loam in an area of Clamp-BaconcampHackwood complex, 20 to 35 percent north slopes; about 2,400 feet south and 2,400 feet west of the northeast corner of sec. 3, T. 40 S., R. 38 E.; Little Whitehorse Creek quadrangle.
A1-0 to 3 inches; grayish brown (10YR 5/2) very stony clay loam, very dark grayish brown (10YR $3 / 2$) moist; weak fine and medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine and fine roots; many very fine and fine irregular pores; 20 percent gravel, 15 percent cobbles, and 20 percent stones; slightly alkaline (pH 7.5); clear smooth boundary.
A2-3 to 8 inches; grayish brown (10YR 5/2) very cobbly clay loam, dark brown (10YR 3/3) moist; weak fine subangular blocky structure; slightly hard, firm, slightly sticky and slightly plastic; many very fine and fine roots; many very fine and fine irregular pores; 20 percent gravel, 15 percent cobbles, and 5 percent stones; slightly alkaline (pH 7.5); gradual wavy boundary.
A3-8 to 12 inches; grayish brown (10YR 5/2) very cobbly clay loam, dark brown (10YR 3/3) moist; massive; slightly hard, firm, slightly sticky and slightly plastic; many very fine and fine roots; many very fine and fine irregular pores; 20 percent gravel, 15 percent cobbles, and 5 percent stones; slightly alkaline (pH 7.5); abrupt irregular boundary.
R-12 inches; fractured basalt.
Thickness of the mollic epipedon and depth to bedrock are 4 to 14 inches. The particle-size control section averages 35 to 60 percent rock fragments and 27 to 35 percent clay. The profile is neutral or slightly alkaline.

The upper part of the A horizon is cobbly clay loam, very stony clay loam, or extremely stony clay loam. It is 20 to 70 percent rock fragments. The lower part is 35 to 60 percent rock fragments, mainly cobbles and gravel.

Cleavage Series

The Cleavage series consists of shallow, well drained soils that formed in residuum and colluvium derived from igneous rock. The soils are on mountains. Slope is 20 to 50 percent. Elevation is 5,400 to 6,600 feet. The mean annual precipitation is 12 to 14 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Lithic Argixerolls
Typical pedon of Cleavage extremely gravelly loam in Humboldt County, Nevada; about 0.5 mile northeast of Knott Creek Reservoir, in the Pine Forest Range; about 1,600 feet north and 600 feet east of the southwest corner of sec. 4, T. 43 N., R. 28 E .

A-0 to 7 inches; dark grayish brown (10YR 4/2) extremely gravelly loam, very dark grayish brown (10YR 3/2) moist; moderate thin platy structure; soft, very friable, slightly sticky and slightly plastic; many very fine and few fine roots; many very fine tubular pores; 60 percent gravel and 5 percent cobbles; slightly alkaline $(\mathrm{pH}$ 7.4); abrupt smooth boundary.

Bt-7 to 15 inches; brown (10YR 5/3) very cobbly clay loam, dark yellowish brown (10YR 3/4) moist; weak medium subangular blocky structure; hard, firm, moderately sticky and moderately plastic; common very fine and few fine roots; many very fine tubular pores; 30 percent gravel and 25 percent cobbles; common faint clay films on faces of peds; slightly alkaline (pH 7.6); abrupt smooth boundary.
R-15 inches; fractured bedrock.
The mollic epipedon is 7 to 10 inches thick. Depth to bedrock is 14 to 20 inches. The particle-size control section averages 50 to 80 percent rock fragments and 20 to 35 percent clay. The profile is neutral or slightly alkaline.

The Bt horizon is very cobbly clay loam, extremely gravelly clay loam, or very gravelly clay loam.

Cotant Series

The Cotant series consists of shallow, well drained soils that formed in residuum and colluvium derived from tuffaceous sedimentary rock and diatomaceous earth. The soils are hills. Slope is 15 to 30 percent. Elevation is 3,800 to 4,800 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Clayey, montmorillonitic, frigid, shallow Aridic Argixerolls
Typical pedon of Cotant stony loam in an area of Mahoon-Cotant association, 15 to 30 percent slopes; about 2,400 feet south and 2,300 feet east of the northwest corner of sec. 4, T. 22 S., R. 36 E.; Upton Mountain quadrangle.
A-0 to 3 inches; grayish brown (10YR $5 / 2$) stony loam, very dark grayish brown (10YR $3 / 2$) moist; moderate fine granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine and fine and few medium roots; many very fine, fine, and medium interstitial pores; 5 percent gravel, 5 percent cobbles, and 5 percent stones; neutral (pH 6.8); clear smooth boundary.
Bt-3 to 13 inches; grayish brown (10YR 5/2) clay, dark brown (10YR $3 / 3$) moist; moderate medium prismatic structure parting to strong fine angular blocky; hard, firm, moderately sticky and moderately plastic; common very fine and fine and few medium roots; many very fine and fine and common medium interstitial pores;
many faint clay films on faces of peds and lining pores; 5 percent gravel; neutral (pH 7.1); clear smooth boundary.
Cr -13 inches; weathered tuffaceous sedimentary rock.
The mollic epipedon is 10 to 14 inches thick. Thickness of the solum and depth to bedrock are 12 to 20 inches. Depth to the claypan is 2 to 10 inches. The particle-size control section averages 5 to 15 percent rock fragments, mainly gravel, and 40 to 50 percent clay.

The A horizon is 15 to 25 percent rock fragments and 18 to 27 percent clay.
The Bt horizon is 5 to 15 percent rock fragments and 40 to 50 percent clay.

Coztur Series

The Coztur series consists of shallow, well drained soils that formed in residuum derived from ashflow tuff, welded tuff, and basalt. The soils are on hills and plateaus. Slope is 2 to 20 percent. Elevation is 4,100 to 5,600 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Loamy, mixed, frigid Lithic Xeric Haplargids
Typical pedon of Coztur sandy loam, 2 to 15 percent slopes, about 1,600 feet east and 1,600 feet north of the southwest corner of sec. 18, T. 39 S., R. 29 E.; Chimney Rock quadrangle.

A1-0 to 3 inches; pale brown (10YR 6/3) sandy loam, brown (10YR 4/3) moist; weak medium platy structure; soft, very friable, nonsticky and nonplastic; many fine and very fine roots; many very fine and fine vesicular pores; 10 percent gravel; slightly alkaline (pH 7.7); clear smooth boundary.
A2-3 to 9 inches; pale brown (10YR 6/3) sandy loam, dark brown (10YR 3/3) moist; moderate medium platy structure; slightly hard, friable, nonsticky and slightly plastic; many very fine and fine roots; common very fine and fine irregular pores; 10 percent gravel; slightly alkaline (pH 7.7); clear smooth boundary.
Bt1-9 to 13 inches; brown (10YR 5/3) gravelly sandy clay loam, dark brown (10YR $4 / 3$) moist; moderate medium subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; common very fine, many fine, and few medium roots; common very fine and fine irregular pores; common distinct clay films on faces of peds; 16 percent gravel; slightly alkaline (pH 7.8); clear smooth boundary.
Bt2-13 to 18 inches; light yellowish brown (10YR 6/4) gravelly sandy clay loam, dark yellowish brown (10YR 4/4) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and moderately plastic; few very fine, common fine, and few medium roots; common very fine and fine irregular pores; common distinct clay films on faces of peds; 20 percent gravel; slightly alkaline (pH 7.8); clear smooth boundary.
R-18 inches; ashflow tuff.
Thickness of the solum and depth to bedrock are 14 to 20 inches. The particle-size control section averages 5 to 20 percent rock fragments, mainly gravel, and 20 to 35 percent clay.

The A horizon is sandy loam or very stony loam. It is 0 to 50 percent rock fragments and 12 to 27 percent clay.

The Bt horizon is clay loam, gravelly sandy clay loam, or loam. It is 5 to 20 percent rock fragments and 20 to 35 percent clay. It is slightly alkaline or moderately alkaline.

Crowcamp Series

The Crowcamp series consists of very deep, somewhat poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 2 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine, montmorillonitic, frigid Vertic Palexerolls
Typical pedon of Crowcamp silty clay loam in an area of Crowcamp-AusmusPoujade complex, 0 to 5 percent slopes; about 350 feet south and 400 feet east of the northwest corner of sec. 32, T. 22 S., R. 33 E.; Carson Point quadrangle.

A-0 to 3 inches; gray (10YR 6/1) silty clay loam, very dark grayish brown (10YR 3/2) moist; weak medium platy structure; hard, friable, moderately sticky and moderately plastic; many very fine and fine roots; many fine and very fine vesicular pores; neutral (pH 7.2); abrupt smooth boundary.
2Bt1-3 to 11 inches; grayish brown (10YR 5/2) clay, very dark brown (10YR 2/2) moist; moderate medium and fine prismatic structure parting to strong medium and fine angular blocky; hard, firm, very sticky and very plastic; many fine roots; common very fine tubular pores; slightly alkaline (pH 7.4); gradual smooth boundary.
2Bt2-11 to 23 inches; dark gray (10YR 4/1) clay, very dark grayish brown (10YR 3/2) moist; moderate fine and medium angular blocky structure; hard, firm, very sticky and very plastic; many fine roots; common very fine tubular pores; few pressure faces; few faint clay films lining pores; slightly alkaline (pH 7.6); clear smooth boundary.
2Bt3-23 to 30 inches; dark gray (10YR 4/1) clay, very dark grayish brown (10YR 3/2) moist; weak medium and fine angular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; common fine and very fine roots; common very fine tubular pores; common pressure faces; few faint clay films lining pores; many white noncalcareous masses; slightly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
$3 B k q-30$ to 44 inches; grayish brown (2.5Y 5/2) loam, very dark grayish brown ($2.5 \mathrm{Y} 3 / 2$) moist; weak medium platy structure; hard, very firm and brittle, slightly sticky and slightly plastic; few fine roots; many filaments of carbonates on faces of peds; strongly effervescent; moderately alkaline (pH 8.0); abrupt smooth boundary.
3C1—44 to 53 inches; light brownish gray (2.5Y 6/2) loam, olive brown (2.5Y 4/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few fine roots; moderately alkaline (pH 8.0); gradual smooth boundary.
$4 \mathrm{C} 2-53$ to 68 inches; light brownish gray ($2.5 \mathrm{Y} 6 / 2$) very gravelly loam, olive brown (2.5Y 4/4) moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; 40 percent gravel; moderately alkaline (pH 8.0).

The mollic epipedon is 20 to 30 inches thick. Bedrock is at a depth of more than 60 inches. Frequent or rare ponding occurs in spring. A high water table is present in spring. Depth to the hard, brittle layer (3Bkq horizon) is 25 to 40 inches.

The A horizon is loam, silt loam, or silty clay loam with 15 to 30 percent clay. It is neutral or slightly alkaline.

The 2Bt horizon is silty clay or clay with 40 to 55 percent clay. It is slightly alkaline or moderately alkaline.

The 3Bkq and 3C horizons have hue of 10YR or 2.5Y. They are loam or gravelly loam with 0 to 20 percent rock fragments.

The 4C horizon is gravelly loam or very gravelly loam with 20 to 50 percent gravel.

Cumulic Haploxerolls

Cumulic Haploxerolls consists of very deep, somewhat poorly drained soils that formed in alluvium and lacustrine sediment. The soils are on stream terraces and lake plains. Slope is 0 to 3 percent. Elevation is 3,500 to 5,500 feet. The mean annual precipitation is 8 to 16 inches, and the mean annual air temperature is 43 to 49 degrees F .

Taxonomic classification: Cumulic Haploxerolls

Typical pedon of Cumulic Haploxerolls loam in an area of Welch-RoscheneCumulic Haploxerolls complex, 0 to 3 percent slopes; about 300 feet north and 100 feet west of the southeast corner of sec. 2, T. 22 S., R. 25 E.; Camp Currey Spring quadrangle.
A-0 to 5 inches; dark grayish brown (10YR 4/2) loam, very dark grayish brown (10YR 3/2) moist; weak fine and very fine granular structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine roots; many very fine irregular and tubular pores; slightly alkaline (pH 7.5); clear smooth boundary.
Bw-5 to 25 inches; dark gray (10YR 4/1) loam, very dark gray (10YR 3/1) moist; moderate medium prismatic structure parting to moderate medium subangular blocky; hard, friable, slightly sticky and slightly plastic; many very fine and common fine and medium roots; many very fine tubular pores; slightly alkaline (pH 7.5); gradual smooth boundary.
C1-25 to 40 inches; light brownish gray (10YR 6/2) loam, very dark grayish brown (10YR 3/2) moist; massive; hard, friable, slightly sticky and slightly plastic; common very fine roots; common very fine and fine vesicular pores; common faint and distinct iron concentrations that are brown (7.5YR 4/4) when moist; slightly alkaline (pH 7.8); gradual smooth boundary.
C2-40 to 54 inches; light brownish gray (10YR 6/2) loam, dark brown (10YR 3/3) moist; massive; hard, friable, moderately sticky and moderately plastic; few very fine roots; common very fine and few fine tubular pores; common faint and distinct iron concentrations that are brown (7.5YR 4/4) when moist; slightly alkaline (pH 7.8); clear wavy boundary.

C3-54 to 60 inches; light brownish gray (10YR 6/2) very gravelly sandy loam, dark brown (10YR 3/3) moist; single grain; loose, slightly sticky and nonplastic; few very fine roots; many very fine irregular and tubular pores; 5 -millimeter-thick iron concentrations that are brown (7.5YR 4/4) when moist; 50 percent gravel and 5 percent cobbles; slightly alkaline (pH 7.6).

The mollic epipedon is 20 to 30 inches thick. Bedrock is at a depth of more than 60 inches. Frequent ponding or flooding occurs in spring. A high water table is present in spring. The particle-size control section averages 0 to 10 percent rock fragments, mainly gravel, and 10 to 24 percent clay. The Bw horizon is absent in some pedons.

The A horizon is 20 to 30 inches thick. It is 0 to 5 percent rock fragments and 10 to 25 percent clay.

The C horizon has stratified textures throughout.

Davey Series

The Davey series consists of very deep, somewhat excessively drained soils that formed in alluvium. The soils are on lake terraces. Slope is 0 to 8 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 7 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Sandy, mixed, mesic Xeric Haplocambids
Typical pedon of Davey sandy loam, 0 to 8 percent slopes, about 1,200 feet south and 2,400 feet east of the northwest corner of sec. 26, T. 38 S., R. 35 E.; Tumtum Lake quadrangle.
A-0 to 3 inches; grayish brown (10YR 5/2) sandy loam, dark grayish brown (10YR 4/2) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; many very fine, fine, medium, and coarse roots; many very fine and fine irregular pores; 10 percent gravel; slightly alkaline (pH 7.7); clear smooth boundary.
Bw-3 to 18 inches; grayish brown (10YR 5/2) sandy loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; slightly hard, friable, nonsticky and nonplastic; many very fine, fine, medium, and coarse roots; many very fine and fine irregular and tubular pores; 5 percent gravel; moderately alkaline (pH 8.4); gradual wavy boundary.
Ck1-18 to 34 inches; light brownish gray (10YR 6/2) loamy sand, dark brown (10YR $3 / 3$) moist; massive; soft, very friable, nonsticky and nonplastic; common fine and medium roots; many fine irregular and tubular pores; strongly effervescent with disseminated carbonates; 5 percent gravel; strongly alkaline (pH 9.0); gradual wavy boundary.
Ck2—34 to 60 inches; light brownish gray (10YR 6/2) loamy sand, dark brown (10YR $3 / 3$) moist; massive; soft, very friable, nonsticky and nonplastic; common fine roots; many fine irregular and tubular pores; strongly effervescent with disseminated carbonates; 10 percent gravel; strongly alkaline (pH 9.0).

Bedrock is at a depth of more than 60 inches. The particle-size control section averages 0 to 10 percent rock fragments, mainly gravel, and 5 to 10 percent clay. Content of fine sand or coarser material is more than 70 percent, and content of very fine sand is less than 50 percent.

The A horizon is sandy loam or gravelly sandy loam. It is 0 to 30 percent rock fragments.

The Bw horizon is 0 to 10 percent rock fragments. It is slightly alkaline or moderately alkaline.

The Ck horizon is loamy sand or gravelly loamy sand. It is 0 to 30 percent rock fragments. It is slightly alkaline to strongly alkaline.

Defenbaugh Series

The Defenbaugh series consists of very deep, well drained soils that formed in alluvium. The soils are on alluvial fans. Slope is 0 to 4 percent. Elevation is 3,900 to 4,600 feet. The mean annual precipitation is 7 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-loamy, mixed, mesic Typic Haplocambids
Typical pedon of Defenbaugh loam in an area of Outerkirk-Defenbaugh association, 1 to 4 percent slopes; about 200 feet south and 200 feet east of the northwest corner of sec. 17, T. 38 S., R. 35 E.; Fields quadrangle.

A—0 to 5 inches; pale brown (10YR 6/3) loam, dark brown (10YR 3/3) moist; moderate medium platy structure; slightly hard, friable, slightly sticky and slightly plastic; few fine and medium roots; many fine and medium vesicular pores; slightly effervescent with disseminated carbonates; 5 percent gravel; moderately alkaline (pH 8.4); clear smooth boundary.
Bk-5 to 16 inches; light yellowish brown (10YR 6/4) clay loam, dark yellowish brown (10YR 4/4) moist; moderate medium subangular blocky structure; slightly hard,
friable, moderately sticky and moderately plastic; many fine roots; many very fine vesicular and irregular pores; slightly effervescent with carbonates segregated in few fine filaments; moderately alkaline (pH 8.3); clear smooth boundary.
$\mathrm{Bq}-16$ to 29 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR 3/4) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common fine and medium roots; many very fine vesicular and irregular pores; 5 percent durinodes; slightly alkaline (pH 7.5); clear smooth boundary.

2BC-29 to 47 inches; light yellowish brown (10YR 6/4) very fine sandy loam, dark yellowish brown (10YR 4/4) moist; weak medium subangular blocky structure; soft, friable, slightly sticky and slightly plastic; many fine roots; many very fine irregular pores; slightly alkaline (pH 7.4); clear smooth boundary.
2C1-47 to 53 inches; yellowish brown (10YR 5/4) sandy loam, dark yellowish brown (10YR 3/4) moist; massive; soft, very friable, slightly sticky and slightly plastic; common fine roots; many very fine and fine irregular pores; moderately alkaline (pH 8.0); clear smooth boundary.
2C2-53 to 60 inches; light yellowish brown (10YR 6/4) loam, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; common fine roots; many very fine and fine irregular pores; moderately alkaline (pH 8.0).
Depth to the $2 B C$ horizon is 25 to 45 inches. Bedrock is at a depth of more than 60 inches. The particle-size control section averages 0 to 5 percent rock fragments, mainly gravel, and 18 to 35 percent clay.

The A horizon has hue of 7.5 YR or 10YR.
The Bk and Bq horizons have hue of 7.5YR or 10YR. They are loam or clay loam. They are 0 to 5 percent rock fragments and 18 to 35 percent clay. They are slightly alkaline or moderately alkaline.

The 2BC and 2C horizons are very fine sandy loam, sandy loam, or loam. They are 0 to 5 percent rock fragments and 15 to 25 percent clay. They are slightly alkaline or moderately alkaline.

Degarmo Series

The Degarmo series consists of very deep, somewhat poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 2 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-loamy over sandy or sandy-skeletal, mixed, frigid Cumulic Endoaquolls

Typical pedon of Degarmo silt loam in an area of Fury-Degarmo complex, 0 to 2 percent slopes; about 500 feet north and 2,400 feet east of the southwest corner of sec .32, T. 29 S., R. 33 E.; Diamond quadrangle.
A-0 to 3 inches; dark gray (10YR 4/1) silt loam, very dark gray (10YR 3/1) moist; moderate fine and medium granular structure; hard, friable, moderately sticky and moderately plastic; many very fine and fine roots; many fine and very fine irregular and tubular pores; slightly effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
AB-3 to 10 inches; dark gray (10YR 4/1) silty clay loam, very dark gray (10YR 3/1) moist; moderate medium prismatic structure parting to moderate medium subangular blocky; hard, firm, very sticky and very plastic; many very fine, fine, and medium roots; many very fine and common fine tubular pores; slightly effervescent; slightly alkaline (pH 7.8); gradual smooth boundary.

Bw1-10 to 21 inches; dark gray (10YR 4/1) clay, very dark gray (10YR 3/1) moist; strong fine and medium prismatic structure parting to strong fine and medium angular blocky; very hard, very firm, very sticky and very plastic; many very fine, fine, and medium roots; many very fine and common fine tubular pores; slightly alkaline (pH 7.8); gradual smooth boundary.
Bw2-21 to 28 inches; grayish brown (10YR 5/2) clay loam, very dark grayish brown (10YR 3/2) moist; strong fine prismatic structure parting to strong fine angular blocky; hard, firm, very sticky and very plastic; common very fine, fine, and medium roots; many very fine and common fine tubular pores; few fine distinct yellowish brown (10YR 5/4) iron concentrations on faces of peds; slightly alkaline (pH 7.8); gradual smooth boundary.
BC-28 to 34 inches; grayish brown (10YR $5 / 2$) sandy clay loam, very dark grayish brown (10YR 3/2) moist; weak medium subangular blocky structure; hard, firm, very sticky and moderately plastic; few very fine, fine, and medium roots; many very fine and common fine tubular pores; few fine faint brown (10YR 5/3) iron concentrations on faces of peds; slightly alkaline (pH 7.8); clear smooth boundary.
2C-34 to 60 inches; grayish brown (10YR 5/2) very gravelly sandy loam, dark grayish brown (10YR 4/2) moist; massive; slightly hard, friable, moderately sticky and moderately plastic; few very fine roots; many very fine, fine, and medium irregular pores; common fine distinct iron concentrations that are brown (7.5YR $4 / 4)$ and strong brown (7.5YR 5/6) when moist; common manganese concentrations on coarse fragments; 50 percent gravel; slightly alkaline (pH 7.8).

Thickness of the mollic epipedon and depth to the very gravelly substratum are 24 to 35 inches. Bedrock is at a depth of more than 60 inches. Rare ponding occurs in spring. A high water table is present in spring and early in summer. The upper part of the particle-size control section averages 25 to 35 percent clay, and the lower part averages 10 to 20 percent clay.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 0 or 1 moist or dry. It has a calcium carbonate equivalent of 0 to 1 percent. It is slightly alkaline or moderately alkaline.

The Bw horizon is 25 to 45 percent clay. It is clay loam, loam, or clay.
The 2C horizon is 35 to 60 percent rock fragments and 10 to 20 percent clay.
The Degarmo soils in this survey area are a taxadjunct to the Degarmo series because the family particle-size class is fine-loamy.

Dentdraw Series

The Dentdraw series consists of very deep, poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Elevation is 4,090 to 4,105 feet. Slope is 0 to 2 percent. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-loamy, mixed (calcareous), frigid Fluvaquentic Endoaquolls

Typical pedon of Dentdraw silt loam in an area of Thenarrows-Duckclub-Dentdraw complex, 0 to 2 percent slopes; about 2,800 feet south and 400 feet east of the northwest corner of sec. 4, T. 26 S., R. 38 E.; Malheur Lake West quadrangle.

Akn1-0 to 6 inches; very dark grayish brown (2.5Y 3/2) silt loam, grayish brown (2.5Y5/2) dry; weak medium and thin platy structure; hard, friable, moderately sticky and moderately plastic; common very fine, fine, and medium roots; common very fine tubular pores; strongly effervescent; very strongly alkaline (pH 9.2); clear smooth boundary.

Akn2-6 to 9 inches; dark olive gray ($5 \mathrm{Y} 3 / 2$) fine sandy loam, gray ($5 \mathrm{Y} 5 / 1$) dry; weak coarse subangular blocky structure; soft, very friable, nonsticky and nonplastic; common very fine and fine roots; common very fine tubular pores; strongly effervescent; strongly alkaline (pH 9.0); abrupt smooth boundary.
Akn3-9 to 11 inches; dark olive gray ($5 \mathrm{Y} 3 / 2$) silt loam, gray ($5 \mathrm{Y} 5 / 1$) dry; strong fine angular blocky structure; hard, firm, moderately sticky and moderately plastic; common very fine and fine roots; common very fine and few fine tubular pores; strongly effervescent; strongly alkaline (pH 9.0); abrupt smooth boundary.
Akn4-11 to 18 inches; dark olive gray ($5 \mathrm{Y} 3 / 2$) fine sandy loam, gray ($5 \mathrm{Y} 5 / 1$) dry; weak medium and fine subangular blocky structure; slightly hard, friable, nonsticky and nonplastic; common very fine and fine roots; common very fine and few fine tubular pores; strongly effervescent; strongly alkaline (pH 9.0); abrupt smooth boundary.
2Bkn-18 to 27 inches; light olive gray ($5 \mathrm{Y} 6 / 2$) clay loam, light gray ($5 \mathrm{Y} 7 / 1$) dry; strong medium and fine prismatic structure; very hard, firm, very sticky and very plastic; common very fine roots; common very fine and few fine tubular pores; strongly effervescent; strongly alkaline (pH 9.0); gradual smooth boundary.
$3 \mathrm{C} 1-27$ to 42 inches; light olive brown ($2.5 \mathrm{Y} 5 / 3$) sandy loam, light gray ($2.5 \mathrm{Y} 7 / 2$) dry; massive; slightly hard, very friable, slightly sticky and nonplastic; few very fine roots; common very fine tubular pores; common fine rounded calcium carbonate concentrations; strongly effervescent; strongly alkaline (pH 9.0); clear smooth boundary.
3C2-42 to 52 inches; light olive brown (2.5Y 5/3) loamy fine sand, light brownish gray ($2.5 \mathrm{Y} 6 / 2$) dry; massive; soft, very friable, nonsticky and nonplastic; few very fine irregular and tubular pores; common coarse rounded carbonate concentrations; strongly effervescent; strongly alkaline (pH 9.0); clear smooth boundary.
3C3-52 to 60 inches; olive brown (2.5Y 4/3) loamy fine sand, light gray (2.5Y 7/2) dry; massive; soft, very friable, nonsticky and nonplastic; few very fine irregular and tubular pores; common fine filaments of calcium carbonate; strongly effervescent; strongly alkaline (pH 8.8).
The mollic epipedon is 10 to 20 inches thick. The solum is 25 to 40 inches thick. It has a sodium adsorption ratio of 13 to 25 . The profile is strongly alkaline or very strongly alkaline. Frequent ponding occurs in spring. A high water table is present late in winter and in spring and summer. The profile typically has hue of 5 Y or 2.5 Y , but hue ranges to 10YR.

The A horizon has a calcium carbonate equivalent of 5 to 10 percent. It is silt loam and fine sandy loam.

The 2Bkn horizon has value of 7 or 8 dry and 5 or 6 moist, and it has chroma of 1 to 3 . It is clay loam or sandy clay loam with 20 to 30 percent clay. It has a calcium carbonate equivalent of 2 to 5 percent.

The 3C horizon has value of 6 to 8 dry and 4 to 6 moist, and it has chroma of 1 to 3. It is sandy loam over loamy fine sand or loamy sand with 5 to 18 percent clay. The sodium adsorption ratio is 2 to 15 .

Deppy Series

The Deppy series consists of soils that are shallow to a duripan and are well drained. The soils formed in alluvium. They are on old lake terraces. Slope is 5 to 15 percent. Elevation is 4,200 to 5,000 feet. The mean annual precipitation is 7 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Loamy, mixed, mesic, shallow Argidic Argidurids

Typical pedon of Deppy very cobbly loam in an area of Deppy-Tumtum complex, 5 to 15 percent slopes; about 2,300 feet north and 600 feet west of the southeast corner of sec. 33, T. 39 S., R. 36 E.; Trout Creek Canyon quadrangle.

A1-0 to 2 inches; very pale brown (10YR 7/3) very cobbly loam, yellowish brown (10YR 5/4) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; many fine and medium roots; many fine and medium vesicular pores; 15 percent gravel, 30 percent cobbles, and 5 percent stones; moderately alkaline (pH 8.0); abrupt smooth boundary.
A2-2 to 6 inches; very pale brown (10YR 7/3) very cobbly loam, brown (10YR 4/3) moist; moderate medium platy structure; slightly hard, friable, slightly sticky and slightly plastic; common fine and medium roots; many fine and medium vesicular pores; 15 percent gravel and 30 percent cobbles; moderately alkaline (pH 8.0); abrupt wavy boundary.
Bt-6 to 15 inches; very pale brown (10YR 7/4) clay loam, dark yellowish brown (10YR 4/6) moist; moderate fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common fine and medium roots; many very fine irregular pores; common faint clay films on faces of peds and lining pores; moderately alkaline (pH 8.4); abrupt smooth boundary.
Bkqm-15 to 21 inches; fractured, platy, strongly cemented duripan; strongly effervescent; abrupt wavy boundary.
2Ck-21 to 28 inches; pale brown (10YR 6/3) very gravelly sandy loam, brown (10YR $4 / 3$) moist; massive; soft, very friable, nonsticky and nonplastic; common fine roots; many very fine and fine irregular pores; violently effervescent with disseminated carbonates; 40 percent gravel; strongly alkaline (pH 8.6); clear smooth boundary.
2Ckq-28 to 47 inches; light yellowish brown (10YR 6/4) gravelly sandy loam, dark yellowish brown (10YR 3/6) moist; massive; soft, very friable, nonsticky and nonplastic; common fine roots; many very fine irregular pores; 30 percent durinodes; violently effervescent with disseminated carbonates; 30 percent gravel; strongly alkaline (pH 8.5); clear smooth boundary.
$2 C^{\prime} \mathrm{k}-47$ to 60 inches; very pale brown (10YR 7/4) gravelly sandy loam, dark yellowish brown (10YR 4/4) moist; massive; soft, very friable, nonsticky and nonplastic; common fine roots; many very fine and fine irregular pores; violently effervescent with disseminated carbonates; 25 percent gravel; moderately alkaline (pH 8.0).

Bedrock is at a depth of more than 60 inches. Thickness of the solum and depth to the duripan are 10 to 20 inches. Calcium carbonate is at a depth of 8 to 20 inches. The particle-size control section averages 0 to 10 percent rock fragments, mainly gravel, and 27 to 35 percent clay.

The A horizon is very cobbly loam or very gravelly loam. It is 35 to 55 percent rock fragments and 20 to 27 percent clay.

The Bt horizon is 0 to 10 percent rock fragments and 27 to 35 percent clay.
The Bkqm horizon is 4 to 13 inches thick.
The 2Ck horizon is gravelly sandy loam or very gravelly sandy loam. It is 20 to 45 percent rock fragments and 5 to 15 percent clay. It is moderately alkaline or strongly alkaline.

Dickle Series

The Dickle series consists of shallow, well drained soils that formed in colluvium and residuum derived from basalt, andesite, rhyolite, and welded tuff. The soils are on mountains and hills. Slope is 3 to 35 percent. Elevation is 6,000 to 7,800 feet. The
mean annual precipitation is 12 to 35 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Loamy, mixed Lithic Cryoborolls

Typical pedon of Dickle very cobbly clay loam, 3 to 12 percent slopes, about 1,500 feet south and 2,000 feet east of the northwest corner of sec. 11, T. 40 S., R. 37 E., "The V" quadrangle.
A-0 to 3 inches; light brownish gray (10YR 6/2) very cobbly clay loam, very dark grayish brown (10YR 3/2) moist; weak fine and medium subangular blocky structure; slightly hard, very friable, moderately sticky and slightly plastic; many very fine, fine, medium, and coarse roots; many very fine and fine tubular pores; 10 percent gravel, 20 percent cobbles, and 10 percent stones; neutral (pH 7.0); gradual wavy boundary.
BA-3 to 6 inches; grayish brown (10YR 5/2) clay loam, dark brown (10YR $3 / 3$) moist; weak fine and medium subangular blocky structure; soft, very friable, moderately sticky and slightly plastic; many very fine, fine, medium, and coarse roots; many very fine and fine tubular pores; 5 percent gravel and 5 percent cobbles; neutral (pH 7.0); clear wavy boundary.
Bw-6 to 14 inches; brown (10YR 5/3) clay loam, dark brown (10YR 3/3) moist; moderate fine and medium subangular blocky structure; soft, very friable, moderately sticky and slightly plastic; common fine and medium roots; many very fine and fine tubular pores; 5 percent gravel and 5 percent cobbles; neutral (pH 7.0); clear irregular boundary.

R-14 inches; basalt.
The mollic epipedon is 10 to 20 inches thick. Thickness of the solum and depth to bedrock are 10 to 20 inches. The particle-size control section averages 5 to 25 percent rock fragments, mainly gravel and cobbles, and 27 to 35 percent clay. The profile is slightly acid or neutral.

The A horizon is 35 to 50 percent rock fragments.
The BA and Bw horizons are clay loam or cobbly clay loam. They are 0 to 20 percent rock fragments.

Dixon Series

The Dixon series consists of very deep, well drained soils that formed in alluvium. The soils are on lake terraces. Slope is 0 to 15 percent. Elevation is 4,000 to 4,600 feet. The mean annual precipitation is 7 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-loamy over sandy or sandy-skeletal, mixed, mesic Xeric Haplocambids

Typical pedon of Dixon gravelly sandy clay loam, 3 to 15 percent slopes, about 1,400 feet south and 1,400 feet west of the northeast corner of sec. 7, T. 39 S., R. 35 E.; Ladycomb Peak quadrangle.

A-0 to 2 inches; pale brown (10YR 6/3) gravelly sandy clay loam, dark brown (7.5YR $3 / 2$) moist; weak thin platy structure; soft, very friable, slightly sticky and slightly plastic; few very fine and fine roots; many very fine and fine vesicular and irregular pores; 25 percent gravel; moderately alkaline (pH 8.2); clear smooth boundary.
Bw-2 to 8 inches; light yellowish brown (10YR 6/4) clay loam, dark brown (7.5YR
$3 / 2$) moist; weak medium subangular blocky structure; soft, very friable,
moderately sticky and moderately plastic; few very fine, fine, medium, and coarse roots; many very fine vesicular and irregular pores; slightly effervescent with disseminated carbonates; 5 percent gravel; moderately alkaline (pH 8.3); clear smooth boundary.
Bk1-8 to 18 inches; light yellowish brown (10YR 6/4) gravelly sandy clay loam, dark brown (10YR 4/3) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine, fine, and medium roots; many very fine irregular pores; strongly effervescent with few fine filaments and few irregularly shaped soft masses of carbonates; 20 percent gravel; moderately alkaline (pH 8.4); gradual smooth boundary.
Bk2-18 to 35 inches; pale brown (10YR 6/3) sandy clay loam, dark brown (10YR $3 / 3$) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few very fine and fine roots; many very fine irregular pores; violently effervescent with many fine filaments and many irregularly shaped soft masses of carbonates; 10 percent gravel; moderately alkaline (pH 8.4); clear irregular boundary.
2C1-35 to 46 inches; light yellowish brown (10YR 6/4) very gravelly loamy sand, dark yellowish brown (10YR 3/4) moist; single grain; loose, nonsticky and nonplastic; few very fine roots; common fine irregular pores; slightly effervescent with disseminated carbonates; 45 percent gravel; moderately alkaline (pH 8.2); gradual wavy boundary.
2C2-46 to 60 inches; very pale brown (10YR 7/3) very gravelly sandy loam, dark yellowish brown (10YR 3/4) moist; massive; very hard, extremely firm, slightly sticky and slightly plastic; few very fine roots; few fine irregular pores; slightly effervescent with disseminated carbonates; 40 percent gravel; moderately alkaline (pH 8.2).

Depth to sand and gravel (2C horizon) is 30 to 40 inches. Bedrock is at a depth of more than 60 inches. The upper part of the particle-size control section averages 5 to 25 percent rock fragments, mainly gravel, and 20 to 35 percent clay. The lower part averages 40 to 70 percent rock fragments, mainly gravel, and 0 to 10 percent clay.

The A horizon has hue of 10 YR or 7.5 YR and value of 6 or 7 dry and 3 or 4 moist. It is gravelly fine sandy loam and gravelly sandy clay loam. It is 0 to 30 percent rock fragments and 10 to 27 percent clay. The horizon is 1 to 2 percent organic matter. It is moderately alkaline or strongly alkaline. The sodium adsorption ratio is 0 to 13 .

The Bk horizon has hue of 10 YR or 7.5 YR . It is clay loam, sandy clay loam, or gravelly sandy clay loam. It is 5 to 25 percent rock fragments. It is moderately alkaline or strongly alkaline. The sodium adsorption ratio is 0 to 13.

The 2C horizon has value of 3 or 4 moist. It is very gravelly loamy sand, very gravelly sandy loam, or extremely gravelly loamy sand. It is 40 to 70 percent rock fragments.

Dogmountain Series

The Dogmountain series consists of soils that are moderately deep to a duripan and are well drained. The soils formed in volcanic ash and cinders derived from mixed igneous rock. They are on hills. Slopes 4 to 20 percent. Elevation is 4,150 to 4,500 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Ashy-skeletal, frigid Vitrixerandic Haplodurids
Typical pedon of Dogmountain gravelly loam, 4 to 20 percent slopes, about 150 feet west and 1,050 feet south of the northeast corner of sec. 11, T. 26 S., R. 30 E.; Northeast Harney Lake quadrangle.
A1-0 to 3 inches; brown (10YR 5/3) gravelly loam, very dark grayish brown (10YR

3/2) moist; weak medium, fine, and very fine subangular blocky structure; soft, very friable, slightly sticky and nonplastic; common very fine roots; many very fine interstitial pores; 20 percent gravel-sized cinders; slightly alkaline (pH 7.4); clear smooth boundary.
A2-3 to 9 inches; pale brown (10YR 6/3) gravelly loam, dark brown (10YR 3/3) moist; weak medium, fine, and very fine subangular blocky structure; slightly hard, friable, nonsticky and nonplastic; common very fine, fine, and medium roots; many very fine and fine tubular pores; 25 percent gravel-sized cinders; moderately alkaline (pH 8.1); clear smooth boundary.
Bw1-9 to 12 inches; light gray (10YR 7/2) very gravelly loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; slightly hard, friable, nonsticky and nonplastic; many fine and common very fine and medium roots; many very fine tubular pores; 50 percent gravel-sized cinders; moderately alkaline (pH 8.4); gradual smooth boundary.
Bw2-12 to 21 inches; very pale brown (10YR 8/3) extremely gravelly loam, brown (10YR 4/3) moist; massive; slightly hard, friable, nonsticky and nonplastic; many fine and common very fine and medium roots; common very fine tubular pores; 70 percent gravel-sized cinders; strongly effervescent with disseminated carbonates; moderately alkaline (pH 8.4); abrupt wavy boundary.
Bkqm-21 to 30 inches; very pale brown (10YR 8/2) indurated duripan, pale brown (10YR 6/3) moist; massive; very hard, very rigid; 2-millimeter-thick coating of opal on top; 70 percent gravel-sized cinders; strongly effervescent with disseminated carbonates; abrupt irregular boundary.
BCk-30 to 60 inches; black (10YR 2/1) gravel-sized cinders; few 3-inch-wide channels with soil material and few fine roots; single grain; loose, nonsticky and nonplastic; common strongly effervescent carbonate concentrations on gravel; moderately alkaline (pH 8.2).

Depth to the duripan is 20 to 30 inches. Depth to bedrock is more than 60 inches. The particle-size control section averages 10 to 18 percent clay and 50 to 70 percent gravel-sized cinders.

The A horizon has value of 3 to 5 dry and 3 or 4 moist, and it has chroma of 2 or 3 dry or moist. It is 15 to 25 percent gravel-sized cinders and 30 to 60 percent volcanic ash.

The Bw horizon has value of 6 to 8 dry and 3 to 5 moist, and it has chroma of 2 or 3 dry or moist. It is 50 to 70 percent gravel-sized cinders and 30 to 60 percent volcanic ash.

The Bkqm horizon is 6 to 18 inches thick. It is 65 to 80 percent gravel-sized cinders.

The BCk horizon is 95 to 100 percent gravel-sized cinders.

Doubleo Series

The Doubleo series consists of very deep, poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 2 percent. Elevation is 4,100 to 4,200 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Clayey over loamy, montmorillonitic (calcareous), frigid Fluvaquentic Vertic Endoaquolls

Typical pedon of Doubleo loam in an area of Skunkfarm-Mcbain-Doubleo complex, 0 to 2 percent slopes; about 1,570 feet west and 2,350 feet south of the northeast corner of sec. 28, T. 27 S., R. 31 E.; Coyote Buttes quadrangle.

Oi-1 inch to 0; mat of roots and leaves.

Ak—0 to 3 inches; dark grayish brown (10YR 4/2) loam, very dark grayish brown (10YR 3/2) moist; weak very fine granular structure; soft, very friable, slightly sticky and slightly plastic; common very fine and fine roots; common very fine interstitial pores; strongly effervescent with few distinct masses of calcium carbonate; moderately alkaline (pH 8.4); clear wavy boundary.
Bk-3 to 10 inches; dark gray (10YR 4/1) silty clay, very dark gray (10YR 3/1) moist; moderate fine and very fine subangular blocky structure; hard, very firm, slightly sticky and very plastic; common very fine and fine and few coarse roots; few very fine tubular pores; slightly effervescent with disseminated carbonates on faces of peds; moderately alkaline (pH 8.4); clear wavy boundary.
Bkss-10 to 20 inches; dark grayish brown (10YR 4/2) clay, dark gray (10YR 4/1) moist; strong fine and medium subangular blocky structure; extremely hard, rigid, moderately sticky and very plastic; few very fine and fine roots; few very fine tubular pores; common continuous distinct intersecting slickensides; slightly effervescent with disseminated carbonates on faces of peds; common fine distinct iron concentrations that are brown (7.5YR 4/4) when moist; moderately alkaline (pH 8.2); gradual wavy boundary.
B'k—20 to 28 inches; gray (10YR 5/1) clay loam, dark gray (10YR 4/1) moist; moderate fine and medium subangular blocky structure; very hard, extremely firm, moderately sticky and very plastic; few very fine roots; common very fine tubular pores; strongly effervescent with common fine masses of calcium carbonate; common fine distinct iron concentrations that are brown (7.5YR 4/4) when moist; moderately alkaline (pH 8.0); clear wavy boundary.
2C1-28 to 45 inches; light brownish gray (10YR 6/2) fine sandy loam, dark grayish brown (10YR 4/2) moist; massive; slightly hard, friable, nonsticky and nonplastic; few very fine roots; common very fine tubular pores; slightly effervescent with disseminated carbonates; common fine distinct iron concentrations that are brown (7.5YR 4/4) when moist; slightly alkaline (pH 7.8); gradual wavy boundary.
2C2—45 to 60 inches; pale brown (10YR 6/3) loam, dark grayish brown (10YR 4/2) moist; massive; slightly hard, very friable, moderately sticky and slightly plastic; common very fine tubular pores; slightly effervescent with disseminated carbonates; few medium distinct iron concentrations that are brown (7.5YR 4/4) when moist; slightly alkaline (pH 7.8).

The solum is 40 to 60 inches thick. The upper part of the particle-size control section is more than 1 percent organic matter throughout. The lower part of the particle-size control section and the substratum have an irregular decrease in organic matter. The mollic epipedon is 10 to 20 inches thick. The upper part of the particle-size control section averages 35 to 50 percent clay, and the lower part averages 10 to 20 percent clay. The profile is calcareous throughout. Frequent ponding occurs in spring and summer. A high water table is present in spring and summer. The profile is slightly alkaline or moderately alkaline.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 1 or 2 dry or moist.

The Bk horizon is silty clay or silty clay loam with 35 to 50 percent clay.
The Bkss horizon is silty clay or clay with 40 to 60 percent clay.
The 2C1 horizon has value of 5 to 7 dry. It is fine sandy loam or silt loam with 5 to 15 percent clay.

The 2C2 horizon is loam or silt loam with 15 to 20 percent clay.

Doyn Series

The Doyn series consists of very shallow, well drained soils that formed in residuum and colluvium derived from basalt, welded tuff, rhyolite, and andesite. The
soils are on hills and plateaus. Slope is 2 to 30 percent. Elevation is 3,900 to 6,000 feet. The mean annual precipitation is 10 to 16 inches, and the mean annual air temperature is 40 to 45 degrees F.

Taxonomic classification: Loamy, mixed, frigid Lithic Haploxerolls

Typical pedon of Doyn very stony loam, 2 to 20 percent slopes, about 2,000 feet north and 400 feet west of the southeast corner of sec. 21, T. 22 S., R. 34 E.; Stinkingwater Pass quadrangle.
A1-0 to 2 inches; brown (10YR 5/3) very stony loam, dark brown (10YR 3/3) moist; moderate medium platy structure; slightly hard, very friable, slightly sticky and slightly plastic; common very fine roots; common very fine vesicular pores; 10 percent gravel, 20 percent cobbles, and 15 percent stones; slightly alkaline (pH 7.8); clear smooth boundary.
A2-2 to 8 inches; brown (10YR 5/3) cobbly loam, dark brown (10YR 3/3) moist; weak medium platy structure parting to moderate fine and medium subangular blocky; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine roots and few medium roots; common very fine and fine irregular pores; 10 percent gravel and 10 percent cobbles; slightly alkaline (pH 7.8); abrupt smooth boundary.
R-8 inches; basalt.
Thickness of the mollic epipedon and depth to bedrock are 4 to 10 inches.
The upper part of the A horizon is very stony loam or sandy clay loam with 10 to 50 percent rock fragments. It is neutral or slightly alkaline. The lower part is cobbly loam, sandy clay loam, or loam with 5 to 35 percent rock fragments. It is slightly alkaline or moderately alkaline.

Drewsey Series

The Drewsey series consists of very deep, well drained soils that formed in eolian material and colluvium derived from tuffaceous sedimentary rock. The soils are on hills. Slope is 1 to 20 percent. Elevation is 3,400 to 4,000 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Coarse-loamy, mixed, mesic Xeric Haplocambids
Typical pedon of Drewsey very fine sandy loam, 2 to 20 percent slopes, about 200 feet north and 2,500 feet east of the southwest corner of sec. 13, T. 20 S., R. 35 E.; Drinkwater Pass quadrangle.

A-0 to 3 inches; brown (10YR 5/3) very fine sandy loam, dark brown (10YR 4/3) moist; weak medium platy structure parting to moderate medium subangular blocky; slightly hard, very friable, slightly sticky and slightly plastic; common fine roots; few fine tubular pores; 5 percent gravel; slightly alkaline (pH 7.4); clear wavy boundary.
Bw1-3 to 14 inches; light yellowish brown (10YR 6/4) loam, dark yellowish brown (10YR 4/4) moist; weak coarse subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common fine and few very fine roots; few fine and very fine tubular pores; 5 percent gravel; slightly alkaline (pH 7.4); gradual wavy boundary.
Bw2-14 to 32 inches; light yellowish brown (10YR 6/4) fine sandy loam, dark yellowish brown (10YR 4/4) moist; weak coarse prismatic structure; slightly hard, friable, nonsticky and nonplastic; common fine and very fine roots; few fine and
very fine irregular pores; 5 percent gravel; slightly alkaline (pH 7.6); diffuse irregular boundary.
Bk-32 to 62 inches; pale brown (10YR 6/3) fine sandy loam, dark brown (10YR 4/3) moist; weak coarse prismatic structure; hard, friable, nonsticky and nonplastic; few medium and fine and common very fine roots; few fine and very fine irregular pores; strongly effervescent; calcium carbonate lining pores; moderately alkaline (pH 8.0).
Bedrock is at a depth of more than 60 inches. Depth to carbonates is 20 to 35 inches. The particle-size control section averages 0 to 10 percent rock fragments, mainly gravel, and 10 to 18 percent clay.

The A horizon is very fine sandy loam or very cobbly sandy loam. It is neutral or slightly alkaline.

The Bw horizon is very fine sandy loam, fine sandy loam, or loam.
The Bk horizon is very fine sandy loam, fine sandy loam, or loam. It is slightly alkaline or moderately alkaline. The calcium carbonate equivalent is 1 to 5 percent.

Droval Series

The Droval series consists of very deep, somewhat poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 3 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 7 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine, montmorillonitic, mesic Sodic Aquicambids
Typical pedon of Droval loam, 0 to 3 percent slopes, about 2,100 feet north and 2,000 feet west of the southeast corner of sec. 19, T. 37 S., R. 34 E.; Borax Lake quadrangle.

Aknz-0 to 4 inches; light brownish gray (10YR 6/2) loam, dark brown (10YR 3/3) moist; moderate medium platy structure; soft, very friable, moderately sticky and slightly plastic; many fine and medium roots; many very fine and fine vesicular pores; strongly effervescent with disseminated carbonates; 2 percent calcium carbonate equivalent; electrical conductivity is 10 millimhos per centimeter; sodium adsorption ratio is 110; very strongly alkaline (pH 9.6); clear wavy boundary.
Bnz1—4 to 11 inches; grayish brown (10YR 5/2) silty clay, brown (10YR 4/3) moist; weak fine subangular blocky structure parting to moderate medium granular; soft, very friable, very sticky and very plastic; many fine and medium roots; many very fine and fine tubular and irregular pores; electrical conductivity is 23 millimhos per centimeter; sodium adsorption ratio is 70; moderately alkaline (pH 8.3); clear wavy boundary.
Bnz2—11 to 22 inches; light brownish gray (10YR 6/2) silty clay, brown (10YR 4/3) moist; moderate medium subangular blocky structure; slightly hard, very friable, very sticky and very plastic; many fine and medium roots; many very fine and fine tubular and irregular pores; few medium distinct iron concentrations that are yellowish brown (10YR $5 / 6$) when moist; electrical conductivity is 23 millimhos per centimeter; sodium adsorption ratio is 70; moderately alkaline (pH 8.3); clear wavy boundary.
Bnyz-22 to 32 inches; grayish brown (10YR 5/2) clay, dark brown (10YR 3/3) moist; strong fine angular blocky structure; hard, firm, very sticky and very plastic; common fine and medium roots; many very fine and fine tubular and irregular pores; few fine distinct iron concentrations that are yellowish brown (10YR 5/6) when moist; electrical conductivity is 22 millimhos per centimeter; sodium
adsorption ratio is 63 ; common fine filaments and crystals of gypsum; slightly acid (pH 6.4); clear wavy boundary.
Cnyz1-32 to 46 inches; pale brown (10YR 6/3) silty clay, brown (10YR 5/3) moist; massive; hard, firm, very sticky and very plastic; common fine and medium roots; many very fine irregular pores; common fine prominent iron concentrations that are brownish yellow (10YR 6/6) when moist; electrical conductivity is 22 millimhos per centimeter; sodium adsorption ratio is 57 ; common fine filaments and crystals of gypsum; slightly acid (pH 6.1); gradual wavy boundary.
Cnyz2-46 to 61 inches; pale brown (10YR 6/3) clay, brown (10YR 5/3) moist; massive; hard, firm, very sticky and very plastic; few very fine and fine roots; many very fine irregular pores; common fine prominent iron concentrations that are brownish yellow (10YR 6/6) when moist; electrical conductivity is 22 millimhos per centimeter; sodium adsorption ratio is 57 ; common fine filaments and crystals of gypsum; slightly acid (pH 6.1); abrupt smooth boundary.

The solum is 24 to 40 inches thick. Fractured lacustrine sediment is at a depth of more than 60 inches. Frequent ponding occurs in spring. A high water table is present in winter and spring. The particle-size control section averages 40 to 60 percent clay.

The Aknz horizon is 15 to 27 percent clay. The calcium carbonate equivalent is 1 to 2 percent. The sodium adsorption ratio is 75 to 120 . Electrical conductivity is 8 to 16 millimhos per centimeter.

The Bnz horizon is 40 to 50 percent clay. Electrical conductivity is 16 to 32 millimhos per centimeter. The sodium adsorption ratio is 45 to 80 .

The Bnyz and Cnyz horizons are silty clay and clay and are 40 to 60 percent clay. Electrical conductivity is 16 to 32 millimhos per centimeter. The sodium adsorption ratio is 45 to 80 . The content of gypsum averages 0 to 4 percent.

Duckclub Series

The Duckclub series consists of very deep, somewhat poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 2 percent. Elevation is 4,090 to 4,105 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Coarse-loamy, mixed, frigid Sodic Aquicambids
Typical pedon of Duckclub loamy fine sand in an area of Thenarrows-Duckclub complex, 0 to 1 percent slopes; about 2,800 feet south and 700 feet east of the northwest corner of sec. 4, T. 26 S., R. 32 E.; The Narrows quadrangle.

A1-0 to 5 inches; dark grayish brown (2.5Y 4/2) loamy fine sand, grayish brown ($2.5 \mathrm{Y} 5 / 2$) dry; moderate coarse granular structure parting to very fine granular; loose, friable, nonsticky and nonplastic; many very fine, fine, and medium roots; many very fine, fine, medium, and coarse irregular pores; strongly effervescent with disseminated carbonates; strongly alkaline (pH 9.0); gradual smooth boundary.
A2-5 to 27 inches; dark grayish brown (2.5Y 4/2) loamy fine sand, light brownish gray ($2.5 \mathrm{Y} 6 / 2$) dry; weak medium and fine subangular blocky structure; loose, friable, nonsticky and nonplastic; common very fine and fine roots; common very fine tubular pores; common faint coatings of organic matter on faces of peds; strongly effervescent with disseminated carbonates; very strongly alkaline (pH 9.2); gradual smooth boundary.

2Bw1-27 to 32 inches; dark grayish brown (2.5Y 4/2) fine sandy loam, light gray ($2.5 \mathrm{Y} 7 / 2$) dry; weak coarse and medium subangular blocky structure; slightly hard, very friable, nonsticky and nonplastic; common very fine and fine roots;
common very fine and fine tubular pores; strongly effervescent with disseminated carbonates; very strongly alkaline (pH 9.2); abrupt wavy boundary.
2Bw2-32 to 41 inches; light brownish gray (2.5Y 6/2) sandy clay loam, light gray (2.5Y 7/2) dry; weak medium prismatic structure; very hard, firm, very sticky and very plastic; common very fine and fine roots; common very fine tubular pores; common faint coatings lining pores; common fine faint depletions that are gray (5Y 6/1) when moist and are on faces of peds; strongly effervescent with disseminated carbonates; 9 percent calcium carbonate equivalent; very strongly alkaline (pH 9.2); gradual smooth boundary.
2Bkq1—41 to 51 inches; light brownish gray (2.5Y 6/2) loam, light gray (2.5Y 7/2) dry; weak fine prismatic structure; hard, firm, slightly sticky and slightly plastic; common very fine and fine roots; common very fine tubular and irregular pores; few fine distinct iron concentrations that are dark brown (7.5YR 4/4) when moist; 30 percent durinodes; common 1- to 5-millimeter-wide filaments of carbonates; strongly effervescent with disseminated carbonates; very strongly alkaline (pH 9.2); clear wavy boundary.

2Bkq2—51 to 63 inches; olive brown (2.5Y 4/3) loamy fine sand, light brownish gray (2.5Y 6/2) dry; massive; slightly hard, firm, nonsticky and nonplastic; few very fine roots; few very fine tubular pores; common fine faint iron concentrations that are dark brown (10YR 4/3) when moist; 60 percent durinodes; common 5- to 10-millimeter-wide filaments of carbonates lining pores; strongly effervescent; strongly alkaline (pH 9.0).

Depth to bedrock is more than 60 inches. The particle-size control section averages 10 to 18 percent clay. Depth to durinodes or the duric layer is 45 to 60 inches or more. Rare ponding occurs in spring. A high water table is present in spring and early in summer. The profile has a calcium carbonate equivalent of 5 to 10 percent throughout.

The A horizon has value of 5 or 6 dry and 3 to 5 moist, and it has chroma of 1 or 2 moist or dry. It is moderately alkaline to very strongly alkaline. The sodium adsorption ratio is 13 to 30 .

The Bw horizon has hue of 10YR, 2.5Y, or 5 Y , value of 6 to 8 dry and 4 to 6 moist, and chroma of 1 or 2 moist or dry. It is sandy loam, fine sandy loam, or sandy clay loam with 10 to 30 percent clay. It is strongly alkaline or very strongly alkaline. The sodium adsorption ratio is 13 to 30 .

The 2Bkq horizon is loamy fine sand, sandy loam, or loam with 5 to 20 percent clay. It is strongly alkaline or very strongly alkaline. The sodium adsorption ratio is 5 to 15.

Duff Series

The Duff series consists of deep, well drained soils that formed in colluvium and loess over basalt and andesite. The soils are on mountains. Slope is 2 to 80 percent. Elevation is 6,000 to 9,200 feet. The mean annual precipitation is 12 to 35 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Fine-loamy, mixed Pachic Cryoborolls
Typical pedon of Duff loam in an area of Duff-Clamp complex, 20 to 40 percent north slopes, about 2,400 feet south and 500 feet west of the northeast corner of sec. 33, T. 39 S., R. 34 E.; Ladycomb Peak quadrangle.

A1-0 to 8 inches; very dark grayish brown (10YR 3/2) loam, black (10YR 2/1) moist; weak medium subangular blocky structure; soft, very friable, moderately sticky and slightly plastic; common very fine, fine, medium, and coarse roots; many fine tubular and irregular pores; neutral (pH 7.0); gradual wavy boundary.

A2-8 to 24 inches; very dark grayish brown (10YR 3/2) loam, very dark brown (10YR 2/2) moist; weak medium and coarse subangular blocky structure; soft, very friable, moderately sticky and slightly plastic; common very fine, fine, medium, and coarse roots; many fine tubular and irregular pores; neutral (pH 7.0); gradual wavy boundary.
$2 A-24$ to 43 inches; dark brown (10YR 3/3) very gravelly loam, very dark brown (10YR 2/2) moist; massive; soft, very friable, moderately sticky and slightly plastic; few very fine and fine and common coarse roots; many fine tubular and irregular pores; 30 percent gravel, 15 percent cobbles, and 5 percent stones; neutral (pH 7.0); abrupt irregular boundary.

2R-43 inches; fractured basalt.
The mollic epipedon is 16 to 40 inches thick. The depth to bedrock is 40 to 60 inches. The particle-size control section averages 15 to 35 percent rock fragments, mainly gravel and cobbles, and 18 to 27 percent clay.

The A1 horizon is loam or very stony loam. It is 0 to 40 percent rock fragments and 18 to 27 percent clay.

The A2 horizon is loam. It is 0 to 15 percent rock fragments and 18 to 27 percent clay.

The 2A horizon is gravelly loam or very gravelly loam. It is 20 to 50 percent rock fragments and 18 to 27 percent clay.

Edemaps Series

The Edemaps series consists of soils that are moderately deep to a duripan and are well drained. The soils formed in old alluvium and colluvium over welded tuff, basalt, and andesite (fig. 14). They are on plateaus and hills. Slope is 2 to 20 percent. Elevation is 4,200 to 5,700 feet. The mean annual precipitation is 12 to 14 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine, montmorillonitic, frigid Argiduridic Durixerolls

Typical pedon of Edemaps cobbly clay loam in an area of Edemaps-Carryback association, 2 to 10 percent slopes; about 1,600 feet north and 1,900 feet east of the southwest corner of sec. 28, T. 38 S., R. 34 E.; Ladycomb Peak quadrangle.

A—0 to 7 inches; grayish brown (10YR 5/2) cobbly clay loam, very dark brown (10YR 2/2) moist; weak fine granular structure; slightly hard, very friable, moderately sticky and moderately plastic; many very fine and fine roots; many very fine and fine vesicular and irregular pores; 10 percent gravel, 15 percent cobbles, and 5 percent stones; slightly alkaline (pH 7.8); clear smooth boundary.
Bt1—7 to 10 inches; dark brown (10YR 4/3) clay, very dark brown (10YR 2/2) moist; weak medium subangular blocky structure; hard, friable, moderately sticky and moderately plastic; common fine roots; common fine and medium vesicular and irregular pores; few prominent clay films on faces of peds and lining pores; 5 percent gravel; slightly alkaline (pH 7.8); clear smooth boundary.
Bt2—10 to 18 inches; brown (7.5YR 5/4) clay, dark yellowish brown (10YR 4/4) moist; moderate medium subangular blocky structure; hard, friable, moderately sticky and moderately plastic; common medium roots; common fine irregular and tubular pores; common prominent clay films on faces of peds and lining pores; 10 percent gravel; slightly alkaline (pH 7.8); clear smooth boundary.
2Bt3-18 to 25 inches; yellowish brown (10YR 5/6) very cobbly clay loam, dark yellowish brown (10YR 3/4) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common medium roots; common fine irregular and tubular pores; few faint clay films on faces of peds;

Figure 14.-Typical profile of an Edemaps soil. A duripan formed between depths of 24 and 38 inches and is underlain by basalt.

25 percent gravel and 20 percent cobbles; slightly alkaline (pH 7.8); clear wavy boundary.
2Bkqm-25 to 30 inches; indurated duripan; very rigid; violently effervescent; abrupt wavy boundary.
2R-30 inches; fractured basalt.

The mollic epipedon is 7 to 12 inches thick. Thickness of the solum and depth to the duripan are 20 to 35 inches. Depth to bedrock is 24 to 40 inches. The particle-size control section averages 5 to 35 percent rock fragments, mainly gravel and cobbles, and 35 to 45 percent clay.

The A horizon is has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 dry or moist. It is loam or cobbly clay loam with 20 to 35 percent clay.

The Bt horizon has hue of 7.5 YR and 10YR, value of 4 to 6 dry and 2 to 4 moist, and chroma of 3 to 6 dry and 2 to 4 moist. It is clay, cobbly clay loam, or cobbly clay. It is 35 to 45 percent clay and 5 to 50 percent rock fragments.

The 2Bt horizon is cobbly clay loam or very cobbly clay loam with 35 to 40 percent clay.

The 2Bkqm horizon is 2 to 8 inches thick.

Egyptcreek Series

The Egyptcreek series consists of moderately deep, well drained soils that formed in colluvium and residuum derived from welded tuff. The soils are on hills and mountains. Slope is 20 to 60 percent. Elevation is 4,200 to 5,200 feet. The mean annual precipitation is 14 to 18 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Ultic Haploxerolls
Typical pedon of Egyptcreek very gravelly loam in an area of Anatone-EgyptcreekRock outcrop association, 20 to 50 percent slopes; about 660 feet south and 1,980 feet west of the northeast corner of sec. 29, T. 21 S., R. 27 E.; Dry Mountain quadrangle.
Oi-1 inch to 0 ; slightly decomposed needles and twigs.
A1-0 to 2 inches; grayish brown (10YR 5/2) very gravelly loam, very dark grayish brown (10YR 3/2) moist; weak fine granular structure; soft, very friable, moderately sticky and moderately plastic; common very fine and fine roots; few fine irregular pores; 30 percent gravel and 5 percent cobbles; slightly acid (pH 6.4); clear smooth boundary.

A2-2 to 8 inches; grayish brown (10YR 5/2) very gravelly loam, very dark grayish brown (10YR 3/2) moist; weak fine subangular blocky structure; slightly hard, very friable, moderately sticky and moderately plastic; few fine, medium, and coarse roots; few fine irregular discontinuous pores; 35 percent gravel and 5 percent cobbles; neutral (pH 6.6); gradual wavy boundary.
Bw1-8 to 18 inches; yellowish brown (10YR 5/4) very gravelly loam, dark yellowish brown (10YR 3/4) moist; moderate fine subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; few fine, medium, and coarse roots; few fine irregular discontinuous pores; 45 percent gravel and 10 percent cobbles; neutral (pH 6.6); gradual wavy boundary.
Bw2-18 to 24 inches; yellowish brown (10YR 5/4) extremely cobbly loam, dark yellowish brown (10YR $3 / 4$) moist; moderate fine subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; few fine, medium, and coarse roots; few fine irregular discontinuous pores; 20 percent gravel, 40 percent cobbles, and 5 percent stones; neutral (pH 6.6); abrupt irregular boundary.
R-24 inches; fractured welded tuff.
The mollic epipedon is 7 to 18 inches thick. Thickness of the solum and depth to bedrock are 20 to 36 inches thick. The particle-size control section averages 35 to 60 percent rock fragments and 20 to 27 percent clay. It is slightly acid or neutral.

The A horizon has value of 4 or 5 dry and 3 moist, and it has chroma of 2 or 3 moist or dry. The darker value and chroma are in the upper part. The horizon is very gravelly loam or very stony loam with 35 to 60 percent rock fragments.

The Bw horizon is very gravelly loam and extremely cobbly loam with 35 to 70 percent rock fragments.

Enko Series

The Enko series consists of very deep, well drained soils that formed in alluvium. The soils are on lake terraces. Slope is 1 to 15 percent. Elevation is 4,200 to 4,800 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Coarse-loamy, mixed, mesic Durinodic Xeric Haplocambids

Typical pedon of Enko loamy sand, 2 to 8 percent slopes, about 2,200 feet south and 2,100 feet east of the northwest corner of sec. 8, T. 39 S., R. 36 E.; Tumtum Lake quadrangle.
A—0 to 8 inches; brown (10YR 5/3) loamy sand, dark yellowish brown (10YR 3/4) moist; single grain; loose, nonsticky and nonplastic; many very fine and fine, and common medium and few coarse roots; many very fine vesicular and irregular pores and many fine irregular pores; 5 percent gravel; slightly alkaline (pH 7.4); clear smooth boundary.
Bw1-8 to 19 inches; brown (10YR 5/3) sandy loam, dark yellowish brown (10YR 3/4) moist; weak medium subangular blocky structure; soft, very friable, nonsticky and nonplastic; many very fine and common fine roots; many very fine and fine irregular pores; 3 percent gravel; slightly alkaline (pH 7.5); abrupt smooth boundary.
Bw2-19 to 29 inches; yellowish brown (10YR 5/4) sandy loam, dark yellowish brown (10YR 4/4) moist; weak medium subangular blocky structure; slightly hard, friable, nonsticky and nonplastic; few very fine and fine roots; many very fine and common fine irregular pores; 5 percent durinodes; 3 percent gravel; slightly alkaline (pH 7.5); clear smooth boundary.
Bkq1-29 to 45 inches; light yellowish brown (10YR 6/4) sandy loam, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, firm and brittle, nonsticky and nonplastic; few fine roots; many very fine and common fine irregular pores; slightly effervescent with carbonates segregated in few fine filaments; 5 percent gravel; moderately alkaline (pH 8.2); clear wavy boundary.
2Bkq2—45 to 62 inches; very pale brown (10YR 8/3) gravelly loamy sand, yellowish brown (10YR 5/4) moist; massive; slightly hard, firm, nonsticky and nonplastic; few fine roots; many very fine and fine irregular pores; 40 percent durinodes; violently effervescent with disseminated carbonates; 20 percent gravel; moderately alkaline (pH 8.3).

Depth to the firm and brittle layer is 20 to 35 inches. Bedrock is at a depth of more than 60 inches. Calcium carbonate is at a depth of 20 to 35 inches. The particle-size control section averages 0 to 5 percent rock fragments, mainly gravel, and 10 to 18 percent clay. The profile is slightly alkaline or moderately alkaline.

The A horizon is loamy sand or gravelly loamy sand. It is 5 to 25 percent rock fragments and 5 to 10 percent clay.

The Bw and Bkq horizons are 0 to 5 percent rock fragments and 10 to 18 percent clay.

The 2Bkq horizon is loamy sand, sandy loam, or gravelly loamy sand. It is 5 to 25 percent rock fragments and 5 to 15 percent clay.

Erakatak Series

The Erakatak series consists of moderately deep, well drained soils that formed in residuum and colluvium derived from basalt and welded tuff. The soils are on plateaus, hills, and mountains. Slope is 2 to 80 percent. Elevation is 4,400 to 7,500 feet. The mean annual precipitation is 12 to 16 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Clayey-skeletal, montmorillonitic, frigid Typic Argixerolls
Typical pedon of Erakatak very cobbly loam in an area of Merlin-Erakatak-Teguro complex, 2 to 20 percent slopes; about 1,900 feet north and 1,000 feet east of the southwest corner of sec. 20, T. 20 S., R. 29 E.; Hughet Valley quadrangle.

A1-0 to 2 inches; grayish brown (10YR 5/2) very cobbly loam, dark brown (10YR $3 / 3$) moist; moderate medium granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine, common fine, and few medium roots; common very fine and fine and few medium irregular pores; 20 percent gravel, 15 percent cobbles, and 5 percent stones; neutral (pH 6.6); clear smooth boundary.
A2-2 to 7 inches; brown (10YR 5/3) very cobbly loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure parting to moderate medium granular; slightly hard, friable, slightly sticky and slightly plastic; common very fine, fine, and medium roots; common very fine and fine and few medium irregular pores; 15 percent gravel, 15 percent cobbles, and 5 percent stones; neutral (pH 6.8); abrupt smooth boundary.

Bt1-7 to 16 inches; brown (10YR 5/3) very cobbly clay loam, dark brown (10YR 3/3) moist; strong medium angular blocky structure parting to moderate fine angular blocky; hard, firm, moderately sticky and moderately plastic; common fine and medium and few very fine and coarse roots; few very fine and medium and common fine irregular pores; common distinct clay films on faces of peds; 20 percent gravel, 15 percent cobbles, and 5 percent stones; neutral (pH 7.0); clear wavy boundary.
Bt2-16 to 25 inches; light yellowish brown (10YR 6/4) very cobbly clay, dark yellowish brown (10YR 4/4) moist; moderate medium prismatic structure parting to moderate medium angular blocky; very hard, very firm, very sticky and very plastic; few very fine, fine, medium, and coarse roots; few fine, medium, and coarse irregular pores; common prominent clay films on faces of peds; 25 percent gravel and 20 percent cobbles; neutral (pH 7.2); clear smooth boundary.
R-25 inches; fractured welded tuff.
The mollic epipedon is 7 to 18 inches thick. Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 35 to 60 percent rock fragments, mainly cobbles, and 35 to 50 percent clay.

The A horizon is very cobbly loam, very stony clay loam, or extremely stony silty clay loam. It is 35 to 70 percent rock fragments and 18 to 35 percent clay.

The Bt1 horizon is very cobbly clay loam or very cobbly silty clay loam. It is 35 to 60 percent rock fragments and 35 to 40 percent clay.

The Bt2 horizon is very gravelly clay or very cobbly clay. It is 35 to 60 percent rock fragments and 40 to 55 percent clay.

Felcher Series

The Felcher series consists of moderately deep, well drained soils that formed in colluvium and residuum over basalt, andesite, and welded tuff. The soils are on
mountains and hills. Slope is 5 to 70 percent. Elevation is 4,100 to 7,100 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, mesic Xeric Haplocambids
Typical pedon of Felcher very stony clay loam in an area of Felcher-Rock outcrop complex, 40 to 70 percent south slopes; about 2,000 feet south and 900 feet west of the northeast corner of sec. 30, T. 39 S., R. 37 E.; Pole Canyon quadrangle.
A-0 to 10 inches; light brownish gray (10YR 6/2) very stony clay loam, very dark grayish brown (10YR 3/2) moist; moderate fine and medium granular structure; slightly hard, friable, moderately sticky and slightly plastic; many very fine and fine roots; many very fine tubular and irregular pores; 25 percent gravel, 10 percent cobbles, and 15 percent stones; neutral (pH 6.8); gradual wavy boundary.
Bw-10 to 22 inches; yellowish brown (10YR 5/4) very gravelly clay loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; slightly hard, firm, moderately sticky and slightly plastic; common very fine and fine roots; many very fine irregular pores; 30 percent gravel, 15 percent cobbles, and 2 percent stones; neutral (pH 7.2); abrupt wavy boundary.
R-22 inches; basalt.
Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 35 to 60 percent rock fragments, mainly gravel and cobbles, and 20 to 35 percent clay. The profile is neutral or slightly alkaline.

The A horizon is very cobbly loam, stony clay loam, very stony clay loam, extremely stony sandy clay loam, or extremely stony clay loam. It is 15 to 70 percent rock fragments.

The Bw horizon is very gravelly clay loam, very cobbly loam, or very cobbly clay loam. It is 35 to 60 percent rock fragments.

Final Series

The Final series consists of very deep, somewhat poorly drained soils that formed in alluvium. The soils are on stream terraces. Slope is 0 to 2 percent. Elevation is 3,500 to 4,000 feet. The mean annual precipitation is 8 to 11 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine, montmorillonitic, mesic Vertic Natrargids
Typical pedon of Final silt loam, 0 to 2 percent slopes, about 1,600 feet north and 200 feet east of the southwest corner of sec. 10, T. 22 S., R. 35 E.; Bartlett Mountain quadrangle.

A-0 to 3 inches; very dark grayish brown (10YR 3/2) silt loam, gray (10YR 6/1) dry; moderate very thick platy structure; slightly hard, very friable, nonsticky and nonplastic; many very fine and fine roots; many very fine and fine vesicular pores; sodium adsorption ratio is 42 , electrical conductivity is 4 ; moderately alkaline (pH 8.0); abrupt smooth boundary.

Btn1-3 to 7 inches; very dark gray (10YR 3/1) clay, grayish brown (10YR 5/2) dry; weak fine and medium prismatic structure parting to strong very fine, fine, and medium angular blocky; very hard, firm, very sticky and very plastic; many very fine and fine, common medium, and few coarse roots; common very fine tubular pores; many faint clay films on faces of peds and lining pores; moderately alkaline (pH 8.2); clear smooth boundary.
Btn2-7 to 12 inches; dark grayish brown (10YR 4/2) clay, light brownish gray (10YR

6/2) dry; moderate very fine, fine, and medium subangular blocky structure; hard, friable, very sticky and very plastic; common very fine, fine, and medium and few coarse roots; common very fine and fine tubular pores; many faint clay films on faces of peds and lining pores; strongly effervescent; sodium adsorption ratio is 56 , electrical conductivity is 8 ; strongly alkaline (pH 8.6); gradual smooth boundary.
2Bn-12 to 24 inches; dark grayish brown (2.5Y 4/2) clay, light brownish gray (10YR 6/2) dry; weak fine and medium subangular blocky structure; hard, friable, very sticky and very plastic; common very fine, fine, and medium roots; common very fine and fine tubular pores; many faint coatings of organic matter on faces of peds and lining pores; strongly effervescent; sodium adsorption ratio is 80 ; electrical conductivity is 14 ; strongly alkaline (pH 8.8); gradual smooth boundary.
2Bkn1-24 to 42 inches; very dark grayish brown (2.5Y 3/2) clay loam, light brownish gray ($2.5 \mathrm{Y} 6 / 2$) dry; weak fine and medium subangular blocky structure; hard, firm, moderately sticky and moderately plastic; common very fine and fine roots; common very fine and fine tubular pores; many faint coatings of organic matter on faces of peds and lining pores; strongly effervescent with filaments of carbonates; sodium adsorption ratio is 99 ; electrical conductivity is 12 ; very strongly alkaline (pH 9.2); gradual smooth boundary.
2Bkn2-42 to 60 inches; dark grayish brown (2.5Y 4/2) silty clay loam, light brownish gray ($2.5 \mathrm{Y} 6 / 2$) dry; weak medium and fine subangular blocky structure; hard, firm and brittle, moderately sticky and moderately plastic; common very fine and fine roots; common very fine and fine tubular pores; many faint coatings of organic matter on faces of peds and lining pores; 5 percent fine gravel; filaments of carbonates; sodium adsorption ratio is 112 ; electrical conductivity is 8 ; strongly effervescent; very strongly alkaline (pH 9.2)

Depth to bedrock and thickness of the solum are more than 60 inches. A high water table is present in spring. The particle-size control section averages 40 to 50 percent clay. The profile is moderately alkaline to very strongly alkaline, increasing with depth. Depth to the natric horizon (Btn horizon) is 1 to 4 inches.

The A horizon is 1 to 2 percent organic matter. The sodium adsorption ratio is 25 to 45. Electrical conductivity is 2 to 4 millimhos per centimeter.

The Btn horizon has hue of 10 YR or 2.5 Y . It is silty clay or clay with 40 to 55 percent clay. The sodium adsorption ratio is 30 to 60 . Electrical conductivity is 4 to 8 millimhos per centimeter. The horizon is 1 to 2 percent organic matter.

The 2Bn horizon has hue of 10 YR or 2.5 Y . It is clay or silt clay with 40 to 50 percent clay. The sodium adsorption ratio is 50 to 90 . Electrical conductivity is 8 to 16 millimhos per centimeter.

The 2Bkn horizon is silty clay loam and clay loam with 27 to 40 percent clay. The sodium adsorption ratio is 80 to 120. Electrical conductivity is 8 to 16 millimhos per centimeter in the upper part and 4 to 8 millimhos per centimeter in the lower part.

Fitzwater Series

The Fitzwater series consists of deep, well drained soils that formed in colluvium derived from basalt and welded tuff. The soils are on hills and mountains. Slope is 20 to 60 percent. Elevation is 4,100 to 7,500 feet. The mean annual precipitation is 10 to 16 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Aridic Haploxerolls
Typical pedon of Fitzwater very stony loam in an area of Fitzwater-Hapgood association, 20 to 40 percent slopes; about 1,980 feet south and 660 feet east of the northwest corner of sec. 16, T. 37 S., R. 29 E.; Mahogany Butte quadrangle.

A—0 to 9 inches; grayish brown (10YR 5/2) very stony loam, very dark grayish brown (10YR $3 / 2$) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine and common medium roots; many very fine and fine irregular pores; 15 percent gravel, 20 percent cobbles, and 20 percent stones; slightly alkaline (pH 7.7); clear wavy boundary.
Bw1-9 to 16 inches; brown (10YR 5/3) very gravelly loam, dark brown (10YR 4/3) moist; moderate medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine and common medium roots; many fine and common medium irregular pores; 40 percent gravel and 15 percent cobbles; slightly alkaline (pH 7.7); clear wavy boundary.
Bw2-16 to 30 inches; brown (10YR 5/3) extremely cobbly loam, dark brown (10YR 4/3) moist; moderate fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few fine and medium roots; common very fine and fine irregular pores; 30 percent gravel, 30 percent cobbles, and 15 percent stones; slightly alkaline (pH 7.7); clear wavy boundary.
C-30 to 58 inches; pale brown (10YR 6/3) extremely stony sandy loam, dark brown (10YR 4/3) moist; massive; slightly hard, very friable, nonsticky and nonplastic; few fine roots; few fine irregular pores; 20 percent gravel, 30 percent cobbles, and 30 percent stones; slightly alkaline (pH 7.7); abrupt irregular boundary.
R-58 inches; basalt.
The mollic epipedon is 7 to 12 inches thick. Depth to bedrock is 40 to 60 inches. The particle-size control section averages 50 to 80 percent rock fragments, mainly cobbles, and 18 to 27 percent clay.

The A horizon is very cobbly loam or very stony loam. It is 40 to 60 percent rock fragments and 18 to 27 percent clay.

The Bw horizon is very gravelly loam, extremely gravelly loam, extremely cobbly loam, or very cobbly loam. It is 50 to 80 percent rock fragments and 18 to 27 percent clay.

The C horizon is extremely cobbly sandy loam, extremely cobbly loam, or extremely stony sandy loam. It is 60 to 80 percent rock fragments and 15 to 25 percent clay.

Flank Series

The Flank series consists of very shallow and shallow, well drained soils that formed in cinders and ash over basalt. The soils are on hills. Slope is 1 to 20 percent. Elevation is 4,100 to 4,700 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Ashy-skeletal, nonacid, frigid Lithic Xeric Torriorthents
Typical pedon of Flank extremely gravelly loamy sand in an area of Flank-Lava flows complex, 1 to 40 percent slopes; about 1,600 feet south and 700 feet east of the northwest corner of sec. 36, T. 28 S., R. 32 E.; Diamond quadrangle.

A-0 to 1 inch; dark grayish brown (10YR 4/2) extremely gravelly loamy sand, very dark brown (10YR 2/2) moist; single grain; loose, nonsticky and nonplastic; common very fine roots; 65 percent gravel-sized cinders; slightly alkaline (pH 7.4); abrupt smooth boundary.

Bw-1 to 9 inches; dark brown (10YR 4/3) very gravelly sandy loam, very dark grayish brown (10YR 3/2) moist; weak fine and very fine subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; common very fine
and few fine roots; few very fine tubular pores; 40 percent gravel-sized cinders; slightly alkaline (pH 7.5); abrupt wavy boundary.
2R-9 inches; basalt.
The mollic colors throughout the profile are due to the parent material. Depth to bedrock is 4 to 15 inches. The particle-size control section averages 35 to 70 percent gravel-sized cinders, 5 to 18 percent clay, and 40 to 80 percent glass.

The A horizon is very gravelly sandy loam or extremely gravelly loamy sand. It is 25 to 70 percent rock fragments.

The Bw horizon is very gravelly sandy loam, very gravelly loam, or extremely gravelly sandy loam. It is 35 to 70 percent rock fragments.

Fourwheel Series

The Fourwheel series consists of moderately deep, well drained soils that formed in colluvium and residuum over basalt, andesite, and welded tuff. The soils are on hills and plateaus. Slope is 3 to 40 percent. Elevation is 4,200 to 6,500 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine, montmorillonitic, frigid Vertic Paleargids
Typical pedon of Fourwheel clay loam in an area of Robson-Fourwheel complex, 3 to 30 percent slopes; about 2,100 feet north and 200 feet east of the southwest corner of sec. 28, T. 39 S., R. 37 E.; Trout Creek Canyon quadrangle.

A1-0 to 2 inches; gray (10YR 6/1) clay loam, very dark grayish brown (10YR 3/2) moist; weak medium platy structure parting to weak medium subangular blocky; slightly hard, friable, slightly sticky and slightly plastic; many very fine and fine tubular and vesicular pores; 10 percent gravel; neutral (pH 7.0); clear wavy boundary.
A2-2 to 7 inches; light brownish gray (10YR 6/2) clay loam, very dark grayish brown (10YR 3/2) moist; moderate fine subangular blocky structure; hard, friable, moderately sticky and moderately plastic; common very fine, fine, and medium roots; many very fine and fine tubular and irregular pores; 10 percent gravel; neutral (pH 7.0); abrupt wavy boundary.
Bt1-7 to 14 inches; dark yellowish brown (10YR 4/4) clay, dark yellowish brown (10YR 3/4) moist; strong medium subangular blocky structure; very hard, very firm, very sticky and very plastic; common very fine, fine, and medium roots; many very fine and fine tubular and irregular pores; many prominent clay films on faces of peds; 10 percent gravel; neutral (pH 7.2); abrupt wavy boundary.
Bt2-14 to 22 inches; yellowish brown (10YR 5/6) clay, yellowish brown (10YR 5/4) moist; moderate medium subangular blocky structure; very hard, very firm, very sticky and very plastic; few very fine and fine roots; many very fine irregular pores; common prominent clay films on faces of peds; 10 percent gravel; neutral (pH 7.3); gradual wavy boundary.
2R-22 inches; basalt.
Depth to bedrock is 20 to 40 inches. Depth to the claypan is 4 to 11 inches. The particle-size control section averages 5 to 15 percent rock fragments, mainly gravel, and 45 to 60 percent clay. It is neutral or slightly alkaline. The content of clay in the Bt horizon is 15 to 25 percent more than that of the A horizon.

The A horizon is clay loam, extremely cobbly loam, or stony loam. It is 5 to 65 percent rock fragments and 20 to 35 percent clay.

The Bt horizon has hue of 7.5 YR or 10YR, value of 4 to 6 dry and 3 to 5 moist, and chroma of 3 or 4 moist and 3 to 6 dry. It is clay or silty clay.

Freznik Series

The Freznik series consists of moderately deep, well drained soils that formed in colluvium and residuum derived from welded tuff and basalt. The soils are on plateaus. Slope is 2 to 15 percent. Elevation is 5,700 to 6,200 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine, montmorillonitic, frigid Xeric Paleargids
Typical pedon of Freznik very stony silt loam, 2 to 15 percent slopes, about 1,600 feet south and 1,600 feet east of the northwest corner of sec. 32, T. 39 S., R. 29 E.; Chimney Rock quadrangle.

A-0 to 4 inches; light brownish gray (10YR 6/2) very stony silt loam, dark grayish brown (10YR 4/2) moist; strong thick platy structure; slightly hard, friable, nonsticky and nonplastic; many very fine and fine and few medium roots; many fine and common medium horizontal vesicular pores; 15 percent gravel, 10 percent cobbles, and 20 percent stones; slightly alkaline (pH 7.6); abrupt smooth boundary.
Bt1—4 to 12 inches; pale brown (10YR 6/3) cobbly silty clay loam, brown (10YR 4/3) moist; weak medium prismatic structure parting to moderate medium subangular blocky; slightly hard, friable, moderately sticky and slightly plastic; many fine and few medium roots; many very fine and fine and few medium irregular tubular pores; common faint clay films on faces of peds; 5 percent gravel and 15 percent cobbles; slightly alkaline (pH 7.8); abrupt smooth boundary.
Bt2-12 to 20 inches; light yellowish brown (10YR 6/4) silty clay, dark yellowish brown (10YR 4/4) moist; strong medium prismatic and angular blocky structure parting to moderate fine angular blocky; hard, firm, moderately sticky and moderately plastic; common fine and few medium roots; common very fine and fine irregular pores; common distinct clay films on faces of peds; slightly alkaline (pH 7.8); clear smooth boundary.
Bt3-20 to 31 inches; light yellowish brown (10YR 6/4) silty clay loam, dark yellowish brown (10YR 4/4) moist; moderate medium angular blocky structure parting to strong fine angular blocky; slightly hard, friable, moderately sticky and moderately plastic; few fine roots; common very fine and fine irregular pores; few faint and distinct clay films on faces of peds; moderately alkaline (pH 8.0); abrupt smooth boundary.
C—31 to 35 inches; very pale brown (10YR 7/4) silty clay loam, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, friable, moderately sticky and moderately plastic; common very fine and few fine irregular pores; moderately alkaline (pH 8.0); abrupt smooth boundary.
2R-35 inches; basalt.
Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 0 to 35 percent rock fragments, mainly gravel, and 40 to 55 percent clay.

The A horizon is 35 to 60 percent rock fragments and 18 to 27 percent clay. It is 2 to 5 inches thick.

The Bt horizon is silty clay loam, silty clay, and cobbly silty clay loam. It is 0 to 35 percent rock fragments and 35 to 55 percent clay. It is slightly alkaline or moderately alkaline.

The C horizon is silty clay loam or silty clay. It is 0 to 10 percent rock fragments and 30 to 45 percent clay.

Fury Series

The Fury series consists of very deep, poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 2 percent. Elevation is 4,000 to 5,100 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-silty, mixed, frigid Cumulic Endoaquolls
Typical pedon of Fury silt loam, 0 to 1 percent slopes, about 250 feet north and 750 feet east of the southwest corner of sec. 14, T. 23 S., R. 31 E.; Poison Creek Slough quadrangle.

A1-0 to 7 inches; dark gray (10YR 4/1) silt loam, black (10YR 2/1) moist; moderate medium and fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many roots; slightly effervescent with disseminated carbonates; moderately alkaline (pH 8.0); clear smooth boundary.
A2-7 to 14 inches; dark gray (10YR 4/1) silt loam, very dark gray (10YR 3/1) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many roots; common very fine tubular pores; slightly effervescent with disseminated carbonates; moderately alkaline (pH 8.0); gradual smooth boundary.
A3-14 to 21 inches; dark gray (10YR 4/1) silty clay loam, very dark gray (10YR 3/1) crushed, with coatings that are black (10YR 2/1) when moist; weak fine prismatic structure; slightly hard, friable, slightly sticky and slightly plastic; many roots; common very fine tubular pores; slightly effervescent with disseminated carbonates; slightly alkaline (pH 7.8); gradual smooth boundary.
Ak-21 to 27 inches; dark gray (10YR 4/1) silty clay loam, very dark gray (10YR 3/1) moist; moderate fine and medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many roots; many fine and very fine tubular pores; strongly effervescent with disseminated carbonates and brown flecks and streaks of carbonates; few fine distinct iron concentrations that are reddish brown (5YR $5 / 4$) when moist; slightly alkaline (pH 7.8); abrupt wavy boundary.
2AC-27 to 34 inches; light gray (10YR 7/1) silt loam, dark grayish brown (10YR 4/2) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many roots; many very fine tubular pores; slightly effervescent with disseminated carbonates; common fine distinct iron concentrations that are reddish brown (5YR $5 / 4$) when moist; slightly alkaline (pH 7.8); abrupt wavy boundary.
2C-34 to 44 inches; white (10YR 8/1) silt loam, pale brown (10YR 6/3) moist; massive; slightly hard, firm, slightly sticky and nonplastic; few roots; many very fine tubular pores; slightly alkaline (pH 7.8); abrupt wavy boundary.
$3 \mathrm{Ab}-44$ to 60 inches; gray (10YR 5/1) silty clay loam, very dark gray (10YR 3/1) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; slightly alkaline (pH 7.8).

An organic horizon as much as 3 inches thick is in some pedons in the southern part of the Blitzen River Valley. The mollic epipedon is 24 to 40 inches thick. Bedrock is at a depth of more than 60 inches. Frequent ponding occurs in spring. A high water table is present late in winter, in spring, and early in summer. The particle-size control section averages 27 to 35 percent clay.

The A horizon has hue of 10 YR or 2.5 Y , value of 3 to 5 dry and 1 to 3 moist, and chroma of 1 or 2 moist or dry. Chroma of 2 only occurs in the lower part of the mollic epipedon. The upper part of the horizon has a sodium adsorption ratio of 5 to 10 and a calcium carbonate equivalent of 0 to 5 percent. The lower part has a sodium adsorption ratio of 0 to 5 and a calcium carbonate equivalent of 5 to 10 percent.

Layers of volcanic ash deposits can be present below the A horizon. These layers have a silt loam texture and have hue of 10YR, value of 7 or 8 dry and 4 to 6 moist, and chroma of 2 or 3 moist and 1 dry.

The Fury soils in this survey area are in the calcareous family; therefore, they are a taxadjunct to the Fury series.

Gaib Series

The Gaib series consists of shallow, well drained soils that formed in residuum and colluvium over welded tuff. The soils are on hills. Slope is 2 to 60 percent. Elevation is 4,300 to 5,400 feet. The mean annual precipitation is 14 to 18 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Lithic Ultic Argixerolls
Typical pedon of Gaib gravelly loam in an area of Gaib-Ateron complex, 2 to 15 percent slopes; about 660 feet north and 600 feet east of the southwest corner of sec. 28, T. 21 S., R. 27 E.; Egypt Canyon quadrangle.

Oi-2 inches to 0 ; slightly decomposed pine needles and twigs.
A1-0 to 3 inches; dark grayish brown (10YR 4/2) gravelly loam, very dark brown (10YR 2/2) moist; moderate medium granular structure; soft, very friable, slightly sticky and slightly plastic; common very fine and fine and few medium roots; few very fine and common fine and medium irregular pores; 15 percent gravel, 5 percent cobbles, and 5 percent stones; neutral (pH 6.8); clear smooth boundary.
A2-3 to 7 inches; brown (10YR 5/3) gravelly loam, very dark grayish brown (10YR $3 / 2$) moist; weak medium subangular blocky structure parting to moderate medium granular; slightly hard, friable, slightly sticky and slightly plastic; few very fine and medium and common fine roots; few very fine and medium and common fine discontinuous irregular pores; 15 percent gravel and 5 percent cobbles; neutral (pH 6.6); clear smooth boundary.
Bt1-7 to 12 inches; brown (10YR 5/3) very cobbly clay loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; hard, firm, moderately sticky and moderately plastic; few very fine, fine, medium, and coarse roots; few very fine and medium and common fine irregular pores; common faint and few distinct clay films on faces of peds; 15 percent gravel, 20 percent cobbles, and 5 percent stones; neutral (pH 6.8); abrupt smooth boundary.
Bt2-12 to 16 inches; light yellowish brown (10YR 6/4) extremely cobbly clay loam, dark yellowish brown (10YR 4/4) moist; moderate fine angular blocky structure; hard, firm, very sticky and very plastic; few fine and medium roots; few fine and medium continuous irregular pores; common distinct clay films on faces of peds; 15 percent gravel, 40 percent cobbles, and 15 percent stones; neutral (pH 7.0); abrupt wavy boundary.
R -16 inches; fractured welded tuff.
The mollic epipedon is 7 to 12 inches thick. Depth to bedrock is 10 to 20 inches. The particle-size control section averages 35 to 65 percent rock fragments, mainly gravel and cobbles, and 25 to 35 percent clay. The profile is slightly acid or neutral.

The A horizon is 15 to 35 percent rock fragments and 18 to 27 percent clay.

The Bt horizon is very gravelly loam, very cobbly clay loam, or extremely cobbly clay loam. It is 35 to 70 percent rock fragments and 25 to 35 percent clay.

Gilispie Series

The Gilispie series consists of shallow, well drained soils that formed in colluvium and residuum over basalt and andesite. The soils are on mountains. Slope is 3 to 15 percent. Elevation is 5,800 to 7,000 feet. The mean annual precipitation is 12 to 25 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Loamy, mixed Argic Lithic Cryoborolls
Typical pedon of Gilispie loam in an area of Gilispie-Noname complex, 3 to 15 percent slopes; about 2,000 feet north and 2,100 feet west of the southeast corner of sec. 30, T. 32 S., R. $32^{3 / 4}$ E.; Page Springs quadrangle.
A-0 to 5 inches; dark brown (10YR 3/3) loam, very dark brown (10YR 2/2) moist; weak very thick platy structure; soft, very friable, slightly sticky and slightly plastic; few very fine and fine roots; many very fine vesicular and irregular pores and many fine vesicular pores; 5 percent gravel, 3 percent cobbles, and 3 percent stones; slightly acid (pH 6.4); clear smooth boundary.
Bt-5 to 14 inches; dark brown (7.5YR 3/2) silty clay loam, very dark brown (10YR $2 / 2$) moist; moderate medium subangular blocky structure parting to moderate fine subangular blocky; slightly hard, friable, moderately sticky and moderately plastic; few fine and very fine roots; common fine irregular pores and few fine tubular pores; few faint clay films on faces of peds and lining pores; 5 percent gravel; slightly acid (pH 6.4); clear irregular boundary.
R-14 inches; basalt.
The mollic epipedon is 7 to 15 inches thick. Thickness of the solum and depth to bedrock are 12 to 20 inches. The particle-size control section averages 0 to 10 percent rock fragments, mainly gravel, and 25 to 35 percent clay. The profile is slightly acid or neutral.

The A horizon is 0 to 10 percent rock fragments and 18 to 25 percent clay.
The Bt horizon is loam, clay loam, or silty clay loam. It has hue of 10YR and 7.5YR. It is 0 to 10 percent rock fragments and 25 to 35 percent clay.

Gochea Series

The Gochea series consists of very deep, well drained soils that formed in alluvium. The soils are on lake terraces and in depressions on plateaus. Slope is 0 to 2 percent. Elevation is 4,300 to 5,000 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-loamy, mixed, frigid Argiduridic Argixerolls

Typical pedon of Gochea sandy loam, 0 to 2 percent slopes, about 2,300 feet south and 1,200 feet west of the northeast corner of sec. 3, T. 24 S., R. 24 E.; Potato Hills quadrangle.
A1-0 to 3 inches; grayish brown (10YR 5/2) sandy loam, very dark grayish brown (10YR 3/2) moist; weak fine granular structure; soft, slightly sticky and slightly plastic; common very fine, fine, and medium roots; common very fine and medium and many fine irregular pores; neutral (pH 7.0); clear smooth boundary. A2-3 to 9 inches; grayish brown (10YR 5/2) sandy loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure parting to moderate medium granular; soft, very friable, slightly sticky and slightly plastic; common very fine
and few fine and medium roots; common very fine and fine and few medium irregular pores; neutral (pH 7.2); clear smooth boundary.
Bt-9 to 13 inches; brown (10YR 5/3) sandy loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure parting to weak fine angular blocky; slightly hard, friable, moderately sticky and moderately plastic; few very fine, fine, and medium roots; few fine and medium irregular pores; common distinct clay films on faces of peds; slightly alkaline (pH 7.4); gradual smooth boundary.
Btq-13 to 27 inches; light yellowish brown (10YR 6/4) sandy loam, dark yellowish brown (10YR 4/4) moist; strong medium angular blocky structure; hard, firm, moderately sticky and moderately plastic; few fine and medium roots; few very fine, fine, and medium irregular pores; 30 percent durinodes; common faint clay films on faces of peds; slightly alkaline (pH 7.5); clear smooth boundary.
BC-27 to 35 inches; very pale brown (10YR 7/3) gravelly sandy loam, brown (10YR 5/3) moist; moderate medium subangular blocky structure; hard, firm, slightly sticky and slightly plastic; few fine, medium, and coarse roots; few very fine and medium and common fine irregular pores; 30 percent gravel; slightly alkaline (pH 7.5); gradual wavy boundary.

C-35 to 62 inches; light yellowish brown (10YR 6/4) very gravelly sandy loam, dark yellowish brown (10YR 4/4) moist; single grain; loose, very friable, slightly sticky and slightly plastic; few fine and medium roots; few very fine, fine, and medium roots; few very fine, fine, and medium irregular pores; 30 percent gravel; slightly alkaline (pH 7.5).

The mollic epipedon is 10 to 15 inches thick. Bedrock is at a depth of more than 60 inches. Depth to the Btq horizon is 13 to 20 inches. The particle-size control section averages 0 to 25 percent rock fragments, mainly gravel, and 18 to 25 percent clay.

The A horizon is 0 to 15 percent rock fragments and 10 to 20 percent clay. It is neutral or slightly alkaline.

The Bt horizon is sandy loam, loam, or gravelly sandy loam. It is 0 to 25 percent rock fragments and 18 to 25 percent clay. It is neutral or slightly alkaline.

The Btq horizon is sandy loam or gravelly sandy loam. It is 5 to 30 percent rock fragments and 15 to 20 percent clay. It is 20 to 50 percent durinodes. It is slightly alkaline or moderately alkaline.

The $B C$ and C horizons are gravelly sandy loam and very gravelly sandy loam. They are 25 to 60 percent rock fragments and 5 to 15 percent clay. They are slightly alkaline or moderately alkaline.

Goldrun Series

The Goldrun series consists of very deep, somewhat excessively drained soils that formed in eolian sand. The soils are on dunes. Slope is 1 to 15 percent. Elevation is 4,000 to 4,600 feet. The mean annual precipitation is 7 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Mixed, mesic Xeric Torripsamments
Typical pedon of Goldrun loamy sand in an area of Goldrun-Alvodest complex, 0 to 12 percent slopes; about 2,600 feet south and 700 feet east of the northwest corner of sec. 27, T. 37 S., R. 33 E.; Borax Lake quadrangle.

A-0 to 24 inches; pale brown (10YR 6/3) loamy sand, very dark grayish brown (10YR 3/2) moist; very weak medium subangular blocky structure; soft, very friable, nonsticky and nonplastic; many very fine, fine, medium, and coarse
roots; many fine irregular pores; moderately alkaline (pH 8.4); gradual wavy boundary.
C-24 to 56 inches; pale brown (10YR 6/3) loamy fine sand, very dark grayish brown (10YR 3/2) moist; single grain; loose, nonsticky and nonplastic; common very fine, fine, medium, and coarse roots; many fine irregular pores; slightly effervescent with disseminated carbonates; moderately alkaline (pH 8.2); gradual wavy boundary.
2Ck-56 to 62 inches; brown (10YR 5/3) sandy clay loam, dark brown (10YR 3/3) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; common fine and medium roots; common fine irregular and tubular pores; slightly effervescent with carbonates segregated in few fine filaments and soft masses; moderately alkaline (pH 8.2).

Bedrock is at a depth of more than 60 inches. Calcium carbonate is at a depth of 20 to 35 inches. The particle-size control section averages 1 to 5 percent clay. The 2Ck horizon, where present, is below a depth of 40 inches.

The A horizon is loamy fine sand or loamy sand with 1 to 5 percent clay.
The C horizon is fine sand, loamy sand, or loamy fine sand with 1 to 5 percent clay.
The 2Ck horizon is 20 to 30 percent clay.

Gradon Series

The Gradon series consists of soils that are moderately deep to a duripan and are well drained. The soils formed in alluvium derived from mixed igneous rock. They are on fan terraces. Slope is 0 to 8 percent. Elevation is 4,300 to 4,800 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-loamy, mixed, frigid Argiduridic Durixerolls
Typical pedon of Gradon gravelly fine sandy loam, 0 to 8 percent slopes, about 350 feet south and 150 feet east of the northwest corner of sec. 33 , T. 23 S., R. 26 E.; Riley quadrangle.
A1-0 to 3 inches; brown (10YR 5/3) gravelly fine sandy loam, dark brown (10YR 3/3) moist; moderate medium platy structure parting to weak fine granular; soft, very friable, slightly sticky and nonplastic; many very fine, common fine, and few medium roots; many very fine, common fine, and few medium vesicular pores; 20 percent gravel; neutral (pH 7.0); clear smooth boundary.
A2-3 to 10 inches; brown (10YR 5/3) loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure parting to weak fine granular; slightly hard, very friable, moderately sticky and moderately plastic; common very fine and fine and few medium roots; few very fine and medium and common fine tubular pores; 5 percent gravel; neutral (pH 7.2); clear smooth boundary.
Bt-10 to 22 inches; light yellowish brown (10YR 6/4) clay loam, dark yellowish brown (10YR 3/4) moist; moderate medium angular blocky structure parting to strong fine angular blocky; hard, firm, moderately sticky and moderately plastic; few very fine and medium and common fine roots; few very fine, fine, and medium tubular pores; common distinct clay films on faces of peds; 5 percent gravel; slightly alkaline (pH 7.4); clear smooth boundary.
Btq-22 to 32 inches; light yellowish brown (10YR 6/4) gravelly sandy clay loam, dark yellowish brown (10YR 3/4) moist; moderate medium subangular blocky structure; hard, firm and brittle, slightly sticky and moderately plastic; few very fine, fine, and medium roots; few very fine and fine tubular pores; common faint clay films on faces of peds; strongly effervescent with disseminated calcium carbonate; 15 percent gravel; slightly alkaline (pH 7.6); abrupt smooth boundary.

Bkqm1-32 to 48 inches; very pale brown (10YR 7/3) indurated duripan, brown (10YR 5/3) moist; massive; extremely hard; few very fine roots; violently effervescent with disseminated calcium carbonate and common fine filaments of calcium carbonate; gradual smooth boundary.
Bkqm2—48 to 52 inches; very pale brown (10YR 7/4) strongly cemented duripan, yellowish brown (10YR 5/4) moist; massive; very hard; violently effervescent with disseminated calcium carbonate and common fine filaments of calcium carbonate; gradual smooth boundary.
C—52 to 62 inches; pale brown (10YR 6/3) sandy loam, dark yellowish brown (10YR 4/4) moist; massive; hard, friable, slightly sticky and moderately plastic; moderately alkaline (pH 8.0).

The mollic epipedon is 7 to 12 inches thick. Depth to bedrock is more than 60 inches. Thickness of the solum and depth to the duripan are 20 to 40 inches. The particle-size control section averages 5 to 25 percent rock fragments, mainly gravel, and 25 to 35 percent clay.

The A horizon is 15 to 25 percent rock fragments and 10 to 20 percent clay. It is neutral or slightly alkaline.

The Bt and Btq horizons are loam, clay loam, or gravelly sandy clay loam. They are 5 to 25 percent rock fragments and 25 to 35 percent clay.

The Bkqm horizon is 6 to 20 inches thick.
The C horizon is sandy loam or gravelly sandy loam. It is 0 to 30 percent rock fragments and 5 to 15 percent clay. It is slightly alkaline or moderately alkaline.

Guano Series

The Guano series consists of shallow, well drained soils that formed in residuum derived from tuffaceous sedimentary rock. The soils are on plateaus. Slope is 2 to 15 percent. Elevation is 4,600 to 5,000 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Loamy, mixed, frigid, shallow Xeric Haplargids
Typical pedon of Guano gravelly sandy loam, 2 to 15 percent slopes, about 500 feet west and 2,300 feet south of the northeast corner of sec. 29, T. 36 S., R. 30 E.; Fish Fin Rim quadrangle.
A—0 to 3 inches; pale brown (10YR 6/3) gravelly sandy loam, brown (10YR 4/3) moist; strong thick platy structure; slightly hard, friable, nonsticky and slightly plastic; common fine and medium roots; many very fine, fine, and medium vesicular pores; 15 percent gravel; slightly alkaline (pH 7.8); abrupt smooth boundary.
Bt-3 to 11 inches; yellowish brown (10YR 5/4) gravelly clay loam, dark yellowish brown (10YR 3/4) moist; moderate fine angular blocky structure; hard, firm, moderately sticky and moderately plastic; common fine and medium roots; common very fine and fine irregular tubular pores; common distinct clay films on faces of peds; 15 percent gravel; slightly alkaline (pH 7.8); abrupt smooth boundary.
Cr-11 inches; weathered tuffaceous sedimentary rock.
Thickness of the solum and depth to bedrock are 10 to 20 inches. The particle-size control section averages 0 to 25 percent rock fragments, mainly gravel, and 18 to 30 percent clay. The profile is slightly alkaline or moderately alkaline.

The A horizon is 15 to 35 percent rock fragments and 10 to 18 percent clay.
The Bt horizon is sandy clay loam, loam, or gravelly clay loam. It is 0 to 25 percent rock fragments and 18 to 35 percent clay.

Gumble Series

The Gumble series consists of shallow, well drained soils that formed in colluvium and residuum derived from tuffaceous sedimentary rock. The soils are on hills. Slope is 2 to 40 percent. Elevation is 3,400 to 4,500 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Clayey, montmorillonitic, mesic, shallow Xeric Haplargids
Typical pedon of Gumble very stony loam, 20 to 40 percent south slopes, about 1,400 feet south and 1,100 feet west of the northeast corner of sec. 8, T. 22 S., R. 36 E.; Upton Mountain quadrangle.

A1-0 to 3 inches; pale brown (10YR 6/3) very stony loam, dark brown (10YR $3 / 3$) moist; weak thick platy structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine roots; common very fine vesicular pores; 25 percent gravel, 5 percent cobbles, and 25 percent stones; slightly alkaline (pH 7.8); clear smooth boundary.
A2-3 to 8 inches; pale brown (10YR 6/3) loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine and few fine roots; few very fine vesicular pores; 10 percent gravel; slightly alkaline (pH 7.7); clear smooth boundary.
Bt-8 to 14 inches; pale brown (10YR 6/3) clay loam, brown (10YR 4/3) moist; moderate medium subangular blocky structure; hard, firm, moderately sticky and moderately plastic; many very fine and few fine roots; few very fine tubular pores; many prominent clay films on faces of peds; 5 percent gravel; slightly alkaline (pH 7.7); clear smooth boundary.
$2 \mathrm{C}-14$ to 16 inches; light yellowish brown (2.5Y 6/4) silty clay loam, light olive brown (2.5Y 5/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; few very fine tubular pores; 5 percent gravel; moderately alkaline (pH 7.9); clear smooth boundary.
2 Cr -16 inches; tuffaceous sedimentary rock.
Depth to bedrock is 14 to 20 inches. The particle-size control section is 0 to 30 percent rock fragments, mainly gravel, and 35 to 50 percent clay. Some pedons do not have a 2 C horizon.

The A horizon is very gravelly silt loam, very cobbly loam, or very stony loam. It is 35 to 60 percent rock fragments and 18 to 27 percent clay.

The Bt horizon is clay loam, clay, or gravelly clay. It is 5 to 30 percent rock fragments and 35 to 50 percent clay. It is slightly alkaline or moderately alkaline.

The 2C horizon is silty clay loam or clay loam. It is 0 to 5 percent rock fragments and 30 to 40 percent clay.

Hackwood Series

The Hackwood series consists of very deep, well drained soils that formed in loess and colluvium derived from basalt and andesite. The soils are on mountains. Slope is 2 to 50 percent. Elevation is 5,200 to 9,700 feet. The mean annual precipitation is 14 to 40 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Fine-loamy, mixed Pachic Cryoborolls

Typical pedon of Hackwood gravelly loam, 20 to 35 percent slopes, about 2,200 feet north and 300 feet east of the southwest corner of sec. 6, T. 41 S., R. 38 E., "The V" quadrangle.

A1-0 to 11 inches; brown (10YR 4/3) gravelly loam, very dark grayish brown (10YR

3/2) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine, fine, medium, and coarse roots; common very fine and fine and few medium tubular pores; 15 percent gravel and 5 percent cobbles; neutral (pH 6.8); clear wavy boundary.
A2-11 to 23 inches; brown (10YR 4/3) loam, very dark grayish brown (10YR 3/2) moist; moderate coarse subangular blocky structure parting to moderate medium subangular blocky; slightly hard, friable, slightly sticky and slightly plastic; common very fine, fine, medium, and coarse roots; common very fine and fine tubular pores; 10 percent gravel; neutral (pH 6.6); clear wavy boundary.
AC1-23 to 42 inches; brown (10YR 5/3) gravelly loam, dark grayish brown (10YR 4/2) moist; moderate coarse subangular blocky structure parting to moderate medium subangular blocky; slightly hard, friable, slightly sticky and slightly plastic; common very fine, fine, and medium roots; few very fine and fine tubular pores; 25 percent gravel; neutral (pH 6.8); clear wavy boundary.
AC2—42 to 48 inches; brown (10YR 5/3) gravelly loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common fine and medium roots; few very fine and fine tubular pores; 25 percent gravel; neutral (pH 6.7); clear wavy boundary.
C—48 to 60 inches; light yellowish brown (10YR 6/4) gravelly loam, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few medium roots; few very fine tubular pores; 25 percent gravel; neutral (pH 7.0).

The mollic epipedon is 16 to 35 inches thick. Bedrock is at a depth of more than 60 inches. The particle-size control section averages 15 to 35 percent rock fragments, mainly gravel, and 18 to 30 percent clay.

The upper part of the A horizon is gravelly loam or very gravelly loam with 15 to 40 percent rock fragments. The lower part is loam or gravelly loam with 5 to 25 percent rock fragments. The horizon is 15 to 27 percent clay.

The AC horizon is gravelly loam or gravelly clay loam. It is 15 to 35 percent rock fragments and 18 to 30 percent clay.

The C horizon is gravelly loam, very gravelly loam, or very gravelly clay loam. It is 20 to 45 percent rock fragments and 18 to 30 percent clay.

Hapgood Series

The Hapgood series consists of deep, well drained soils that formed in colluvium over basalt, andesite, and welded tuff. The soils are on mountains and hills. Slope is 2 to 50 percent. Elevation is 5,600 to 8,500 feet. The mean annual precipitation is 12 to 35 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Loamy-skeletal, mixed Pachic Cryoborolls
Typical pedon of Hapgood very cobbly loam in an area of Erakatak-NinemileHapgood association, 5 to 40 percent slopes; about 1,900 feet north and 400 feet west of the southeast corner of sec. 27, T. 40 S., R. 37 E., "The V" quadrangle.
A1-0 to 10 inches; dark gray (10YR 4/1) very cobbly loam, very dark gray (10YR $3 / 1$) moist; weak medium granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, medium, and coarse roots; many very fine tubular and irregular pores; 15 percent gravel, 15 percent cobbles, and 5 percent stones; neutral (pH 6.8); gradual wavy boundary.
A2-10 to 23 inches; dark grayish brown (10YR 4/2) very stony loam, very dark grayish brown (10YR 3/2) moist; weak fine and medium subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; common very fine,
fine, medium, and coarse roots; many very fine tubular and irregular pores; 10 percent gravel, 20 percent cobbles, and 25 percent stones; neutral (pH 6.8); gradual irregular boundary.
A3-23 to 43 inches; dark grayish brown (10YR 4/2) very stony loam, very dark grayish brown (10YR 3/2) moist; massive; soft, very friable, slightly sticky and slightly plastic; common very fine, fine, medium, and coarse roots; many very fine tubular and irregular pores; 10 percent gravel, 20 percent cobbles, and 25 percent stones; neutral (pH 6.8); clear broken boundary.
R-43 inches; basalt.
The mollic epipedon is 30 to 50 inches thick. Depth to bedrock is 40 to 60 inches. The particle-size control section averages 35 to 60 percent rock fragments and 18 to 30 percent clay. The profile has hue of 10YR or 7.5YR.

The upper part of the A horizon is gravelly sandy loam, very cobbly loam, or extremely gravelly sandy loam. It is 30 to 75 percent rock fragments and 15 to 27 percent clay.

The lower part of the A horizon is very gravelly loam, very gravelly clay loam, or very stony loam. It is 40 to 60 percent rock fragments and 18 to 30 percent clay.

Hart Camp Series

The Hart Camp series consists of shallow, well drained soils that formed in residuum and colluvium derived from tuff. The soils are on hills. Slope is 5 to 30 percent. Elevation is 4,100 to 4,500 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Loamy, mixed, frigid, shallow Aridic Argixerolls
Typical pedon of Hart Camp cobbly loam, 5 to 15 percent slopes, about 2,000 feet north and 2,250 feet west of the southeast corner of sec. 27, T. 25 S., R. 34 E.; New Princeton quadrangle.

A-0 to 3 inches; brown (10YR 5/3) cobbly loam, very dark grayish brown (10YR 3/2)
moist; moderate fine granular structure; soft, very friable, nonsticky and nonplastic; many very fine roots; many very fine interstitial pores; 15 percent gravel and 15 percent cobbles; slightly alkaline (pH 7.4); clear smooth boundary.
Bt1-3 to 9 inches; brown (10YR 5/3) cobbly loam, dark brown (10YR $3 / 3$) moist; moderate medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common very fine and few fine roots; many very fine tubular pores; few faint clay films on faces of peds and lining pores; 10 percent gravel and 20 percent cobbles; slightly alkaline (pH 7.4); clear smooth boundary.
Bt2-9 to 19 inches; brown (10YR 5/3) cobbly clay loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; hard, friable, moderately sticky and slightly plastic; few very fine and fine roots; few fine tubular pores; common distinct clay films on faces of peds; 15 percent gravel and 15 percent cobbles; slightly alkaline (pH 7.8); abrupt wavy boundary.
Cr -19 inches; weathered tuff.
The mollic epipedon is 10 to 15 inches thick. Thickness of the solum and depth to bedrock are 10 to 20 inches. The profile is neutral or slightly alkaline. The particle-size control section averages 25 to 35 percent rock fragments, mainly cobbles, and 20 to 30 percent clay.

The A horizon has value of 3 moist and 5 dry, and it has chroma of 2 or 3 moist and 3 dry. It is 15 to 35 percent rock fragments and 15 to 25 percent clay.

The Bt horizon has value of 3 or 4 moist and 5 or 6 dry, and it has chroma of 3 or 4
moist and 3 dry. It is cobbly clay loam and cobbly loam. It is 25 to 35 percent rock fragments and 20 to 30 percent clay.

Helphenstein Series

The Helphenstein series consists of very deep, somewhat poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 1 percent. Elevation is 4,400 to 4,500 feet. The mean annual precipitation is 7 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-loamy, mixed, mesic Sodic Aquicambids
Typical pedon of Helphenstein fine sandy loam in an area of HelphensteinGoldrun complex, 0 to 15 percent slopes; about 1,000 feet north and 600 feet east of the southwest corner of sec. 28, T. 32 S., R. 26 E.; Corporation Rim quadrangle.

A1-0 to 3 inches; light brownish gray (2.5Y 6/2) fine sandy loam, olive brown (2.5Y $4 / 3$) moist; weak medium platy structure parting to weak fine granular; soft, very friable, slightly sticky and slightly plastic; few very fine roots; common fine vesicular pores; moderately alkaline (pH 8.4); clear smooth boundary.
2A2-3 to 9 inches; light yellowish brown (10YR 6/4) loam, dark yellowish brown (10YR 4/4) moist; moderate very fine subangular blocky structure; slightly hard, very friable, moderately sticky and moderately plastic; common very fine and few fine and medium roots; few fine tubular pores; slightly alkaline (pH 7.8); clear smooth boundary.
2Bw-9 to 26 inches; pale yellow (2.5Y 7/3) loam, light olive brown (2.5Y 5/3) moist; moderate fine columnar structure parting to moderate medium angular blocky; hard, firm, moderately sticky and moderately plastic; few very fine and medium roots; few fine tubular pores; strongly effervescent with disseminated carbonates; strongly alkaline (pH 8.6); clear smooth boundary.
$3 B k-26$ to 33 inches; pale yellow (2.5Y 7/3) fine sandy loam, light olive brown (2.5Y $5 / 3$) moist; moderate medium platy structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; few fine tubular pores; strongly effervescent with disseminated carbonates and common fine filaments of carbonates; strongly alkaline (pH 8.6); abrupt wavy boundary.
$3 B n 1-33$ to 41 inches; pale yellow (2.5Y 7/3) very fine sandy loam, light olive brown (2.5Y 5/3) moist; moderate coarse columnar structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine roots; few fine tubular pores; strongly effervescent with disseminated carbonates; strongly alkaline (pH 8.6); abrupt wavy boundary.
3Bn2—41 to 51 inches; light gray (2.5Y 7/2) loam, olive brown (2.5Y 4/3) moist; moderate medium columnar structure parting to moderate medium angular blocky; very hard, firm, moderately sticky and moderately plastic; few very fine roots; few fine tubular pores; strongly effervescent with disseminated carbonates; strongly alkaline (pH 8.6); abrupt wavy boundary.
$4 \mathrm{C}-51$ to 62 inches; pale yellow (5Y 7/3) fine sandy loam, olive ($5 \mathrm{Y} 4 / 3$) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; strongly effervescent with disseminated carbonates; strongly alkaline (pH 8.8).

The solum is 27 to 60 inches thick. Bedrock is at a depth of more than 60 inches. Depth to secondary carbonates is 10 to 30 inches. Frequent ponding occurs in winter and spring. A high water table is present in winter and spring. The particle-size control section averages 18 to 27 percent clay.

The A horizon has hue of 10 YR and 2.5 Y . It is 10 to 20 percent clay. It is slightly
alkaline or moderately alkaline. The sodium adsorption ratio is 20 to 50 .
The 2Bw horizon has hue of 10 YR or 2.5 Y . It is silt loam or loam with 18 to 27 percent clay. The sodium adsorption ratio is 40 to 100 .

The 3B and 4C horizons have hue of 10YR, 2.5 Y , or 5 Y . They are fine sandy loam, very fine sandy loam, and loam with 15 to 27 percent clay. Thin strata of white volcanic ash are present in some pedons. The horizons are moderately alkaline or strongly alkaline. The sodium adsorption ratio is 5 to 13 .

Homefield Series

The Homefield series consists of very deep, very poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 1 percent. Elevation is 4,090 to 4,105 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-silty, mixed (calcareous), frigid Cumulic Endoaquolls
Typical pedon of Homefield mucky silt loam, 0 to 1 percent slopes, about 4,000 feet south and 1,900 feet west of the northeast corner of sec. 23 , T. 25 S., R. $32^{1 ⁄ 2}$ E.; Warm Springs Butte quadrangle.
A1-0 to 6 inches; very dark gray (10YR 3/1) mucky silt loam, gray (10YR $5 / 1$) dry; weak medium and fine subangular blocky structure; slightly hard; very friable, slightly sticky and slightly plastic; many very fine and fine roots; many very fine and fine tubular pores; many gastropod shells; strongly effervescent; strongly alkaline (pH 8.8); clear smooth boundary.
A2-6 to 13 inches; very dark gray (5Y 3/1) mucky silt loam, gray (10YR 5/1) dry; moderate fine and medium subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; common very fine and fine roots; many very fine and common fine tubular pores; many gastropod shells; strongly effervescent; strongly alkaline (pH 8.8); clear smooth boundary.
A3-13 to 25 inches; very dark gray (10YR 3/1) mucky silt loam, gray (10YR $5 / 1$) dry; moderate coarse and medium subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; common very fine and fine roots; many very fine and common fine tubular pores; few fine distinct iron concentrations that are dark yellowish brown (10YR 4/4) when moist and are in peds and adjacent to pores; many gastropod shells; strongly effervescent; strongly alkaline (pH 8.8); clear smooth boundary.
Ak-25 to 36 inches; very dark grayish brown ($2.5 \mathrm{Y} 3 / 2$) mucky silt loam, dark gray (10YR 4/1) dry; weak fine prismatic structure parting to moderate medium and fine subangular blocky; hard, friable, moderately sticky and moderately plastic; common very fine and fine roots; many very fine and common fine tubular pores; few fine distinct iron concentrations that are dark yellowish brown (10YR 4/4) when moist and are in peds and adjacent to pores; strongly effervescent with white (10YR 8/1) masses of carbonates; strongly alkaline (pH 8.8); clear smooth boundary.
$B k-36$ to 48 inches; very dark grayish brown (2.5Y 3/2) mucky silty clay loam, light brownish gray ($2.5 \mathrm{Y} 6 / 2$) dry; moderate medium subangular blocky structure; hard, friable, very sticky and very plastic; few very fine and fine roots; many very fine and few fine tubular pores; common fine distinct iron concentrations that are dark yellowish brown (10YR 4/4) when moist and are adjacent to pores; strongly effervescent with masses of carbonates; strongly alkaline (pH 8.6); clear smooth boundary.
2C—48 to 60 inches; brown (10YR 5/3) clay, light gray (10YR 7/2) dry; massive; hard,
firm, very sticky and very plastic; few very fine roots; common very fine tubular pores; common fine faint iron concentrations that are yellowish brown (10YR 5/4) when moist and are adjacent to pores; moderately alkaline (pH 8.4).

The mollic epipedon is 30 to 40 inches thick. Depth to secondary carbonates is 20 to 30 inches. Depth to the clayey substratum is 40 to 60 inches. Depth to bedrock is more than 60 inches. The particle-size control section is 10 to 20 percent organic matter. Frequent ponding occurs in spring and summer. A high water table is present throughout the year.

The A and Ak horizons have hue of 10YR, 2.5Y, or 5 Y and value of 4 to 6 dry and 3 or 4 moist. They are strongly alkaline or very strongly alkaline. They are 15 to 25 percent clay. The sodium adsorption ratio of the A1 horizon is 10 to 20 , and that of the $A 2, A 3$, and $A k$ horizons is 4 to 16.

The Bk horizon has hue of $10 \mathrm{YR}, 2.5 \mathrm{Y}$, or 5 Y , value of 5 or 6 dry and 3 or 4 moist, and chroma of 1 or 2 moist or dry. It is moderately alkaline or strongly alkaline. The sodium adsorption ratio is 4 to 16 . The horizon is mucky silt loam or mucky silty clay loam with 18 to 35 percent clay.

The 2C horizon has hue of $10 \mathrm{YR}, 2.5 \mathrm{Y}$, or 5 Y , value of 7 or 8 dry and 4 to 6 moist, and chroma of 1 to 3 moist or dry. It is moderately alkaline or strongly alkaline. The sodium adsorption ratio is 4 to 16 . The horizon is clay or silty clay with 1 to 5 percent organic matter and 40 to 60 percent clay.

Housefield Series

The Housefield series consists of very deep, very poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 1 percent. Elevation is 4,100 to 4,230 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-silty, mixed, frigid Cumulic Endoaquolls

Typical pedon of Housefield mucky silt loam in an area of Fury-Housefield complex, 0 to 1 percent slopes, about 1,500 feet north and 1,000 feet west of the southeast corner of sec. 11, T. 29 S., R. 31 E.; Diamond Swamp quadrangle.
Oi-3 inches to 0 ; slightly decomposed roots and leaves.
A-0 to 6 inches; black (10YR 2/1) mucky silt loam, dark gray (10YR 4/1) dry; moderate very fine and fine granular structure; hard, very friable, moderately sticky and moderately plastic; many very fine and fine roots; many very fine, fine, and medium irregular pores; neutral (pH 7.2); clear smooth boundary.
Bw1-6 to 16 inches; black (10YR 2/1) mucky silt loam, dark gray (10YR 4/1) dry; moderate fine prismatic structure parting to moderate fine and medium subangular blocky parting to moderate very thin and thin platy; hard, friable, moderately sticky and moderately plastic; many very fine and fine roots; common very fine and fine tubular pores; slightly alkaline (pH 7.4); clear wavy boundary.
Bw2-16 to 30 inches; black (10YR 2/1) mucky silt loam, dark gray (10YR 4/1) dry; strong coarse prismatic structure parting to weak medium subangular blocky; hard, friable, moderately sticky and moderately plastic; common very fine and fine roots; common very fine and fine tubular pores; few fine distinct iron concentrations that are dark yellowish brown (10YR 4/4) when moist and are in peds and adjacent to pores; few white sand-sized pumice grains; slightly alkaline (pH 7.6); clear smooth boundary.
Bw3-30 to 36 inches; black (10YR 2/1) mucky silt loam, dark gray (10YR 4/1) dry; strong coarse prismatic structure; hard, friable, moderately sticky and moderately plastic; few very fine roots; common very fine and fine tubular pores; few fine distinct iron concentrations that are dark yellowish brown (10YR 4/4) when moist
and are in peds and adjacent to pores; few sand-sized pumice grains 1 to 2 millimeters in diameter and few glass shards; slightly alkaline (pH 7.6); clear smooth boundary.
Bw4-36 to 48 inches; black (10YR 2/1) mucky silty clay loam, dark gray (10YR 4/1) dry; strong coarse prismatic structure; very hard, firm, very sticky and very plastic; few very fine roots; common very fine and fine tubular pores; many fine distinct iron concentrations that are dark brown (7.5YR 4/4) when moist and lining pores and common fine distinct iron concentrations that are brown (10YR 5/3) when moist and in peds; few sand-sized pumice grains 1 to 2 millimeters in diameter; few glass shards; slightly alkaline (pH 7.6); clear smooth boundary. $2 \mathrm{C}-48$ to 60 inches; brown (10YR 5/3) silty clay, pale brown (10YR 6/3) dry; massive; very hard, very firm, very sticky and very plastic; few very fine roots; common very fine and fine tubular pores; many fine distinct depletions that are grayish brown ($2.5 \mathrm{Y} 5 / 2$) when moist and are in peds and along pores and many distinct iron concentrations that are dark brown (7.5YR 4/4) when moist and are in peds and along pores; black (10YR 2/1) stains of organic matter lining pores; slightly alkaline (pH 7.6).

The mollic epipedon is 40 to 50 inches thick. Depth to bedrock is more than 60 inches. Depth to the clayey substratum is 40 to 60 inches. The profile is neutral or slightly alkaline. The particle-size control section is 10 to 20 percent organic matter. Frequent ponding occurs in spring and summer. A high water table is present throughout the year.

The A horizon has chroma of 1 or 2 . It is 15 to 25 percent clay.
The Bw horizon has value of 2 or 3 moist and 4 or 5 dry, and it has chroma of 1 or 2. It is mucky silt loam in the upper part and grades to mucky silty clay loam in the lower part. It is 18 to 35 percent clay.

The 2 C horizon has hue of $10 \mathrm{YR}, 2.5 \mathrm{Y}$, or 5 Y , value of 2 to 5 moist and 5 or 6 dry, and chroma of 0 to 3 . It is silty clay or clay with 40 to 60 percent clay.

Icene Series

The Icene series consists of very deep, moderately well drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 1 percent. Elevation is 4,400 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-loamy, mixed, mesic Typic Aquisalids
Typical pedon of Icene loam in an area of Icene-Playas complex, 0 to 1 percent slopes; about 400 feet north and 300 feet east of the southwest corner of sec. 26, T. 32 S., R. 26 E.; Corporation Rim quadrangle.

A1-0 to 3 inches; light gray (10YR 7/2) loam, brown (10YR 5/3) moist; moderate thick and weak very thin platy structure parting to weak fine granular; slightly hard, very friable, moderately sticky and moderately plastic; few very fine roots; many fine vesicular pores; moderately alkaline (pH 8.0); abrupt smooth boundary.
A2-3 to 6 inches; light gray ($2.5 \mathrm{Y} 7 / 2$) loam, olive brown ($2.5 \mathrm{Y} 4 / 3$) moist; moderate thin platy structure parting to moderate very fine subangular blocky; slightly hard, very friable, moderately sticky and moderately plastic; common very fine roots; common fine vesicular pores; moderately alkaline (pH 8.2); gradual smooth boundary.
Bnz-6 to 13 inches; light gray (2.5Y 7/2) clay loam, olive brown (2.5Y 4/3) moist; moderate medium platy structure parting to moderate fine subangular blocky; slightly hard, friable, moderately sticky and moderately plastic; few very fine, fine, medium, and coarse roots; few fine tubular pores; strongly effervescent with
common disseminated carbonates; moderately alkaline (pH 8.4); gradual smooth boundary.
Bknz1-13 to 22 inches; light brownish gray (2.5Y 6/2) clay loam, olive brown (2.5Y 4/3) moist; moderate medium subangular blocky structure; hard, firm, moderately sticky and moderately plastic; few very fine, fine, medium, and coarse roots; few fine tubular pores; strongly effervescent with disseminated carbonates and common fine masses of carbonates; strongly alkaline (pH 8.8); clear smooth boundary.
Bknz2—22 to 32 inches; light brownish gray (2.5Y 6/2) silty clay loam, olive brown ($2.5 \mathrm{Y} 4 / 4$) moist; strong very fine subangular blocky structure; hard, friable, moderately sticky and moderately plastic; few very fine, fine, medium, and coarse roots; few fine tubular pores; violently effervescent with disseminated carbonates and common fine masses of carbonates; strongly alkaline (pH 8.8); clear wavy boundary.
Bknz3—32 to 44 inches; light gray (2.5Y 7/2) silt loam, olive brown (2.5Y 4/4) moist; strong fine and medium angular blocky structure; very hard, friable, moderately sticky and moderately plastic; few very fine, fine, and medium roots; few fine tubular pores; violently effervescent with disseminated carbonates and few fine masses of carbonates; strongly alkaline (pH 8.8); clear wavy boundary.
Bnz—44 to 62 inches; light brownish gray (2.5Y 6/2) clay loam, olive brown (2.5Y 4/3) moist; strong medium angular blocky structure; very hard, firm, moderately sticky and moderately plastic; few very fine and fine roots; few very fine tubular pores; strongly alkaline (pH 8.6).

The solum is 30 to 50 inches thick. Bedrock is at a depth of more than 60 inches. Depth to secondary carbonates is 5 to 15 inches. The salic horizon is at a depth of 5 to 15 inches. Occasional or rare ponding occurs late in winter and in spring. A high water table is present late in winter and in spring. The particle-size control section averages 20 to 30 percent clay.

The A horizon has hue of 10YR and 2.5 Y . It is loam or fine sandy loam with 10 to 25 percent clay. It is slightly alkaline to strongly alkaline. The sodium adsorption ratio is 13 to 25 .

The Bknz horizon has hue of 10YR or 2.5 Y . It is silt loam, silty clay loam, and clay loam with 20 to 30 percent clay. The angular blocky structure is a result of fracturing of the compacted lacustrine sediment. The horizon is moderately alkaline or strongly alkaline. The sodium adsorption ratio is 90 to 120 . Electrical conductivity is 16 to 32 millimhos per centimeter. The calcium carbonate equivalent is 2 to 10 percent.

The Bnz horizon is 10 YR , 2.5 Y or 5 Y . It is loam or clay loam with 20 to 30 percent clay. The angular blocky structure is a result of fracturing of the compacted lacustrine sediment. The horizon is moderately alkaline or strongly alkaline. The sodium adsorption ratio is 20 to 70 . Electrical conductivity is 16 to 32 millimhos per centimeter.

Jesse Camp Series

The Jesse Camp series consists of very deep, well drained soils that formed in alluvium. The soils are on lake terraces. Slope is 2 to 5 percent. Elevation is 4,900 to 4,910 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-silty, mixed, frigid Xeric Haplocambids
Typical pedon of Jesse Camp silt loam in Lake County, Oregon, about 600 feet north and 600 feet west of the southeast corner of sec. 33, T. 40 S., R. 27 E.;
Piute Reservoir quadrangle.

A-0 to 4 inches; pale brown (10YR 6/3) silt loam, dark brown (10YR 3/3) moist; strong thin platy structure; soft, very friable, slightly sticky and slightly plastic; many very fine and fine roots; many very fine discontinuous random vesicular pores; slightly alkaline (pH 7.8); abrupt smooth boundary.
Bw1-4 to 19 inches; pale brown (10YR 6/3) silt loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; many very fine and fine roots; slightly alkaline (pH 7.8); clear wavy boundary.
Bw2-19 to 29 inches; pale brown (10YR 6/3) silt loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; slightly hard, firm, slightly sticky and slightly plastic; common very fine and fine roots; 15 percent very hard medium cylindrical durinodes; slightly alkaline (pH 7.8); clear wavy boundary.
Bw3-29 to 34 inches; pale brown (10YR 6/3) silt loam, dark brown (10YR 3/3) moist; massive; hard, firm, slightly sticky and slightly plastic; few very fine and fine roots; slightly alkaline (pH 7.8); abrupt wavy boundary.
Bk-34 to 50 inches; very pale brown (10YR 7/3) silt loam, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; 5 percent gravel; strongly effervescent; carbonates segregated in few very fine irregularly shaped filaments; moderately alkaline (pH 8.1); clear wavy boundary. $2 \mathrm{C}-50$ to 60 inches; very pale brown (10YR 7/3) very gravelly sandy loam, dark yellowish brown (10YR 4/4) moist; single grain; loose, nonsticky and nonplastic; 35 percent fine gravel; moderately alkaline (pH 8.1).
Depth to bedrock is more than 60 inches. The particle-size control section is 18 to 27 percent clay and less than 15 percent material that is coarser than very fine sand.

The A horizon has value of 5 or 6 dry. It is slightly alkaline or moderately alkaline.
The Bw horizon has value of 6 or 7 dry. It is as much as 20 percent brittle durinodes. It is slightly alkaline or moderately alkaline.

The Bk horizon has value of 3 or 4 moist and 6 or 7 dry, and it has chroma of 3 or 4 moist or dry. It is silt loam with thin strata of very fine sandy loam. The horizon is as much as 10 percent gravel and 20 percent hard or extremely hard durinodes. Carbonates are segregated in few or many filaments. The horizon is moderately alkaline or strongly alkaline.

The 2C horizon has value of 3 or 4 moist and 6 or 7 dry, and it has chroma of 3 or 4 moist or dry. It is gravelly sandy loam, very gravelly sandy loam, gravelly loam, or very gravelly loam and is 15 to 50 percent fine gravel.

Jimgreen Series

The Jimgreen series consists of very deep, very poorly drained soils that formed in organic material. The soils are on lake plains. Slope is 0 to 1 percent. Elevation is 4,130 to 4,160 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Euic Hemic Borosaprists

Typical pedon of Jimgreen muck, 0 to 1 percent slopes, about 1,000 feet south and 300 feet east of the northwest corner of sec. 21, T. 29 S., R. 32 E.; Diamond Swamp quadrangle.
Oa-0 to 10 inches; black (10YR 2/1) muck, dark gray (10YR 4/1) dry; massive; friable, nonsticky and nonplastic; many very fine, fine, and medium roots; few fine tubular pores; few fine distinct iron concentrations that are yellowish brown (10YR $5 / 4$) when moist; about 43 percent organic matter; slightly acid (pH 6.1 in water); clear irregular boundary.

2Bw-10 to 12 inches; gray (2.5Y 4/0) and dark gray (2.5Y 5/0) mucky silt loam, gray (10YR 6/1) crushed and rubbed dry; massive; friable, slightly sticky and nonplastic; common very fine and fine roots; few fine tubular pores; few glass shards; neutral (pH 6.7 in water); clear wavy boundary.
30a-12 to 32 inches; black (10YR 2/1) muck, dark gray (10YR 4/1) dry; massive; friable, nonsticky and nonplastic; common very fine and fine roots; few fine tubular pores; few faint coatings of organic matter lining pores; slightly acid (pH 6.1 in water); clear smooth boundary.
$30 e 1-32$ to 44 inches; dark grayish brown (2.5Y 4/2) mucky peat, light gray (10YR $7 / 1$) dry; about 30 percent fibers when rubbed; massive; friable, nonsticky and nonplastic; few very fine roots; few fine tubular pores; slightly acid (pH 6.5 in water); clear wavy boundary.
$30 \mathrm{e} 2-44$ to 60 inches; very dark grayish brown (10YR 3/2) and very dark gray (10YR 3/1) mucky peat, light gray (10YR 7/1) dry; about 30 percent fibers when rubbed; massive; friable, nonsticky and nonplastic; neutral (pH 6.7).

Depth to bedrock is more than 60 inches. Depth to mucky peat (hemic material) is 25 to 35 inches. Some pedons are underlain by mineral soil material at a depth of more than 46 inches. All organic material is from herbaceous plants. Frequent ponding occurs in spring and summer. A high water table is present throughout the year.

Kegler Series

The Kegler series consists of soils that are moderately deep to a duripan and are well drained. The soils formed in alluvium. They are on lake terraces. Slope is 2 to 5 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-loamy, mixed, frigid Haploduridic Durixerolls

Typical pedon of Kegler fine sandy loam, 2 to 5 percent slopes, about 1,500 feet south and 1,800 feet east of the northwest corner of sec. 33, T. 24 S., R. 31 E.; Dog Mountain quadrangle.

A-0 to 7 inches; grayish brown (10YR 5/2) fine sandy loam, dark brown (10YR
$3 / 3$) moist; weak fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; many fine roots; slightly alkaline (pH 7.4); clear smooth boundary.
BA—7 to 10 inches; brown (10YR 5/3) fine sandy loam, dark brown (10YR 3/3) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common roots; common very fine tubular pores; slightly alkaline (pH 7.4); abrupt smooth boundary.
2Bw1-10 to 23 inches; pale brown (10YR 6/3) sandy clay loam, brown (10YR 4/3) moist; weak fine and medium subangular blocky structure; hard, firm, slightly sticky and slightly plastic; few roots; common very fine tubular pores; slightly alkaline (pH 7.4); clear smooth boundary.
2Bw2—23 to 32 inches; pale brown (10YR 6/3) sandy clay loam, brown (10YR 4/3) moist; moderate medium and fine subangular blocky structure; hard, firm, slightly sticky and slightly plastic; few roots; common very fine tubular pores; slightly alkaline (pH 7.6); abrupt wavy boundary.
$3 B k — 32$ to 37 inches; very pale brown (10YR 8/3) silt loam, brown (10YR 5/3) moist; weak fine subangular blocky structure; hard, firm, slightly sticky and slightly plastic; few roots; common fine tubular pores; many white strongly effervescent carbonate filaments; slightly effervescent matrix; moderately alkaline (pH 8.4); abrupt wavy boundary.

3Bkqm-37 to 49 inches; white (10YR 8/2) indurated duripan, light yellowish brown (10YR 6/4) moist; massive; very rigid; thin coatings of opal on top of plates; slightly effervescent; abrupt wavy boundary.
3C-49 to 62 inches; very pale brown (10YR 8/3) silt loam, brown (10YR 5/3) moist; massive; hard, firm, slightly sticky and slightly plastic; moderately alkaline (pH 8.0).
Thickness of the solum and depth to the indurated duripan are 25 to 40 inches. Depth to bedrock is more than 60 inches. Depth to secondary carbonates is 20 to 30 inches. The particle-size control section averages 18 to 27 percent clay.

The A and $B A$ horizons are neutral or slightly alkaline.
The 2 Bw horizon is loam or sandy clay loam. It is 18 to 30 percent clay.
The 3Bk horizon is slightly alkaline or moderately alkaline.
The 3Bkqm horizon is 2 to 12 inches thick.

Kerrfield Series

The Kerrfield series consists of moderately deep, well drained soils that formed in alluvium over tuffaceous sedimentary rock and diatomaceous earth. The soils are on hills. Slope is 3 to 20 percent. Elevation is 4,200 to 4,800 feet. The mean annual precipitation is 8 to 11 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Coarse-loamy, mixed, mesic Durinodic Xeric Haplocambids

Typical pedon of Kerrfield loam, 3 to 20 percent slopes, about 500 feet south and 200 feet east of the northwest corner of sec. 2, T. 39 S., R. 37 E.; Pole Canyon quadrangle.
A-0 to 3 inches; pale brown (10YR 6/3) loam, brown (10YR 4/3) moist; weak medium platy structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine and fine roots; many very fine vesicular pores; 10 percent gravel; slightly alkaline (pH 7.4); clear wavy boundary.
Bw1-3 to 8 inches; light yellowish brown (10YR 6/4) loam, dark yellowish brown (10YR 4/4) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine and fine roots; many very fine and fine irregular pores; 5 percent gravel; slightly alkaline (pH 7.5); clear wavy boundary.
Bw2-8 to 12 inches; very pale brown (10YR 7/4) loam, yellowish brown (10YR 5/4) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common very fine and fine roots; many very fine and fine irregular pores; 5 percent gravel; slightly alkaline (pH 7.5); clear wavy boundary.
2Bq-12 to 18 inches; very pale brown (10YR 7/4) sandy loam, yellowish brown (10YR 5/4) moist; weak coarse subangular blocky structure; slightly hard, very friable, nonsticky and nonplastic; few very fine and fine roots; common very fine and fine irregular pores; 10 percent durinodes; 5 percent gravel; slightly alkaline (pH 7.8); clear wavy boundary.
2Bkq-18 to 26 inches; very pale brown (10YR 7/4) sandy loam, yellowish brown (10YR 5/4) moist; massive; hard, firm and brittle, slightly sticky and slightly plastic; strongly effervescent with disseminated carbonates; 5 percent gravel; moderately alkaline (pH 8.2); clear wavy boundary.
$2 B k-26$ to 33 inches; very pale brown (10YR 7/4) very gravelly loamy coarse sand, yellowish brown (10YR 5/4) moist; single grain; loose, nonsticky and nonplastic; many very fine and fine irregular pores; strongly effervescent with
disseminated carbonates; 35 percent gravel; strongly alkaline (pH 8.6); abrupt wavy boundary.
$3 \mathrm{Cr}-33$ inches; tuffaceous sedimentary rock.
The solum is 12 to 30 inches thick. Depth to bedrock is 20 to 40 inches. Depth to the hard brittle layer is 10 to 20 inches. Calcium carbonate is at a depth of 10 to 20 inches. The particle-size control section averages 10 to 20 percent rock fragments, mainly gravel, and 10 to 18 percent clay.

The A horizon is 0 to 10 percent rock fragments and 20 to 27 percent clay.
The Bw horizon is loam or sandy loam. It is 0 to 10 percent rock fragments and 18 to 27 percent clay.

The 2Bq and 2Bkq horizons are 0 to 10 percent rock fragments and 10 to 18 percent clay. They are slightly alkaline or moderately alkaline.

The 2Bk horizon is gravelly loamy coarse sand or very gravelly loamy coarse sand. It is 25 to 50 percent rock fragments and 2 to 10 percent clay.

Klicker Series

The Klicker series consists of moderately deep, well drained soils that formed in residuum and colluvium over basalt, andesite, and welded tuff. The soils are on mountains. Slope is 15 to 60 percent. Elevation is 5,000 to 6,000 feet. The mean annual precipitation is 18 to 26 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Ultic Argixerolls

Typical pedon of Klicker extremely cobbly loam, 15 to 35 percent slopes, about 1,980 feet south and 660 feet west of the northeast corner of sec. 10, T. 22 S., R. 26 E.; Dry Mountain quadrangle.

Oi-3 inches to 0 ; slightly decomposed pine needles and twigs.
A1-0 to 3 inches; brown (10YR 5/3) extremely cobbly loam, dark brown (10YR 3/3) moist; weak medium granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, common fine, and few medium roots; 15 percent gravel, 35 percent cobbles, 15 percent stones, and 5 percent boulders; slightly acid (pH 6.4); clear smooth boundary.
A2-3 to 13 inches; brown (10YR 5/3) very cobbly loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure parting to moderate medium granular; slightly hard, friable, slightly sticky and moderately plastic; common very fine, many fine, and few medium and coarse roots; common very fine and fine and few medium discontinuous irregular pores; 10 percent gravel, 25 percent cobbles, and 10 percent stones; neutral (pH 6.6); clear smooth boundary.
Bt1-13 to 17 inches; brown (10YR 5/3) very cobbly clay loam, dark brown (10YR $3 / 3$) moist; moderate coarse subangular blocky structure parting to moderate fine angular blocky; hard, firm, moderately sticky and moderately plastic; few very fine and common fine and medium roots; few fine and medium irregular pores; common distinct clay films on faces of peds; 10 percent gravel, 35 percent cobbles, and 10 percent stones; neutral (pH 6.8); clear smooth boundary.
Bt2—17 to 24 inches; pale brown (10YR 6/3) very cobbly clay loam, brown (10YR $4 / 3$) moist; strong coarse subangular blocky structure parting to moderate medium angular blocky; very hard, very firm, moderately sticky and moderately plastic; few very fine, fine, and medium roots; few fine and medium irregular pores; common prominent clay films on faces of peds; 10 percent gravel, 35 percent cobbles, and 10 percent stones; neutral (pH 6.8); abrupt wavy boundary.
$R — 24$ inches; fractured basalt.

The mollic epipedon is 10 to 18 inches thick. Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 35 to 70 percent rock fragments, mainly cobbles, and 27 to 35 percent clay. The profile is slightly acid or neutral.

The A horizon is very gravelly loam or extremely cobbly loam. It is 35 to 75 percent rock fragments and 20 to 27 percent clay.

The Bt horizon is very cobbly clay loam or extremely cobbly clay loam. It is 35 to 70 percent rock fragments and 27 to 35 percent clay.

Krackle Series

The Krackle series consists of moderately deep, well drained soils that formed in colluvium over basalt and andesite. The soils are on mountains. Slope is 3 to 65 percent. Elevation is 5,400 to 9,700 feet. The mean annual precipitation is 14 to 40 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Loamy-skeletal, mixed Typic Cryoborolls

Typical pedon of Krackle cobbly clay loam in an area of Krackle-BaconcampHackwood association, 20 to 35 percent slopes; about 500 feet south and 2,200 feet east of the northwest corner of sec. 6, T. 41 S., R. 38 E.; "The V" quadrangle.
A-0 to 4 inches; grayish brown (10YR 5/2) cobbly clay loam, very dark grayish brown (10YR $3 / 2$) moist; weak fine subangular blocky structure; slightly hard, friable, moderately sticky and slightly plastic; many very fine and fine roots; many very fine irregular pores; 15 percent gravel, 10 percent cobbles, and 5 percent stones; neutral (pH 7.0); clear wavy boundary.
Bw-4 to 15 inches; brown (10YR 5/3) very stony clay loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; slightly hard, firm, moderately sticky and slightly plastic; many very fine and fine roots; many very fine irregular pores; 10 percent gravel, 15 percent cobbles, and 20 percent stones; neutral (pH 7.0); gradual wavy boundary.
C-15 to 30 inches; yellowish brown (10YR 5/4) very stony clay loam, dark yellowish brown (10YR 3/4) moist; massive; slightly hard, firm, moderately sticky and slightly plastic; common fine roots; many very fine irregular pores; 10 percent gravel, 20 percent cobbles, and 20 percent stones; neutral (pH 7.0); abrupt irregular boundary.
R-30 inches; fractured basalt.
The mollic epipedon is 10 to 20 inches thick. Depth to bedrock is 20 to 40 inches. The particle-size control section averages 35 to 50 percent rock fragments, mainly cobbles and stones, and 25 to 35 percent clay.

The A horizon is gravelly loam, very gravelly loam, or cobbly clay loam. It is 15 to 35 percent rock fragments and 20 to 35 percent clay.

The Bw horizon is very cobbly loam, very cobbly clay loam, or very stony clay loam. It is 35 to 50 percent rock fragments and 25 to 35 percent clay.

The C horizon is very cobbly loam or very stony clay loam. It is 35 to 50 percent rock fragments and 25 to 35 percent clay.

Ladycomb Series

The Ladycomb series consists of very shallow, well drained soils that formed in residuum over andesite, rhyolite, and basalt. The soils are on hills. Slope is 8 to 25 percent. Elevation is 4,700 to 5,300 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Loamy, mixed, mesic Lithic Haploxerolls
Typical pedon of Ladycomb cobbly clay loam, 8 to 25 percent slopes, about 1,700 feet north and 300 feet west of the southeast corner of sec. 11, T. 39 S., R. 34 E.; Ladycomb Peak quadrangle.
A—0 to 2 inches; grayish brown (10YR 5/2) cobbly clay loam, dark brown (10YR 3/3) moist; moderate fine granular structure; soft, very friable, moderately sticky and moderately plastic; many very fine and fine roots; common fine irregular pores; 10 percent gravel and 10 percent cobbles; neutral (pH 7.2); clear wavy boundary.
Bw-2 to 8 inches; grayish brown (10YR 5/2) clay loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; soft, very friable, moderately sticky and moderately plastic; many very fine, fine, and medium roots; many fine irregular and tubular pores; 5 percent gravel; neutral (pH 7.2); clear irregular boundary.
R-8 inches; highly fractured andesite; common strongly effervescent white masses on bedrock.

The mollic epipedon is 4 to 10 inches thick. Thickness of the solum and depth to bedrock are 4 to 10 inches. The particle-size control section averages
5 to 25 percent rock fragments and 25 to 35 percent clay.
The A horizon is 15 to 30 percent rock fragments and 27 to 35 percent clay.
The Bw horizon is sandy clay loam, loam, or clay loam. It is 5 to 15 percent rock fragments and 25 to 35 percent clay.

Lambranch Series

The Lambranch series consists of very deep, well drained soils that formed in alluvium. The soils are on alluvial fans. Slope is 2 to 8 percent. Elevation is 3,600 to 4,100 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Clayey-skeletal, montmorillonitic, mesic Xeric Haplargids
Typical pedon of Lambranch gravelly loam, 2 to 8 percent slopes, about 600 feet south and 300 feet east of the northwest corner of sec. 17, T. 22 S., R. 35 E.; Bartlett Mountain quadrangle.

A—0 to 3 inches; grayish brown (10YR 5/2) gravelly loam, dark brown (10YR 3/3) moist; weak very fine granular structure; slightly hard, friable, slightly sticky and nonplastic; common very fine and fine roots; many very fine irregular pores; 20 percent gravel; slightly alkaline (pH 7.4); clear smooth boundary.
BA—3 to 7 inches; grayish brown (10YR 5/2) clay loam, dark brown (10YR 3/3) moist; moderate fine and medium subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; common very fine and fine roots; common very fine and fine tubular pores; 10 percent gravel; slightly alkaline (pH 7.6); gradual smooth boundary.

2Bt1—7 to 14 inches; brown (10YR 5/3) very gravelly clay, dark grayish brown (10YR 4/2) moist; moderate medium subangular blocky structure; hard, firm, very sticky and very plastic; common very fine and fine roots; many very fine irregular pores and few very fine and fine tubular pores; 30 percent gravel and 10 percent cobbles; common distinct clay films on faces of peds; slightly alkaline (pH 7.6); clear smooth boundary.
2Bt2-14 to 19 inches; brown (10YR 5/3) very cobbly sandy clay loam, dark brown (10YR 4/3) moist; massive; hard, firm, moderately sticky and moderately plastic; very few very fine roots; many very fine irregular pores; common distinct clay films
on coarse fragments; 35 percent gravel and 20 percent cobbles; slightly alkaline (pH 7.6); clear wavy boundary.
2Bt3-19 to 27 inches; dark brown (10YR 4/3) very gravelly clay, dark brown (10YR $4 / 3$) moist; massive; hard, firm, very sticky and very plastic; few very fine roots; common very fine and fine irregular pores; common distinct clay films on coarse fragments; 45 percent gravel and 10 percent cobbles; slightly alkaline (pH 7.8); gradual wavy boundary.
$2 B C-27$ to 60 inches; pale brown (10YR 6/3) very gravelly clay loam, dark brown (10YR 4/3) moist; massive; hard, firm, moderately sticky and moderately plastic; few very fine roots; common very fine and fine irregular pores; 40 percent gravel and 10 percent cobbles; slightly alkaline (pH 7.6).

Depth to bedrock is more than 60 inches. The particle-size control section averages 35 to 45 percent clay and 35 to 60 percent rock fragments.

The A horizon has chroma of 2 dry and 2 or 3 moist.
The 2Bt horizon has value of 4 or 5 dry or moist and chroma of 3 dry and 2 or 3 moist. It is 35 to 60 percent rock fragments and 25 to 45 percent clay. It is very gravelly clay loam, very gravelly clay, or very gravelly sandy clay loam.

The 2BC horizon has value of 6 dry and 4 or 5 moist, and it has chroma of 2 or 3 dry or moist. It is very gravelly clay loam and very cobbly loam. It is 35 to 60 percent rock fragments and 20 to 35 percent clay.

Lambring Series

The Lambring series consists of very deep, well drained soils that formed in colluvium derived from basalt and welded tuff. The soils are on hills and mountains. Slope is 20 to 70 percent. Elevation is 4,000 to 6,600 feet. The mean annual precipitation is 12 to 18 inches, and the mean annual air temperature is 40 to 45 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Pachic Haploxerolls
Typical pedon of Lambring very cobbly loam in an area of Westbutte-LambringRock outcrop complex, 35 to 65 percent north slopes; about 2,400 feet north and 2,250 feet west of the southeast corner of sec. 24, T. 26 S., R. 35 E.; Venator quadrangle.
A1-0 to 7 inches; dark grayish brown (10YR 4/2) very cobbly loam, very dark brown (10YR 2/2) moist; weak very fine granular structure; soft, very friable, slightly sticky and slightly plastic; many fine roots; 5 percent stones, 15 percent gravel, and 15 percent cobbles; neutral (pH 7.2); abrupt smooth boundary.
A2-7 to 12 inches; brown (10YR 4/3) gravelly loam, very dark brown (10YR 2/2) moist; weak fine subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; many fine roots; 20 percent gravel; neutral (pH 7.2); clear smooth boundary.
A3-12 to 21 inches; brown (10YR 4/3) gravelly loam, dark brown (10YR 3/3) moist; weak fine and medium subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; many fine roots; common very fine tubular pores; 20 percent gravel and 10 percent cobbles; neutral (pH 7.2); clear wavy boundary.
AC-21 to 40 inches; brown (10YR 4/3) very cobbly loam, very dark grayish brown (10YR 3/2) moist; massive; soft, very friable, slightly sticky and slightly plastic; many fine roots; 15 percent gravel, 25 percent cobbles, and 15 percent stones; slightly alkaline (pH 7.4); clear wavy boundary.
C-40 to 60 inches; brown (10YR 4/3) very cobbly loam, very dark grayish brown (10YR 3/2) moist; massive; slightly hard, very friable, slightly sticky and slightly
plastic; common fine roots; 15 percent gravel, 20 percent cobbles, and 10 percent stones; slightly alkaline (pH 7.4).

Bedrock is at a depth of 40 to 60 inches or more. The particle-size control section is 15 to 27 percent clay. It averages 35 to 60 percent rock fragments. The profile is neutral or slightly alkaline. Thickness of the mollic epipedon is 20 to 40 inches.

The upper part of the A horizon is very stony loam, very gravelly loam, very cobbly loam, or extremely stony loam. It is 35 to 70 percent rock fragments. The lower part is gravelly loam or very gravelly loam. It is 15 to 60 percent rock fragments.

The C horizon is very gravelly loam or very cobbly loam.

Langslet Series

The Langslet series consists of very deep, somewhat poorly drained soils that formed in lacustrine sediment. The soils are on lake terraces. Slope is 0 to 2 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 7 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine, montmorillonitic, frigid Xeric Aquicambids

Typical pedon of Langslet silty clay, 0 to 2 percent slopes, about 1,500 feet south and 300 feet east of the northwest corner of sec. 21, T. 37 S., R. 34 E.; Borax Lake quadrangle.

A1-0 to 7 inches; light gray (10YR 7/2) silty clay, dark brown (10YR $3 / 3$) moist; moderate medium platy structure; very hard, very firm, very sticky and very plastic; many very fine and fine and common medium and coarse roots; many very fine vesicular and tubular pores; strongly effervescent with disseminated carbonates; slightly alkaline (pH 7.5); clear wavy boundary.
A2-7 to 14 inches; light brownish gray (10YR 6/2) silty clay, dark brown (10YR 4/3) moist; strong thick platy structure; very hard, very firm, very sticky and very plastic; many very fine and fine and common medium and coarse roots; many very fine vesicular and tubular pores; strongly effervescent with disseminated carbonates; slightly alkaline (pH 7.8); clear wavy boundary.
A3-14 to 23 inches; light brownish gray (10YR 6/2) sandy clay loam, brown (10YR $4 / 3$) moist; strong thick platy structure; hard, firm, moderately sticky and slightly plastic; many fine and medium roots; many very fine irregular and tubular pores; strongly effervescent with disseminated carbonates; slightly alkaline (pH 7.8); clear wavy boundary.
C1—23 to 37 inches; pale brown (10YR 6/3) clay loam, brown (10YR 4/3) moist; massive; hard, firm, moderately sticky and moderately plastic; common fine and medium roots; many very fine irregular and tubular pores; slightly alkaline (pH 7.4); clear wavy boundary.

C2—37 to 49 inches; very pale brown (10YR 7/3) silty clay, brown (10YR 4/3) moist; massive; very hard, very firm, moderately sticky and moderately plastic; few fine and medium roots; common very fine tubular pores; slightly alkaline (pH 7.4); clear wavy boundary.
C3-49 to 62 inches; pale brown (10YR 6/3) sandy clay loam, brown (10YR 4/3) moist; massive; hard, firm, moderately sticky and slightly plastic; few fine and medium roots; common very fine irregular and tubular pores; slightly alkaline (pH 7.4).

Bedrock is at a depth of more than 60 inches. A high water table is present in winter and spring. The particle-size control section averages 0 to 5 percent rock fragments, mainly gravel, and 35 to 50 percent clay.

The A horizon is 0 to 10 percent rock fragments and 35 to 50 percent clay. It has a
calcium carbonate equivalent of 5 to 10 percent. The upper part of the horizon is silty clay loam, and the lower part is clay loam or sandy clay loam.

The C horizon is stratified sandy clay loam, clay loam, silty clay loam, or silty clay. It is 0 to 5 percent rock fragments and 30 to 50 percent clay.

The Langslet soils in this survey area are a taxadjunct to the Langslet series because these soils have a mesic soil temperature regime and do not have a cambic diagnostic subsurface horizon.

Lawen Series

The Lawen series consists of very deep, well drained soils that formed in alluvium. The soils are on lake terraces. Slope is 2 to 5 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Coarse-loamy, mixed, frigid Aridic Calcic Argixerolls
Typical pedon of Lawen fine sandy loam, 2 to 5 percent slopes, about 100 feet north and 400 feet west of the southeast corner of sec. 24 , T. 23 S., R. $32^{11 / 2}$ E.; Carson Point quadrangle.
A-0 to 10 inches; brown (10YR 5/3) fine sandy loam, dark brown (10YR 3/3) moist; single grain; loose, very friable, nonsticky and nonplastic; many fine roots; slightly alkaline (pH 7.8); clear smooth boundary.
Bt-10 to 15 inches; brown (10YR 5/3) loam, dark brown (10YR 3/3) moist; moderate fine and medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; common fine roots; common very fine tubular pores; few faint clay films lining pores and bridging sand grains; moderately alkaline (pH 8.2); abrupt smooth boundary.
Btk-15 to 25 inches; pale brown (10YR 6/3) fine sandy loam, brown (10YR 4/3) moist; weak medium prismatic structure parting to weak medium subangular blocky; hard, friable, nonsticky and nonplastic; common fine roots; common very fine tubular pores; few faint clay films lining pores and bridging sand grains; slightly effervescent with filaments of carbonates; moderately alkaline (pH 8.2); clear smooth boundary.
Bk-25 to 40 inches; pale brown (10YR 6/3) fine sandy loam, brown (10YR 4/3) moist; weak coarse subangular blocky structure; hard, friable, nonsticky and nonplastic; common very fine tubular pores; slightly effervescent with common filaments of carbonates; moderately alkaline (pH 8.2); clear wavy boundary.
C-40 to 60 inches; pale brown (10YR 6/3) fine sandy loam, brown (10YR 4/3) moist; massive; soft, very friable, nonsticky and nonplastic; moderately alkaline (pH 8.4).

Bedrock is at a depth of more than 60 inches. Depth to secondary carbonates is 15 to 26 inches. The particle-size control section averages 8 to 18 percent clay. The mollic epipedon is 10 to 14 inches thick.

The A horizon has chroma of 2 or 3 moist or dry. It is 5 to 10 percent clay.
The Bt and Btk horizons are fine sandy loam or loam. They are 10 to 18 percent clay. They are slightly alkaline or moderately alkaline.

The Bk and C horizons are slightly alkaline or moderately alkaline. They are 5 to 10 percent clay.

Leathers Series

The Leathers series consists of very deep, well drained soils that formed in lacustrine sediment. The soils are on lake terraces. Slope is 0 to 3 percent. Elevation
is 4,000 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Coarse-loamy, mixed, mesic Sodic Xeric Haplocambids
Typical pedon of Leathers silt loam, 1 to 3 percent slopes, about 550 feet south and 700 feet east of the northwest corner of sec. 26, T. 26 S., R. 30 E.; Northeast Harney Lake quadrangle.
A-0 to 2 inches; light brownish gray (10YR 6/2) silt loam, dark grayish brown (10YR 4/2) moist; moderate medium platy structure; slightly hard, firm, moderately sticky and moderately plastic; few very fine roots; many very fine vesicular pores; slightly effervescent; trace of calcium carbonate; sodium adsorption ratio is 12; electrical conductivity is 1.84 millimhos per centimeter; strongly alkaline (pH 9.0); abrupt smooth boundary.
Bw1-2 to 9 inches; light brownish gray (10YR 6/2) silt loam, dark brown (10YR 4/3) moist; weak coarse subangular blocky structure; very hard, friable, very sticky and very plastic; many very fine roots; many very fine vesicular pores; sodium adsorption ratio is 22 ; electrical conductivity is 2.16 millimhos per centimeter; very strongly alkaline (pH 9.4); clear smooth boundary.
2Bw2-9 to 13 inches; pale brown (10YR 6/3) loam, dark brown (10YR 4/3) moist; weak medium subangular blocky structure; hard, friable, slightly sticky and slightly plastic; many very fine and fine roots; many very fine tubular pores; strongly effervescent; 1 percent calcium carbonate equivalent; sodium adsorption ratio is 20; electrical conductivity is 4.83 millimhos per centimeter; strongly alkaline (pH 8.9); gradual smooth boundary.
$2 B k-13$ to 24 inches; very pale brown (10YR 7/3) sandy loam, brown (10YR 5/3) moist; weak fine and medium subangular blocky structure; hard, firm, slightly sticky and slightly plastic; many very fine and fine roots; many very fine tubular pores; strongly effervescent with carbonates in filaments; 3 percent calcium carbonate equivalent; sodium adsorption ratio is 63 ; electrical conductivity is 15.02 millimhos per centimeter; strongly alkaline (pH 9.0); gradual smooth boundary.
2Bkq-24 to 28 inches; light gray (10YR 7/2) loam, dark yellowish brown (10YR 4/4) moist; massive; hard, firm, nonsticky and nonplastic; common very fine roots; many very fine interstitial pores; 60 percent durinodes; strongly effervescent with carbonates in filaments; very strongly alkaline (pH 9.0); clear wavy boundary.
3Bk1-28 to 46 inches; light brownish gray (10YR 6/2) loamy fine sand, dark brown (10YR 4/3) moist; single grain; loose, nonsticky and nonplastic; few fine roots; many very fine interstitial pores; strongly effervescent with carbonates in filaments; very strongly alkaline (pH 9.2); gradual smooth boundary.
4Bk2-46 to 52 inches; very pale brown (10YR 7/3) loam, pale brown (10YR 6/3) moist; massive; hard, friable, slightly sticky and slightly plastic; few fine roots; many very fine interstitial pores; strongly effervescent with carbonates in filaments; very strongly alkaline (pH 9.2); clear smooth boundary.
$5 \mathrm{C}-52$ to 61 inches; very pale brown (10YR 7/3) sand, yellowish brown (10YR 5/4) moist; single grain; loose, nonsticky and nonplastic; few fine roots; many very fine interstitial pores; very strongly alkaline (pH 9.2).
Depth to the 5 C horizon is 40 to 60 inches or more. Bedrock is at a depth of more than 60 inches. The particle-size control section averages 0 to 10 percent gravel and 10 to 18 percent clay. The profile is strongly alkaline or very strongly alkaline throughout.

The A horizon is 0 to 5 percent gravel and 10 to 20 percent clay. The sodium adsorption ratio is 10 to 13 .

The 2Bw and 2Bk horizons are 0 to 5 percent gravel. They are 10 to 20 percent
clay. The sodium adsorption ratio is 20 to 70 . Electrical conductivity is 4 to 16 millimhos per centimeter.

The 2Bkq horizon has hue of 10 YR or 2.5 Y . It is 0 to 10 percent gravel and 10 to 18 percent clay. The sodium adsorption ratio is 20 to 70 . Electrical conductivity is 4 to 16 millimhos per centimeter.

The 3Bk and 4Bk horizons have hue of 10YR or 2.5Y. They are loamy fine sand, loam, or sandy loam. They are 0 to 10 percent rock fragments and 5 to 18 percent clay. The sodium adsorption ratio is 20 to 50 . Electrical conductivity is 4 to 8 millimhos per centimeter.

The sodium adsorption ratio of the 5C horizon is 13 to 25 . Electrical conductivity is 1 to 4 millimhos per centimeter.

Leemorris Series

The Leemorris series consists of moderately deep, well drained soils that formed in residuum and colluvium over andesite and basalt. The soils are on mountains and plateaus. Slope is 3 to 35 percent. Elevation is 6,000 to 7,200 feet. The mean annual precipitation is 12 to 25 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Fine, montmorillonitic Argic Pachic Cryoborolls
Typical pedon of Leemorris gravelly clay loam in an area of Leemorris-Buckwilder complex, 15 to 35 percent slopes; about 2,100 feet north and 1,300 feet west of the southeast corner of sec. 13, T. 40 S., R. 34 E.; Van Horn Basin quadrangle.

A1-0 to 5 inches; very dark grayish brown (10YR 3/2) gravelly clay loam, very dark gray (10YR 3/1) moist; moderate medium granular structure; soft, very friable, moderately sticky and moderately plastic; common very fine, fine, and medium roots; many fine tubular and irregular pores; 25 percent gravel; neutral (pH 7.0); clear wavy boundary.
A2-5 to 16 inches; dark grayish brown (10YR 4/2) gravelly clay loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; soft, very friable, moderately sticky and moderately plastic; common very fine, fine, and medium roots; many fine irregular and tubular pores; 25 percent gravel; neutral (pH 7.0); gradual wavy boundary.
A3-16 to 26 inches; dark grayish brown (10YR 4/2) gravelly clay loam, very dark grayish brown (10YR $3 / 2$) moist; weak fine subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; common very fine, fine, and medium roots; many fine irregular and tubular pores; 15 percent gravel and 5 percent cobbles; neutral (pH 7.0); abrupt wavy boundary.
2Bt-26 to 30 inches; dark yellowish brown (10YR 4/4) gravelly clay, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; hard, firm, very sticky and very plastic; few very fine, fine, and medium roots; many fine irregular and tubular pores; few faint clay films on face of peds; 15 percent gravel and 5 percent cobbles; neutral (pH 7.0); abrupt wavy boundary.
2R-30 inches; basalt.
The mollic epipedon is 16 to 34 inches thick, and it typically includes most of the 2Bt horizon. Thickness of the solum and depth to bedrock are 20 to 40 inches. The content of clay in the 2 Bt horizon is 10 to 20 percent more than that of the A horizon.

The A horizon is 20 to 45 percent rock fragments and 27 to 35 percent clay. It is slightly alkaline or neutral.

The 2 Bt horizon has value of 4 or 5 dry and 3 or 4 moist, and it has chroma of 3 or 4 dry or moist. It is gravelly clay with 40 to 60 percent clay. It is 15 to 35 percent rock fragments.

Legler Series

The Legler series consists of very deep, well drained soils that formed in alluvium. The soils are on stream terraces. Slope is 0 to 3 percent. Elevation is 3,400 to 4,200 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-loamy, mixed, mesic Xeric Haplocambids
Typical pedon of Legler silty clay loam, 0 to 3 percent slopes, about 1,600 feet north and 1,600 feet west of the southeast corner of sec. 7, T. 22 S., R. 36 E.; Upton Mountain quadrangle.

A—0 to 4 inches; yellowish brown (10YR 5/4) silty clay loam, dark yellowish brown (10YR 3/4) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine roots; few very fine irregular pores; 5 percent gravel; slightly alkaline (pH 7.8); clear smooth boundary.
Bw1-4 to 16 inches; yellowish brown (10YR 5/4) silty clay loam, dark yellowish brown (10YR 3/4) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine roots; few very fine irregular pores; 2 percent gravel; slightly alkaline (pH 7.8); clear wavy boundary.
Bw2—16 to 45 inches; yellowish brown (10YR 5/4) silty clay loam, dark yellowish brown (10YR 4/4) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine roots; few very fine irregular pores; moderately alkaline (pH 8.4); gradual wavy boundary.
C-45 to 62 inches; light yellowish brown (10YR 6/4) loam, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; few very fine irregular pores; moderately alkaline (pH 8.4).

Bedrock is at a depth of more than 60 inches. The solum is 40 to 60 inches thick. The particle-size control section averages 0 to 10 percent rock fragments, mainly gravel, and 20 to 35 percent clay.

The A horizon is 0 to 10 percent rock fragments, mainly gravel, and 27 to 30 percent clay. It is neutral or slightly alkaline.

The Bw horizon is loam or silty clay loam. It is 0 to 10 percent rock fragments, mainly gravel, and 25 to 35 percent clay. It is slightly alkaline or moderately alkaline.

The C horizon is loam, gravelly loam, or silty clay loam. It is 0 to 30 percent rock fragments, mainly gravel, and 20 to 30 percent clay.

Locane Series

The Locane series consists of shallow, well drained soils that formed in residuum derived from welded tuff and basalt. The soils are on hills and plateaus. Slope is 5 to 25 percent. Elevation is 4,800 to 6,500 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Clayey-skeletal, montmorillonitic, frigid Lithic Xeric Haplargids

Typical pedon of Locane very cobbly loam, 5 to 25 percent slopes, about 2,200 feet south and 300 feet west of the northeast corner of sec. 21, T. 41 S., R. 36 E.; Windy Point quadrangle.

A1-0 to 2 inches; light brownish gray (10YR 6/2) very cobbly loam, dark grayish brown (10YR 4/2) moist; weak thin platy structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine roots; many fine vesicular
pores; 20 percent gravel and 25 percent cobbles; neutral (pH 7.0); abrupt smooth boundary.
A2-2 to 7 inches; light brownish gray (10YR 6/2) very cobbly loam, very dark grayish brown (10YR 3/2) moist; moderate fine granular structure; slightly hard, friable, slightly sticky and slightly plastic; common fine, medium, and coarse roots; many very fine and fine irregular pores; 20 percent gravel and 25 percent cobbles; neutral (pH 7.0); clear wavy boundary.
Bt-7 to 15 inches; brown ($7.5 \mathrm{YR} 5 / 4$) very cobbly clay loam, dark brown (7.5 YR 4/4) moist; weak medium subangular blocky structure; hard, firm, moderately sticky and moderately plastic; few fine and medium roots; few fine tubular pores; common faint clay films on faces of peds; 20 percent gravel and 25 percent cobbles; neutral (pH 7.2); abrupt wavy boundary.
R - 15 inches; welded tuff.
Thickness of the solum and depth to bedrock are 10 to 20 inches. The particle-size control section averages 35 to 55 percent rock fragments and 35 to 50 percent clay.

The A horizon has value of 6 dry and 3 or 4 moist, and it has chroma of 2 or 3 moist or dry. It is 35 to 60 percent rock fragments and 18 to 27 percent clay.

The Bt horizon has hue of 7.5 YR or 10YR, value of 4 or 5 dry and 3 or 4 moist, and chroma of 3 or 4 moist or dry. It is very gravelly clay loam, very gravelly clay, or very cobbly clay loam. It is 35 to 55 percent rock fragments and 35 to 50 percent clay.

Lolak Series

The Lolak series consists of very deep, poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 1 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine, montmorillonitic (calcareous), frigid Vertic Halaquepts

Typical pedon of Lolak very fine sandy loam, 0 to 1 percent slopes, about 2,150 feet south and 400 feet east of the northwest corner of sec. 25, T. 23 S., R. $32^{1 ⁄ 2}$ E.; Carson Point quadrangle.
A-0 to 3 inches; light gray (10YR 6/1) very fine sandy loam, very dark grayish brown (10YR 3/2) moist; weak thin platy structure; soft, very friable, nonsticky and nonplastic; many fine roots; slightly alkaline (pH 7.8); abrupt smooth boundary.
$\mathrm{Bn}-3$ to 10 inches; light brownish gray (10YR 6/2) clay loam, very dark grayish brown (10YR $3 / 2$) moist; moderate fine prismatic structure parting to moderate fine and medium subangular blocky; hard, firm, moderately sticky and moderately plastic; many fine roots; common very fine tubular pores; electrical conductivity is 1.98 millimhos per centimeter; sodium adsorption ratio is 38 ; very strongly alkaline (pH 9.3); gradual smooth boundary.
Bkn1-10 to 19 inches; light yellowish brown (2.5Y 6/3) clay, olive brown (2.5Y 4/3) moist; weak fine and medium subangular blocky structure; hard, friable, moderately sticky and moderately plastic; common fine roots; many very fine tubular pores; strongly effervescent with many medium soft masses of carbonates; electrical conductivity is 2.17 millimhos per centimeter; sodium adsorption ratio is 40 ; very strongly alkaline (pH 10.0); gradual smooth boundary.
Bkn2-19 to 28 inches; light yellowish brown ($2.5 \mathrm{Y} 6 / 3$) silty clay loam, olive brown ($2.5 \mathrm{Y} 4 / 3$) moist; weak fine and medium subangular blocky structure; hard, friable, moderately sticky and moderately plastic; common fine roots; many very fine tubular pores; many faint reddish brown concentrations; strongly effervescent with
common medium soft masses of carbonates; very strongly alkaline (pH 9.1); gradual smooth boundary.
Bk-28 to 40 inches; light yellowish brown (2.5Y 6/3) silty clay loam, olive brown (2.5Y 4/3) moist; weak coarse subangular blocky structure; hard, friable, moderately sticky and moderately plastic; many faint reddish brown concentrations; slightly effervescent; strongly alkaline (pH 8.8); gradual smooth boundary.
C-40 to 60 inches; pale yellow (2.5 Y $7 / 3$) loam, olive brown ($2.5 \mathrm{Y} 4 / 3$) moist; massive; slightly hard, friable, nonsticky and nonplastic; strongly alkaline (pH 8.6).

Bedrock is at a depth of more than 60 inches. Frequent ponding occurs in spring. A high water table is present late in winter, in spring, and early in summer. The particle-size control section averages 35 to 50 percent clay.

The A horizon is 3 to 6 inches thick. It is slightly alkaline or moderately alkaline. The sodium adsorption ratio is 13 to 25 .

The Bn horizon is clay loam or silty clay loam with 35 to 40 percent clay. The sodium adsorption ratio is 20 to 40 .

The Bkn horizon is clay or silty clay with 40 to 60 percent clay. The sodium adsorption ratio is 20 to 40 .

The Bk horizon is clay, silty clay, or silty clay loam with 35 to 50 percent clay. The sodium adsorption ratio is 10 to 25 .

The C horizon is loam or clay loam with 25 to 40 percent clay. The sodium adsorption ratio is 5 to 15 .

Lonely Series

The Lonely series consists of moderately deep, well drained soils that formed in colluvium derived from andesite, basalt, and welded tuff. The soils are on hills and plateaus. Slope is 2 to 30 percent. Elevation is 4,300 to 6,200 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-loamy, mixed, frigid Xeric Haplocambids
Typical pedon of Lonely cobbly clay loam in an area of Lonely-Robson association, 5 to 25 percent slopes; about 1,500 feet south and 2,200 feet west of the northeast corner of sec. 13, T. 40 S., R. 36 E.; Windy Point quadrangle.

A-0 to 4 inches; pale brown (10YR 6/3) cobbly clay loam, dark brown (10YR 3/3) moist; weak fine subangular blocky structure; slightly hard, friable, moderately sticky and slightly plastic; many very fine, fine, and medium roots; many very fine tubular and irregular pores; 10 percent gravel, 10 percent cobbles, and 5 percent stones; neutral (pH 7.0); gradual wavy boundary.
Bw1-4 to 16 inches; pale brown (10YR 6/3) clay loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; slightly hard, firm, moderately sticky and slightly plastic; many very fine, fine, and medium roots; many very fine tubular and irregular pores; 10 percent gravel; neutral (pH 7.3); gradual wavy boundary.
Bw2-16 to 24 inches; light brownish gray (10YR 6/2) gravelly clay loam, dark brown (10YR $3 / 3$) moist; weak medium subangular blocky structure; slightly hard, firm, moderately sticky and slightly plastic; common very fine, fine, and medium roots; many very fine tubular and irregular pores; 25 percent gravel and 5 percent cobbles; slightly alkaline (pH 7.4); abrupt irregular boundary.
R-24 inches; andesite.
Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size
control section averages 5 to 35 percent rock fragments, mainly gravel, and 27 to 35 percent clay.

The A horizon has value of 6 or 7 dry and 3 or 4 moist, and it has chroma of 2 or 3 moist or dry. It is sandy clay loam or cobbly clay loam. It is 5 to 25 percent rock fragments and 27 to 35 percent clay.

The Bw horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 2 or 3 moist or dry. It is clay loam and gravelly clay loam. It is 5 to 25 percent rock fragments and 27 to 35 percent clay. It is neutral or slightly alkaline.

Longcreek Series

The Longcreek series consists of shallow, well drained soils that formed in residuum and colluvium derived from andesite, basalt, and welded tuff. The soils are on hills, mountains, and plateaus. Slope is 2 to 70 percent. Elevation is 3,600 to 6,600 feet. The mean annual precipitation is 9 to 14 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Clayey-skeletal, montmorillonitic, mesic Lithic Argixerolls

Typical pedon of Longcreek very cobbly loam in an area of Longcreek-Rock outcrop complex, 40 to 70 percent south slopes; about 1,500 feet south and 1,000 feet west of the northeast corner of sec. 22, T. 41 S., R. 37 E., "The V" quadrangle.

A1-0 to 3 inches; dark grayish brown (10YR 4/2) very cobbly loam, very dark brown (10YR 2/2) moist; moderate fine granular structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine and common fine roots; many very fine and fine tubular and irregular pores; 10 percent gravel and 35 percent cobbles; neutral (pH 7.0); clear smooth boundary.
A2-3 to 7 inches; brown (7.5YR 4/2) very cobbly loam, dark brown (7.5YR 3/2) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and few fine roots; many very fine and fine tubular and irregular pores; 10 percent gravel and 35 percent cobbles; neutral (pH 7.0); abrupt wavy boundary.
Bt1-7 to 11 inches; brown (7.5YR 4/4) very cobbly clay loam, dark brown (7.5YR $3 / 2$) moist; strong medium angular blocky structure; very hard, firm, moderately sticky and moderately plastic; common very fine and few fine and medium roots; common very fine and fine tubular pores; common distinct clay films on faces of peds; 10 percent gravel and 35 percent cobbles; neutral (pH 7.2); clear wavy boundary.
Bt2-11 to 18 inches; brown (7.5YR 5/4) very cobbly clay, dark brown (7.5YR 4/4) moist; strong medium and coarse angular blocky structure; very hard, firm, very sticky and very plastic; few very fine and common fine and medium roots; common very fine and fine tubular pores; common distinct clay films on faces of peds; 10 percent gravel and 35 percent cobbles; slightly alkaline (pH 7.4); abrupt wavy boundary.
R-18 inches; fractured andesite.
The mollic epipedon is 7 to 12 inches thick. Thickness of the solum and depth to bedrock are 10 to 20 inches. The particle-size control section averages 35 to 55 percent rock fragments, mainly cobbles, and 35 to 50 percent clay. The profile has hue of 10YR or 7.5YR.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 dry and 2 moist. It is gravelly loam or very cobbly loam. It is 15 to 45 percent rock fragments and 18 to 27 percent clay.

The Bt horizon has value of 4 or 5 dry and 3 or 4 moist, and it has chroma of 2 to 4 moist or dry. It is very gravelly clay loam, very cobbly clay loam, or very cobbly clay. It is 35 to 55 percent rock fragments and 35 to 50 percent clay.

Loupence Series

The Loupence series consists of very deep, moderately well drained soils that formed in alluvium. The soils are on stream terraces. Slope is 0 to 3 percent. Elevation is 3,500 to 3,900 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-silty, mixed, mesic Cumulic Haploxerolls
Typical pedon of Loupence silt loam, 0 to 2 percent slopes, about 1,600 feet south and 2,200 feet west of the northeast corner of sec. 7, T. 20 S., R. 34 E.; House Butte quadrangle.

A1-0 to 2 inches; grayish brown (10YR 5/2) silt loam, very dark grayish brown (10YR $3 / 2$) moist; moderate thin platy structure; slightly hard, very friable, slightly sticky and slightly plastic; common fine and very fine roots; many very fine interstitial pores; neutral (pH 6.8); clear wavy boundary.
A2-2 to 11 inches; grayish brown (10YR 5/2) silt loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common very fine and few fine roots; few very fine tubular pores; neutral (pH 6.8); clear wavy boundary.
A3-11 to 24 inches; grayish brown (10YR 5/2) silt loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; slightly hard, very friable, moderately sticky and slightly plastic; few fine and very fine roots; few very fine tubular pores; neutral (pH 7.2); clear wavy boundary.
AC-24 to 49 inches; grayish brown (10YR 5/2) silt loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; slightly hard, very friable, moderately sticky and slightly plastic; few fine and very fine roots; few very fine tubular pores; slightly effervescent; slightly alkaline (pH 7.8); clear wavy boundary.
2C-49 to 60 inches; brown (10YR 5/3) sandy loam, dark brown (10YR 4/3) moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; very slightly effervescent; slightly alkaline (pH 7.4).

The mollic epipedon is 24 to 50 inches thick. Bedrock is at a depth of more than 60 inches. Calcium carbonate is at a depth of 21 to 60 inches. The profile is neutral or slightly alkaline. Occasional flooding occurs in spring. A high water table is present late in winter, in spring, and early in summer. The particle-size control section averages 18 to 27 percent clay.

The A and AC horizons have value of 3 moist and 4 or 5 dry. The A horizon has chroma of 1 or 2 moist and 2 or 3 dry, and the AC horizon has chroma of 2 or 3 moist or dry. They are 18 to 27 percent clay.

The 2C horizon has value of 3 or 4 moist and 5 dry, and it has chroma of 2 or 3 moist or dry. It is 10 to 15 percent clay.

Madeline Series

The Madeline series consists of shallow, well drained soils that formed in colluvium and residuum derived from rhyolite, andesite, welded tuff, and basalt. The soils are on hills, mountains, and plateaus. Slope is 2 to 60 percent. Elevation is 3,500 to 6,000 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 40 to 45 degrees F.

Taxonomic classification: Clayey, montmorillonitic, frigid Lithic Argixerolls
Typical pedon of Madeline very stony loam, 15 to 40 percent south slopes, about 300 feet south and 1,850 feet west of the northeast corner of sec. 2, T. 24 S., R. 30 E.; Burns quadrangle.
A1-0 to 2 inches; reddish brown (5YR 5/3) very stony loam, dark reddish brown (5YR 3/3) moist; moderate medium platy structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine roots; 15 percent gravel, 5 percent cobbles, and 15 percent stones; slightly alkaline (pH 7.4); abrupt smooth boundary.
A2-2 to 6 inches; reddish brown (5YR 5/3) clay loam, dark reddish brown (5 YR $3 / 3$) moist; weak medium subangular blocky structure; slightly hard, firm, moderately sticky and moderately plastic; common fine roots; common very fine tubular pores; 5 percent cobbles; slightly alkaline (pH 7.4); clear smooth boundary.
BA-6 to 10 inches; reddish brown (5YR 5/3) clay loam, dark reddish brown (5YR 3/3) moist; weak fine subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; common fine roots; many very fine tubular pores; 5 percent cobbles; slightly alkaline (pH 7.4); abrupt smooth boundary.
Bt-10 to 19 inches; reddish brown (5YR 5/4) cobbly clay loam, reddish brown (5YR 4/4) moist; moderate medium and fine subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; common fine roots; many very fine tubular pores; common faint clay films on faces of peds; 15 percent cobbles; slightly alkaline (pH 7.6); abrupt wavy boundary.
2R-19 inches; rhyolite.
Thickness of the solum and depth to bedrock are 10 to 20 inches. The profile has hue of $10 \mathrm{YR}, 7.5 \mathrm{YR}$, or 5 YR . The particle-size control section averages 35 to 50 percent clay and 5 to 30 percent rock fragments. The profile is neutral or slightly alkaline.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 moist or dry. It is very stony loam or gravelly clay loam. It is 15 to 50 percent rock fragments and 18 to 30 percent clay.

The Bt horizon has value of 4 to 6 dry and 3 or 4 moist, and it has chroma of 3 or 4 moist or dry. It is clay loam, cobbly clay loam, or clay with 35 to 50 percent clay.

Mahoon Series

The Mahoon series consists of moderately deep, well drained soils that formed in residuum and colluvium derived from diatomaceous earth and tuffaceous sedimentary rock. The soils are on hills and plateaus. Slope is 2 to 40 percent. Elevation is 3,400 to 4,800 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine, montmorillonitic, mesic Aridic Palexerolls
Typical pedon of Mahoon very gravelly loam in an area of Gumble-Mahoon-Cagle complex, 2 to 40 percent slopes; about 200 feet south and 2,300 feet west of the northeast corner of sec. 1, T. 21 S., R. 36 E.; Petes Mountain quadrangle.

A-0 to 3 inches; grayish brown (10YR 5/2) very gravelly loam, very dark grayish brown (10YR $3 / 2$) moist; weak medium platy structure parting to moderate medium granular; slightly hard, very friable, slightly sticky and slightly plastic; many very fine and common fine and medium roots; common fine and medium
and few very fine and coarse vesicular pores; 50 percent gravel and 5 percent cobbles; neutral (pH 7.2); abrupt smooth boundary.
Bt1-3 to 9 inches; grayish brown (10YR 5/2) gravelly clay, very dark grayish brown (10YR 3/2) moist; weak medium subangular blocky structure parting to moderate medium granular; hard, friable, slightly sticky and slightly plastic; common very fine, fine, and medium roots; common very fine, fine, and medium irregular and tubular pores; common distinct clay films on faces of peds; 15 percent gravel and 5 percent cobbles; slightly alkaline (pH 7.4); abrupt smooth boundary.
2Bt2—9 to 18 inches; brown (10YR 5/3) gravelly clay, dark brown (10YR 3/3) moist; moderate medium prismatic structure parting to strong medium angular blocky; very hard, very firm, very sticky and very plastic; few very fine, fine, and medium roots; few fine, medium, and coarse irregular and tubular pores; common distinct and few prominent clay films on faces of peds; 20 percent gravel and 5 percent cobbles; slightly alkaline (pH 7.6); clear smooth boundary.
2Bt3—18 to 25 inches; pale brown (10YR 6/3) gravelly clay, dark brown (10YR 4/3) moist; moderate coarse angular blocky structure parting to weak fine angular blocky; hard, firm, moderately sticky and moderately plastic; few very fine and fine roots; few very fine and medium and common fine roots; common distinct clay films on faces of peds; 25 percent gravel and 5 percent cobbles; slightly alkaline (pH 7.8); gradual wavy boundary.
$2 \mathrm{Cr}-25$ inches; diatomaceous earth.
The mollic epipedon is 7 to 12 inches thick. Thickness of the solum and depth to bedrock are 20 to 40 inches. Depth to the claypan is 2 to 10 inches. The particle-size control section averages 5 to 35 percent rock fragments, mainly gravel, and 40 to 50 percent clay.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 moist or dry. It is silt loam, very gravelly loam, or very cobbly loam. It is 10 to 60 percent rock fragments and 18 to 27 percent clay. It is neutral or slightly alkaline.

The Bt and 2Bt horizons have value of 4 to 6 dry and 2 to 5 moist, and they have chroma of 2 to 4 moist or dry. The Bt horizon is gravelly clay loam or gravelly clay with 35 to 45 percent clay, and the 2Bt horizon is clay or gravelly clay with 40 to 60 percent clay. The horizons are 0 to 35 percent rock fragments. They are slightly alkaline or moderately alkaline.

Mcbain Series

The Mcbain series consists of very deep, moderately well drained soils that formed in lacustrine sediment. The soils are on lake terraces. Slope is 0 to 2 percent. Elevation is 4,100 to 4,200 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-loamy, mixed, frigid Sodic Xeric Haplocalcids

Typical pedon of Mcbain silt loam in an area of Skunkfarm-Mcbain-Doubleo complex, 0 to 2 percent slopes; about 1,490 feet west and 750 feet south of the northeast corner of sec. 28, T. 27 S., R. 31 E.; Coyote Buttes quadrangle.
A-0 to 5 inches; light brownish gray (10YR 6/2) silt loam, dark brown (10YR 3/3) moist; moderate medium granular structure; soft, very friable, moderately sticky and slightly plastic; many very fine and common fine roots; common fine interstitial pores; strongly effervescent with disseminated carbonates on faces of peds; sodium adsorption ratio is 125 ; electrical conductivity is 30 millimhos per centimeter; 13 percent calcium carbonate equivalent; strongly alkaline (pH 9.0); clear smooth boundary.

Bk1-5 to 11 inches; pale brown (10YR 6/3) loam, dark brown (10YR 4/3) moist; weak fine subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; common very fine and few fine roots; common very fine tubular pores; violently effervescent with disseminated carbonates on faces of peds; sodium adsorption ratio is 50 ; electrical conductivity is 9 millimhos per centimeter; 23 percent calcium carbonate equivalent; strongly alkaline (pH 8.9); diffuse wavy boundary.
Bk2-11 to 22 inches; light gray (10YR 7/2) loam, dark brown (10YR 4/3) moist; weak fine subangular blocky structure; slightly hard, friable, moderately sticky and slightly plastic; common very fine and few fine roots; many very fine tubular pores; violently effervescent with disseminated carbonates on faces of peds; sodium adsorption ratio is 14 ; electrical conductivity is 8 millimhos per centimeter; 25 percent calcium carbonate equivalent; moderately alkaline (pH 8.4); clear wavy boundary.
Bk3-22 to 27 inches; light brownish gray (10YR 6/2) clay loam, dark grayish brown (10YR 4/2) moist; moderate very fine subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; common very fine roots; many very fine tubular pores; violently effervescent with disseminated carbonates on faces of peds; moderately alkaline (pH 8.0); clear wavy boundary.
BC1-27 to 37 inches; pale brown (10YR 6/3) very fine sandy loam, brown (10YR 4/3) moist; weak fine subangular blocky structure; soft, very friable, nonsticky and nonplastic; few very fine and fine roots; many very fine tubular pores; very slightly effervescent with disseminated carbonates on faces of peds; sodium adsorption ratio is 5 ; electrical conductivity is 3 millimhos per centimeter; trace of calcium carbonate; moderately alkaline (pH 8.0); clear wavy boundary.
BC2-37 to 43 inches; grayish brown (10YR 5/2) clay loam, dark brown (10YR 3/3) moist; moderate fine subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; few very fine roots; common very fine tubular pores; very slightly effervescent with disseminated carbonates on faces of peds; moderately alkaline (pH 8.0); clear wavy boundary.
C-43 to 60 inches; pale brown (10YR 6/3) loam, yellowish brown (10YR 5/4) moist; massive; slightly hard, friable, slightly sticky and nonplastic; few very fine roots; common very fine tubular pores; very slightly effervescent with disseminated carbonates on faces of peds; moderately alkaline (pH 8.0).

Depth to bedrock is more than 60 inches. The particle-size control section averages 18 to 27 percent clay. Depth to the calcic horizon is 3 to 7 inches. A high water table is present in spring.

The A horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 2 or 3 moist or dry. It is strongly alkaline or very strongly alkaline. The sodium adsorption ratio is 50 to 125 . Electrical conductivity is 16 to 30 millimhos per centimeter. The calcium carbonate equivalent is 10 to 15 percent.

The Bk horizon has value of 5 to 7 dry and 3 or 4 moist, and it has chroma of 2 or 3 moist or dry. It is clay loam and loam with 18 to 35 percent clay. It is moderately alkaline or strongly alkaline. The sodium adsorption ratio is 13 to 50 . Electrical conductivity is 4 to 8 millimhos per centimeter. The calcium carbonate equivalent is 15 to 30 percent.

The BC and C horizons have value of 5 to 7 dry and 3 or 4 moist, and they have chroma of 3 or 4 moist or dry. They are stratified layers of loam, clay loam, sandy loam, or very fine sandy loam with 10 to 30 percent clay. The sodium adsorption ratio is 0 to 5 . Electrical conductivity is 0 to 4 millimhos per centimeter. The calcium carbonate equivalent is 0 to 1 percent.

McConnel Series

The McConnel series consists of very deep, somewhat excessively drained soils that formed in alluvium. The soils are on lake terraces. Slope is 0 to 20 percent. Elevation is 4,000 to 4,850 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Sandy-skeletal, mixed, mesic Xeric Haplocambids
Typical pedon of McConnel cobbly sandy loam, 3 to 8 percent slopes, about 2,000 feet south and 100 feet east of the northwest corner of sec. 29, T. 37 S., R. 33 E.; Fields quadrangle.

A-0 to 3 inches; grayish brown (10YR 5/2) cobbly sandy loam, very dark grayish brown (10YR $3 / 2$) moist; weak medium platy structure; soft, friable, nonsticky and nonplastic; common very fine and fine and few medium roots; many very fine and fine vesicular and irregular pores; 15 percent gravel and 15 percent cobbles; moderately alkaline (pH 8.2); clear smooth boundary.
Bw-3 to 11 inches; brown (10YR 4/3) gravelly sandy loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; slightly hard, friable, nonsticky and nonplastic; many very fine and fine and few medium roots; many very fine and common fine vesicular and irregular pores; 30 percent gravel; moderately alkaline (pH 8.4); clear wavy boundary.
2Bk1-11 to 25 inches; brown (10YR 5/3) very cobbly loamy sand, dark brown (10YR 3/3) moist; massive; soft, very friable, nonsticky and nonplastic; common fine and few medium and coarse roots; many very fine, common fine, and few medium vesicular and irregular pores; slightly effervescent with coatings of carbonates on rock fragments; 25 percent gravel, 15 percent cobbles, and 5 percent stones; moderately alkaline (pH 8.2); clear wavy boundary.
2Bk2-25 to 52 inches; brown (10YR 5/3) extremely cobbly loamy sand, dark brown (10YR $3 / 3$) moist; single grain; loose, very friable, nonsticky and nonplastic; common fine and few medium and coarse roots; many very fine, fine, and medium vesicular and irregular pores; slightly effervescent with coatings of carbonates on rock fragments; 25 percent gravel, 35 percent cobbles, and 10 percent stones; moderately alkaline (pH 8.4); clear smooth boundary.
2Bk3-52 to 62 inches; brown (10YR 5/3) extremely gravelly loamy sand, dark brown (10YR 3/3) moist; single grain; loose, very friable, nonsticky and nonplastic; few fine roots; many very fine, fine, and medium vesicular and irregular pores; slightly effervescent with coatings of carbonates on rock fragments; 60 percent gravel and 10 percent cobbles; moderately alkaline (pH 8.4).

Thickness of the solum and depth to bedrock are more than 60 inches. Depth to carbonates is 10 to 20 inches. The particle-size control section averages 50 to 70 percent rock fragments, mainly gravel and cobbles, and 2 to 5 percent clay.

The A horizon has hue of 7.5YR or 10YR. It is cobbly sandy loam or very gravelly sandy loam. It is 15 to 35 percent rock fragments and 5 to 15 percent clay. It is slightly alkaline or moderately alkaline.

The Bw horizon has hue of 7.5YR or 10YR. It is gravelly sandy loam or gravelly loam. It is 15 to 30 percent rock fragments and 5 to 15 percent clay. It is slightly alkaline or moderately alkaline.

The 2Bk horizon has hue of 7.5YR or 10YR. It is extremely gravelly loamy sand, very cobbly loamy sand, and extremely cobbly loamy sand. It is 50 to 70 percent rock fragments and 2 to 5 percent clay. It is slightly alkaline to strongly alkaline. It has a calcium carbonate equivalent of 2 to 5 percent.

Merlin Series

The Merlin series consists of shallow, well drained soils that formed in residuum and colluvium derived from welded tuff, andesite, rhyolite, and basalt. The soils are on hills and plateaus. Slope is 0 to 40 percent. Elevation is 3,900 to 6,000 feet. The mean annual precipitation is 12 to 16 inches, and the mean annual air temperature is 40 to 45 degrees F.

Taxonomic classification: Clayey, montmorillonitic, frigid Lithic Argixerolls
Typical pedon of Merlin very cobbly loam in an area of Royst-Merlin complex, 2 to 20 percent slopes; about 1,980 feet south and 1,980 feet west of the northeast corner of sec. 22, T. 21 S., R. 27 E.; Egypt Canyon quadrangle.

A1-0 to 3 inches; brown (10YR 5/3) very cobbly loam, dark brown (10YR 3/3) moist; moderate medium granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many very fine and common fine roots; few very fine and common fine and medium vesicular pores; 15 percent gravel, 30 percent cobbles, and 10 percent stones; neutral (pH 7.2); clear smooth boundary.
A2-3 to 7 inches; brown (10YR 5/3) very cobbly loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure parting to moderate medium granular; slightly hard, friable, slightly sticky and slightly plastic; common very fine, fine, and medium roots; few very fine and common fine and medium irregular pores; 15 percent gravel and 20 percent cobbles; slightly alkaline (pH 7.4); clear smooth boundary.
Bt1-7 to 12 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR 3/4) moist; weak coarse subangular blocky structure parting to strong fine angular blocky; hard, firm, moderately sticky and moderately plastic; few very fine and medium and common fine roots; few fine and common medium irregular pores; common distinct clay films on faces of peds; 10 percent gravel; slightly alkaline (pH 7.4); clear smooth boundary.
2Bt2-12 to 18 inches; light yellowish brown (10YR 6/4) clay, dark yellowish brown (10YR 4/4) moist; strong medium prismatic structure parting to strong medium angular blocky; very hard, very firm, very sticky and very plastic; few fine and medium roots; few fine and medium irregular pores; common prominent clay films on faces of peds; 5 percent gravel; slightly alkaline (pH 7.6); abrupt smooth boundary.
2R-18 inches; fractured welded tuff.
The mollic epipedon is 7 to 15 inches thick. Thickness of the solum and depth to bedrock are 10 to 20 inches. Depth to the claypan is 2 to 14 inches. The particle-size control section averages 0 to 25 percent rock fragments, mainly cobbles, and 40 to 60 percent clay.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 moist or dry. It very gravelly loam, very cobbly loam, very cobbly clay loam, stony loam, very stony loam, or very stony clay loam. It is 20 to 60 percent rock fragments and 20 to 30 percent clay. It is slightly acid to slightly alkaline.

The Bt and 2Bt horizons have hue of 7.5 YR or 10YR, value of 4 to 6 dry and 3 or 4 moist, and chroma of 2 to 4 moist or dry. The Bt horizon is gravelly clay loam or clay loam with 30 to 40 percent clay, and the 2Bt horizon is clay or cobbly clay with 50 to 70 percent clay. The horizons are neutral or slightly alkaline.

Mesman Series

The Mesman series consists of very deep, well drained soils that formed in lacustrine sediment. The soils are on lake terraces. Slope is 0 to 5 percent. Elevation
is 4,400 to 4,600 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-loamy, mixed, mesic Xeric Natrargids
Typical pedon of Mesman fine sandy loam in an area of Mesman-Norad complex, 0 to 2 percent slopes; about 200 feet north and 2,300 feet west of the southeast corner of sec. 4, T. 32 S., R. 27 E.; Steamboat Point quadrangle.
A-0 to 4 inches; light brownish gray (10YR 6/2) fine sandy loam, dark grayish brown (10YR 4/2) moist; weak thick platy structure parting to weak fine granular; slightly hard, very friable, slightly sticky and slightly plastic; few very fine and fine roots; common very fine, fine, and medium and few coarse vesicular pores; moderately alkaline (pH 8.0); abrupt smooth boundary.
2Btn-4 to 12 inches; pale brown (10YR 6/3) clay loam, brown (10YR 4/3) moist; weak fine prismatic structure parting to strong medium angular blocky; hard, firm, moderately sticky and moderately plastic; common very fine and fine and few medium roots; common very fine and fine and few medium irregular and tubular pores; common faint dark brown (7.5YR 4/3) clay films on faces of peds; moderately alkaline (pH 8.4); abrupt smooth boundary.
2Btkn-12 to 26 inches; light brownish gray (10YR 6/2) loam, grayish brown (10YR $5 / 2$) moist; weak fine prismatic structure parting to weak medium subangular blocky; slightly hard, very friable, slightly sticky and slightly plastic; common very fine, fine, and medium roots; common fine and few very fine and medium irregular and tubular pores; strongly effervescent with disseminated carbonates; common fine seams and filaments of white volcanic ash; few faint dark brown (7.5YR 4/3) clay films on faces of peds; sodium adsorption ratio is 27 ; strongly alkaline (pH 9.0); diffuse smooth boundary.

2Bn-26 to 62 inches; very pale brown (10YR 7/3) clay loam, brown (10YR 5/3) moist; strong coarse prismatic structure parting to strong coarse angular blocky; very hard, very friable, slightly sticky and slightly plastic; few very fine and fine roots; few very fine and fine irregular and tubular pores; moderately alkaline (pH 8.4).

Bedrock is at a depth of more than 60 inches. Depth to the natric horizon is 2 to 7 inches. Calcium carbonate is at a depth of 10 to 40 inches. The particle-size control section averages 18 to 35 percent clay.

The A horizon is fine sandy loam or loamy fine sand with 2 to 10 percent clay. The sodium adsorption ratio is 5 to 30 . Electrical conductivity is 2 to 8 millimhos per centimeter. The horizon is slightly alkaline or moderately alkaline.

The 2Btn and 2Btkn horizons are loam, silty clay loam, or clay loam with 18 to 35 percent clay. The sodium adsorption ratio is 25 to 70 . Electrical conductivity is 16 to 32 millimhos per centimeter. The horizons are moderately alkaline or strongly alkaline.

The 2Bn horizon is silt loam, loam, or clay loam with 10 to 30 percent clay. The sodium adsorption ratio is 20 to 70 . Electrical conductivity is 16 to 32 millimhos per centimeter. The structure of the horizon is derived from fractured lacustrine sediment. Thin strata of volcanic ash are in some pedons.

Middlebox Series

The Middlebox series consists of moderately deep, well drained soils that formed in residuum and colluvium derived from tuffaceous and pumiceous material. The soils are on hills. Slope is 5 to 40 percent. Elevation is 4,700 to 6,000 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Ashy-skeletal, nonacid, frigid Vitrandic Torriorthents
Typical pedon of Middlebox gravelly sandy loam in an area of Middlebox complex, 15 to 40 percent slopes; about 1,800 feet north and 1,300 feet east of the southwest corner of sec. 33, T. 38 S., R. 33 E.; Rincon Flat quadrangle.
A-0 to 4 inches; light brownish gray (10YR 6/2) gravelly sandy loam, very dark grayish brown (10YR 3/2) moist; weak medium platy structure parting to weak fine granular; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; many very fine irregular pores; 30 percent sand-sized ash; 20 percent gravel-sized pumice; neutral (pH 6.9); clear wavy boundary.
AC-4 to 10 inches; pale brown (10YR 6/3) very gravelly sandy clay loam, dark brown (10YR $3 / 3$) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine roots; many very fine irregular pores; 30 percent sand-sized ash; 25 percent gravel and 10 percent cobbles; neutral (pH 7.1); clear wavy boundary.
C-10 to 35 inches; pale brown (10YR 6/3) very cobbly sandy clay loam, dark brown (10YR $3 / 3$) moist; massive; soft, very friable, slightly sticky and slightly plastic; common coarse and medium roots; many very fine irregular pores; 30 percent sand-sized ash; 20 percent gravel and 25 percent cobbles; neutral (pH 7.1); abrupt irregular boundary.
$\mathrm{Cr}-35$ inches; weathered pumiceous tuff.
The solum is 7 to 20 inches thick. The depth to bedrock is 20 to 40 inches. The particle-size control section averages 35 to 50 percent rock fragments and 15 to 30 percent clay. The profile has hue of 7.5 YR or 10YR. It is neutral or slightly alkaline.

The A horizon is 15 to 35 percent rock fragments and 10 to 20 percent clay. It is less than 1 percent organic matter.

The AC horizon is very gravelly sandy loam or very gravelly sandy clay loam. It is 35 to 50 percent gravel and cobbles.

The C horizon is very cobbly sandy loam or very cobbly sandy clay loam. It is 35 to 50 percent rock fragments and 15 to 30 percent clay.

Minam Series

The Minam series consists of very deep, well drained soils that formed in alluvium. The soils are in mountain drainageways. Slope is 0 to 12 percent. Elevation is 4,500 to 5,300 feet. The mean annual precipitation is 12 to 16 inches, and the mean annual air temperature is 40 to 45 degrees F.

Taxonomic classification: Fine-loamy, mixed, frigid Vitrandic Haploxerolls

Typical pedon of Minam silt loam in an area of Minam-Welch complex, 0 to 3 percent slopes; about 800 feet south and 700 feet east of the northwest corner of sec. 31, T. 21 S., R. 27 E.; Dry Mountain quadrangle.
A1-0 to 3 inches; dark grayish brown (10YR 4/2) silt loam, very dark brown (10YR $2 / 2$) moist; moderate medium platy structure parting to weak fine granular; slightly hard, very friable, moderately sticky and moderately plastic; common fine roots; common fine vesicular pores; 5 percent gravel; neutral (pH 6.6); abrupt smooth boundary.
A2-3 to 18 inches; dark grayish brown (10YR 4/2) silt loam, very dark brown (10YR 2/2) moist; moderate medium subangular blocky structure; slightly hard, very friable, moderately sticky and moderately plastic; common fine roots; few fine irregular pores; 5 percent gravel; neutral (pH 6.7); gradual smooth boundary.
A3-18 to 29 inches; dark grayish brown (10YR 4/2) silt loam, very dark brown (10YR $2 / 2$) moist; moderate medium subangular blocky structure; slightly hard,
friable, moderately sticky and moderately plastic; common fine roots; common fine irregular pores; 5 percent gravel; neutral (pH 6.8); gradual smooth boundary.
Bw1-29 to 39 inches; brown (10YR 4/3) loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; few fine roots; few fine irregular pores; 10 percent gravel; neutral (pH 7.0); clear smooth boundary.
2Bw2-39 to 52 inches; yellowish brown (10YR $5 / 4$) gravelly sandy clay loam, dark yellowish brown (10YR 3/4) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few fine roots; few fine irregular pores; 15 percent gravel; neutral (pH 7.0); gradual smooth boundary.
2Bw3-52 to 62 inches; yellowish brown (10YR 5/4) gravelly sandy loam, dark yellowish brown (10YR 3/4) moist; weak medium subangular blocky structure; slightly hard, friable, nonsticky and nonplastic; few fine roots; few fine irregular pores; 30 percent gravel; neutral (pH 7.0).

The mollic epipedon is 20 to 40 inches thick. Bedrock is at a depth of more than 60 inches. The particle-size control section averages 5 to 15 percent rock fragments, mainly gravel, and 18 to 27 percent clay.

The A1 horizon is silt loam or gravelly silt loam. It is 0 to 25 percent rock fragments and 15 to 25 percent clay.

The A2 and A3 horizons are silt loam, loam, or gravelly silt loam. They are 0 to 25 percent rock fragments and 18 to 27 percent clay.

The Bw1 horizon is silt loam or loam. It is 5 to 15 percent rock fragments and 18 to 27 percent clay.

The 2Bw horizon is gravelly sandy loam and gravelly sandy clay loam. It is 15 to 25 percent rock fragments and 15 to 30 percent clay.

The Minam soils in this survey area are not in the Vitrandic subgroup; therefore, they are a taxadjunct to the Minam series.

Modoc Series

The Modoc series consists of soils that are moderately deep to a duripan and are well drained. The soils formed in old alluvium. They are on alluvial fans. Slope is 2 to 15 percent. Elevation is 3,700 to 4,000 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-loamy, mixed, mesic Argiduridic Durixerolls
Typical pedon of Modoc gravelly sandy loam, 2 to 15 percent slopes, about 500 feet south and 1,000 feet east of the northwest corner of sec. 12, T. 20 S., R. $33^{1 ⁄ 2}$ E.; House Butte quadrangle.

A1-0 to 2 inches; brown (10YR 5/3) gravelly sandy loam, dark brown (10YR 3/3) moist; moderate very thin platy structure parting to moderate very fine granular; soft, very friable, nonsticky and nonplastic; many very fine roots; many very fine interstitial pores; 15 percent gravel; neutral (pH 6.8); clear wavy boundary.
A2-2 to 13 inches; brown (10YR 5/3) loam, dark brown (10YR 3/3) moist; moderate fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common very fine and few fine roots; few very fine tubular pores; 10 percent gravel; neutral (pH 7.0); clear wavy boundary.
Bt1-13 to 22 inches; light yellowish brown (10YR 6/4) loam, dark yellowish brown (10YR 4/4) moist; moderate medium subangular blocky structure; hard, friable, moderately sticky and slightly plastic; few very fine, fine, and coarse roots; few very fine tubular pores; few faint clay films on faces of peds and lining pores; 10 percent gravel; neutral (pH 7.0); clear wavy boundary.

Bt2—22 to 25 inches; yellow (10YR 7/6) gravelly clay loam, dark yellowish brown (10YR 4/6) moist; weak medium subangular blocky structure; very hard, friable, moderately sticky and moderately plastic; common distinct clay films on faces of peds; 30 percent gravel; neutral (pH 7.0); abrupt wavy boundary.
Bqm-25 to 41 inches; indurated duripan; clear wavy boundary.
2Ckq-41 to 60 inches; yellow (10YR 7/6) extremely gravelly coarse sandy loam, dark yellowish brown (10YR 4/6) moist; massive; slightly hard and brittle, very friable, nonsticky and nonplastic; 85 percent gravel; slightly effervescent; slightly alkaline (pH 7.6).

The mollic epipedon is 10 to 13 inches thick. Thickness of the solum and depth to the duripan are 20 to 25 inches. Depth to bedrock is more than 60 inches. The particle-size control section averages 15 to 30 percent rock fragments, mainly gravel, and 25 to 35 percent clay.

The A horizon has chroma of 2 or 3 dry and 3 moist.
The Bt horizon has value of 4 to 6 dry and 4 or 5 moist, and it has chroma of 3 to 6 dry and 3 to 6 moist. It is loam, clay loam, or gravelly clay loam.

The Bqm horizon is 5 to 20 inches thick and is 70 to 85 percent gravel.
The 2Ckq horizon has value of 4 or 5 moist and chroma of 3 to 6 moist or dry.

Morfitt Series

The Morfitt series consists of very deep, moderately well drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 2 percent. Elevation is 4,600 to 4,800 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-loamy, mixed, mesic Xeric Haplargids
Typical pedon of Morfitt loam, 0 to 2 percent slopes, about 300 feet north and 800 feet east of the southwest corner of sec. 31, T. 30 S., R. 27 E.; Rock Camp Draw quadrangle.
A-0 to 2 inches; light gray (10YR 7/2) loam, dark grayish brown (10YR 4/2) moist; moderate thick platy structure parting to moderate very fine and fine granular; soft, very friable, slightly sticky and slightly plastic; few very fine roots; 5 percent gravel; slightly alkaline (pH 7.5); abrupt smooth boundary.
Bt1-2 to 8 inches; gray (10YR 6/1) clay loam, dark brown (10YR 3/3) moist; moderate fine and medium subangular blocky structure parting to moderate very fine and fine granular; slightly hard, friable, moderately sticky and moderately plastic; common very fine and few fine and medium roots; common distinct and faint clay films on faces of peds; slightly alkaline (pH 7.6); clear smooth boundary.
Bt2-8 to 20 inches; brown (10YR 5/3) clay loam, dark brown (10YR 3/3) moist; weak medium prismatic structure parting to moderate coarse and medium subangular blocky; hard, friable, moderately sticky and moderately plastic; common very fine and few fine and medium roots; continuous distinct clay films on faces of peds; moderately alkaline (pH 8.0); clear smooth boundary.
Bt3-20 to 32 inches; light brownish gray (10YR 6/2) clay loam, dark brown (10YR $3 / 3$) moist; moderate fine and medium subangular blocky structure; hard, friable, moderately sticky and moderately plastic; common very fine roots; few distinct and common faint clay films on faces of peds; slightly alkaline (pH 7.8); clear smooth boundary.
Bt4-32 to 41 inches; light brownish gray (10YR 6/2) loam, dark yellowish brown (10YR 3/4) moist; moderate fine subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; few very fine roots; common faint clay films on faces of peds; slightly alkaline (pH 7.8); clear smooth boundary.

C-41 to 60 inches; light gray (10YR 7/2) loam, dark brown (10YR 3/3) moist; massive; soft, very friable, slightly sticky and slightly plastic; few very fine roots; slightly alkaline (pH 7.6).

Bedrock is at a depth of more than 60 inches. The solum is 30 to 50 inches thick. Occasional ponding occurs in spring. The particle-size control section averages 25 to 35 percent clay.

The A horizon is 2 to 5 inches thick. It is 0 to 5 percent rock fragments and 18 to 27 percent clay.

The Bt horizon is loam, silty clay loam, or clay loam with 25 to 35 percent clay. It is slightly alkaline or moderately alkaline.

The C horizon is loam or clay loam with 20 to 30 percent clay.

Morganhills Series

The Morganhills series consists of shallow, well drained soils that formed in colluvium and residuum derived from tuffaceous sandstone. The soils are on hills. Slope is 2 to 35 percent. Elevation is 4,000 to 5,000 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Ashy, nonacid, frigid, shallow Vitrandic Torriorthents
Typical pedon of Morganhills sandy loam in an area of Morganhills complex, 2 to 35 percent slopes; about 2,600 feet north and 1,750 feet west of the southeast corner of sec. 35, T. 22 S., R. 31 E.; Poison Creek Slough quadrangle.

A-0 to 8 inches; brown (10YR 5/3) sandy loam, dark brown (10YR 3/3) moist; weak coarse subangular blocky structure; soft, very friable, nonsticky and nonplastic; common fine roots; common fine tubular pores; 10 percent gravel; neutral (pH 7.2); clear wavy boundary.

C1-8 to 15 inches; brown (10YR 5/3) gravelly sandy loam, dark brown (10YR 3/3) moist; massive; slightly hard, very friable, nonsticky and nonplastic; few fine roots; common fine tubular pores; 20 percent sandstone gravel; slightly alkaline (pH 7.4); abrupt wavy boundary.

C2—15 to 17 inches; pale brown (10YR 6/3) very gravelly sandy loam, brown (10YR $4 / 3$) moist; massive; slightly hard, very friable, nonsticky and nonplastic; 50 percent sandstone gravel; 5 percent cobbles; slightly alkaline (pH 7.4); abrupt wavy boundary.
Cr-17 inches; weathered tuffaceous sandstone.
Depth to bedrock is 10 to 20 inches. The particle-size control section averages 5 to 35 percent rock fragments, mainly gravel, and 5 to 20 percent clay. It is neutral or slightly alkaline. The profile has hue of 10YR or 7.5YR.

The A horizon has value of 5 to 7 dry and 3 or 4 moist, and it has chroma of 2 or 3 moist or dry. It is 5 to 15 percent gravel.

The C horizon has value of 5 to 7 dry and 3 or 4 moist, and it has chroma of 3 moist and 2 to 4 dry. It is gravelly sandy loam, very gravelly sandy loam, or gravelly loamy sand. It is 5 to 55 percent rock fragments and 5 to 20 percent clay. The very gravelly strata typically are immediately above the bedrock and are 1 to 4 inches thick.

Mound Series

The Mound series consists of deep, well drained soils that formed in residuum derived from tuff. The soils are on hills. Slope is 2 to 20 percent. Elevation is 5,100 to

5,600 feet. The mean annual precipitation is 16 to 20 inches, and the mean annual air temperature is 40 to 43 degrees F .

Taxonomic classification: Clayey-skeletal, montmorillonitic, frigid Pachic Ultic Argixerolls

Typical pedon of Mound stony loam, 2 to 20 percent slopes, about 2,100 feet south and 1,400 feet east of the northwest corner of sec. 28, T. 21 S., R. 32 E.; Devine Ridge South quadrangle.

Oi- 0.5 inch to 0 ; slightly decomposed ponderosa pine needles.
A1-0 to 3 inches; brown (10YR 5/3) stony loam, very dark grayish brown (10YR 3/2)
moist; moderate very fine granular structure; soft, very friable, nonsticky and nonplastic; many very fine and common fine roots; many very fine vesicular pores; 10 percent gravel, 15 percent stones, and 5 percent boulders; slightly acid (pH 6.2); clear wavy boundary.
A2-3 to 10 inches; yellowish brown (10YR 5/4) very stony loam, dark brown (10YR
$3 / 3$) moist; moderate fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common fine and few medium roots; few very fine tubular pores; 25 percent gravel, 15 percent stones, and 5 percent boulders; neutral (pH 6.6); clear wavy boundary.
Bt1-10 to 20 inches; brown (10YR 5/3) very stony clay, dark brown (10YR 3/3) moist; moderate fine subangular blocky structure; hard, firm, slightly sticky and moderately plastic; common fine roots; few very fine tubular pores; many distinct clay films on faces of peds and in pores; 25 percent gravel, 10 percent cobbles, 15 percent stones, and 5 percent boulders; few prominent concentrations of white (10YR 8/2) ash; slightly acid (pH 6.4); clear wavy boundary.
Bt2-20 to 26 inches; brown (10YR 5/3) very stony clay, dark yellowish brown (10YR 4/4) moist; moderate medium subangular blocky structure; very hard, firm, moderately sticky and moderately plastic; few fine roots; few fine tubular pores; many distinct clay films on faces of peds and lining pores; 20 percent gravel, 5 percent cobbles, 20 percent stones, and 10 percent boulders; slightly acid (pH 6.4); clear wavy boundary.

Bt3-26 to 38 inches; strong brown (7.5YR 5/6) very stony clay, dark brown (7.5YR 4/4) moist; strong medium prismatic structure parting to strong medium angular blocky; extremely hard, extremely firm, very sticky and very plastic; few very fine roots; few very fine tubular pores; many prominent clay films on faces of peds and lining pores; 10 percent gravel, 5 percent cobbles, 20 percent stones, and 10 percent boulders; slightly acid (pH 6.4); clear wavy boundary.
Bt4-38 to 53 inches; strong brown (7.5YR 5/6) very stony clay, strong brown (7.5YR 4/6) moist; weak coarse prismatic structure; extremely hard, extremely firm, moderately sticky and moderately plastic; common distinct clay films on faces of peds; 15 percent gravel, 5 percent cobbles, 10 percent stones, and 5 percent boulders; slightly acid (pH 6.2); clear wavy boundary.
R - 53 inches; welded tuff.
The mollic epipedon is 20 to 29 inches thick. Thickness of the solum and depth to welded tuff are 40 to 60 inches. The particle-size control section averages 35 to 60 percent rock fragments, mainly stones, and 35 to 50 percent clay. The profile is slightly acid or neutral.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 dry and 1 to 3 moist. It is 25 to 50 percent rock fragments and 20 to 27 percent clay.

The Bt horizon has hue of 10YR and 7.5YR, value of 4 to 6 dry and 3 or 4 moist, and chroma of 3 to 6 moist or dry. The upper part is very stony clay, very stony clay loam, or very cobbly clay, and the lower part is very stony clay. The horizon is 35 to 60 percent rock fragments and 35 to 50 percent clay.

Nevador Series

The Nevador series consists of very deep, well drained soils that formed in alluvium. The soils are on alluvial fans and lake terraces. Slope is 0 to 12 percent. Elevation is 4,500 to 5,000 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-loamy, mixed, mesic Durinodic Xeric Haplargids
Typical pedon of Nevador very gravelly sandy loam, 3 to 12 percent slopes, about 900 feet south and 3,500 feet west of the northeast corner of sec. 3, T. 39 S., R. 37 E.; Pole Canyon quadrangle.

A-0 to 3 inches; very pale brown (10YR 7/3) very gravelly sandy loam, very dark grayish brown (10YR 3/2) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; common very fine and fine roots; many very fine and fine vesicular and irregular pores; 50 percent gravel and 5 percent cobbles; slightly alkaline (pH 7.8); clear wavy boundary.
BA-3 to 7 inches; light gray (10YR 7/2) loam, dark yellowish brown (10YR 4/4) moist; moderate medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common very fine and fine roots; many very fine and fine vesicular and irregular pores; 10 percent gravel; slightly alkaline (pH 7.5); abrupt smooth boundary.
Bt1- 7 to 14 inches; yellowish brown (10YR 5/6) clay loam, dark yellowish brown (10YR 4/4) moist; strong fine subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; few very fine, fine, and medium roots; many very fine irregular pores; many distinct clay films on faces of peds; 5 percent gravel; moderately alkaline (pH 8.0); gradual smooth boundary.
Bt2-14 to 18 inches; brownish yellow (10YR 6/6) clay loam, dark yellowish brown (10YR 4/4) moist; moderate fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine and fine roots; many very fine irregular pores; many distinct clay films on faces of peds; 5 percent gravel; moderately alkaline (pH 8.4); gradual smooth boundary.
2Bkq-18 to 32 inches; very pale brown (10YR 8/4) sandy loam, yellowish brown (10YR 5/4) moist; massive; hard, firm and brittle, nonsticky and nonplastic; few fine roots; few very fine tubular and irregular pores; 5 percent durinodes; strongly effervescent with disseminated carbonates and few fine filaments of carbonates; 10 percent gravel; weak discontinuous cementation; moderately alkaline (pH 8.2); clear wavy boundary
2Ck-32 to 62 inches; very pale brown (10YR 8/3) gravelly sandy loam, yellowish brown (10YR 5/4) moist; massive; soft, very friable, nonsticky and nonplastic; common very fine irregular pores; strongly effervescent with disseminated carbonates; 30 percent gravel; moderately alkaline (pH 8.2).
The solum is 20 to 40 inches thick. Bedrock is at a depth of more than 60 inches. Depth to the weak discontinuous cemented layer and depth to carbonates are 12 to 24 inches. The particle-size control section averages 0 to 15 percent rock fragments, mainly gravel, and 27 to 35 percent clay.

The A horizon has value of 6 or 7 dry and 3 or 4 moist, and it has chroma of 2 or 3 moist or dry. It is sandy loam or very gravelly sandy loam. It is 5 to 60 percent rock fragments and 10 to 15 percent clay.

The Bt horizon is 0 to 15 percent rock fragments and 27 to 35 percent clay.
The 2 Bkq horizon has value of 7 or 8 dry and chroma of 3 or 4 moist or dry. It is 0 to 15 percent rock fragments and 8 to 15 percent clay.

The 2Ck horizon has value of 7 or 8 dry and chroma of 3 or 4 moist or dry. It is
sandy loam or gravelly sandy loam. It is 10 to 35 percent rock fragments and 5 to 15 percent clay.

Ninemile Series

The Ninemile series consists of shallow, well drained soils that formed in residuum and colluvium derived from andesite, basalt, rhyolite, and welded tuff (fig. 15). The soils are on hills, plateaus, and mountains. Slope is 0 to 60 percent. Elevation is 4,200 to 7,500 feet. The mean annual precipitation is 10 to 16 inches, and the mean annual air temperature is 40 to 45 degrees F.

Taxonomic classification: Clayey, montmorillonitic, frigid Lithic Argixerolls
Typical pedon of Ninemile very cobbly clay loam, low precipitation, 2 to 30 percent slopes, about 2,200 feet south and 2,200 feet west of the northeast corner of sec. 3, T. 41 S., R. 37 E.; "The V" quadrangle.

A-0 to 4 inches; grayish brown (10YR 5/2) very cobbly clay loam, very dark grayish brown (10YR $3 / 2$) moist; weak fine and medium subangular blocky structure; hard, very friable, moderately sticky and moderately plastic; common very fine, fine, and medium roots; many very fine and fine tubular and irregular pores; 25 percent gravel, 25 percent cobbles, and 5 percent stones; neutral (pH 6.8); clear wavy boundary.
Bt1-4 to 10 inches; grayish brown (10YR 5/2) gravelly clay, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; slightly hard, friable, very sticky and moderately plastic; common very fine, fine, and medium roots; many very fine and fine tubular and irregular pores; few faint clay films on faces of peds; 20 percent gravel and 10 percent cobbles; neutral (pH 6.8); clear smooth boundary.
Bt2-10 to 16 inches; brown (10YR 4/3) cobbly clay, dark brown (10YR 3/3) moist; strong medium angular blocky structure; hard, friable, very sticky and very plastic; few very fine and fine roots; many very fine and fine tubular and irregular pores; common prominent clay films on faces of peds; 10 percent gravel and 20 percent cobbles; neutral (pH 6.8); clear broken boundary.
2R-16 inches; fractured basalt.
The mollic epipedon is 7 to 16 inches thick, and it commonly includes part or all of the Bt horizon. Thickness of the solum and depth to bedrock are 10 to 20 inches. Depth to the claypan is 2 to 7 inches. The particle-size control section averages 0 to 35 percent rock fragments, mainly gravel and cobbles, and 40 to 60 percent clay.

The A horizon has value of 3 to 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 moist or dry. It is gravelly loam, very cobbly loam, very cobbly clay loam, very stony clay loam, or extremely stony silt loam. It is 15 to 75 percent rock fragments and 15 to 30 percent clay. It is neutral or slightly alkaline.

The Bt horizon has hue of 7.5 YR or 10YR, value of 4 to 6 dry and 3 or 4 moist, and chroma of 2 to 4 moist or dry. It is clay, gravelly clay, or cobbly clay. It is 0 to 30 percent rock fragments and 40 to 60 percent clay. It is neutral or slightly alkaline.

Noname Series

The Noname series consists of very shallow and shallow, well drained soils that formed in colluvium and residuum over andesite and basalt. The soils are on mountains and hills. Slope is 3 to 80 percent. Elevation is 5,800 to 9,200 feet. The mean annual precipitation is 12 to 35 inches, and the mean annual air temperature is 40 to 43 degrees F.

Figure 15.-Typical profile of a Ninemile soil. Basalt is at a depth of 16 inches. The upper 8 inches of the bedrock has discontinuous silica and carbonate pendants.

Taxonomic classification: Loamy, mixed Lithic Cryochrepts
Typical pedon of Noname stony clay loam in an area of Noname-Dickle complex, 3 to 12 percent slopes; about 2,000 feet south and 1,000 feet east of the northwest corner of sec. 12, T. 40 S., R. 37 E., "The V" quadrangle.

A-0 to 3 inches; pale brown (10YR 6/3) stony clay loam, very dark grayish brown (10YR 3/2) moist; weak fine subangular blocky structure; slightly hard, very friable, moderately sticky and slightly plastic; many fine and medium roots; many very fine and fine tubular pores; 10 percent gravel, 5 percent cobbles, and 5 percent stones; slightly acid (pH 6.4); gradual wavy boundary.
Bw1-3 to 6 inches; yellowish brown (10YR 5/4) clay loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; soft, very friable, moderately sticky and slightly plastic; many fine and medium roots; many very fine and fine tubular pores; 10 percent gravel and 3 percent cobbles; slightly acid (pH 6.4); clear wavy boundary.
Bw2-6 to 12 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR 3/4) moist; moderate medium subangular blocky structure; soft, very friable, moderately sticky and moderately plastic; common fine and medium roots; many very fine and fine tubular pores; 10 percent gravel and 3 percent cobbles; slightly acid (pH 6.4); clear irregular boundary.
R-12 inches; andesite.
Thickness of the solum and depth to bedrock are 4 to 14 inches. The particle-size control section averages 10 to 35 percent rock fragments and 20 to 35 percent clay. It is slightly acid or neutral.

The A horizon is stony clay loam or very stony loam. It is 10 to 50 percent rock fragments and 20 to 30 percent clay.

The Bw horizon is loam, clay loam, or cobbly clay loam. It is 10 to 30 percent rock fragments and 20 to 35 percent clay.

Norad Series

The Norad series consists of very deep, well drained soils that formed in lacustrine sediment. The soils are on lake terraces. Slope is 0 to 2 percent. Elevation is 4,300 to 4,600 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-silty, mixed, mesic Xeric Haplargids
Typical pedon of Norad silt loam, 0 to 1 percent slopes, about 1,000 feet south and 1,750 feet east of the northwest corner of sec. 3, T. 35 S., R. 31 E.; Blitzen quadrangle.

A1-0 to 3 inches; light brownish gray (10YR 6/2) silt loam, brown (10YR 4/3) moist; weak medium and thick platy structure; slightly hard, friable, moderately sticky and slightly plastic; many fine roots; many fine and medium vesicular pores; neutral (pH 7.2); clear smooth boundary.
A2—3 to 7 inches; pale brown (10YR 6/3) silty clay loam, dark grayish brown (10YR $4 / 2$) moist; moderate fine granular structure; slightly hard, friable, very sticky and moderately plastic; many fine roots; many very fine irregular pores; neutral (pH 7.3); clear smooth boundary.
$2 B t-7$ to 23 inches; light brownish gray (10YR 6/2) silty clay loam, brown (10YR 4/3) moist; moderate very fine and fine subangular blocky structure; slightly hard, friable, very sticky and moderately plastic; many fine roots; many very fine tubular pores; common distinct clay films on faces of peds; moderately alkaline (pH 8.0); gradual smooth boundary.
2Btk-23 to 34 inches; pale brown (10YR 6/3) silty clay loam, brown (10YR 4/3) moist; black manganese stains on faces of peds; weak fine subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; many fine roots; many very fine tubular pores; few distinct clay films on faces
of peds; slightly effervescent; moderately alkaline (pH 8.2); gradual wavy boundary.
2C1—34 to 46 inches; very pale brown (10YR 7/3) silt loam, brown (10YR 4/3) moist; massive; hard, friable, slightly sticky and slightly plastic; many fine roots; many very fine tubular pores; semiconsolidated lake sediment with rocklike structure; neutral (pH 7.2); abrupt wavy boundary.
3C2—46 to 52 inches; white (10YR 8/2) silt loam, pale brown (10YR 6/3) moist; massive; slightly hard, very friable, nonsticky and nonplastic; few fine roots; many very fine tubular pores; semiconsolidated lake sediment with rocklike structure; neutral (pH 7.2); clear wavy boundary.
4C3—52 to 61 inches; light gray (10YR 7/2) loam, brown (10YR 5/3) moist; massive; slightly hard, friable, nonsticky and nonplastic; many fine roots; many very fine tubular pores; high percentage of diatomaceous earth or volcanic ash; semiconsolidated lake sediment with rocklike structure; slightly alkaline (pH 7.4).

Bedrock is at a depth of more than 60 inches. The solum is 12 to 30 inches thick. A high water table is present late in winter and in spring. The particle-size control section averages 27 to 35 percent clay.

The Bt horizon is silty clay loam or silty clay with 27 to 45 percent clay. It is neutral to moderately alkaline.

The C horizon is stratified silty clay loam, clay loam, silt loam, or loam with thin strata of volcanic ash or diatomaceous earth in the lower subhorizons. The horizon is neutral to moderately alkaline.

Nuss Series

The Nuss series consists of shallow, well drained soils that formed in colluvium and residuum derived from basalt, andesite, and welded tuff. The soils are on hills and plateaus. Slope is 20 to 60 percent. Elevation is 4,000 to 6,000 feet. The mean annual precipitation is 12 to 16 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Loamy, mixed, frigid Lithic Haploxerolls
Typical pedon of Nuss stony loam in an area of Nuss-Merlin complex, 20 to 40 percent north slopes; about 800 feet north and 1,800 feet east of the southwest corner of sec. 9, T. 23 S., R. 35 E.; Coleman Mountain quadrangle.

A—0 to 4 inches; grayish brown (10YR 5/2) stony loam, very dark grayish brown (10YR 3/2) moist; weak medium platy structure and weak medium subangular blocky; soft, very friable, nonsticky and nonplastic; few very fine and fine roots; few very fine and fine vesicular pores; 10 percent gravel, 10 percent cobbles, and 10 percent stones; slightly alkaline (pH 7.8); gradual smooth boundary.
Bw1-4 to 12 inches; dark grayish brown (10YR 4/2) gravelly loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; few very fine and fine roots; few very fine and fine irregular pores; 20 percent gravel and 5 percent cobbles; slightly alkaline (pH 7.6); gradual smooth boundary.
Bw2-12 to 15 inches; dark grayish brown (10YR 4/2) cobbly loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; few very fine and fine roots; few very fine and fine irregular and tubular pores; 5 percent gravel and 20 percent cobbles; slightly alkaline (pH 7.6); clear smooth boundary.
R-15 inches; fractured basalt.
The mollic epipedon is 7 to 16 inches thick. Thickness of the solum and depth to
bedrock are 10 to 20 inches. The particle-size control section averages 15 to 35 percent rock fragments, mainly gravel and cobbles, and 18 to 30 percent clay.

The A horizon has chroma of 2 or 3 moist or dry. It is neutral or slightly alkaline.

The Bw horizon has value of 4 or 5 dry and 3 or 4 moist, and it has chroma of 2 or 3 moist or dry. It is gravelly loam, cobbly loam, gravelly clay loam, or cobbly clay loam. It is 15 to 35 percent rock fragments and 18 to 30 percent clay. It is neutral or slightly alkaline.

Observation Series

The Observation series consists of moderately deep, well drained soils that formed in colluvium and residuum derived from basalt, andesite, and welded tuff. The soils are on hills, plateaus, and mountains. Slope is 2 to 50 percent. Elevation is 4,200 to 6,000 feet. The mean annual precipitation is 12 to 16 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Fine, montmorillonitic, frigid Typic Argixerolls
Typical pedon of Observation very stony loam in an area of Merlin-Observation complex, 20 to 40 percent north slopes; about 600 feet south and 2,500 feet west of the northeast corner of sec. 22, T. 23 S., R. 34 E.; Mahon Creek quadrangle.
A1-0 to 4 inches; dark grayish brown (10YR 4/2) very stony loam, very dark grayish brown (10YR 3/2) moist; weak medium platy structure; soft, friable, slightly sticky and nonplastic; common very fine and few fine roots; common very fine vesicular pores; 5 percent gravel, 25 percent cobbles, and 20 percent stones; slightly alkaline (pH 7.8); gradual smooth boundary.
A2-4 to 8 inches; brown (10YR 4/3) cobbly loam, very dark grayish brown (10YR $3 / 2$) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few fine roots; few fine vesicular and tubular pores; 5 percent gravel and 15 percent cobbles; slightly alkaline (pH 7.8); clear smooth boundary.
Bt1-8 to 18 inches; dark yellowish brown (10YR 4/4) clay loam, dark yellowish brown (10YR 3/4) moist; moderate medium subangular blocky structure; hard, firm, moderately sticky and moderately plastic; few fine roots; few fine tubular pores; few distinct clay films on faces of peds; 10 percent cobbles; slightly alkaline (pH 7.8); clear smooth boundary.

Bt2-18 to 23 inches; dark yellowish brown (10YR 4/4) clay, dark yellowish brown (10YR 3/4) moist; strong medium angular blocky structure; very hard, very firm, very sticky and very plastic; few fine roots; few fine tubular pores; common distinct clay films on faces of peds; 10 percent cobbles; slightly alkaline (pH 7.8); clear smooth boundary.
2R-23 inches; fractured basalt.
The mollic epipedon is 8 to 18 inches thick. Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 5 to 25 percent rock fragments, mainly gravel and cobbles, and 35 to 50 percent clay. The profile is neutral or slightly alkaline.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 moist or dry. It is very gravelly loam, stony loam, or very stony loam. It is 15 to 60 percent rock fragments and 18 to 27 percent clay.

The Bt horizon has hue of 7.5 YR or 10YR, value of 4 to 6 dry and 3 to 5 moist, and chroma of 2 to 4 moist or dry. It is clay loam, clay, or cobbly clay loam. It is 5 to 25 percent rock fragments and 35 to 50 percent clay.

Olac Series

The Olac series consists of shallow, well drained soils that formed in residuum derived from basalt. The soils are on hills and plateaus. Slope is 2 to 10 percent. Elevation is 4,200 to 5,000 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, mesic Lithic Xeric Haplargids
Typical pedon of Olac very cobbly fine sandy loam in an area of Olac-Atlow complex, 2 to 10 percent slopes; about 500 feet south and 500 feet west of the northeast corner of sec. 25, T. 33 S., R. 36 E.; Ancient Lake Well quadrangle.

A-0 to 4 inches; light brownish gray (10YR 6/2) very cobbly fine sandy loam, dark grayish brown (10YR 4/2) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and nonplastic; few very fine and fine roots; many very fine, fine, medium, and coarse vesicular pores; 25 percent gravel, 15 percent cobbles, and 5 percent stones; moderately alkaline (pH 8.0); clear wavy boundary.
Bt1-4 to 10 inches; pale brown (10YR 6/3) very cobbly clay loam, brown (10YR 4/3) moist; moderate medium subangular blocky structure; slightly hard, friable, very sticky and moderately plastic; few fine and common very fine roots; common very fine and fine irregular pores; few faint clay films on faces of peds and lining pores; 15 percent gravel and 35 percent cobbles; moderately alkaline (pH 8.0); gradual irregular boundary.
Bt2-10 to 13 inches; light yellowish brown (10YR 6/4) extremely cobbly clay loam, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, friable, moderately sticky and moderately plastic; few fine and common very fine roots; few very fine irregular pores; few faint clay films on rock fragments; 10 percent gravel and 55 percent cobbles; moderately alkaline (pH 8.0); gradual broken boundary. R-13 inches; highly fractured basalt.

Thickness of the solum and depth to bedrock are 10 to 14 inches. The particle-size control section averages 35 to 70 percent rock fragments, mainly cobbles, and 18 to 27 percent clay. The profile is slightly alkaline or moderately alkaline.

The A horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 2 or 3 moist or dry. It is 35 to 60 percent rock fragments and 10 to 20 percent clay.

The Bt horizon has value of 4 to 7 dry and 3 or 4 moist, and it has chroma of 2 to 4 moist or dry. It is extremely gravelly loam, very cobbly clay loam, or extremely cobbly clay loam. It is 50 to 70 percent rock fragments and 20 to 30 percent clay.

Opie Series

The Opie series consists of very deep, poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 2 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-silty, mixed (calcareous), frigid Cumulic Endoaquolls
Typical pedon of Opie silt loam, 0 to 1 percent slopes, about 3,000 feet west and 3,300 feet south of the northeast corner of sec. 14, T. 23 S., R. 31 E.; Poison Creek Slough quadrangle.

A1-0 to 7 inches; gray (10YR 5/1) silt loam, very dark gray (10YR 3/1) moist; weak thin platy structure in the upper 2 inches and moderate medium prismatic structure in the lower 5 inches; hard, firm, slightly sticky and slightly plastic; many
fine roots; many very fine tubular pores; slightly effervescent with disseminated carbonates; very strongly alkaline (pH 9.4); gradual smooth boundary.
A2—7 to 10 inches; gray (10YR 5/1) silty clay loam, black (10YR 2/1) moist; moderate fine prismatic structure; slightly hard, friable, slightly sticky and slightly plastic; many fine roots; many very fine tubular pores; slightly effervescent with disseminated carbonates; very strongly alkaline (pH 9.4); clear wavy boundary.
A3-10 to 16 inches; gray (10YR 5/1) silt loam, black (10YR 2/1) moist; moderate fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many fine roots; many very fine tubular pores; strongly effervescent with disseminated carbonates; strongly alkaline (pH 9.0); clear smooth boundary.
A4-16 to 26 inches; dark gray (10YR 4/1) silty clay loam, black (10YR 2/1) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine roots; many very fine tubular pores; strongly effervescent with disseminated carbonates; strongly alkaline (pH 9.0); clear wavy boundary.
Ak1-26 to 34 inches; gray (10YR 6/1) silt loam, very dark gray (10YR 3/1) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many fine roots; many very fine tubular pores; strongly effervescent; many segregated filaments of carbonates; common fine distinct iron concentrations that are reddish brown (5YR $5 / 4$) when moist; strongly alkaline (pH 9.0); abrupt wavy boundary.
Ak2-34 to 44 inches; dark grayish brown (10YR 4/2) silt loam, very dark brown (10YR 2/2) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many fine roots; many very fine tubular pores; strongly effervescent; many segregated filaments of carbonates; common fine distinct iron concentrations that are reddish brown (5YR $5 / 4$) when moist; strongly alkaline (pH 9.0); abrupt wavy boundary.
2C-44 to 64 inches; light brownish gray (10YR 6/2) gravelly loam, dark grayish brown (10YR 4/2) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few roots; common fine distinct iron concentrations that are reddish brown (5 YR 5/4) when moist; 20 percent gravel; moderately alkaline (pH 8.2).
The mollic epipedon is 24 to 40 inches thick and is 1 to 4 percent organic matter. The particle-size control section is 18 to 35 percent clay and 0 to 5 percent rock fragments, mainly fine gravel. Depth to the gravelly substratum is 40 to 60 inches or more. Occasional ponding occurs in spring. A high water is present late in winter, in spring, and early in summer.

The A and Ak horizons have value of 2 or 3 moist and 4 to 6 dry, and they have chroma of 1 or 2 moist or dry. They are 24 to 60 inches thick. They are 18 to 35 percent clay. The horizons are calcareous and are strongly alkaline or very strongly alkaline. The sodium adsorption ratio is 2 to 10, increasing as depth increases. Electrical conductivity is 8 to 30 millimhos per centimeter, decreasing as depth increases.

The 2C horizon has value of 4 moist and 6 or 7 dry, and it has chroma of 2 moist and 2 or 3 dry. It is gravelly loamy sand, gravelly sandy loam, or gravelly loam. It is 10 to 30 percent gravel. The sodium adsorption ratio is 0 to 5 . Electrical conductivity is 2 to 4 millimhos per centimeter.

Oreanna Series

The Oreanna series consists of very deep, well drained soils that formed in alluvium. The soils are on lake terraces. Slope is 0 to 3 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 7 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F .

Taxonomic classification: Fine-loamy over sandy or sandy-skeletal, mixed, mesic Typic Haplocambids

Typical pedon of Oreanna gravelly sandy clay loam in an area of Davey-Oreanna complex, 0 to 8 percent slopes; about 1,200 feet south and 1,500 feet east of the northwest corner of sec. 3, T. 37 S., R. 34 E.; Borax Lake quadrangle.
A-0 to 7 inches; pale brown (10YR 6/3) gravelly sandy clay loam, dark brown (10YR $3 / 3$) moist; moderate thin platy structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine, fine, medium, and coarse roots; many very fine and fine vesicular and irregular pores; 20 percent gravel; moderately alkaline (pH 8.2); clear smooth boundary.

Bw1-7 to 14 inches; pale brown (10YR 6/3) sandy clay loam, dark brown (10YR 3/3) moist; moderate coarse subangular blocky structure; slightly hard, very friable, moderately sticky and slightly plastic; few very fine, fine, and medium roots; many very fine and fine irregular pores; 5 percent gravel; moderately alkaline (pH 8.0); clear smooth boundary.
Bw2-14 to 21 inches; pale brown (10YR 6/3) gravelly sandy clay loam, dark yellowish brown (10YR 3/4) moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; few very fine and fine roots; many very fine and fine irregular pores; 30 percent rounded gravel; 10 percent of horizon is brittle; moderately alkaline (pH 8.2); clear wavy boundary.
2C-21 to 43 inches; very pale brown (10YR 7/3) very gravelly loamy coarse sand, dark yellowish brown (10YR 4/4) moist; single grain; loose, nonsticky and nonplastic; few very fine and fine roots; many very fine and fine irregular pores; 55 percent rounded gravel; 5 percent of horizon is brittle; moderately alkaline (pH 8.4); gradual wavy boundary.

3Ck1-43 to 50 inches; very pale brown (10YR 7/3) very gravelly sandy loam, yellowish brown (10YR 5/4) moist; massive; slightly hard, very friable, slightly sticky and nonplastic; few very fine roots; many very fine and fine irregular pores; strongly effervescent with disseminated carbonates; 50 percent rounded gravel; strongly alkaline (pH 8.6); clear wavy boundary.
4Ck2-50 to 60 inches; white ($2.5 \mathrm{Y} 8 / 2$) loamy sand, very pale brown (10YR 7/3) moist; single grain; loose, nonsticky and nonplastic; many very fine irregular pores; strongly effervescent with disseminated carbonates; 5 percent gravel; 5 percent of horizon is brittle; strongly alkaline (pH 8.6).
Depth to the layer of sand and gravel (2 C horizon) is 20 to 30 inches. Bedrock is at a depth of more than 60 inches. Calcium carbonate is at a depth of 30 to 50 inches. The upper part of the particle-size control section averages 5 to 30 percent rock fragments, mainly gravel, and 20 to 30 percent clay. The lower part averages 40 to 60 percent rock fragments, mainly gravel, and 0 to 10 percent clay.

The A horizon is 20 to 30 percent rock fragments and 20 to 30 percent clay.
The Bw horizon is clay loam, sandy clay loam, or gravelly sandy clay loam. It is 5 to 35 percent rock fragments and 20 to 30 percent clay.

The 2C horizon has hue of 2.5 Y or 10YR. It is loamy sand, very gravelly loamy coarse sand, or very gravelly sandy loam. It is 5 to 60 percent rock fragments and 0 to 15 percent clay.

Oreneva Series

The Oreneva series consists of moderately deep, well drained soils that formed in residuum derived from welded tuff and basalt. The soils are on hills and plateaus. Slope is 0 to 12 percent. Elevation is 4,200 to 6,200 feet. The mean annual
precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Xeric Haplocambids
Typical pedon of Oreneva gravelly loam in an area of Anawalt-Oreneva complex, 0 to 12 percent slopes, about 1,000 feet north and 2,500 feet west of the southeast corner of sec. 20, T. 41 S., R. 30 E.; Thousand Creek Spring quadrangle.
A-0 to 2 inches; pale brown (10YR 6/3) gravelly loam, dark brown (10YR 3/3) moist; moderate thick platy structure parting to moderate coarse subangular blocky; slightly hard, friable, slightly sticky and slightly plastic; common fine and medium and few coarse roots; many very fine and fine irregular pores; 20 percent gravel; neutral (pH 6.8); clear smooth boundary.
Bw1-2 to 10 inches; brown (10YR 5/3) clay loam, dark brown (10YR 3/3) moist; moderate coarse subangular blocky structure parting to moderate medium subangular blocky; slightly hard, firm, moderately sticky and slightly plastic; common fine and medium roots; common very fine irregular pores; 5 percent gravel; neutral (pH 7.2); clear smooth boundary.
Bw2-10 to 21 inches; light yellowish brown (10YR 6/4) very gravelly loam, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, firm, nonsticky and nonplastic; common fine and few medium roots; common very fine and fine irregular pores; 35 percent gravel and 10 percent cobbles; slightly alkaline (pH 7.4); abrupt wavy boundary.

2R-21 inches; welded tuff.
Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 35 to 50 percent rock fragments, mainly gravel, and 18 to 30 percent clay.

The A horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 2 or 3 moist or dry. It is 15 to 30 percent rock fragments and 18 to 27 percent clay.

The Bw1 horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 3 or 4 moist or dry. It is loam or clay loam. It is 0 to 15 percent rock fragments and 18 to 30 percent clay. It is neutral or slightly alkaline.

The Bw2 horizon has value of 6 or 7 dry and 4 or 5 moist, and it has chroma of 3 or 4 moist or dry. It is very gravelly loam or very gravelly clay loam. It is 35 to 60 percent rock fragments and 18 to 30 percent clay. It is slightly alkaline or moderately alkaline.

Outerkirk Series

The Outerkirk series consists of very deep, well drained soils that formed in alluvium. The soils are on alluvial fans. Slope is 1 to 6 percent. Elevation is 3,900 to 4,600 feet. The mean annual precipitation is 7 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Coarse-loamy, mixed, mesic Durinodic Haplocalcids
Typical pedon of Outerkirk sandy loam in an area of Outerkirk-Defenbaugh association, 1 to 4 percent slopes; about 1,200 feet south and 500 feet east of the northwest corner of sec. 20, T. 38 S., R. 35 E.; Fields quadrangle.

A-0 to 6 inches; light brownish gray (10YR 6/2) sandy loam, dark brown (10YR 3/3) moist; moderate thick platy structure; slightly hard, friable, nonsticky and nonplastic; common very fine and fine and few medium roots; many very fine and fine vesicular pores; slightly effervescent with disseminated carbonates; 1 percent
calcium carbonate equivalent; 5 percent gravel; moderately alkaline (pH 8.4); clear wavy boundary.
Bk1-6 to 23 inches; light gray (10YR 7/2) sandy loam, dark yellowish brown (10YR 3/4) moist; moderate medium subangular blocky structure; hard, friable, slightly sticky and nonplastic; common very fine, fine, and medium roots; many very fine vesicular and irregular pores; strongly effervescent with disseminated carbonates; 4 percent calcium carbonate equivalent; strongly alkaline (pH 8.8); clear smooth boundary.
Bk2-23 to 29 inches; pale brown (10YR 6/3) gravelly sandy loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; soft, friable, nonsticky and nonplastic; few very fine and fine roots; many very fine irregular pores; violently effervescent with disseminated carbonates; 5 percent calcium carbonate equivalent; 20 percent gravel; strongly alkaline (pH 8.8); clear smooth boundary.
Bkq-29 to 51 inches; very pale brown (10YR 7/3) loamy sand, dark yellowish brown (10YR 3/4) moist; massive; hard, firm and brittle, nonsticky and nonplastic; few very fine and fine roots; many very fine irregular pores; 40 percent durinodes; violently effervescent with disseminated carbonates; strongly alkaline (pH 8.6); clear smooth boundary.
2C-51 to 60 inches; brown (10YR 5/3) loamy sand, very dark grayish brown (10YR $3 / 2$) moist; massive; slightly hard, very friable, nonsticky and nonplastic; few very fine and fine roots; many very fine irregular pores; trace of calcium carbonate; 10 percent gravel; strongly alkaline (pH 8.6).
Depth to the Bkq horizon is 20 to 38 inches. Bedrock is at a depth of more than 60 inches. Calcium carbonate is at a depth of 0 to 5 inches. The particle-size control section averages 0 to 20 percent rock fragments, mainly gravel, and 5 to 15 percent clay.

The A horizon is 0 to 10 percent rock fragments and 5 to 20 percent clay. It has a calcium carbonate equivalent of 1 to 2 percent.

The Bk horizon is sandy loam and gravelly sandy loam. It is 0 to 20 percent rock fragments and 5 to 20 percent clay. It has a calcium carbonate equivalent of 4 to 6 percent. It is moderately alkaline or strongly alkaline.

The Bkq horizon is sandy loam or loamy sand. It is 0 to 15 percent rock fragments and 3 to 15 percent clay. It is 20 to 50 percent durinodes, and it has a continuous, hard, firm and brittle layer in some pedons. It has a calcium carbonate equivalent of 5 to 8 percent.

The 2C horizon is loamy sand, sandy loam, or silty clay loam. It is 0 to 15 percent rock fragments and 3 to 35 percent clay.

Ozamis Series

The Ozamis series consists of very deep, poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 1 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-loamy, mixed, mesic Fluvaquentic Endoaquolls
Typical pedon of Ozamis silt loam, 0 to 1 percent slopes, about 300 feet south and 4,200 feet west of the northeast corner of sec. 2, T. 37 S., R. 36 E.; Whitehorse Ranch quadrangle.

A1-0 to 5 inches; very dark grayish brown (10YR 3/2) silt loam, very dark brown (10YR 2/2) moist; moderate fine granular structure; slightly hard, friable, nonsticky and nonplastic; common very fine, many fine, and few medium roots; many fine
and very fine irregular pores; 5 percent fine gravel; slightly alkaline (pH 7.8); clear smooth boundary.
A2-5 to 11 inches; dark gray (10YR 4/1) silt loam, black (10YR 2/1) moist; moderate fine and medium subangular blocky structure; hard, firm, slightly sticky and moderately plastic; few very fine and common fine roots; few fine tubular pores; 5 percent fine gravel; slightly alkaline (pH 7.6); clear smooth boundary.
AC-11 to 19 inches; grayish brown (2.5Y 5/2) clay loam, dark grayish brown (2.5Y $4 / 2$) moist; moderate medium subangular blocky structure; hard, friable, moderately sticky and moderately plastic; few very fine and common fine roots; few fine tubular pores; few fine distinct iron concentrations that are pale brown (10YR 6/3) when moist; 5 percent fine gravel; slightly alkaline (pH 7.6); clear wavy boundary.
Cg1-19 to 35 inches; light brownish gray (10YR 6/2) loam, dark grayish brown (10YR 4/2) moist; massive; hard, friable, slightly sticky and slightly plastic; few very fine and common fine roots; few fine faint iron concentrations that are light yellowish brown (10YR 6/4) when moist; 10 percent fine gravel; slightly alkaline (pH 7.6); clear wavy boundary.
Cg2-35 to 50 inches; light brownish gray (2.5Y 6/2) clay loam, dark grayish brown (10YR 4/2) moist; massive; hard, friable, moderately sticky and moderately plastic; common fine distinct iron concentrations that are light yellowish brown (10YR 6/4) when moist; slightly alkaline (pH 7.6); clear wavy boundary.
2Cg3-50 to 60 inches; light brownish gray ($2.5 \mathrm{Y} 6 / 2$) sandy loam, dark grayish brown ($2.5 \mathrm{Y} 4 / 2$) moist; massive; slightly hard, friable, nonsticky and nonplastic; common fine distinct iron concentrations that are light yellowish brown (10YR 6/4) when moist; slightly alkaline (pH 7.6).

Depth to bedrock is more than 60 inches. The particle-size control section averages 25 to 35 percent clay. Frequent ponding occurs in spring. A high water table is present in spring and early in summer. Depth to the 2 Cg horizon is 30 to 50 inches.

The A horizon has value of 3 or 4 dry and 2 moist, and it has chroma of 1 or 2 moist or dry. It is slightly alkaline or moderately alkaline.

The AC and Cg horizons have value of 5 to 7 dry and 4 moist, and they have chroma of 1 or 2 moist or dry. They are clay loam, loam, or silty clay loam. They are neutral to moderately alkaline. They are 25 to 35 percent clay and 0 to 10 percent coarse fragments.

The 2 Cg horizon has value of 5 to 7 dry and 4 moist, and it has chroma of 1 or 2 moist or dry. It is stratified sandy loam to silty clay loam with 10 to 30 percent clay. It is neutral to moderately alkaline.

Pearlwise Series

The Pearlwise series consists of moderately deep, well drained soils that formed in colluvium and residuum derived from basalt, andesite, and welded tuff. The soils are on hills and mountains. Slope is 3 to 65 percent. Elevation is 5,400 to 6,600 feet. The mean annual precipitation is 12 to 16 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Fine-loamy, mixed, frigid Pachic Haploxerolls
Typical pedon of Pearlwise clay loam in an area of Carryback-Pearlwise complex, 3 to 15 percent slopes; about 2,500 feet south and 1,200 feet east of the northwest corner of sec. 27, T. 39 S., R. 34 E.; Ladycomb Peak quadrangle.

A1-0 to 6 inches; very dark grayish brown (10YR 3/2) clay loam, black (10YR 2/1) moist; moderate medium subangular blocky structure; slightly hard, very friable,
moderately sticky and moderately plastic; many very fine, fine, and medium roots; many very fine, fine, and medium tubular and irregular pores; 5 percent gravel; neutral (pH 7.0); gradual wavy boundary.
A2-6 to 22 inches; very dark grayish brown (10YR 3/2) clay loam, black (10YR 2/1) moist; weak medium subangular blocky structure; soft, very friable, moderately sticky and moderately plastic; many very fine, fine, and medium roots; many very fine, fine, and medium tubular and irregular pores; 5 percent gravel; neutral (pH 7.0); abrupt wavy boundary.

R-22 inches; basalt.
The mollic epipedon is 20 to 30 inches thick. Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 0 to 25 percent rock fragments, mainly gravel, and 20 to 35 percent clay. The profile is slightly acid or neutral.

The upper part of the A horizon has value of 3 or 4 dry and 2 or 3 moist, and it has chroma of 1 to 3 moist or dry. It is clay loam or stony loam. It is 0 to 35 percent rock fragments and 20 to 30 percent clay. The lower part of the A horizon has value of 3 to 5 dry and 2 or 3 moist, and it has chroma of 1 to 3 moist or dry. It is clay loam, loam, or gravelly clay loam. It is 0 to 25 percent rock fragments and 20 to 35 percent clay.

Pernty Series

The Pernty series consists of shallow, well drained soils that formed in colluvium and residuum derived from basalt and rhyolite. The soils are on hills and mountains. Slope is 3 to 70 percent. Elevation is 4,000 to 7,000 feet. The mean annual precipitation is 10 to 16 inches, and the mean annual air temperature is 40 to 45 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Lithic Argixerolls
Typical pedon of Pernty gravelly silt loam, 15 to 40 percent slopes, about 700 feet south and 700 feet west of the northeast corner of sec. 32, T. 25 S., R. 24 E.; Wagontire Mountain East quadrangle.
A-0 to 3 inches; grayish brown (10YR 5/2) gravelly silt loam, very dark grayish brown (10YR 3/2) moist; weak fine granular structure; slightly hard, friable, slightly sticky and slightly plastic; many fine roots; 30 percent gravel; slightly alkaline (pH 7.4); clear smooth boundary.
BA-3 to 8 inches; grayish brown (10YR 5/2) cobbly loam, dark brown (10YR 3/3) moist; weak fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many fine roots; 15 percent gravel and 15 percent cobbles; slightly alkaline (pH 7.4); clear smooth boundary.
Bt-8 to 15 inches; brown (10YR 5/3) very cobbly loam, dark brown (10YR 3/3) moist; moderate medium and fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common fine roots; many very fine tubular pores; few faint discontinuous clay films on faces of peds; 10 percent gravel and 40 percent cobbles; slightly alkaline (pH 7.4); abrupt irregular boundary.
R-15 inches; rhyolite.
Thickness of the mollic epipedon and the solum and depth to bedrock are 14 to 20 inches. The particle-size control section averages 35 to 50 percent rock fragments, mainly cobbles, and 25 to 35 percent clay. The profile is neutral or slightly alkaline.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 moist or dry. It is cobbly loam or gravelly silt loam. It is 15 to 30 percent rock fragments and 15 to 25 percent clay.

The Bt horizon is very cobbly loam or very cobbly clay loam. It is 35 to 50 percent rock fragments and 25 to 35 percent clay.

Poall Series

The Poall series consists of very deep, well drained soils that formed in residuum and colluvium derived from tuffaceous sedimentary rock and diatomaceous earth. The soils are on hills. Slope is 2 to 20 percent. Elevation is 3,400 to 4,200 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine, montmorillonitic, mesic Xeric Paleargids
Typical pedon of Poall silt loam in an area of
Poall-Gumble complex, 2 to 20 percent slopes; about 1,900 feet south and 1,800 feet west of the northeast corner of sec. 23, T. 21 S., R. 35 E.; Bartlett Mountain quadrangle.
A—0 to 8 inches; light brownish gray (10YR 6/2) silt loam, dark brown (10YR $3 / 3$) moist; strong medium platy structure parting to weak thin platy; slightly hard, friable, moderately sticky and moderately plastic; common very fine and few fine roots; common very fine and fine and few medium vesicular pores; 5 percent gravel; slightly alkaline (pH 7.5); abrupt smooth boundary.
2Bt1-8 to 17 inches; yellowish brown (10YR 5/4) clay, dark yellowish brown (10YR $3 / 4$) moist; strong fine prismatic structure parting to strong medium angular blocky; very hard, very firm, very sticky and very plastic; common very fine and fine roots; few very fine, fine, and medium tubular pores; few prominent and common distinct clay films on faces of peds and lining pores; slightly alkaline (pH 7.8); gradual smooth boundary.

2Bt2-17 to 33 inches; pale brown (10YR 6/3) clay loam, brown (10YR 4/3) moist; strong medium angular blocky structure parting to moderate fine angular blocky; hard, firm, moderately sticky and moderately plastic; few very fine and fine roots; few very fine, fine, and medium tubular pores; common distinct clay films on faces of peds and lining pores; slightly alkaline (pH 7.8); clear smooth boundary.
3Btk-33 to 45 inches; pale brown (10YR 6/3) clay loam, brown (10YR 4/3) moist; moderate medium angular blocky structure parting to weak fine angular blocky; hard, firm, moderately sticky and moderately plastic; few very fine roots; few very fine, fine, and medium tubular pores; common faint clay films on faces of peds; slightly effervescent with disseminated carbonates; moderately alkaline (pH 8.0); clear smooth boundary.
3Bk-45 to 65 inches; light yellowish brown (10YR 6/4) gravelly clay loam, dark yellowish brown (10YR 4/4) moist; massive; hard, firm, moderately sticky and moderately plastic; few very fine irregular pores; 30 percent gravel; strongly effervescent with disseminated carbonates; moderately alkaline (pH 8.2).
Thickness of the solum and depth to bedrock are more than 60 inches. Calcium carbonate is at a depth of 15 to 35 inches. The particle-size control section averages 0 to 15 percent rock fragments, mainly gravel, and 35 to 50 percent clay. The content of clay in the 2 Bt horizon is 20 to 30 percent more than that of the A horizon. Depth to the 2 Bt horizon is 3 to 10 inches.

The A horizon has hue of 2.5 Y or 10YR, value of 5 or 6 dry and 3 or 4 moist, and chroma of 2 to 4 dry and 3 or 4 moist. It is 0 to 15 percent rock fragments and 18 to 27 percent clay. It is slightly alkaline or moderately alkaline.

The 2 Bt horizon has value of 5 or 6 dry and 3 to 5 moist, and it has chroma of 3 or 4 moist or dry. It is clay loam, gravelly clay loam, clay, or gravelly silty clay loam. It is

0 to 20 percent rock fragments. The upper part is 40 to 50 percent clay, and the lower part ranges to 35 percent clay. The horizon is slightly alkaline or moderately alkaline.

The 3Bk horizon has value of 6 or 7 dry and 4 or 5 moist, and it has chroma of 3 or 4 moist or dry. It is clay loam, silty clay loam, or gravelly clay loam. It is 0 to 30 percent rock fragments and 27 to 40 percent clay. It is moderately alkaline or strongly alkaline.

Pomerening Series

The Pomerening series consists of very deep, excessively drained soils that formed in cinders and ash. The soils are on hills. Slope is 2 to 20 percent. Elevation is 4,100 to 4,700 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Ashy, nonacid, frigid Vitrandic Torriorthents
Typical pedon of Pomerening very gravelly loamy sand, 2 to 20 percent slopes, about 100 feet north and 2,550 feet east of the southwest corner of sec. 29, T. 28 S., R. 32 E.; Diamond Swamp quadrangle.

A1-0 to 4 inches; reddish gray (5YR $5 / 2$) very gravelly loamy sand, dark reddish brown (5YR 3/2) moist; single grain; loose, nonsticky and nonplastic; common very fine and few fine roots; common very fine and fine and few medium and coarse irregular pores; 35 percent gravel-sized cinders; slightly alkaline (pH 7.4); clear smooth boundary.
A2-4 to 9 inches; reddish brown (5YR 5/3) very gravelly loamy coarse sand, dark reddish brown (5YR 3/3) moist; single grain; loose, nonsticky and nonplastic; many very fine, common fine, and few medium roots; common very fine, fine, and medium and few coarse irregular pores; 30 percent gravel-sized cinders and 5 percent cobble-sized cinders; slightly alkaline (pH 7.5); clear smooth boundary. C1-9 to 34 inches; weak red (2.5YR 5/2) gravelly loamy coarse sand, dusky red (2.5YR 3/2) moist; single grain; loose, nonsticky and nonplastic; few very fine and fine roots; common very fine, fine, medium, and coarse irregular pores; 20 percent gravel-sized cinders; slightly alkaline (pH 7.5); diffuse wavy boundary. C2-34 to 62 inches; weak red (2.5YR 5/2) gravelly loamy coarse sand, dusky red (2.5YR 3/2) moist; single grain; loose, nonsticky and nonplastic; few very fine roots; common very fine, fine, and medium and few coarse irregular pores; 20 percent gravel-sized cinders and 5 percent cobble-sized cinders; slightly alkaline (pH 7.5).

The mollic colors throughout the profile are due to the parent material. Bedrock is at a depth of more than 60 inches. The particle-size control section averages 25 to 35 percent gravel-sized cinders and 2 to 10 percent clay. Where present, carbonates are below a depth of 20 inches.

The A horizon has hue of 5YR, 7.5YR, or 10YR. It is very gravelly loamy sand or very gravelly sandy loam. It is 35 to 60 percent cinders and 5 to 15 percent clay.

The C horizon has hue of $2.5 \mathrm{YR}, 5 \mathrm{YR}$, or 7.5 YR . It is gravelly loamy coarse sand, gravelly loamy sand, or very gravelly loamy coarse sand. It is 20 to 45 percent cinders and 2 to 10 percent clay. It is slightly alkaline or moderately alkaline.

Porterfield Series

The Porterfield series consists of shallow, well drained soils that formed in residuum and colluvium derived from diatomaceous earth and tuffaceous sedimentary rock. The soils are on hills. Slope is 2 to 60 percent. Elevation is 3,400 to 4,600 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F .

Taxonomic classification: Loamy, mixed, nonacid, mesic, shallow Xeric Torriorthents

Typical pedon of Porterfield very stony loam in an area of Porterfield-Tincan-Rock outcrop association, 20 to 60 percent slopes; about 1,700 feet south and 400 feet west of the northeast corner of sec. 11, T. 21 S., R. 35 E.; Drewsey quadrangle.
A-0 to 6 inches; light brownish gray (10YR 6/2) very stony loam, dark grayish brown (10YR 4/2) moist; moderate medium platy structure; slightly hard, friable, slightly sticky and slightly plastic; many very fine and fine and common medium roots; many very fine and fine and common medium vesicular pores; 15 percent gravel, 10 percent cobbles, and 15 percent stones; neutral (pH 6.7); clear smooth boundary.
C-6 to 14 inches; pale brown (10YR 6/3) loam, dark brown (10YR 3/3) moist; massive; soft, friable, slightly sticky and slightly plastic; few very fine and fine roots; few very fine vesicular pores; 5 percent gravel and 5 percent cobbles; neutral (pH 6.9); clear smooth boundary.
Cr -14 inches; diatomaceous earth.
Depth to bedrock is 14 to 20 inches. The particle-size control section averages 5 to 35 percent rock fragments, mainly gravel, and 18 to 35 percent clay. The profile is neutral or slightly alkaline.

The A horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 2 to 4 moist or dry. It is loam or very stony loam. It is 5 to 60 percent rock fragments and 18 to 27 percent clay.

The C horizon has hue of 10 YR or 7.5 YR , value of 5 or 6 dry and 3 or 4 moist, and chroma of 2 to 4 moist or dry. It is loam or gravelly silty clay loam. It is 5 to 30 percent rock fragments and 18 to 30 percent clay.

Poujade Series

The Poujade series consists of very deep, moderately well drained soils that formed in lacustrine sediment. The soils are on lake terraces. Slope is 0 to 5 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-loamy, mixed, frigid Durinodic Xeric Natrargids
Typical pedon of Poujade very fine sandy loam, 2 to 5 percent slopes, about 300 feet north and 600 feet east of the southwest corner of sec. 23, T. 24 S., R. 33 E.; Warm Springs Butte quadrangle.

A1-0 to 4 inches; light brownish gray (10YR 6/2) very fine sandy loam, very dark grayish brown (10YR 3/2) moist; moderate medium granular structure; soft, very friable, nonsticky and nonplastic; many very fine roots; many very fine vesicular pores; neutral (pH 7.0); clear smooth boundary.
2A2-4 to 6 inches; light brownish gray (10YR 6/2) loam, very dark grayish brown (10YR 3/2) moist; moderate very thin platy structure; soft, very friable, nonsticky and nonplastic; common fine roots; many very fine tubular pores; moderately alkaline (pH 8.0); clear smooth boundary.
2Btn1-6 to 9 inches; light brownish gray (10YR 6/2) silty clay loam, dark brown (10YR 3/3) moist; moderate very fine prismatic structure parting to strong fine angular blocky; very hard, friable, moderately sticky and moderately plastic; common fine and medium roots; few fine tubular pores; many prominent clay films lining pores and on faces of peds; strongly effervescent with disseminated carbonates; sodium adsorption ratio is 13 ; very strongly alkaline (pH 9.5); clear wavy boundary.

2Btn2—9 to 13 inches; light yellowish brown (10YR 6/4) silty clay loam, dark yellowish brown (10YR 4/4) moist; moderate fine subangular blocky structure; hard, friable, moderately sticky and slightly plastic; few fine roots; few very fine tubular pores; common distinct clay films lining pores and on faces of peds; strongly effervescent with disseminated carbonates; sodium adsorption ratio is 48; very strongly alkaline (pH 10.0); gradual wavy boundary.
3Bqn1-13 to 25 inches; light gray (10YR 7/2) loam, dark yellowish brown (10YR 4/4) moist; massive; hard, firm and brittle, slightly sticky and nonplastic; few very fine roots; strongly effervescent with disseminated carbonates; sodium adsorption ratio is 95 ; very strongly alkaline (pH 10.0); gradual wavy boundary.
3Bqn2—25 to 40 inches; light gray (10YR 7/2) loam, brown (10YR 5/3) moist; massive; slightly hard, firm and brittle, nonsticky and nonplastic; few medium roots; strongly effervescent with disseminated carbonates; sodium adsorption ratio is 167; very strongly alkaline (pH 10.0); clear smooth boundary.
$4 \mathrm{Bn}-40$ to 46 inches; white (10YR 8/2) silty clay loam, brown (10YR 5/3) moist; massive; hard, friable, slightly sticky and slightly plastic; few medium roots; strongly effervescent with disseminated carbonates; very strongly alkaline (pH 10.0); gradual smooth boundary.

4C1-46 to 58 inches; white (10YR 8/2) loam, brown (10YR 5/3) moist; massive; hard, friable, slightly sticky and nonplastic; strongly effervescent with disseminated carbonates; strongly alkaline (pH 8.8); clear smooth boundary. 4C2—58 to 65 inches; light gray (10YR 7/2) fine sandy loam, grayish brown (10YR $5 / 2$) moist; massive; slightly hard, very friable, nonsticky and nonplastic; strongly effervescent with disseminated carbonates; strongly alkaline (pH 8.8).

The argillic horizon is 5 to 12 inches thick. The solum is 30 to 50 inches thick. Bedrock is at a depth of more than 60 inches. The particle-size control section averages 0 to 5 percent gravel and 27 to 35 percent clay. A high water table is present in spring. Depth to the hard, brittle layer is 10 to 20 inches. Depth to the natric horizon is 4 to 8 inches.

The A horizon has hue of 10 YR , value of 5 to 7 dry and 3 or 4 moist, and chroma of 2 or 3 dry or moist. It is 5 to 10 percent clay. It is neutral or slightly alkaline.

The 2Btn horizon has hue of 10YR or 2.5 Y , value of 5 or 6 dry and 3 or 4 moist, and chroma of 3 or 4 dry or moist. It is silty clay loam or clay loam. It is 0 to 10 percent rock fragments and 27 to 35 percent clay. The sodium adsorption ratio is 13 to 50.

The 3 Bqn horizon has hue of 10 YR or 2.5 Y , value of 6 or 7 dry and 4 or 5 moist, and chroma 2 to 4 dry or moist. It is clay loam or loam with 20 to 30 percent clay. The sodium adsorption ratio is 50 to 170 .

The 4B and 4C horizons have hue of 10 YR or 2.5 Y , value of 6 to 8 dry and 4 or 5 moist, and chroma of 2 to 4 dry or moist. They are stratified silty clay loam, loam, and fine sandy loam with 10 to 30 percent clay. The sodium adsorption ratio is 30 to 170, decreasing as depth increases. The horizons are strongly alkaline or very strongly alkaline, decreasing as depth increases.

Raz Series

The Raz series consists of soils that are shallow to a duripan and are well drained. The soils formed in colluvium and alluvium over basalt and welded tuff. They are on plateaus and hills. Slope is 1 to 20 percent. Elevation is 4,100 to 6,000 feet. The mean annual precipitation is 8 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F .

Taxonomic classification: Loamy, mixed, frigid, shallow Xeric Haplodurids

Typical pedon of Raz very cobbly loam in an area of Raz-Brace complex, 2 to 20 percent slopes; about 500 feet north and 2,500 feet west of the southeast corner of sec. 15, T. 38 S., R. 32 E.; Square Mountain quadrangle.
A-0 to 2 inches; pale brown (10YR 6/3) very cobbly loam, dark brown (10YR 3/3) moist; moderate very thick platy structure; soft, very friable, slightly sticky and slightly plastic; few very fine and fine roots; many fine vesicular pores and few fine tubular pores; 15 percent gravel and 20 percent cobbles; slightly alkaline (pH 7.6); clear smooth boundary.
Bk-2 to 7 inches; light gray (10YR 7/2) gravelly clay loam, brown (10YR 4/3) moist; weak thick platy structure; slightly hard, firm, moderately sticky and moderately plastic; few very fine and fine roots; many very fine vesicular pores and few very fine tubular pores; slightly effervescent with carbonates segregated in few soft masses; 10 percent gravel and 5 percent cobbles; slightly alkaline (pH 7.8); clear wavy boundary.
Bkq-7 to 12 inches; light gray (10YR 7/2) clay loam, yellowish brown (10YR 5/4) moist; massive; hard, firm, moderately sticky and moderately plastic; few fine roots; few fine tubular pores; strongly effervescent with disseminated carbonates; 5 percent gravel; horizon is discontinuously brittle; moderately alkaline (pH 8.2); clear wavy boundary.
Bkqm-12 to 23 inches; indurated duripan; violently effervescent with coatings of carbonates on duripan; opal pendants on duripan; abrupt smooth boundary. 2R-23 inches; basalt.

Thickness of the solum and depth to the duripan are 10 to 18 inches. Depth to bedrock is 20 to 40 inches. Depth to carbonates is 2 to 14 inches. The particle-size control section averages 10 to 25 percent rock fragments, mainly gravel, and 20 to 35 percent clay.

The A horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 2 or 3 moist or dry. It is very cobbly loam or cobbly fine sandy loam. It is 15 to 60 percent rock fragments.

The Bk and Bkq horizons have value of 6 or 7 dry and 4 to 6 moist, and they have chroma of 3 to 6 moist and 2 to 6 dry. They are clay loam, loam, gravelly clay loam, gravelly loam, or cobbly clay loam. They are 5 to 25 percent cobbles and gravel.

The Bkqm horizon is 3 to 18 inches thick.

Reallis Series

The Reallis series consists of very deep, well drained soils that formed in alluvium. The soils are on lake terraces. Slope is 0 to 8 percent. Elevation is 4,000 to 5,800 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F .

Taxonomic classification: Coarse-loamy, mixed, frigid Durinodic Xeric Haplocambids

Typical pedon of Reallis sandy loam, 3 to 8 percent slopes, about 2,100 feet north and 2,600 feet west of the southeast corner of sec. 36, T. 25 S., R. 30 E.; Northeast Harney Lake quadrangle.
A-0 to 1 inch; light brownish gray (10YR 6/2) sandy loam, dark brown (10YR 3/3) moist; weak medium platy structure; soft, very friable, nonsticky and nonplastic; common very fine and fine roots; many very fine irregular pores; slightly alkaline
(pH 7.6); clear smooth boundary.
Bw-1 to 9 inches; light brownish gray (10YR 6/2) sandy loam, dark grayish brown
(10YR 4/2) moist; weak medium and coarse subangular blocky structure; soft, very friable, nonsticky and nonplastic; common very fine and fine roots; common very fine tubular pores; slightly alkaline (pH 7.6); gradual smooth boundary.
Bq-9 to 17 inches; light brownish gray (10YR 6/2) sandy loam, dark grayish brown (10YR 4/2) moist; weak medium and coarse subangular blocky structure; soft, very friable, nonsticky and nonplastic; common fine and very fine roots; common very fine tubular pores; 10 percent durinodes; slightly alkaline (pH 7.6); clear smooth boundary.
Bkq1-17 to 27 inches; light gray (10YR 7/2) sandy loam, grayish brown (10YR 5/2) moist; massive; hard, firm and brittle, nonsticky and nonplastic; common very fine roots; common very fine tubular pores; strongly effervescent; slightly alkaline (pH 7.8); clear smooth boundary.

Bkq2—27 to 36 inches; light gray (10YR 7/2) loamy sand, grayish brown (2.5Y 5/2) moist; massive; slightly hard, friable, nonsticky and nonplastic; few very fine roots; many very fine and fine irregular pores; 10 percent gravel; strongly effervescent; secondary carbonates segregated in soft masses; 5 percent durinodes; moderately alkaline (pH 8.0); gradual smooth boundary.
C-36 to 60 inches; multicolored loamy sand, dark grayish brown (2.5Y 4/2) moist; single grain; loose, nonsticky and nonplastic; many very fine and fine interstitial pores; slightly effervescent; moderately alkaline (pH 8.2).
Depth to the hard, firm and brittle layer and identifiable secondary carbonates is 17 to 35 inches. Bedrock is at a depth of more than 60 inches. The particle-size control section averages 5 to 15 percent clay and 0 to 10 percent rock fragments, mainly gravel.

The A horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 2 to 4 dry or moist. It is sandy loam or fine sandy loam. It is 1 to 2 percent organic matter.

The Bw and Bq horizons have value of 5 to 7 dry and 3 or 4 moist, and they have chroma of 2 to 4 dry or moist. The Bq horizon is 5 to 20 percent durinodes.

The Bkq1 horizon has value of 5 to 7 dry and 4 or 5 moist, and it has chroma of 2 to 4 dry or moist. It is 0 to 10 percent gravel. The calcium carbonate equivalent is 1 to 2 percent.

The Bkq2 horizon has hue of 10 YR or 2.5 Y , value of 5 to 7 dry and 4 or 5 moist, and chroma of 2 to 4 dry or moist. It is gravelly sandy loam, gravelly loamy sand, or loamy sand. It is 10 to 25 percent gravel and 5 to 50 percent durinodes. The calcium carbonate equivalent is 1 to 5 percent.

The C horizon has hue of 10 YR or 2.5 Y , value of 2 to 7 dry and 2 to 5 moist, and chroma of 1 to 4 dry or moist. It is gravelly sandy loam, gravelly loamy sand, or loamy sand. It is 0 to 25 percent gravel.

Reese Series

The Reese series consists of very deep, poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 1 percent. Elevation is 4,400 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-loamy, mixed (calcareous), mesic Aeric Halaquepts
Typical pedon of Reese loam in Lake County, Oregon; about 1,300 feet north and 1,250 feet west of the southeast corner of sec. 8, T. 35 S., R. 25 E.; Campbell Lake quadrangle.

An1-0 to 4 inches; dark brown (10YR 3/3) loam, light brownish gray (10YR 6/2) dry; weak medium subangular blocky structure; soft, very friable, nonsticky and nonplastic; many very fine, fine, medium, and coarse roots; slightly effervescent
with disseminated carbonates; very strongly alkaline (pH 9.2); abrupt smooth boundary.
2An2-4 to 10 inches; brown (10YR 4/3) loam, light brownish gray (10YR 6/2) dry; moderate thin platy structure parting to moderate medium granular; slightly hard, very friable, slightly sticky and nonplastic; many very fine, fine, medium, and coarse roots; strongly effervescent with disseminated carbonates; very strongly alkaline (pH 9.2); clear smooth boundary.
2Bn-10 to 20 inches; brown (10YR 5/3) clay loam, light gray (10YR 7/2) dry; moderate medium platy structure parting to moderate medium granular; slightly hard, firm, slightly sticky and nonplastic; many very fine and fine roots; strongly effervescent with disseminated carbonates; very strongly alkaline (pH 9.2); clear wavy boundary.
2Bqn-20 to 33 inches; brown (10YR 5/3) loam, light gray (10YR 7/2) dry; massive; slightly hard, firm, nonsticky and nonplastic; few very fine and fine roots; 15 percent medium and coarse cylindrical very firm durinodes; violently effervescent with disseminated carbonates; very strongly alkaline (pH 9.2); abrupt wavy boundary.
3Bq1-33 to 44 inches; light brownish gray (10YR 6/2) coarse sandy loam, white (10YR 8/1) dry; massive; slightly hard, very firm, nonsticky and nonplastic; few very fine and fine roots; 40 percent medium and coarse cylindrical very firm durinodes; violently effervescent with disseminated carbonates; strongly alkaline (pH 8.8); clear wavy boundary.
4Bq2-44 to 60 inches; light brownish gray (10YR 6/2) loam, white (10YR 8/1) dry; massive; slightly hard, firm, nonsticky and nonplastic; 15 percent medium and coarse cylindrical very firm durinodes; violently effervescent with disseminated carbonates; strongly alkaline (pH 8.8).

Bedrock is at a depth of more than 60 inches. Frequent ponding occurs in winter and spring. A high water table is present in winter and spring. The particle-size control section averages 0 to 5 percent rock fragments, mainly gravel, and 18 to 30 percent clay. The profile has hue of 10 YR or 2.5 Y .

The A horizon has value of 3 or 4 moist and 6 or 7 dry, and it has chroma of 2 to 4 moist or dry. It is 20 to 27 percent clay. The sodium adsorption ratio is 100 to 200. Electrical conductivity is 16 to 32 millimhos per centimeter. The calcium carbonate equivalent is 5 to 15 percent.

The 2B horizon is loam and clay loam. It is 0 to 5 percent rock fragments and 20 to 30 percent clay. The sodium adsorption ratio is 30 to 140 . Electrical conductivity is 2 to 16 millimhos per centimeter. The calcium carbonate equivalent is 15 to 30 percent.

The 3B and 4B horizons are loam, coarse sandy loam, or sandy loam. They are 0 to 5 percent rock fragments and 10 to 27 percent clay. The sodium adsorption ratio is 5 to 30 . Electrical conductivity is 0 to 2 millimhos per centimeter. The calcium carbonate equivalent is 15 to 30 percent. The horizons are strongly alkaline or very strongly alkaline.

Reluctan Series

The Reluctan series consists of moderately deep, well drained soils that formed in residuum derived from basalt and welded tuff. The soils are on hills and plateaus. Slope is 0 to 30 percent. Elevation is 4,000 to 5,600 feet. The mean annual precipitation is 11 to 13 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-loamy, mixed, frigid Aridic Argixerolls
Typical pedon of Reluctan cobbly loam in an area of Ninemile-Reluctan complex,

0 to 15 percent slopes; about 2,000 feet south and 1,200 feet east of the northwest corner of sec. 23, T. 24 S., R. 28 E.; Palomino Buttes quadrangle.

A1-0 to 2 inches; brown (10YR 5/3) cobbly loam, dark brown (10YR 3/3) moist; weak medium platy structure parting to weak fine granular; soft, very friable, nonsticky and nonplastic; many very fine, common fine, and few medium roots; common very fine and fine vesicular pores; 10 percent gravel and 15 percent cobbles; slightly alkaline (pH 7.6); abrupt smooth boundary.
A2-2 to 9 inches; brown (10YR 5/3) sandy loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure parting to weak fine granular; soft, very friable, slightly sticky and nonplastic; many very fine, common fine, and few medium roots; few very fine and fine irregular pores; 10 percent gravel; slightly alkaline (pH 7.8); clear smooth boundary.
Bt1-9 to 15 inches; brown (10YR 5/3) sandy clay loam, dark brown (10YR 3/3) moist; moderate coarse subangular blocky structure parting to weak fine angular blocky; slightly hard, friable, moderately sticky and moderately plastic; few very fine, fine, and medium roots; few fine and medium irregular pores; few faint clay films on faces of peds; 5 percent gravel and 5 percent cobbles; moderately alkaline (pH 8.0); gradual smooth boundary.
Bt2-15 to 26 inches; light brownish gray (10YR 6/2) sandy clay loam, dark grayish brown (10YR 4/2) moist; moderate coarse subangular blocky structure parting to weak fine angular blocky; slightly hard, friable, moderately sticky and moderately plastic; few very fine, fine, and medium roots; few fine and medium irregular pores; common distinct clay films on faces of peds; 5 percent gravel and 5 percent cobbles; moderately alkaline (pH 8.0); abrupt smooth boundary.
2R-26 inches; basalt.
The mollic epipedon is 7 to 15 inches thick. Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 0 to 30 percent rock fragments, mainly gravel, and 25 to 35 percent clay. A thin 2 Cr horizon is above the lithic contact in some pedons.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 moist or dry. It is neutral or slightly alkaline. The upper part is loam, cobbly loam, or very stony silt loam. It is 0 to 60 percent rock fragments and 10 to 25 percent clay. The lower part is sandy loam, loam, or cobbly loam. It is 0 to 30 percent rock fragments and 15 to 25 percent clay.

The Bt horizon has hue of 7.5 YR or 10 YR , value of 5 or 6 dry and 3 or 4 moist, and chroma of 2 to 4 moist or dry. It is sandy clay loam, clay loam, or cobbly clay loam. It is 5 to 30 percent rock fragments and 25 to 35 percent clay. It is slightly alkaline or moderately alkaline.

Riddleranch Series

The Riddleranch series consists of moderately deep, well drained soils that formed in colluvium derived from basalt and welded tuff. The soils are on mountains. Slope is 20 to 70 percent. Elevation is 4,200 to 6,300 feet. The mean annual precipitation is 11 to 13 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Aridic Haploxerolls
Typical pedon of Riddleranch very stony loam in an area of Riddleranch-Rock outcrop complex, 20 to 70 percent south slopes; about 1,400 feet south and 1,000 feet east of the northwest corner of sec. 4, T. 23 S., R. 25 E.; Suntex quadrangle.
A—0 to 7 inches; brown (10YR 5/3) very stony loam, very dark grayish brown (10YR $3 / 2$) moist; weak medium granular structure; soft, very friable, slightly sticky and
slightly plastic; few very fine and fine roots; many very fine irregular and tubular pores; 20 percent gravel, 10 percent cobbles, and 25 percent stones; neutral (pH 6.7); clear wavy boundary.

BA-7 to 16 inches; brown (10YR 5/3) very cobbly loam, very dark grayish brown (10YR $3 / 2$) moist; moderate medium subangular blocky structure parting to moderate medium granular; slightly hard, friable, slightly sticky and slightly plastic; few very fine, fine, medium, and coarse roots; many very fine and fine irregular and tubular pores; 25 percent gravel, 20 percent cobbles, and 5 percent stones; neutral (pH 6.8); clear wavy boundary.
Bw-16 to 27 inches; brown (10YR 5/3) extremely stony loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine and fine roots; many very fine irregular and tubular pores; 10 percent gravel, 20 percent cobbles, and 40 percent stones; neutral (pH 7.2); abrupt irregular boundary.
R-27 inches; basalt.
The mollic epipedon is 7 to 20 inches thick. Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 50 to 70 percent rock fragments and 18 to 35 percent clay.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 moist or dry. It is very stony sandy loam or very stony loam. It is 35 to 60 percent rock fragments and 15 to 27 percent clay.

The BA and Bw horizons have value of 4 to 7 dry and 2 to 5 moist, and they have chroma of 2 to 4 moist or dry. They are very cobbly loam, very cobbly clay loam, or very stony loam over extremely stony loam or extremely stony clay loam. They are 50 to 80 percent rock fragments and 18 to 35 percent clay. They are neutral or slightly alkaline.

Rinconflat Series

The Rinconflat series consists of very deep, well drained soils that formed in alluvium derived from mixed igneous rock. The soils are on alluvial fans. Slope is 3 to 10 percent. Elevation is 4,600 to 5,700 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Xeric Haplocambids
Typical pedon of Rinconflat stony loam, 3 to 10 percent slopes, about 2,000 feet south and 2,000 feet east of the northwest corner of sec. 25 , T. 39 S., R. 33 E.; Rincon Flat quadrangle.
A—0 to 4 inches; pale brown (10YR 6/3) stony loam, dark brown (10YR 3/3) moist; moderate thick platy structure parting to moderate medium granular; slightly hard, friable, slightly sticky and slightly plastic; common very fine roots; many fine irregular pores; 15 percent gravel, 5 percent cobbles, and 10 percent stones; neutral (pH 6.9); clear wavy boundary.
Bw1-4 to 13 inches; yellowish brown (10YR 5/4) gravelly loam, dark yellowish brown (10YR 3/4) moist; weak medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine and common fine roots; many fine and medium irregular pores; 20 percent gravel; neutral (pH 7.2); clear wavy boundary.
Bw2-13 to 23 inches; yellowish brown (10YR 5/4) very cobbly loam, dark yellowish brown (10YR 3/4) moist; moderate medium subangular blocky structure; slightly hard, firm, slightly sticky and slightly plastic; common fine and few very fine and medium roots; many very fine and fine irregular pores; 20 percent gravel and 20 percent cobbles; neutral (pH 7.2); gradual wavy boundary.

Bw3-23 to 29 inches; yellowish brown (10YR 5/4) very gravelly loam, dark yellowish brown (10YR 3/4) moist; weak medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common fine roots; many very fine and fine irregular pores; 35 percent gravel, 15 percent cobbles, and 5 percent stones; slightly alkaline (pH 7.7); clear wavy boundary.
2C1-29 to 57 inches; pale brown (10YR 6/3) cobbly sandy loam, dark yellowish brown (10YR 3/4) moist; massive; slightly hard, firm, nonsticky and nonplastic; few fine roots; few fine irregular pores; 15 percent gravel and 10 percent cobbles; slightly effervescent with disseminated carbonates; strongly alkaline (pH 8.8); clear wavy boundary.
2C2-57 to 61 inches; yellowish brown (10YR 5/4) very cobbly sandy clay loam, dark brown (7.5YR 3/4) moist; massive; slightly hard, friable, nonsticky and nonplastic; few fine irregular pores; 20 percent gravel and 25 percent cobbles; slightly effervescent with disseminated carbonates; strongly alkaline (pH 8.5).

Thickness of the solum and depth to carbonates are 20 to 40 inches. Bedrock is at a depth of more than 60 inches. The particle-size control section averages 35 to 60 percent rock fragments, mainly gravel and cobbles, and 18 to 27 percent clay.

The A horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 2 to 4 moist or dry. It is 15 to 35 percent rock fragments and 15 to 27 percent clay.

The Bw horizon has hue of 7.5 YR or 10YR and value of 5 or 6 dry and 3 or 4 moist. It is gravelly loam, very gravelly loam, or very cobbly loam. It is 25 to 60 percent rock fragments and 18 to 27 percent clay. It is neutral or slightly alkaline.

The C horizon has hue of 7.5 YR or 10YR and value of 3 or 4 moist. It is very gravelly sandy loam, cobbly sandy loam, or very cobbly sandy clay loam. It is 25 to 60 percent rock fragments and 10 to 27 percent clay. It is moderately alkaline or strongly alkaline.

Rio King Series

The Rio King series consists of very deep, moderately well drained soils that formed in alluvium. The soils are on stream terraces. Slope is 1 to 6 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 7 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Coarse-loamy, mixed, mesic Aridic Haploxerolls
Typical pedon of Rio King loam, 1 to 6 percent slopes; about 600 feet north and 2,200 feet west of the southeast corner of sec. 22, T. 39 S., R. 35 E.; Tumtum Lake quadrangle.

A1-0 to 4 inches; brown (10YR 5/3) loam, dark brown (10YR 3/3) moist; weak thin and medium platy structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine roots; 5 percent fine gravel; moderately alkaline (pH 8.0); clear smooth boundary.
A2-4 to 17 inches; brown (10YR 5/3) loam, dark brown (10YR 3/3) moist; weak fine and medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine roots; common very fine tubular pores; 5 percent fine gravel; slightly alkaline (pH 7.8); gradual smooth boundary.
Bw-17 to 27 inches; brown (10YR 5/3) sandy loam, brown (10YR 4/3) moist; weak fine and medium subangular blocky structure; slightly hard, very friable, slightly sticky and nonplastic; many fine roots; common very fine tubular pores; 5 percent fine gravel; slightly effervescent; slightly alkaline (pH 7.8); gradual smooth boundary.
C1-27 to 45 inches; yellowish brown (10YR 5/4) very fine sandy loam, dark yellowish brown (10YR 3/4) moist; massive; slightly hard, very friable, slightly
sticky and slightly plastic; few very fine roots; many very fine tubular pores; 5 percent fine gravel; slightly alkaline (pH 7.8); gradual wavy boundary. C2-45 to 64 inches; yellowish brown (10YR 5/4) sandy loam, dark yellowish brown (10YR 3/4) moist; single grain; loose, nonsticky and nonplastic; moderately alkaline (pH 8.0).
The mollic epipedon is 10 to 20 inches thick. Bedrock is at a depth of more than 60 inches. A high water table is present in spring. The particle-size control section averages 0 to 5 percent rock fragments, mainly fine gravel, and 5 to 10 percent clay. The profile is slightly alkaline or moderately alkaline.

The A horizon has value of 4 or 5 dry and chroma of 2 or 3 dry or moist. It is 0 to 5 percent rock fragments.

The Bw horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 2 or 3 dry or moist. It is sandy loam or loam.

The C horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 3 or 4 dry and 2 to 4 moist.

Risley Series

The Risley series consists of moderately deep, well drained soils that formed in colluvium and residuum derived from diatomaceous earth and tuffaceous sedimentary rock. The soils are on hills. Slope is 2 to 25 percent. Elevation is 3,500 to 4,500 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine, montmorillonitic, mesic Xeric Haplargids

Typical pedon of Risley gravelly loam in an area of Risley-Gumble complex, 2 to 20 percent slopes; about 2,300 feet north and 1,000 feet west of the southeast corner of sec. 3, T. 21 S., R. 35 E.; Drewsey quadrangle.
A-0 to 3 inches; light brownish gray (10YR 6/2) gravelly loam, dark grayish brown (10YR 4/2) moist; moderate very thin platy structure; soft, very friable, slightly sticky and moderately plastic; common very fine roots; many very fine interstitial pores; 20 percent gravel; slightly alkaline (pH 7.4); clear wavy boundary.
2Bt1-3 to 12 inches; grayish brown (2.5Y 5/2) clay, dark grayish brown (2.5Y 4/2) moist; strong medium prismatic structure parting to strong coarse angular blocky; extremely hard, very firm, very sticky and very plastic; few very fine and fine roots; few very fine tubular pores; many prominent clay films on faces of peds and lining pores; 10 percent gravel; slightly alkaline (pH 7.6); clear smooth boundary.
2Bt2-12 to 25 inches; light olive brown (2.5Y 5/4) gravelly clay, olive brown (2.5Y $4 / 3$) moist; strong medium prismatic structure parting to strong medium angular blocky; extremely hard, very firm, moderately sticky and very plastic; few very fine roots; few very fine tubular pores; many prominent clay films on faces of peds and lining pores; 15 percent gravel; slightly alkaline (pH 7.6); clear smooth boundary.
2Bk-25 to 37 inches; light yellowish brown ($2.5 \mathrm{Y} 6 / 4$) gravelly clay loam, dark grayish brown ($2.5 \mathrm{Y} 4 / 2$) moist; weak very fine subangular blocky structure; hard, friable, moderately sticky and moderately plastic; few very fine roots; violently effervescent with disseminated carbonates and common fine irregular filaments of carbonates; 20 percent gravel; moderately alkaline (pH 8.0); clear wavy boundary.
2Ck-37 to 39 inches; pale yellow (2.5Y 7/4) very gravelly sandy clay loam, light olive brown ($2.5 \mathrm{Y} 5 / 4$) moist; massive; hard, friable, moderately sticky and moderately plastic; slightly effervescent with disseminated carbonates; 50 percent gravel; moderately alkaline (pH 8.0); abrupt wavy boundary.
3 Cr -39 inches; weathered tuffaceous sedimentary rock.

Depth to bedrock is 20 to 40 inches. Depth to carbonates is 16 to 30 inches. Depth to the claypan is 1 to 11 inches. The particle-size control section averages 0 to 20 percent rock fragments, mainly gravel, and 35 to 55 percent clay. The 2Bk and 2Ck horizons are absent in some pedons.

The A horizon has hue of 10 YR or 2.5 Y , value of 5 to 7 dry and 3 to 5 moist, and chroma of 2 to 4 moist or dry. It is silty clay loam, gravelly loam, very gravelly loam, or very stony loam. It is 10 to 50 percent rock fragments and 18 to 35 percent clay. It is neutral or slightly alkaline.

The 2 Bt horizon has hue of 5 Y or 10 YR , value of 5 or 6 dry and 3 or 4 moist, and chroma of 2 to 4 moist or dry. It is clay, gravelly clay, or gravelly clay loam. It is 0 to 20 percent rock fragments and 35 to 55 percent clay. It is neutral or slightly alkaline.

The 2 Bk and 2Ck horizons have hue of 5 Y to 10 YR , value of 5 to 7 dry and 3 to 5 moist, and chroma of 2 to 6 moist or dry. They are clay loam, gravelly clay loam, very gravelly clay loam, or very gravelly sandy clay loam. They are 5 to 50 percent rock fragments and 27 to 40 percent clay. They are slightly alkaline or moderately alkaline.

Robson Series

The Robson series consists of shallow, well drained soils that formed in residuum derived from basalt, welded tuff, and andesite. The soils are on hills and plateaus. Slope is 2 to 30 percent. Elevation is 4,400 to 6,500 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Clayey-skeletal, montmorillonitic, frigid Lithic Xeric Haplargids

Typical pedon of Robson very cobbly clay loam in an area of Robson-Fourwheel complex, 3 to 30 percent slopes; about 500 feet north and 2,280 feet west of the southeast corner of sec. 21, T. 39 S., R. 37 E.; Trout Creek Canyon quadrangle.
A-0 to 4 inches; light brownish gray (10YR 6/2) very cobbly clay loam, dark grayish brown (10YR 4/2) moist; weak medium subangular blocky structure; slightly hard, very friable, very sticky and very plastic; common very fine, fine, and medium roots; many very fine and fine tubular and irregular pores; 30 percent gravel and 25 percent cobbles; neutral (pH 7.2); abrupt wavy boundary.
Bt-4 to 13 inches; brown (10YR 5/3) very gravelly clay, dark brown (10YR 4/3) moist; moderate medium angular blocky structure; hard, firm, very sticky and very plastic; common very fine, fine, and medium roots; many very fine and fine tubular and irregular pores; common faint clay films on faces of peds and lining pores; 50 percent gravel and 5 percent cobbles; neutral (pH 7.2); abrupt wavy boundary.
R-13 inches; basalt.
Thickness of the solum and depth to bedrock are 12 to 20 inches. The particle-size control section averages 50 to 65 percent rock fragments, mainly gravel, and 40 to 50 percent clay. The profile has hue of 10YR or 7.5YR.

The A horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 2 or 3 moist or dry. It is cobbly clay loam, very cobbly clay loam, or very stony loam. It is 15 to 60 percent rock fragments and 20 to 35 percent clay.

The Bt horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 3 or 4 moist or dry. It is very gravelly clay, very cobbly clay, or extremely gravelly clay. It is 50 to 65 percent rock fragments and 40 to 50 percent clay. It is neutral or slightly alkaline.

Roca Series

The Roca series consists of moderately deep, well drained soils that formed in colluvium and residuum derived from basalt, andesite, and rhyolite. The soils are on hills. Slope is 15 to 40 percent. Elevation is 4,200 to 5,800 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F .

Taxonomic classification: Clayey-skeletal, montmorillonitic, frigid Xeric Haplargids
Typical pedon of Roca very cobbly clay loam, 15 to 40 percent south slopes, about 300 feet south and 1,200 feet east of the northwest corner of sec. 30 , T. 37 S ., R. 33 E.; Fields quadrangle.

A—0 to 8 inches; pale brown (10YR 6/3) very cobbly clay loam, brown (10YR 4/3) moist; weak very fine subangular blocky structure parting to moderate fine granular; soft, very friable, slightly sticky and slightly plastic; common very fine, fine, and medium roots; many very fine and fine irregular pores; 20 percent gravel and 20 percent cobbles; neutral (pH 7.2)); clear wavy boundary.
Bt1-8 to 12 inches; yellowish brown (10YR 5/4) very gravelly clay loam, dark yellowish brown (10YR 4/4) moist; moderate fine subangular blocky structure parting to moderate very fine subangular blocky; slightly hard, friable, moderately sticky and moderately plastic; few very fine and fine roots; common very fine and fine irregular and interstitial pores; few distinct clay films on faces of peds; 30 percent gravel and 10 percent cobbles; slightly alkaline (pH 7.6); clear smooth boundary.
Bt2-12 to 16 inches; brown (7.5YR 5/4) very gravelly clay, dark brown (7.5YR 4/4) moist; moderate medium subangular blocky structure parting to moderate fine subangular blocky; slightly hard, firm, moderately sticky and moderately plastic; few very fine and fine and common medium roots; common very fine and fine irregular and tubular pores; many distinct clay films on faces of peds and lining pores; 30 percent gravel and 10 percent cobbles; moderately alkaline (pH 8.0); clear wavy boundary.
Bt3-16 to 22 inches; light brown (7.5YR 6/4) very cobbly clay loam, brown (7.5YR 4/4) moist; massive; soft, very friable, slightly sticky and slightly plastic; few fine and medium roots; many very fine irregular pores; few distinct clay films on faces of peds; 35 percent gravel and 20 percent cobbles; moderately alkaline (pH 8.2); clear wavy boundary.
R-22 inches; basalt.
Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 35 to 50 percent rock fragments, mainly gravel and cobbles, and 35 to 50 percent clay.

The A horizon is 35 to 55 percent rock fragments and 27 to 35 percent clay. It is neutral or slightly alkaline.

The Bt horizon has hue of 7.5YR or 10YR. It is very gravelly clay loam, very gravelly clay, very cobbly clay, or very cobbly clay loam. It is 35 to 50 percent rock fragments and 35 to 50 percent clay. It is slightly alkaline or moderately alkaline.

Roschene Series

The Roschene series consists of very deep, moderately well drained soils that formed in alluvium. The soils are on stream terraces. Slope is 0 to 3 percent. Elevation is 4,500 to 5,500 feet. The mean annual precipitation is 12 to 16 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-loamy, mixed, frigid Cumulic Haploxerolls
Typical pedon of Roschene loam in an area of Welch-Roschene-Cumulic Haploxerolls complex, 0 to 3 percent slopes; about 2,200 feet north and 2,500 feet west of the southeast corner of sec. 32, T. 21 S., R. 26 E.; Camp Currey Spring quadrangle.
A1-0 to 5 inches; grayish brown (10YR 5/2) loam, very dark grayish brown (10YR $3 / 2$) moist; moderate thin platy structure; slightly hard, very friable, nonsticky and slightly plastic; few very fine, many fine, and common medium roots; few fine vesicular pores; slightly effervescent; moderately alkaline (pH 8.0); clear smooth boundary.
A2-5 to 18 inches; grayish brown (10YR 5/2) loam, very dark grayish brown (10YR 3/2) moist; weak medium and coarse subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; few very fine and medium and common fine roots; common very fine and few fine vesicular pores; moderately alkaline (pH 8.0); clear wavy boundary.
2A3-18 to 36 inches; grayish brown (10YR 5/2) clay loam, very dark grayish brown (10YR 3/2) moist; weak coarse subangular blocky structure; slightly hard, friable, slightly sticky and moderately plastic; few very fine and fine roots; many fine and few medium irregular pores; slightly alkaline (pH 7.6); gradual wavy boundary.
$2 B w-36$ to 62 inches; pale brown (10YR 6/3) clay loam, brown (10YR 4/3) moist; weak coarse subangular blocky structure; slightly hard, friable, slightly sticky and moderately plastic; common fine and medium irregular pores; common distinct iron concentrations that are reddish brown (5YR 4/4) when moist; slightly alkaline (pH 7.4).

The mollic epipedon is 24 to 55 inches thick. Depth to bedrock and thickness of the solum are more than 60 inches. Occasional flooding occurs in spring. A high water table is present late in winter, in spring, and early in summer. The particle-size control section averages 0 to 10 percent rock fragments, mainly gravel, and 20 to 30 percent clay.

The A and 2A horizons have value of 3 to 5 dry and 2 or 3 moist, and they have chroma of 1 or 2 dry or moist. Chroma of 1 occurs only in the upper 20 inches. The A horizon is noncalcareous or slightly calcareous, and the 2A horizon is noncalcareous. The A horizon is loam and the 2A horizon is loam or clay loam with 18 to 35 percent clay.

The 2Bw horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 2 or 3 moist or dry. It is loam or clay loam with 20 to 35 percent clay. It is neutral or slightly alkaline.

Royst Series

The Royst series consists of moderately deep, well drained soils that formed in colluvium and residuum over welded tuff, basalt, and andesite. The soils are on hills and plateaus. Slope is 2 to 20 percent. Elevation is 4,700 to 5,400 feet. The mean annual precipitation is 14 to 16 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Clayey-skeletal, montmorillonitic, frigid Pachic Argixerolls
Typical pedon of Royst very cobbly loam in an area of Royst-Merlin complex, 2 to 20 percent slopes; about 660 feet south and 1,980 feet west of the northeast corner of sec. 22, T. 21 S., R. 27 E.; Egypt Canyon quadrangle.

A1-0 to 3 inches; dark grayish brown (10YR 4/2) very cobbly loam, very dark brown (10YR 2/2) moist; weak fine granular structure; slightly hard, very friable, slightly
sticky and slightly plastic; common fine and few medium roots; common fine irregular pores; 10 percent gravel, 20 percent cobbles, and 10 percent stones; neutral (pH 6.6); abrupt smooth boundary.
A2-3 to 7 inches; dark grayish brown (10YR 4/2) cobbly loam, very dark brown (10YR $2 / 2$) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few fine and medium roots; common fine irregular pores; 5 percent gravel and 15 percent cobbles; neutral (pH 6.7); clear wavy boundary.
Bt1-7 to 14 inches; brown (7.5YR 4/3) very stony clay loam, dark brown (7.5YR 3/3) moist; moderate fine subangular blocky structure; hard, friable, moderately sticky and moderately plastic; few fine and medium roots; few fine irregular pores; common distinct clay films on faces of peds; 5 percent cobbles and 45 percent stones; neutral (pH 6.8); gradual wavy boundary.
Bt2-14 to 22 inches; brown (7.5YR 4/3) very stony clay loam, dark brown (7.5YR $3 / 3$) moist; moderate fine angular blocky structure; hard, firm, very sticky and very plastic; few fine and medium roots; few fine irregular pores; common distinct clay films on faces of peds; 5 percent cobbles and 40 percent stones; neutral (pH 6.8); abrupt wavy boundary.
$\mathrm{Cr}-22$ to 23 inches; weathered tuff; clear wavy boundary.
R-23 inches; fractured welded tuff with clay films on faces of fractures.
The mollic epipedon is 20 to 30 inches thick. Thickness of the solum and depth to bedrock are 20 to 35 inches. The particle-size control section averages 35 to 60 percent rock fragments, mainly cobbles and stones, and 35 to 45 percent clay.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 moist or dry. It is 15 to 60 percent rock fragments and 18 to 27 percent clay.

The Bt horizon has hue of 5YR, 7.5YR, or 10YR, value of 4 to 6 dry and 3 or 4 moist, and chroma of 3 moist or dry. It is very cobbly clay loam, very cobbly clay, or very stony clay loam. It is 35 to 60 percent rock fragments and 35 to 45 percent clay.

Sagehen Series

The Sagehen series consists of shallow, well drained soils that formed in colluvium and residuum derived from basalt and andesite. The soils are on mountains and hills. Slope is 5 to 70 percent. Elevation is 4,900 to 7,100 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Lithic Xeric Haplocambids
Typical pedon of Sagehen stony clay loam in an area of Sagehen-Rock outcrop complex, 30 to 70 percent south slopes; about 1,000 feet north and 1,400 feet east of the southwest corner of sec. 29, T. 39 S., R. 38 E.; Pole Canyon quadrangle.
A-0 to 10 inches; light brownish gray (10YR 6/2) stony clay loam, very dark grayish brown (10YR 3/2) moist; weak fine and medium granular structure; soft, very friable, moderately sticky and moderately plastic; many fine and medium roots; many fine irregular and vesicular pores; 10 percent gravel, 5 percent cobbles, and 10 percent stones; neutral (pH 6.8); gradual wavy boundary.
Bw-10 to 19 inches; brown (10YR 5/3) very gravelly clay loam, dark brown (10YR $3 / 3$) moist; moderate fine and medium subangular blocky structure; soft, very friable, moderately sticky and moderately plastic; common fine and medium roots; many fine irregular and vesicular pores; 30 percent gravel, 5 percent cobbles, and 2 percent stones; neutral (pH 6.8); clear wavy boundary.
R-19 inches; basalt.

Thickness of the solum and depth to bedrock are 10 to 20 inches. The particle-size control section averages 35 to 50 percent rock fragments, mainly gravel, and 25 to 35 percent clay. The profile is neutral or slightly alkaline.

The A horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 2 or 3 dry or moist. It is stony clay loam or very stony clay loam. It is 15 to 60 percent rock fragments and 27 to 35 percent clay.

The Bw horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 3 or 4 dry or moist. It is very gravelly loam or very gravelly clay loam. It is 35 to 50 percent rock fragments and 20 to 35 percent clay.

Sandgap Series

The Sandgap series consists of very deep, somewhat excessively drained soils that formed in eolian sand and alluvium. The soils are on dunes and lake terraces. Slope is 1 to 8 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Mixed, frigid Haploduridic Xeric Torripsamments
Typical pedon of Sandgap sand, 3 to 8 percent slopes, about 2,100 feet south and 1,200 feet west of the northeast corner of sec. 6, T. 28 S., R. 30 E.; Southeast Harney Lake quadrangle.

A1-0 to 2 inches; light brownish gray (10YR 6/2) sand, dark brown (10YR $3 / 3$) moist; single grain; loose, nonsticky and nonplastic; 20 percent sand-sized ash; neutral (pH 7.2); abrupt smooth boundary.
A2-2 to 6 inches; light brownish gray (10YR 6/2) loamy sand, dark brown (10YR 4/3) moist; weak medium subangular blocky structure; slightly hard, very friable, nonsticky and nonplastic; few very fine and fine roots; many very fine irregular pores and few fine tubular pores; neutral (pH 7.2); clear smooth boundary.
C-6 to 19 inches; yellowish brown (10YR 5/4) loamy sand, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, very friable, nonsticky and nonplastic; few fine, medium, and coarse roots; many very fine irregular pores; slightly alkaline (pH 7.6); clear smooth boundary.
2Ckqm-19 to 30 inches; pale brown (10YR 6/3) loamy sand, yellowish brown (10YR 5/4) moist; massive; hard, firm and brittle, nonsticky and nonplastic; few very fine roots; many very fine irregular pores; violently effervescent with carbonates segregated in filaments; moderately alkaline (pH 7.9); gradual smooth boundary.
$3 C q-30$ to 45 inches; light brownish gray (10YR 6/2) loamy sand, yellowish brown (10YR 5/4) moist; massive; hard, very firm and brittle, nonsticky and nonplastic; many very fine irregular pores; brittleness is discontinuous; slightly alkaline (pH 7.4); gradual irregular boundary.

3Ck-45 to 60 inches; very pale brown (10YR 7/3) sandy loam, light yellowish brown (10YR 6/4) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; many very fine irregular pores; violently effervescent with carbonates segregated in filaments and soft masses; slightly alkaline (pH 7.6).

Bedrock is at a depth of more than 60 inches. Depth to the continuous brittle layer and to carbonates is 15 to 20 inches. Rare ponding occurs in spring in some years. The particle-size control section averages 0 to 5 percent rock fragments, mainly gravel, 2 to 10 percent clay, and 75 to 90 percent sand.

The A and C horizons have value of 6 or 7 dry and 3 or 4 moist, and they have chroma of 2 or 3 dry or moist. They are sand or loamy sand. They are neutral to moderately alkaline.

The 2C and 3C horizons have value of 5 to 7 dry and 4 to 6 moist, and they have
chroma of 2 to 4 moist or dry. They are dominantly loamy sand or sand, but they range to sandy loam below a depth of 40 inches. They are slightly alkaline or moderately alkaline.

Seharney Series

The Seharney series consists of soils that are shallow to a duripan and are well drained. The soils formed in residuum over basalt and andesite. They are on plateaus and hills. Slope is 3 to 12 percent. Elevation is 4,200 to 5,000 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid, shallow Xerochreptic Haplodurids

Typical pedon of Seharney cobbly silt loam, 3 to 12 percent slopes, about 2,300 feet south and 2,100 feet east of the northwest corner of sec. 15, T. 28 S., R. 30 E.; Coyote Buttes quadrangle.
A1-0 to 2 inches; light gray (10YR 7/2) cobbly silt loam, brown (10YR 4/3) moist; weak medium platy structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine roots; many very fine and fine irregular pores; 10 percent gravel and 15 percent cobbles; neutral (pH 7.0); abrupt smooth boundary.
A2-2 to 5 inches; pale brown (10YR 6/3) silt loam, brown (10YR 4/3) moist; moderate fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine roots; many very fine and fine irregular pores; 5 percent gravel; neutral (pH 7.2); clear wavy boundary.
Bw-5 to 11 inches; pale brown (10YR 6/3) cobbly silt loam, brown (10YR 4/3) moist; moderate coarse subangular blocky structure parting to moderate medium subangular blocky; slightly hard, very friable, slightly sticky and slightly plastic; many fine and common medium roots; many very fine and fine irregular pores; 5 percent gravel and 15 percent cobbles; slightly alkaline (pH 7.4); clear wavy boundary.
Bq-11 to 17 inches; very pale brown (10YR 7/3) very cobbly silt loam, yellowish brown (10YR $5 / 4$) moist; moderate medium subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common medium roots; common fine irregular pores; 10 percent durinodes; 5 percent gravel, 30 percent cobbles, and 5 percent stones; slightly alkaline (pH 7.7); abrupt wavy boundary.
Bkqm-17 to 24 inches; very pale brown (10YR 8/3) strongly cemented duripan, light yellowish brown (10YR 6/4) moist; massive; extremely hard and brittle; strongly effervescent with disseminated carbonates; 5 percent gravel and 40 percent cobbles; clear wavy boundary.
2R-24 inches; fractured basalt.
Thickness of the solum and depth to the duripan are 10 to 20 inches. Depth to bedrock is 20 to 30 inches. The particle-size control section averages 35 to 50 percent rock fragments, mainly cobbles, 18 to 27 percent clay, and 15 to 40 percent sand.

The A horizon has value of 4 or 5 moist.
The Bw and Bq horizons have value of 6 to 8 dry and 4 to 6 moist. They are cobbly loam or cobbly silt loam over very cobbly silt loam or very cobbly loam. They are 20 to 50 percent rock fragments and 18 to 27 percent clay. The Bw horizon is neutral or slightly alkaline.

The Bkqm horizon has value of 7 or 8 dry and 5 or 6 moist, and it has chroma of 3 or 4 moist or dry. It is 5 to 10 inches thick.

Skedaddle Series

The Skedaddle series consists of very shallow and shallow, well drained soils that formed in colluvium and residuum derived from basalt, andesite, and rhyolite. The soils are on hills and mountains. Slope is 5 to 70 percent. Elevation is 4,200 to 5,300 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, nonacid, mesic Lithic Xeric Torriorthents

Typical pedon of Skedaddle very cobbly clay loam in an area of Skedaddle-AtlowRock outcrop complex, 5 to 30 percent slopes; about 1,300 feet north and 2,100 feet east of the southwest corner of sec. 29, T. 37 S., R. 34 E.; Borax Lake quadrangle.

A1-0 to 3 inches; light brownish gray (10YR 6/2) very cobbly clay loam, dark grayish brown (10YR 4/2) moist; moderate medium platy structure; slightly hard, very friable, moderately sticky and moderately plastic; common fine and medium roots; many very fine and fine vesicular pores; 25 percent gravel, 15 percent cobbles, and 5 percent stones; slightly alkaline (pH 7.8); gradual wavy boundary.
A2-3 to 8 inches; grayish brown (10YR 5/2) very cobbly clay loam, brown (10YR 4/3) moist; weak fine subangular blocky structure; soft, very friable, moderately sticky and moderately plastic; common fine and medium roots; many very fine irregular pores; 20 percent gravel, 20 percent cobbles, and 5 percent stones; slightly alkaline (pH 7.8); gradual wavy boundary.
C—8 to 11 inches; light brown (7.5YR 6/4) very cobbly clay loam, dark yellowish brown (10YR 4/4) moist; massive; soft, very friable, very sticky and very plastic; few fine and medium roots; common very fine irregular pores; 20 percent gravel, 20 percent cobbles, and 5 percent stones; slightly alkaline (pH 7.8); abrupt wavy boundary.
R—11 inches; fractured basalt.
Depth to bedrock is 7 to 12 inches. The particle-size control section averages 35 to 60 percent rock fragments, mainly cobbles, and 20 to 30 percent clay.

The A1 horizon has value of 5 or 6 dry and 4 or 5 moist, and it has chroma of 2 or 3 moist and 2 dry. It is very gravelly sandy loam, very cobbly clay loam, or very stony clay loam. It is 35 to 60 percent rock fragments and 18 to 30 percent clay.

The A2 horizon has value of 5 or 6 dry and 4 or 5 moist, and it has chroma of 2 or 3 moist and 2 dry. It is very cobbly loam, very cobbly clay loam, or very stony clay loam. It is 35 to 60 percent rock fragments and 20 to 30 percent clay.

The C horizon has hue of 10 YR or 7.5 YR . It is very cobbly loam or very cobbly clay loam. It is 35 to 55 percent rock fragments and 20 to 30 percent clay.

Skidoosprings Series

The Skidoosprings series consists of soils that are deep to a duripan and are moderately well drained. The soils formed in lacustrine sediment. They are on lake plains. Slope is 0 to 3 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Coarse-loamy, mixed (calcareous), frigid Aeric Halaquepts

Typical pedon of Skidoosprings sandy loam, 0 to 3 percent slopes, about 2,400
feet west and 1,000 feet south of the northeast corner of sec. 31, T. 22 S., R. 33 E.; Carson Point quadrangle.

A—0 to 11 inches; pale brown (10YR 6/3) sandy loam, brown (10YR 4/3) moist; weak fine subangular blocky structure; slightly hard, friable, nonsticky and nonplastic; many fine roots; many very fine tubular pores; strongly effervescent with disseminated carbonates; very strongly alkaline (pH 9.4); clear smooth boundary.
Bw-11 to 23 inches; pale brown (10YR 6/3) sandy loam, brown (10YR 4/3) moist; weak medium prismatic structure parting to weak fine and medium subangular blocky; hard, firm, nonsticky and nonplastic; common fine roots; many very fine tubular pores; strongly effervescent with disseminated carbonates; very strongly alkaline (pH 9.2); gradual smooth boundary.
Bq-23 to 30 inches; pale brown (10YR 6/3) sandy loam, brown (10YR 4/3) moist; massive; hard, firm, nonsticky and nonplastic; few fine roots; many very fine tubular pores; weak discontinuous cementation; strongly effervescent with disseminated carbonates; strongly alkaline (pH 9.0); clear smooth boundary.
BC-30 to 41 inches; pale brown (10YR 6/3) sandy loam, brown (10YR 5/3) moist; massive; hard, firm, nonsticky and nonplastic; few fine roots; few faint iron concentrations that are reddish brown (5YR 4/3) when moist; strongly effervescent with disseminated carbonates; strongly alkaline (pH 8.8); abrupt wavy boundary.
2Bqm-41 to 49 inches; light gray (10YR 7/2) indurated duripan, yellowish brown (10YR 5/4) moist; laminar opal coatings on upper surface; strongly effervescent in upper 1 inch and noneffervescent below; abrupt wavy boundary.
2C-49 to 60 inches; very pale brown (10YR 7/3) coarse sandy loam, brown (10YR $5 / 3$) moist; massive; slightly hard, friable, nonsticky and nonplastic; strongly alkaline (pH 8.6).

The duripan is at a depth of 40 to 50 inches. Bedrock is at a depth of more than 60 inches. Depth to the discontinuously cemented Bq horizon is 15 to 30 inches. The particle-size control section averages 10 to 18 percent clay and 0 to 10 percent rock fragments. The solum is strongly alkaline or very strongly alkaline. Occasional or rare ponding occurs in spring. A high water table occurs in spring.

The A horizon has value of 3 or 4 moist and 6 dry, and it has chroma of 2 or 3 moist or dry. It is 10 to 18 percent clay. The sodium adsorption ratio is 30 to 90 . Electrical conductivity is 2 to 10 millimhos per centimeter.

The Bw and Bq horizons have value of 4 or 5 moist and 6 dry, and they have chroma of 3 moist or dry. They are 10 to 18 percent clay. The sodium adsorption ratio is 60 to 350 . Electrical conductivity is 2 to 10 millimhos per centimeter.

The BC horizon has color and texture similar to those of the Bw and Bq horizons. The sodium adsorption ratio is 10 to 30 . Electrical conductivity is 2 to 4 millimhos per centimeter.

The 2Bqm horizon is 1 to 12 inches thick. It has value of 5 moist and 7 dry and chroma of 4 moist and 2 dry.

The 2C horizon has value of 5 moist and 6 or 7 dry, and it has chroma of 3 or 4 moist or dry. It is 5 to 15 percent clay and 0 to 10 percent rock fragments. The sodium adsorption ratio is 10 to 20 . Electrical conductivity is 2 to 4 millimhos per centimeter.

Skunkfarm Series

The Skunkfarm series consists of very deep, somewhat poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 2 percent.

Elevation is 4,100 to 4,200 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-loamy, mixed, frigid Typic Endoaquolls
Typical pedon of Skunkfarm silt loam in an area of Skunkfarm-Mcbain-Doubleo complex, 0 to 2 percent slopes; about 300 feet west and 4,780 feet south of the northeast corner of sec. 22, T. 28 S., R. 31 E.; Coyote Buttes quadrangle.
A-0 to 2 inches; very dark grayish brown (10YR 3/2) silt loam, very dark brown (10YR 2/2) moist; moderate very fine and fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine roots; common very fine interstitial pores; slightly alkaline (pH 7.8); clear wavy boundary.
Bw1-2 to 6 inches; very dark grayish brown (10YR 3/2) clay loam, very dark brown (10YR 2/2) moist; moderate very fine subangular blocky structure; moderately hard, friable, moderately sticky and very plastic; common very fine roots; common very fine tubular pores; few fine distinct iron concentrations that are dark yellowish brown (10YR 4/6) when moist; slightly alkaline (pH 7.8); clear wavy boundary.
Bw2-6 to 13 inches; brown (10YR 4/3) clay loam, very dark grayish brown (10YR $3 / 2$) moist; moderate very fine and fine subangular blocky structure; moderately hard, friable, moderately sticky and moderately plastic; common very fine roots; common very fine tubular pores; common fine and medium distinct iron concentrations that are dark yellowish brown (10YR 4/6) when moist; slightly alkaline (pH 7.8); clear wavy boundary.
Bw3-13 to 18 inches; pale brown (10YR 6/3) clay loam, dark brown (10YR 4/3) moist; moderate very fine and fine subangular blocky structure; moderately hard, friable, moderately sticky and moderately plastic; few very fine and fine roots; common very fine and few fine tubular pores; common fine and medium distinct iron concentrations that are dark yellowish brown (10YR 4/6) when moist; slightly alkaline (pH 7.6); clear wavy boundary.
BC—18 to 29 inches; pale brown (10YR 6/3) loam, brown (10YR 4/3) moist; weak fine subangular blocky structure; moderately hard, friable, slightly sticky and slightly plastic; few very fine and few fine roots; many very fine tubular pores; common fine and medium distinct iron concentrations that are dark yellowish brown (10YR $4 / 6)$ when moist and common fine distinct depletions that are dark gray (10YR 4/1) when moist; slightly alkaline (pH 7.6); diffuse wavy boundary.
C1-29 to 46 inches; brown (10YR 5/3) fine sandy loam, dark brown (10YR 4/3) moist; moderate thin platy structure; slightly hard, friable, slightly sticky and slightly plastic; few very fine roots; few fine faint iron concentrations that are dark yellowish brown (10YR 4/6) when moist; slightly alkaline (pH 7.6); diffuse wavy boundary.
C2—46 to 60 inches; brown (10YR 5/3) fine sandy loam, dark brown (10YR 4/3) moist; massive; slightly hard, very friable, nonsticky and nonplastic; few fine faint iron concentrations that are dark yellowish brown (10YR 4/6) when moist; moderately alkaline (pH 8.0).
The particle-size control section averages 18 to 27 percent clay. The mollic epipedon is 10 to 20 inches thick. Occasional ponding occurs in spring. A high water table is present in spring.

The A horizon has value of 3 to 5 dry.
The Bw horizon has value of 3 to 6 dry. The upper part has chroma of 2 moist, and the lower part has chroma of 2 or 3 moist. The horizon is clay loam, silty clay loam, or loam with 25 to 35 percent clay. It is slightly alkaline or moderately alkaline.

The BC horizon has value of 6 or 7 dry and 4 or 5 moist, and it has chroma of 2 or

3 moist or dry. It is loam or silty clay loam with 15 to 30 percent clay. It is slightly alkaline or moderately alkaline.

The C horizon has value of 5 or 6 dry. It is slightly alkaline or moderately alkaline.

Spangenburg Series

The Spangenburg series consists of very deep, well drained and moderately well drained soils that formed in lacustrine sediment. The soils are on lake terraces and lake plains. Slope is 0 to 2 percent. Elevation is 4,300 to 5,300 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine, montmorillonitic, mesic Xeric Paleargids
Typical pedon of Spangenburg silty clay loam, 0 to 1 percent slopes, about 300 feet south and 1,400 feet west of the northeast corner of sec. 26, T. 34 S., R. 31 E.; Blitzen quadrangle.
A—0 to 2 inches; light brownish gray (10YR 6/2) silty clay loam, very dark grayish brown (10YR 3/2) moist; weak medium platy structure; slightly hard, very friable, very sticky and moderately plastic; many fine roots; many fine and medium vesicular pores; neutral (pH 7.2); abrupt wavy boundary.
2Bt1-2 to 6 inches; pale brown (10YR 6/3) silty clay, brown (10YR 4/3) moist; moderate medium prismatic structure parting to strong medium and fine subangular blocky; hard, firm, very sticky and moderately plastic; many fine roots; many very fine tubular pores; common faint clay films lining pores; slightly alkaline (pH 7.4); clear wavy boundary.
3Bt2—6 to 15 inches; yellowish brown (10YR 5/4) silty clay, dark yellowish brown (10YR 4/4) moist; moderate fine angular blocky structure; slightly hard, friable, very sticky and moderately plastic; many fine roots; many very fine tubular pores; few faint clay films lining pores; moderately alkaline (pH 8.0); clear wavy boundary.
3 Btk-15 to 34 inches; pale brown (10YR 6/3) silty clay loam, brown (10YR 4/3) moist; massive; slightly hard, friable, slightly sticky and moderately plastic; common fine roots; many very fine tubular pores; few faint clay films lining pores; 20 percent disseminated white ash; slightly effervescent; moderately alkaline (pH 8.0); abrupt wavy boundary.

4C-34 to 60 inches; very pale brown (10YR 7/3) loam, brown (10YR 4/3) moist; massive; slightly hard, friable, nonsticky and nonplastic; few fine roots; many very fine interstitial pores; laminar platy lacustrine sediment; moderately alkaline (pH 8.0).

Bedrock is at a depth of more than 60 inches. The solum is 10 to 30 inches thick. The content of clay in the 2Bt horizon is 15 to 25 percent more than that of the A horizon. Occasional ponding occurs in spring in some years. A high water table is present late in winter and in spring in some years.

The A horizon is 2 to 10 inches thick. It has value of 5 to 7 dry and 3 or 4 moist, and it has chroma of 1 to 3 dry and 2 moist. It is neutral or slightly alkaline. It is silty clay loam or silt loam.

The Bt horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 3 or 4 dry and 2 to 4 moist. The upper part is clay or silty clay with 45 to 60 percent clay. The lower part is silty clay loam or silt loam with 25 to 40 percent clay. The horizon is slightly alkaline or moderately alkaline.

The C horizon has value of 6 or 7 dry and 3 to 5 moist, and it has chroma of 3 or 4
dry or moist. It is stratified loam, silt loam, or silty clay loam. It is slightly alkaline or moderately alkaline.

Srednic Series

The Srednic series consists of soils that are moderately deep to a duripan and are well drained. The soils formed in cinders and eolian sand over welded tuff and basalt. They are on hills. Slope is 2 to 20 percent. Elevation is 4,100 to 4,700 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Ashy, frigid Vitrixerandic Haplodurids

Typical pedon of Srednic very gravelly coarse sandy loam in an area of SrednicAval complex, 2 to 20 percent slopes; about 2,200 feet north and 1,500 feet west of the southeast corner of sec. 10, T. 29 S., R. 32 E.; Diamond quadrangle.

A-0 to 2 inches; brown (10YR 4/3) very gravelly coarse sandy loam, very dark brown (10YR 2/2) moist; single grain; loose, nonsticky and nonplastic; few very fine roots; 35 percent gravel; neutral (pH 6.6); abrupt smooth boundary.
Bw1-2 to 6 inches; brown (10YR 5/3) gravelly loam, very dark grayish brown (10YR $3 / 2$) moist; weak fine and medium subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; common very fine and few fine roots; few very fine tubular pores; 30 percent gravel; slightly alkaline (pH 7.6); clear smooth boundary.
Bw2—6 to 17 inches; brown (10YR 5/3) gravelly sandy loam, very dark grayish brown (10YR 3/2) moist; weak fine and medium subangular blocky structure; soft, very friable, nonsticky and slightly plastic; common very fine and few fine, medium, and coarse roots; few very fine tubular pores; 30 percent gravel; slightly alkaline (pH 7.6); clear smooth boundary.
Bw3-17 to 25 inches; pale brown (10YR 6/3) gravelly loam, dark brown (10YR 3/3) moist; moderate medium and coarse subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and few fine and medium roots; common very fine tubular pores; slightly effervescent with disseminated carbonates; 25 percent gravel and 5 percent cobbles; moderately alkaline (pH 8.0); abrupt wavy boundary.
Bkqm1-25 to 27 inches; light gray (10YR 7/2), white (10YR 8/1), and very pale brown (10YR 7/4) strongly cemented duripan, light yellowish brown (10YR 6/4) and very pale brown (10YR 7/4) moist; few very fine roots; strongly effervescent with disseminated carbonates; abrupt smooth boundary.
Bkqm2—27 to 30 inches; light gray (10YR 7/2), white (10YR 8/1), and very pale brown (10YR 7/4) indurated duripan with pockets of weathered bedrock, light yellowish brown (10YR 6/4) and very pale brown (10YR 7/4) moist; violently effervescent with disseminated carbonates; abrupt smooth boundary.
2R-30 inches; welded tuff.
Depth to bedrock is 25 to 50 inches. Thickness of the solum and depth to the duripan are 20 to 40 inches. Depth to carbonates is 12 to 20 inches. The particle-size control section averages 15 to 35 percent rock fragments, mainly gravel-sized cinders, and 5 to 18 percent clay.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 dry or moist. It is 35 to 50 percent gravel-sized cinders and 5 to 12 percent clay. It is 1 to 3 percent organic matter.

The upper part of the Bw horizon has value of 4 or 5 dry. It is gravelly sandy loam, very gravelly sandy loam, or gravelly loam. It is 15 to 40 percent rock fragments and 5 to 18 percent clay. It is 0.5 to 1.0 percent organic matter. The lower part of the

Bw horizon has value of 5 or 6 dry and 2 or 3 moist, and it has chroma of 2 to 4 dry or moist. It is gravelly sandy loam or gravelly loam. It is 15 to 35 percent rock fragments and 5 to 18 percent clay.

The Bkqm horizon has value of 7 or 8 dry and 6 or 7 moist, and it has chroma of 1 to 4 dry or moist. It is 3 to 10 inches thick.

Stampede Series

The Stampede series consists of moderately deep, well drained soils that formed in old alluvium (fig. 16). The soils are on stream terraces. Slope is 1 to 5 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine, montmorillonitic, frigid Vertic Durixerolls
Typical pedon of Stampede loam, 1 to 5 percent slopes, about 1,900 feet south and 25 feet east of the northwest corner of sec. 3, T. 23 S., R. 26 E.; Riley quadrangle.
A-0 to 3 inches; brown (10YR 5/3) loam, dark brown (10YR 3/3) moist; weak thin platy structure; soft, very friable, slightly sticky and slightly plastic; common fine and few very fine roots; common fine tubular pores; 10 percent gravel; neutral (pH 7.0); clear wavy boundary.

BA-3 to 11 inches; brown (10YR 5/3) clay loam, dark brown (10YR $3 / 3$) moist; moderate very fine granular structure parting to moderate fine and medium subangular blocky; slightly hard, friable, moderately sticky and moderately plastic; few fine and very fine roots; common fine tubular pores; 10 percent gravel; slightly alkaline (pH 7.4); clear wavy boundary.
Bt1-11 to 16 inches; brown (10YR 5/3) clay, dark brown (10YR 4/3) moist; weak very fine and fine prismatic structure parting to strong fine and medium subangular blocky; hard, friable, moderately sticky and moderately plastic; few very fine roots; common fine tubular pores; few faint clay films on faces of peds; 5 percent gravel; slightly alkaline (pH 7.4); clear wavy boundary.
Bt2-16 to 19 inches; yellowish brown (10YR 5/4) clay, dark yellowish brown (10YR 4/4) moist; strong very fine and fine subangular blocky structure; hard, very firm, very sticky and very plastic; few very fine and fine roots; common fine interstitial pores; common distinct clay films on faces of peds; 10 percent gravel; slightly alkaline (pH 7.4); abrupt wavy boundary.
$2 \mathrm{C}-19$ to 23 inches; very pale brown (10YR 7/4) very gravelly sandy clay loam, yellowish brown (10YR 5/6) moist; massive; very hard, firm, slightly sticky and nonplastic; few very fine roots; 55 percent gravel; slightly effervescent; slightly alkaline (pH 7.8); abrupt wavy boundary.
2Ckqm-23 to 33 inches; light yellowish brown (10YR 6/4) indurated duripan, dark yellowish brown (10YR 4/4) moist; massive; extremely hard; opal pendants on underside of plates; strongly effervescent with disseminated carbonates; clear wavy boundary.
$2 C^{\prime}-33$ to 60 inches; pale brown (10YR 6/3) gravelly sandy loam, brown (10YR 4/3) moist; massive; hard, firm, nonsticky and nonplastic; few fine interstitial pores; 30 percent gravel; slightly effervescent; slightly alkaline (pH 7.6).
The mollic epipedon is 7 to 13 inches thick. Thickness of the solum and depth to the duripan are 20 to 30 inches. Depth to carbonates is 15 to 30 inches. The particle-size control section averages 5 to 15 percent rock fragments, mainly gravel, and 40 to 50 percent clay.

The A horizon is 0 to 15 percent rock fragments and 20 to 27 percent clay. It is neutral or slightly alkaline.

Figure 16.-Typical profile of a Stampede soil. A duripan is between depths of 23 and 33 inches. Very gravelly sandy loam derived from old alluvium is below the duripan.

The Bt horizon is 0 to 15 percent rock fragments and 40 to 50 percent clay. It is neutral or slightly alkaline.

The 2C horizon is 35 to 60 percent rock fragments and 25 to 30 percent clay. It is neutral or slightly alkaline.

The 2Ckqm horizon is 5 to 10 inches thick. It has hue of 2.5 Y or 10YR.
The $2 \mathrm{C}^{\prime}$ horizon is gravelly sandy loam or very gravelly sandy loam. It is 15 to 50 percent rock fragments and 10 to 20 percent clay. It is slightly alkaline or moderately alkaline.

Swaler Series

The Swaler series consists of very deep, moderately well drained soils that formed in lacustrine sediment. The soils are in closed depressions of plateaus and lake plains. Slope is 0 to 2 percent. Elevation is 4,200 to 5,700 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine, montmorillonitic, frigid Xeric Paleargids
Typical pedon of Swaler silt loam, 0 to 1 percent slopes, about 250 feet south and 700 feet west of the northeast corner of sec. 27, T. 34 S., R. 31 E.; Blitzen quadrangle.

A1—0 to 3 inches; light gray (10YR 7/1) silt loam, dark grayish brown (10YR 4/2) moist; weak thin platy structure; slightly hard, friable, slightly sticky and slightly plastic; many fine roots; many fine and medium vesicular pores; neutral (pH 7.0); abrupt smooth boundary.
A2-3 to 10 inches; light gray (10YR 7/2) silt loam, dark grayish brown (10YR 4/2) moist; moderate fine subangular blocky structure; hard, firm, moderately sticky and moderately plastic; common fine roots; many very fine tubular pores; slightly alkaline (pH 7.8); clear smooth boundary.
2Bt1-10 to 18 inches; light brownish gray (10YR 6/2) silty clay, dark grayish brown (10YR 4/2) moist; weak fine prismatic structure parting to moderate medium and fine subangular blocky; hard, firm, moderately sticky and moderately plastic; common fine roots; common very fine tubular pores; common faint continuous clay films; moderately alkaline (pH 8.0); clear wavy boundary.
2Bt2—18 to 27 inches; brown (10YR 5/3) silty clay, dark grayish brown (10YR 4/2) moist; strong fine subangular blocky structure; hard, firm, moderately sticky and moderately plastic; many fine roots; common very fine tubular pores; prominent continuous clay films; moderately alkaline (pH 8.2); gradual wavy boundary.
3C-27 to 60 inches; pale brown (10YR 6/3) silty clay loam, brown (10YR 5/3) moist; massive; hard, firm, moderately sticky and moderately plastic; many fine roots; lacustrine rocklike structure; moderately alkaline (pH 8.2).

The particle-size control section averages 35 to 50 percent clay. Bedrock is at a depth of more than 60 inches. Rare ponding occurs in spring. The content of clay in the 2 Bt horizon is 15 to 25 percent more than that of the A horizon. Depth to the 2 Bt horizon is 3 to 14 inches.

The A horizon has hue of 5 to 7 dry and 3 to 5 moist, and it has chroma of 1 or 2 moist or dry.

The 2Bt horizon has value of 5 to 7 dry and 3 to 6 moist, and it has chroma of 2 to 4 moist or dry. It is silty clay loam, silty clay, or clay with 35 to 50 percent clay. It is neutral to moderately alkaline.

The 3C horizon has hue of 10YR to 5 Y , value of 6 or 7 dry and 4 or 5 moist, and
chroma of 2 to 4 moist or dry. It is silty clay loam or clay loam. It is neutral to moderately alkaline.

Swalesilver Series

The Swalesilver series consists of very deep, somewhat poorly drained soils that formed in lacustrine sediment. The soils are in closed depressions on plateaus and on lake plains. Slope is 0 to 2 percent. Elevation is 4,000 to 5,700 feet. The mean annual precipitation is 8 to 14 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine, montmorillonitic, frigid Aquic Palexeralfs
Typical pedon of Swalesilver silt loam, dry, 0 to 2 percent slopes, about 1,000 feet north and 1,000 feet west of the southeast corner of sec. 11, T. 30 S., R. 29 E.; Keg Springs Valley West quadrangle.

A1-0 to 3 inches; very pale brown (10YR 7/3) silt loam, brown (10YR 4/3) moist; moderate medium platy structure; slightly hard, very friable, nonsticky and slightly plastic; few coarse and many fine and medium roots; many fine and medium irregular pores; neutral (pH 6.8); clear smooth boundary.
A2—3 to 6 inches; light gray (10YR 7/2) silt loam, grayish brown (10YR 5/2) moist; moderate medium platy structure; slightly hard, very friable, nonsticky and slightly plastic; few coarse and many fine and medium roots; many fine and medium irregular pores; few fine prominent yellowish red (5YR 4/6) iron concentrations; neutral (pH 7.0); abrupt smooth boundary.
2Bt1-6 to 18 inches; light brownish gray (10YR 6/2) clay, grayish brown (10YR 5/2) moist; strong medium prismatic structure parting to strong coarse angular blocky; hard, firm, moderately sticky and very plastic; common medium roots; few fine irregular and tubular pores; continuous prominent clay films on faces of peds; slightly alkaline (pH 7.4); clear smooth boundary.
2Bt2—18 to 23 inches; light brownish gray (2.5Y 6/2) clay, grayish brown (2.5Y 5/2) moist; strong medium angular blocky structure parting to strong fine angular blocky; hard, firm, moderately sticky and moderately plastic; few medium roots; few fine irregular and tubular pores; many prominent clay films on faces of peds; slightly alkaline (pH 7.6); clear smooth boundary.
$3 B k-23$ to 34 inches; light gray (2.5Y 7/2) silt loam, grayish brown (2.5Y 5/2) moist; moderate fine subangular blocky structure; hard, friable, slightly sticky and slightly plastic; few medium roots; many fine and medium irregular pores; slightly effervescent with common segregated carbonates occurring as filaments; moderately alkaline (pH 8.2); clear smooth boundary.
3C1—34 to 49 inches; light gray (2.5Y 7/2) silt loam, grayish brown (2.5Y 5/2) moist; massive; hard, friable, slightly sticky and slightly plastic; few medium roots; many fine and medium irregular pores; slightly alkaline (pH 7.8); abrupt smooth boundary.
3C2—49 to 61 inches; pale yellow (5Y 7/3) silt loam, olive (5Y 5/3) moist; massive; slightly hard, friable, slightly sticky and slightly plastic; few medium roots; many very fine and fine irregular pores; slightly alkaline (pH 7.8).

The solum is 25 to 40 inches thick. Bedrock is at a depth of more than 60 inches. Frequent or rare ponding occurs in spring. A high water table is present late in winter and in spring. The particle-size control section averages 45 to 65 percent clay. The content of clay in the 2 Bt horizon is 20 to 40 percent more than that of the A horizon. Depth to the 2Bt horizon is 2 to 11 inches.

The A horizon is 2 to 8 inches thick. It is 15 to 25 percent clay. It is neutral or slightly alkaline.

The 2Bt horizon has hue of 2.5 Y or 10YR. It is clay or silty clay with 45 to 65 percent clay. It is slightly alkaline or moderately alkaline.

The 3Bk and 3C horizons have hue of 2.5Y or 5Y. They are stratified silt loam to clay loam with 15 to 30 percent clay. They are slightly alkaline to strongly alkaline.

Teguro Series

The Teguro series consists of shallow, well drained soils that formed in residuum and colluvium derived from welded tuff, andesite, and basalt. The soils are on plateaus. Slope is 2 to 20 percent. Elevation is 4,100 to 6,100 feet. The mean annual precipitation is 12 to 16 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Loamy, mixed, frigid Lithic Argixerolls
Typical pedon of Teguro very cobbly loam, 2 to 20 percent slopes, about 2,000 feet north and 2,200 feet east of the southwest corner of sec. 23, T. 22 S., R. 27 E.; Egypt Canyon quadrangle.
A1-0 to 2 inches; grayish brown (10YR 5/2) very cobbly loam, very dark grayish brown (10YR 3/2) moist; weak medium platy structure parting to weak fine granular; soft, very friable, moderately sticky and moderately plastic; many very fine, common fine, and few medium roots; many very fine, common fine, and few medium vesicular pores; 15 percent gravel, 25 percent cobbles, and 10 percent stones; slightly alkaline (pH 7.4); clear smooth boundary.
A2-2 to 5 inches; grayish brown (10YR 5/2) loam, very dark grayish brown (10YR $3 / 2$) moist; weak fine subangular blocky structure parting to weak fine granular; soft, very friable, moderately sticky and moderately plastic; common very fine, fine, and medium roots; common fine and medium irregular pores; 5 percent gravel and 5 percent cobbles; neutral (pH 7.2); clear smooth boundary.
Bt1-5 to 10 inches; brown (10YR 5/3) cobbly clay loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; few fine and medium roots; few fine and medium irregular pores; common faint clay films on faces of peds; 5 percent gravel and 10 percent cobbles; slightly alkaline (pH 7.7); clear smooth boundary.
Bt2-10 to 14 inches; yellowish brown (10YR 5/4) cobbly clay loam, dark yellowish brown (10YR 3/4) moist; moderate medium subangular blocky structure; hard, firm, moderately sticky and moderately plastic; few fine and medium roots; few fine and medium irregular pores; common distinct clay films on faces of peds; 5 percent gravel, 20 percent cobbles, and 5 percent stones; slightly alkaline (pH 7.7); clear wavy boundary.

R-14 inches; welded tuff.
The mollic epipedon is 7 to 12 inches thick. Thickness of the solum and depth to bedrock are 14 to 20 inches. The particle-size control section averages 10 to 35 percent rock fragments, mainly gravel and cobbles, and 25 to 35 percent clay. The profile is neutral or slightly alkaline. It has hue of 10YR or 7.5YR.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 moist or dry. It is 18 to 27 percent clay. The upper part is gravelly loam, very gravelly loam, very cobbly loam, or very stony loam with 15 to 60 percent rock fragments. The lower part is loam, cobbly loam, or gravelly loam with 10 to 35 percent rock fragments.

The Bt horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 3 or 4 moist or dry. It is gravelly loam, gravelly clay loam, or cobbly clay loam. It is 15 to 35 percent rock fragments and 25 to 35 percent clay.

Thenarrows Series

The Thenarrows series consists of very deep, poorly drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 2 percent. Elevation is 4,090 to 4,105 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Coarse-loamy, mixed (calcareous), frigid Typic Halaquepts

Typical pedon of Thenarrows sandy loam in an area of Thenarrows-Duckclub complex, 0 to 1 percent slopes; about 700 feet east and 3,300 feet south of the northwest corner of sec. 4, T. 26 S., R 32 E.; The Narrows quadrangle.

A1-0 to 3 inches; dark gray ($5 \mathrm{Y} 4 / 1$) sandy loam, light brownish gray ($2.5 \mathrm{Y} 6 / 2$) dry; moderate thick platy structure; hard, firm, slightly sticky and nonplastic; many very fine, fine, and medium roots; common very fine and fine tubular pores; common snail shells; strongly effervescent with disseminated carbonates; very strongly alkaline (pH 9.2); clear smooth boundary.
A2-3 to 14 inches; dark gray (5Y 4/1); sandy loam, light brownish gray ($2.5 \mathrm{Y} 6 / 2$) dry; weak medium subangular blocky structure; soft, very friable, slightly sticky and nonplastic; many very fine and fine and common medium roots; many very fine, fine, and medium interstitial pores and common very fine tubular pores; strongly effervescent with disseminated carbonates; sodium adsorption ratio is 24; electrical conductivity is 3 ; 10 percent calcium carbonate equivalent; very strongly alkaline (pH 9.2); gradual wavy boundary.
A/Bw-14 to 22 inches; 50 percent A material that is dark grayish brown (2.5Y 4/2) loamy sand, light brownish gray ($2.5 \mathrm{Y} 6 / 2$) dry; weak medium subangular blocky structure; soft, very friable, nonsticky and nonplastic; 50 percent Bw material that is light brownish gray ($2.5 \mathrm{Y} 6 / 2$) sandy loam, white (10YR 8/1) dry; weak medium subangular blocky structure; hard, friable, slightly sticky and nonplastic; common very fine and fine roots; common very fine and fine tubular pores; sodium adsorption ratio is 19 ; electrical conductivity is $2 ; 21$ percent calcium carbonate equivalent; strongly effervescent with disseminated carbonates; very strongly alkaline (pH 9.4); clear wavy boundary.
Bw-22 to 31 inches; light brownish gray ($2.5 \mathrm{Y} 6 / 2$) sandy loam, white (10YR 8/1) dry; weak coarse and medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine roots; common very fine and fine tubular pores; strongly effervescent with disseminated carbonates; sodium adsorption ratio is 19 ; electrical conductivity is 2 ; 17 percent calcium carbonate equivalent; very strongly alkaline (pH 9.4); gradual wavy boundary.
$\mathrm{Bw} / \mathrm{C}-31$ to 54 inches; 80 percent Bw material that is light brownish gray (2.5Y 6/2) sandy loam, white (10YR 8/1) dry; weak medium subangular blocky structure; hard, firm and brittle, slightly sticky and nonplastic; strongly effervescent with disseminated carbonates; 20 percent C material that is grayish brown (10YR 5/2) loamy sand, light brownish gray ($2.5 \mathrm{Y} 6 / 2$) dry; massive; soft, very friable, nonsticky and nonplastic; strongly effervescent; common very fine and fine roots; common fine and very fine tubular pores; strongly alkaline (pH 8.8); gradual wavy boundary.
C-54 to 60 inches; grayish brown (10YR 5/2) loamy sand, light brownish gray (2.5Y 6/2) dry; massive; soft, very friable, nonsticky and nonplastic; few fine roots; common very fine and fine tubular pores; 10 percent Bw material; strongly effervescent with disseminated carbonates; very strongly alkaline (pH 9.5).

Depth to bedrock is more than 60 inches. The particle-size control section
averages 10 to 18 percent clay. Occasional ponding occurs in spring. A high water table is present in spring and early in summer.

The A horizon has hue of $2.5 \mathrm{Y}, 5 \mathrm{Y}$, or 10 YR , and it has value of 4 to 6 dry and 3 or 4 moist. It is strongly alkaline or very strongly alkaline. The sodium adsorption ratio is 13 to 25 . Electrical conductivity is 2 to 4 millimhos per centimeter.

The Bw horizon has value of 6 to 8 dry and 4 to 6 moist. It is strongly alkaline or very strongly alkaline. The sodium adsorption ratio is 10 to 20 . Electrical conductivity is 1 to 2 millimhos per centimeter. The calcium carbonate equivalent is 10 to 20 percent.

The C horizon has value of 6 or 7 dry and 3 to 5 moist, and it has chroma of 1 or 2 moist or dry. It is moderately alkaline to very strongly alkaline. It is slightly effervescent to strongly effervescent. The sodium adsorption ratio is 2 to 5 . Electrical conductivity is 0 to 2 millimhos per centimeter.

Ticino Series

The Ticino series consists of moderately deep, well drained soils that formed in residuum derived from welded tuff. The soils are on hills and plateaus. Slope is 2 to 20 percent. Elevation is 3,900 to 5,200 feet. The mean annual precipitation is 12 to 18 inches, and the mean annual air temperature is 40 to 43 degrees F.

Taxonomic classification: Fine-loamy, mixed, frigid Typic Argixerolls
Typical pedon of Ticino cobbly loam in an area of Ticino-Rock outcrop complex, 2 to 20 percent slopes; about 400 feet north and 500 feet west of the southeast corner of sec. 22, T. 21 S., R. 30 E.; Poison Creek quadrangle.
A1-0 to 2 inches; dark grayish brown (10YR 4/2) cobbly loam, very dark grayish brown (10YR 3/2) moist; moderate medium granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine and few fine and medium roots; many very fine and common fine and medium irregular pores; 10 percent gravel, 10 percent cobbles, and 2 percent stones; neutral (pH 7.0); clear smooth boundary.
A2-2 to 9 inches; brown (10YR 5/3) cobbly loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure parting to moderate medium granular; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine and few medium roots; common very fine and few fine and medium irregular pores; 10 percent gravel and 10 percent cobbles; neutral (pH 7.2); clear smooth boundary.
Bt1-9 to 18 inches; pale brown (10YR 6/3) sandy clay loam, dark yellowish brown (10YR 4/4) moist; strong medium subangular blocky structure parting to moderate medium granular; hard, firm, moderately sticky and moderately plastic; few very fine and coarse and common fine and medium roots; few very fine, fine, and medium irregular pores; common faint and few prominent clay films on faces of peds; 5 percent gravel and 5 percent cobbles; slightly alkaline (pH 7.4); clear smooth boundary.
Bt2-18 to 26 inches; pale brown (10YR 6/3) sandy clay loam, brown (10YR 4/3) moist; strong medium subangular blocky structure parting to moderate fine angular blocky; hard, firm, very sticky and moderately plastic; few very fine, fine, and medium roots; few very fine, fine, and medium irregular pores; few faint and distinct clay films on faces of peds; 5 percent gravel; slightly alkaline (pH 7.5); clear smooth boundary.
2Crt-26 to 29 inches; very pale brown (10YR 7/4) weathered tuff, brown (10YR 5/3) moist; common distinct clay films on faces of rock; abrupt smooth boundary.
2R-29 inches; fractured welded tuff.

The mollic epipedon is 8 to 12 inches thick. Depth to bedrock is 20 to 40 inches. The particle-size control section averages 5 to 35 percent rock fragments, mainly gravel, and 20 to 35 percent clay. The 2Crt horizon is absent in some pedons.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 moist or dry. It is gravelly loam, cobbly loam, or very cobbly loam. It is 15 to 60 percent rock fragments and 18 to 27 percent clay. It is slightly acid or neutral.

The Bt horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 3 or 4 moist or dry. It is sandy clay loam, clay loam, or gravelly sandy clay loam. It is 5 to 30 percent rock fragments and 25 to 35 percent clay. It is slightly acid to slightly alkaline.

Tincan Series

The Tincan series consists of shallow, well drained soils that formed in colluvium and residuum derived from diatomaceous earth and tuffaceous sedimentary rock. The soils are on hills. Slope is 20 to 60 percent. Elevation is 3,400 to 4,600 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Loamy, mixed, mesic, shallow Aridic Haploxerolls
Typical pedon of Tincan gravelly silt loam in an area of Porterfield-Tincan-Rock outcrop association, 20 to 60 percent slopes; about 2,300 feet south and 600 feet east of the northwest corner of sec. 11, T. 21 S., R. 35 E.; Drewsey quadrangle.
A1-0 to 10 inches; brown (10YR 5/3) gravelly silt loam, dark brown (10YR 3/3) moist; weak medium platy structure parting to moderate medium subangular blocky; slightly hard, friable, nonsticky and slightly plastic; many very fine and fine and common medium roots; many very fine and fine and common medium interstitial and tubular pores; 30 percent gravel; neutral (pH 6.7); clear smooth boundary.
A2-10 to 16 inches; brown (10YR 5/3) gravelly silt loam, dark brown (10YR 3/3) moist; weak medium subangular blocky structure; slightly hard, friable, nonsticky and slightly plastic; common very fine, fine, and medium roots; common very fine, fine, and medium interstitial and tubular pores; 25 percent gravel; neutral (pH 6.7); clear wavy boundary.
Cr -16 inches; diatomaceous earth.
Thickness of the mollic epipedon and depth to bedrock are 10 to 20 inches. The particle-size control section is 15 to 35 percent rock fragments, mainly gravel, and 20 to 27 percent clay.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 moist or dry. The lower part is silt loam or loam.

Toll Series

The Toll series consists of very deep, somewhat excessively drained soils that formed in eolian sand. The soils are on dunes. Slope is 2 to 15 percent. Elevation is 4,000 to 4,800 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Mixed, mesic Xeric Torripsamments
Typical pedon of Toll sand, 2 to 15 percent slopes, about 1,600 feet north and 1,000 feet east of the southwest corner of sec. 29, T. $35^{1 ⁄ 2}$ S., R. $32^{1 ⁄ 2}$ E.; Skull Creek Butte quadrangle.

A—0 to 5 inches; yellowish brown (10YR 5/4) sand, brown (10YR 4/3) moist; single
grain; loose, nonsticky and nonplastic; many very fine and fine roots; many very fine interstitial pores; neutral (pH 7.0); gradual wavy boundary.
C1-5 to 13 inches; yellowish brown (10YR 5/4) sand, brown (10YR 4/3) moist; single grain; loose, nonsticky and nonplastic; common fine roots; many very fine interstitial pores; neutral (pH 7.2); gradual wavy boundary.
C2-13 to 60 inches; light yellowish brown (10YR 6/4) sand, yellowish brown (10YR 5/4) moist; single grain; loose, nonsticky and nonplastic; few fine roots; many very fine interstitial pores; slightly alkaline (pH 7.6).

Bedrock is at a depth of more than 60 inches. The particle-size control section averages 3 to 10 percent clay. The profile is neutral or slightly alkaline.

The C horizon is loamy sand or sand.

Torriorthents

Torriorthents consists of very shallow and shallow, well drained soils that formed in residuum derived from diatomaceous earth and tuffaceous sedimentary rock. The soils are on hills. Slope is 2 to 40 percent. Elevation is 3,400 to 4,100 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Torriorthents

Representative pedon of Torriorthents in an area of Torriorthents-Gumble complex, 2 to 35 percent slopes; about 500 feet south and 1,150 feet east of the northwest corner of sec. 7, T. 21 S., R. 35 E.; Drewsey quadrangle.

A—0 to 7 inches; light brownish gray (10YR 6/2) extremely gravelly loam, dark grayish brown (10YR 4/2) moist; weak very fine granular structure; soft, very friable, nonsticky and nonplastic; 65 percent gravel and 15 percent cobbles; slightly alkaline (pH 7.4); abrupt smooth boundary.
$\mathrm{Cr}-7$ inches; diatomaceous earth.
Thickness of the solum and depth to bedrock are 4 to 14 inches.
The A horizon is loam, gravelly clay loam, very gravelly sandy loam, silty clay loam, very gravelly sandy loam, or extremely gravelly loam. It is 10 to 80 percent rock fragments.

Tuffo Series

The Tuffo series consists of very shallow and shallow, somewhat excessively drained soils that formed in colluvium and residuum derived from ashflow tuff. The soils are on hills. Slope is 5 to 30 percent. Elevation is 4,200 to 5,000 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Ashy, nonacid, mesic, shallow Vitrandic Torriorthents
Typical pedon of Tuffo fine sandy loam in an area of Vining-Tuffo complex, 5 to 30 percent slopes; about 1,400 feet south and 2,100 feet east of the northwest corner of sec. 22, T. 41 S., R. 33 E.; Oregon End Table quadrangle.
A1-0 to 2 inches; pale brown (10YR 6/3) fine sandy loam, brown (10YR 4/3) moist; weak medium subangular blocky structure; soft, very friable, nonsticky and nonplastic; few very fine, fine, and medium roots; common very fine and fine irregular and tubular pores; 5 percent gravel; slightly alkaline (pH 7.6); clear smooth boundary.
A2-2 to 7 inches; light brownish gray (10YR 6/2) fine sandy loam, brown (10YR 4/3)
moist; massive; soft, very friable, nonsticky and nonplastic; few fine and medium roots; common very fine and fine irregular and tubular pores; slightly alkaline (pH 7.4); abrupt smooth boundary.

Cr-7 inches; weathered ashflow tuff.
Depth to bedrock is 7 to 14 inches. The particle-size control section averages 0 to 5 percent rock fragments, mainly gravel, and 5 to 15 percent clay.

The A horizon has value of 6 or 7 dry and 4 moist, and it has chroma of 3 dry or moist. The lower part is fine sandy loam or sandy loam.

Tumtum Series

The Tumtum series consists of soils that are shallow to a duripan and are well drained. The soils formed in alluvium. They are on old lake terraces. Slope is 2 to 15 percent. Elevation is 3,400 to 5,200 feet. The mean annual precipitation is 7 to 11 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Loamy, mixed, mesic, shallow Typic Argidurids
Typical pedon of Tumtum cobbly loam, 4 to 15 percent slopes, about 2,100 feet north and 1,400 feet east of the southwest corner of sec. 11, T. 40 S., R. 36 E.; Windy Point quadrangle.
A-0 to 2 inches; light brownish gray (10YR 6/2) cobbly loam, dark grayish brown (10YR 4/2) moist; weak medium platy structure; slightly hard, friable, slightly sticky and slightly plastic; common very fine and fine roots; many very fine and fine vesicular pores; 15 percent gravel and 15 percent cobbles; moderately alkaline (pH 7.9); clear wavy boundary.
Bt-2 to 12 inches; yellowish brown (10YR 5/4) clay loam, dark yellowish brown (10YR 4/4) moist; moderate fine subangular blocky structure; slightly hard, friable, slightly sticky and moderately plastic; common very fine and fine roots; many very fine and fine irregular pores; common faint clay films on faces of peds; 5 percent gravel; moderately alkaline (pH 8.4); abrupt wavy boundary.
Bkqm-12 to 25 inches; very pale brown (10YR 7/4) indurated duripan, dark yellowish brown (10YR 4/6) moist; massive; extremely hard, very rigid; slightly effervescent; 10 percent gravel; clear wavy boundary.
2Ck-25 to 60 inches; light yellowish brown (10YR 6/4) gravelly sandy loam, dark yellowish brown (10YR 3/6) moist; massive; soft, very friable, nonsticky and nonplastic; few fine roots; many very fine irregular pores; violently effervescent with disseminated carbonates; 30 percent gravel; moderately alkaline (pH 8.4).

Thickness of the solum and depth to the duripan are 9 to 18 inches. Bedrock is at a depth of more than 60 inches. The particle-size control section averages 5 to 15 percent rock fragments, mainly gravel, and 25 to 35 percent clay.

The A horizon is 15 to 35 percent rock fragments and 20 to 27 percent clay. It is slightly alkaline or moderately alkaline.

The Bt horizon is 5 to 15 percent rock fragments and 27 to 35 percent clay. It is slightly alkaline or moderately alkaline.

The Bkqm horizon is 8 to 18 inches thick.
The 2Ck horizon is gravelly sandy loam or very gravelly sandy loam. It is 15 to 45 percent rock fragments and 5 to 15 percent clay.

Turpin Series

The Turpin series consists of very deep, moderately well drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 1 percent. Elevation
is 4,400 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-loamy, mixed, mesic Sodic Xeric Haplocambids
Typical pedon of Turpin sandy clay loam, 0 to 1 percent slopes, about 1,400 feet north and 200 feet east of the southwest corner of sec. 22, T. 32 S., R. 27 E.; Steamboat Point quadrangle.
A1-0 to 4 inches; pale brown (10YR 6/3) sandy clay loam, brown (10YR 4/3) moist; weak thick platy structure parting to moderate thin platy; soft, very friable, slightly sticky and slightly plastic; few very fine and fine roots; common very fine, fine, and medium vesicular pores; moderately alkaline (pH 8.2); abrupt smooth boundary.
A2-4 to 8 inches; light gray (10YR 7/2) silt loam, grayish brown (10YR 5/2) moist; weak thick platy structure parting to moderate medium platy; slightly hard, friable, slightly sticky and slightly plastic; few very fine, fine, and medium roots; common very fine and fine and few medium vesicular pores; strongly alkaline (pH 8.6); abrupt smooth boundary.
Bn-8 to 13 inches; pale brown (10YR 6/3) clay loam, brown (10YR 4/3) moist; strong medium angular blocky structure parting to moderate fine angular blocky; hard, firm, moderately sticky and moderately plastic; few very fine, fine, and medium roots; few very fine, fine, and medium irregular and tubular pores; slightly effervescent with disseminated carbonates; very strongly alkaline (pH 9.1); clear smooth boundary.
Bkn1-13 to 25 inches; light brownish gray (10YR 6/2) clay loam, dark grayish brown (10YR 4/2) moist; moderate medium prismatic structure parting to moderate medium angular blocky; hard, firm, moderately sticky and moderately plastic; common very fine and few fine and medium roots; common very fine and few fine and medium irregular and tubular pores; strongly effervescent with disseminated carbonates and few fine segregated carbonates occurring as filaments; very strongly alkaline (pH 9.2); clear smooth boundary.
Bkn2-25 to 38 inches; pale brown (10YR 6/3) clay loam, brown (10YR 4/3) moist; strong medium prismatic structure parting to moderate medium angular blocky; hard, firm, moderately sticky and moderately plastic; few very fine and fine roots; few very fine and fine irregular and tubular pores; strongly effervescent with disseminated carbonates; very strongly alkaline (pH 9.2); gradual wavy boundary.
BCn-38 to 48 inches; light gray (10YR 7/2) clay loam, brown (10YR 5/3) moist; weak medium prismatic structure parting to moderate medium angular blocky; hard, firm, slightly sticky and slightly plastic; few very fine and fine roots; few very fine and fine irregular and tubular pores; very strongly alkaline (pH 9.0); gradual wavy boundary.
C-48 to 60 inches; very pale brown (10YR 7/3) clay loam, brown (10YR 5/3) moist; strong medium angular blocky structure; extremely hard, very firm, slightly sticky and slightly plastic; few very fine and fine roots; few very fine tubular pores; semiconsolidated lacustrine sediment; very strongly alkaline (pH 9.0).
Bedrock is at a depth of more than 60 inches. The solum is 40 to 60 inches thick. Occasional ponding occurs late in winter and in spring. A high water table is present late in winter and in spring. The particle-size control section averages 20 to 35 percent clay.

The A horizon is 20 to 30 percent clay. It is moderately alkaline or strongly alkaline. The sodium adsorption ratio is 5 to 50 . Electrical conductivity is 2 to 8 millimhos per centimeter.

The Bn and Bkn horizons are loam or clay loam. They are 20 to 35 percent clay. The sodium adsorption ratio is 200 to 300 . Electrical conductivity is 8 to 16 millimhos per centimeter.

The 2C horizon is loam or clay loam with 20 to 35 percent clay. The sodium adsorption ratio is 200 to 300 . Electrical conductivity is 8 to 16 millimhos per centimeter.

Vanwyper Series

The Vanwyper series consists of moderately deep, well drained soils that formed in colluvium and residuum derived from andesite. The soils are on mountains. Slope is 45 to 70 percent. Elevation is 5,000 to 6,000 feet. The mean annual precipitation is about 8 to 10 inches, and the mean annual air temperature is about 45 to 47 degrees F.

Taxonomic classification: Clayey-skeletal, montmorillonitic, mesic Xeric Haplargids
Typical pedon of Vanwyper extremely stony silty clay loam in an area of Vanwyper-Rock outcrop complex, 45 to 80 percent north slopes; about 2,400 feet north and 1,100 feet east of the southwest corner of sec. 24, T. 38 S., R. 38 E.; Whitehorse Ranch quadrangle.

A-0 to 3 inches; light brownish gray (10YR 6/2) extremely stony silty clay loam, dark grayish brown (10YR 4/2) moist; moderate fine subangular blocky structure; slightly hard, very friable, moderately sticky and moderately plastic; many very fine, fine, medium, and coarse roots; many very fine and fine tubular pores; 35 percent stones, 30 percent cobbles, and 20 percent gravel; neutral (pH 7.2); abrupt wavy boundary.
Bt1-3 to 15 inches; brown (10YR 4/3) cobbly clay, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; hard, friable, very sticky and very plastic; many very fine, fine, medium, and coarse roots; many very fine and fine tubular pores; few faint clay films on faces of peds; 5 percent stones, 15 percent cobbles, and 10 percent gravel; slightly alkaline (pH 7.4); clear wavy boundary.
Bt2—15 to 24 inches; brown (10YR 5/3) very gravelly clay loam, dark brown (10YR $3 / 3$) moist; massive; soft, very friable, moderately sticky and moderately plastic; common very fine, fine, medium, and coarse roots; many very fine and fine irregular and tubular pores; few faint clay films on rock fragments and lining pores; 5 percent stones, 5 percent cobbles, and 35 percent gravel; slightly alkaline (pH 7.4); diffuse irregular boundary.

R-24 inches; fractured andesite.
Depth to bedrock ranges from 20 to 40 inches. The particle-size control section averages 35 to 50 percent rock fragments and 35 to 55 percent clay.

The A horizon has value of 6 or 7 dry and 3 or 4 moist, and it has chroma of 2 or 3 moist or dry.

The Bt horizon has value of 4 to 6 dry and 3 or 4 moist, and it has chroma of 3 moist or dry. It is cobbly clay or very cobbly clay over very cobbly clay loam or very gravelly clay loam. It is 30 to 55 percent clay and 25 to 55 percent rock fragments. It is neutral or slightly alkaline.

Vergas Series

The Vergas series consists of very deep, well drained soils that formed in alluvium. The soils are on alluvial fans and in depressions on plateaus. Slope is 0 to 8 percent. Elevation is 4,100 to 6,000 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-loamy over sandy or sandy-skeletal, mixed, frigid Durinodic Xeric Haplargids

Typical pedon of Vergas gravelly loam, 0 to 3 percent slopes, about 2,500 feet north and 2,600 feet east of the southwest corner of sec. 34, T. 38 S., R. 30 E.; Acty Mountain NW quadrangle.
A-0 to 6 inches; light brownish gray (10YR 6/2) gravelly loam, brown (10YR 4/3) moist; moderate coarse granular structure parting to moderate medium granular; soft, very friable, slightly sticky and slightly plastic; common very fine and fine roots; many very fine and fine irregular pores; 20 percent gravel; neutral (pH 6.8); clear smooth boundary.
Bt-6 to 14 inches; yellowish brown (10YR 5/4) gravelly sandy clay loam, dark yellowish brown (10YR 4/4) moist; weak fine subangular blocky structure; slightly hard, firm, moderately sticky and moderately plastic; common medium roots; many very fine irregular pores; few faint clay films on faces of peds; 20 percent gravel; neutral (pH 7.2); clear wavy boundary.
2Bkq-14 to 20 inches; brownish yellow (10YR 6/6) gravelly loamy sand, dark yellowish brown (10YR 3/6) moist; strong medium platy structure; hard, firm and brittle; few fine and common medium roots; slightly effervescent with segregated carbonates between plates; 25 percent gravel; moderately alkaline (pH 8.0); gradual wavy boundary.
2Ck—20 to 62 inches; light yellowish brown (10YR 6/4) extremely gravelly coarse sand, dark yellowish brown (10YR 3/4) moist; single grain; loose, nonsticky and nonplastic; many fine irregular pores; slightly effervescent with disseminated carbonates; 65 percent gravel and 5 percent cobbles; moderately alkaline (pH 8.0).

Bedrock is at a depth of more than 60 inches. The hard, firm and brittle layer is at a depth of 14 to 35 inches. Calcium carbonate is at a depth of 10 to 60 inches. The upper part of the particle-size control section averages 5 to 25 percent rock fragments, mainly gravel, and 20 to 35 percent clay. The lower part averages 35 to 60 percent gravel and 2 to 10 percent clay.

The A horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 2 or 3 moist or dry. It is fine sandy loam or gravelly loam. It is 0 to 35 percent rock fragments and 12 to 27 percent clay.

The Bt horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 3 or 4 moist or dry. It is sandy clay loam, clay loam, or gravelly sandy clay loam. It is 0 to 25 percent rock fragments and 20 to 35 percent clay.

The 2Bkq horizon is gravelly loamy sand or very gravelly loamy sand. It is 15 to 50 percent rock fragments and 5 to 10 percent clay. It is slightly alkaline or moderately alkaline.

The 2Ck horizon is very gravelly coarse sand or extremely gravelly coarse sand. It is 35 to 70 percent rock fragments and 2 to 10 percent clay. It is slightly alkaline or moderately alkaline.

Vil Series

The Vil series consists of soils that are shallow to a duripan and are well drained. The soils formed in alluvium. They are on old alluvial fans and stream terraces. Slope is 2 to 20 percent. Elevation is 4,000 to 5,000 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Loamy, mixed, frigid, shallow Argiduridic Durixerolls

Typical pedon of Vil silt loam, 2 to 20 percent slopes, about 250 feet north and 2,450 feet west of the southeast corner of sec. 16, T. 25 S., R. 24 E.; Hay Lake quadrangle.

A1-0 to 6 inches; brown (10YR 5/3) silt loam, dark brown (10YR 3/3) moist; weak fine granular structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine roots; 5 percent gravel; slightly alkaline (pH 7.6); gradual smooth boundary.
A2-6 to 9 inches; brown (10YR 5/3) loam, dark brown (10YR 3/3) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common fine roots; common very fine tubular pores; 10 percent fine gravel; slightly alkaline (pH 7.6); clear smooth boundary.
Bt1-9 to 13 inches; pale brown (10YR 6/3) clay loam, dark brown (10YR 3/3) moist; weak fine and medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common fine roots; common very fine tubular pores; few faint clay films on faces of peds; 10 percent fine gravel; slightly alkaline (pH 7.4); clear smooth boundary.

Bt2-13 to 16 inches; light yellowish brown (10YR 6/4) gravelly clay loam, dark yellowish brown (10YR 4/4) moist; moderate medium and fine subangular blocky structure; slightly hard, firm, slightly sticky and slightly plastic; common fine roots; common very fine tubular pores; common faint clay films on faces of peds; 20 percent fine gravel; slightly alkaline (pH 7.4); abrupt wavy boundary.
$2 \mathrm{Bqm}-16$ to 37 inches; light yellowish brown (10YR 6/4) gravelly indurated duripan, dark yellowish brown (10YR 4/4) moist; massive; extremely hard, extremely firm and brittle; coatings of opal on gravel; abrupt wavy boundary.
2Bq-37 to 60 inches; light yellowish brown (10YR 6/4) very gravelly sandy loam, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, firm, nonsticky and nonplastic; weak discontinuous cementation; 45 percent gravel; slightly effervescent; moderately alkaline (pH 7.9).

Thickness of the solum and depth to the duripan are 15 to 20 inches. The duripan is 15 to 30 inches thick. The solum is 10 to 30 percent rock fragments, commonly gravel.

The A horizon has value of 4 or 5 dry and 3 moist, and it has chroma of 3 moist or dry.

The Bt horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 3 or 4 moist or dry. It is clay loam, loam, gravelly clay loam, or gravelly loam with 20 to 30 percent clay.

Vining Series

The Vining series consists of moderately deep, well drained soils that formed in eolian sand derived from tuffaceous sedimentary rock. The soils are on hills. Slope is 2 to 30 percent. Elevation is 4,000 to 5,000 feet. The mean annual precipitation is 8 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Coarse-loamy, mixed, mesic Xeric Haplocambids
Typical pedon of Vining loamy sand in an area of Vining-Tuffo complex, 5 to 30 percent slopes; about 2,100 feet north and 1,800 feet east of the southwest corner of sec. 22, T. 41 S., R. 33 E.; Bog Hot Springs quadrangle.

A-0 to 2 inches; light brownish gray (10YR 6/2) loamy sand, brown (10YR 4/3) moist; weak fine granular structure; soft, very friable, nonsticky and nonplastic; common very fine, fine, medium, and coarse roots; common fine irregular pores;
10 percent ash; 10 percent gravel; neutral (pH 6.8); abrupt wavy boundary.

Bq1-2 to 13 inches; light yellowish brown (10YR 6/4) sandy loam, dark yellowish brown (10YR 4/4) moist; moderate medium subangular blocky structure; soft, very friable, slightly sticky and nonplastic; many very fine, fine, medium, and coarse roots; many very fine irregular pores; 10 percent ash; 10 percent durinodes; neutral (pH 7.0); gradual wavy boundary.
Bq2-13 to 29 inches; pale brown (10YR 6/3) sandy loam, brown (10YR 4/3) moist; massive; soft, very friable, nonsticky and nonplastic; many very fine, fine, medium, and coarse roots; many very fine irregular pores; 10 percent ash; 10 percent durinodes; slightly effervescent with disseminated carbonates; slightly alkaline (pH 7.4); clear wavy boundary.
R-29 inches; tuffaceous sedimentary rock.
Depth to bedrock is 20 to 40 inches. Depth to carbonates is 13 to 32 inches. The particle-size control section averages 0 to 15 percent rock fragments, mainly gravel, and 10 to 18 percent clay. The profile is neutral or slightly alkaline.

The A horizon has value of 6 or 7 dry and 3 to 5 moist, and it has chroma of 2 or 3 moist or dry. It is loamy sand or loam. It is 0 to 15 percent rock fragments and 5 to 20 percent clay.

The Bq horizon has value of 6 or 7 dry and 4 or 5 moist, and it has chroma of 3 or 4 moist or dry. It is sandy loam or loam. It is 0 to 15 percent rock fragments and 10 to 18 percent clay.

Vitale Series

The Vitale series consists of moderately deep, well drained soils that formed in residuum and colluvium derived from basalt, welded tuff, rhyolite, and andesite. The soils are on hills and plateaus. Slope is 2 to 60 percent. Elevation is 3,900 to 6,100 feet. The mean annual precipitation is 12 to 16 inches, and the mean annual air temperature is 40 to 45 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Typic Argixerolls
Typical pedon of Vitale very cobbly loam in an area of Vitale-Merlin complex, 2 to 20 percent slopes; about 1,000 feet south and 1,800 feet east of the northwest corner of sec. 20, T. 21 S., R. 26 E.; Camp Curry Springs quadrangle.
A1-0 to 3 inches; brown (10YR $5 / 3$) very cobbly loam, very dark grayish brown (10YR 3/2) moist; weak fine granular structure; soft, very friable, slightly sticky and slightly plastic; common very fine, fine, and medium and few coarse roots; few very fine and common fine and medium irregular pores; 15 percent gravel, 15 percent cobbles, and 5 percent stones; neutral (pH 7.2); clear smooth boundary.
A2-3 to 12 inches; brown (10YR 5/3) cobbly loam, very dark grayish brown (10YR $3 / 2$) moist; weak medium subangular blocky structure parting to moderate medium granular; slightly hard, very friable, slightly sticky and slightly plastic; common very fine, fine, and medium and few coarse roots; common very fine, fine, and medium irregular pores; 10 percent gravel and 10 percent cobbles; neutral (pH 7.3); clear wavy boundary.
Bt1-12 to 21 inches; light yellowish brown (10YR 6/4) very cobbly clay loam, dark yellowish brown (10YR 4/4) moist; moderate medium subangular blocky structure parting to strong fine angular blocky; slightly hard, firm, moderately sticky and moderately plastic; common fine and few very fine, medium, and coarse roots; few very fine, fine, and medium irregular pores; common distinct clay films on faces of peds; 15 percent gravel, 25 percent cobbles, and 10 percent stones; slightly alkaline (pH 7.5); clear wavy boundary.
Bt2-21 to 26 inches; pale brown (10YR 6/3) very cobbly sandy clay loam, brown
(10YR 4/3) moist; moderate medium subangular blocky structure parting to strong fine angular blocky; slightly hard, firm, moderately sticky and moderately plastic; few very fine, fine, and medium roots; few very fine and common fine and medium irregular pores; common distinct clay films on faces of peds; 15 percent gravel, 20 percent cobbles, and 10 percent stones; slightly alkaline (pH 7.6); clear wavy boundary.
R—26 inches; basalt.
The mollic epipedon is 10 to 16 inches thick. Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 35 to 60 percent rock fragments, mainly cobbles, and 20 to 35 percent clay.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of 2 or 3 moist or dry. It is 15 to 50 percent rock fragments and 18 to 27 percent clay. It is slightly acid or neutral. The upper part is gravelly loam, very cobbly loam, or very stony loam, and the lower part is gravelly loam, cobbly loam, or very cobbly loam.

The Bt horizon has value of 5 or 6 dry and 3 or 4 moist, and it has chroma of 2 to 4 moist or dry. It is very gravelly clay loam, very cobbly clay loam, or very cobbly sandy clay loam. It is 30 to 60 percent rock fragments and 20 to 35 percent clay. It is neutral or slightly alkaline.

Voltage Series

The Voltage series consists of very deep, well drained soils that formed in lacustrine sediment. The soils are on lake terraces. Slope is 0 to 2 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Coarse-loamy, mixed, frigid Xeric Haplocalcids
Typical pedon of Voltage silt loam in an area of Voltage-Crowcamp complex, 0 to 2 percent slopes; about 300 feet south and 500 feet east of the northwest corner of sec. 25, T. 23 S., R. 32 E.; Ninemile Slough quadrangle.
A-0 to 4 inches; light brownish gray (10YR 6/2) silt loam, very dark brown (10YR 2/2) moist; weak thin platy structure; soft, very friable, nonsticky and nonplastic; many fine roots; many fine vesicular pores; strongly effervescent; electrical conductivity is 3.6 millimhos per centimeter; sodium adsorption ratio is 1 ; 5 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); abrupt smooth boundary.
Bk1-4 to 11 inches; pale brown (10YR 6/3) silt loam, very dark grayish brown (10YR 3/2) moist; weak coarse subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many fine roots; many fine vesicular pores; strongly effervescent; electrical conductivity is 5 millimhos per centimeter; sodium adsorption ratio is 10; 18 percent calcium carbonate equivalent; moderately alkaline (pH 8.2); clear smooth boundary.
Bk2-11 to 23 inches; light brownish gray (10YR 6/2) silt loam, very dark grayish brown (10YR 3/2) moist; moderate fine subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many fine roots; strongly effervescent; moderately alkaline (pH 8.2); abrupt smooth boundary.
2Bk3—23 to 28 inches; light gray (10YR 7/2) loam, dark grayish brown (10YR 4/2) moist; moderate fine and medium subangular blocky structure; slightly hard, friable, nonsticky and nonplastic; few fine roots; many fine and very fine tubular pores; strongly effervescent; moderately alkaline (pH 8.2); abrupt wavy boundary.
2Bk4—28 to 38 inches; light gray (10YR 7/2) fine sandy loam, grayish brown (10YR 5/2) moist; weak fine subangular blocky structure; slightly hard, friable, nonsticky and nonplastic; many fine roots; strongly effervescent; electrical conductivity is
6.3 millimhos per centimeter; sodium adsorption ratio is 7 ; 25 percent calcium carbonate equivalent; moderately alkaline (pH 8.4); clear smooth boundary. 2C-38 to 64 inches; pale brown (10YR 6/3) fine sandy loam, brown (10YR 4/3) moist; massive; soft, very friable, nonsticky and nonplastic; few fine roots; slightly effervescent to a depth of 54 inches; electrical conductivity is 1 millimho per centimeter; sodium adsorption ratio is $7 ; 6$ percent calcium carbonate equivalent; strongly alkaline (pH 8.6).
Bedrock is at a depth of more than 60 inches. The particle-size control section is 10 to 18 percent clay. The calcic horizon is at a depth of 3 to 10 inches. It has a calcium carbonate equivalent of 15 to 30 percent.

The A horizon has value of 6 dry and 2 to 4 moist, and it has chroma of 2 or 3 moist or dry. It is silt loam or silty clay loam. The sodium adsorption ratio is 1 to 5 .

The B horizon has value of 6 or 7 dry and 3 or 4 moist. It is silt loam, loam, or fine sandy loam. The sodium adsorption ratio is 5 to 10 .

The C horizon has value of 6 or 7 dry and 4 or 5 moist, and it has chroma of 2 or 3 moist or dry. It is loam, silt loam, or fine sandy loam. The sodium adsorption ratio is 5 to 10 . The horizon is moderately alkaline or strongly alkaline.

Wagontire Series

The Wagontire series consists of soils that are shallow to a duripan and are well drained. The soils formed in alluvium. They are on old alluvial fans and stream terraces. Slope is 2 to 20 percent. Elevation is 4,000 to 5,000 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Clayey, montmorillonitic, frigid, shallow Argiduridic Durixerolls

Typical pedon of Wagontire gravelly clay loam, 2 to 20 percent slopes, about 300 feet south and 300 feet east of the northwest corner of sec. 33, T. 25 S., R. 24 E.; Wagontire Mountain East quadrangle.
A-0 to 2 inches; brown (10YR 5/3) gravelly clay loam, dark brown (10YR 3/3) moist; moderate fine granular structure; slightly hard, friable, slightly sticky and slightly plastic; many fine roots; 25 percent gravel; neutral (pH 7.2); abrupt smooth boundary.
$A B-2$ to 5 inches; brown (10YR 5/3) gravelly clay loam, dark brown (10YR 3/3) moist; weak fine subangular blocky structure; slightly hard, firm, moderately sticky and moderately plastic; many fine roots; 25 percent gravel; neutral (pH 7.2); abrupt smooth boundary.
Bt1-5 to 11 inches; brown (10YR 5/3) gravelly clay loam, dark brown (10YR 3/3) moist; weak fine subangular blocky structure; slightly hard, firm, moderately sticky and moderately plastic; common fine roots; 25 percent gravel; neutral (pH 7.0); clear smooth boundary.
Bt2—11 to 15 inches; brown (10YR 5/3) gravelly clay loam, dark brown (10YR 3/3) moist; moderate fine subangular blocky structure; slightly hard, firm, moderately sticky and moderately plastic; common fine roots; common distinct clay films; 5 percent cobbles and 25 percent gravel; slightly alkaline (pH 7.6); abrupt wavy boundary.
Bqm-15 to 40 inches; light yellowish brown (10YR 6/4) indurated duripan, dark yellowish brown (10YR 4/4) moist; massive; coatings of opal on rock fragments; abrupt wavy boundary.
Bq-40 to 60 inches; light yellowish brown (10YR 6/4) very gravelly sandy loam, dark yellowish brown (10YR 4/4) moist; massive; slightly hard, firm, nonsticky and
nonplastic; weak discontinuous cementation; 45 percent gravel; slightly effervescent; slightly alkaline (pH 7.8).

Depth to bedrock is more than 60 inches. Depth to the duripan is 14 to 20 inches.
The A horizon has chroma of 2 or 3 . It has weak or moderate fine granular or subangular blocky structure.

The Bt horizon has hue of 10YR or 7.5 YR . It is gravelly clay loam or gravelly clay. It is 15 to 35 percent rock fragments and 35 to 50 percent clay.

The Bqm horizon is 15 to 30 inches thick.
The Bq horizon is very gravelly loam or very gravelly sandy loam. It is 10 to 20 percent clay and 35 to 50 percent rock fragments, mainly gravel.

Waspo Series

The Waspo series consists of moderately deep, well drained soils that formed in residuum derived from siltstone. The soils are on hills. Slope is 2 to 8 percent. Elevation is 3,400 to 4,000 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine, montmorillonitic, mesic Aridic Haploxererts
Typical pedon of Waspo clay in an area of Waspo-Poall complex, 2 to 8 percent slopes; about 1,900 feet south and 3,500 feet east of the northwest corner of sec. 23, T. 21 S., R. 35 E.; Bartlett Mountain quadrangle.

A-0 to 3 inches; light olive brown (2.5Y 5/4) clay, olive brown (2.5Y 4/4) moist; moderate medium subangular blocky structure parting to strong fine granular; soft, very friable, moderately sticky and moderately plastic; common very fine and few fine roots; many fine vesicular pores; 0.50- to 0.75 -inch-wide cracks; slightly alkaline (pH 7.8); clear smooth boundary.
Bss1-3 to 12 inches; light olive brown (2.5Y 5/4) clay, olive brown (2.5Y 4/4) moist; moderate fine prismatic structure parting to strong fine and medium angular blocky; very hard, very firm, very sticky and very plastic; common very fine and few fine roots; few fine tubular pores; 0.5-inch-wide cracks; common intersecting slickensides; slightly effervescent with disseminated carbonates; slightly alkaline (pH 7.8); clear smooth boundary.
Bss2—12 to 25 inches; light olive brown (2.5Y 5/4) clay, olive brown (2.5Y 4/4) moist; moderate coarse prismatic structure; very hard, very firm, very sticky and very plastic; few very fine and fine roots; few fine tubular pores; 0.25-inch-wide cracks; many intersecting slickensides; slightly effervescent with disseminated carbonates; 10 percent soft siltstone paragravel; moderately alkaline (pH 8.0); clear wavy boundary.
2Cry-25 inches; variegated moderately cemented siltstone; few fine roots; common prominent carbonate and gypsum concentrations; strongly effervescent with disseminated carbonates.
Thickness of the solum and depth to bedrock are 20 to 40 inches. Calcium carbonate is at a depth of 3 to 40 inches. The particle-size control section averages 60 to 75 percent clay. The profile is slightly alkaline or moderately alkaline. It has hue of 10 YR or 2.5 Y .

The A horizon is 50 to 70 percent clay.
The B horizon is clay or silty clay with 60 to 75 percent clay.
The Cr horizon is 20 to 30 percent gypsum.
The Waspo soils in this survey area are in the very-fine family particle-size class; therefore, they are a taxadjunct to the Waspo series.

Welch Series

The Welch series consists of very deep, poorly drained soils that formed in alluvium. The soils are on stream terraces and in mountain valleys. Slope is 0 to 5 percent. Elevation is 4,500 to 9,000 feet. The mean annual precipitation is 12 to 35 inches, and the mean annual air temperature is 40 to 45 degrees F.

Taxonomic classification: Fine-loamy, mixed, frigid Cumulic Endoaquolls
Typical pedon of Welch loam in an area of Welch-Roschene-Cumulic Haploxerolls complex, 0 to 3 percent slopes; about 800 feet south and 50 feet east of the northwest corner of sec. 27, T. 21 S., R. 26 E.; Dry Mountain quadrangle.

A1-0 to 5 inches; grayish brown (10YR 5/2) loam, very dark grayish brown (10YR 3/2) moist; weak fine subangular blocky structure parting to moderate fine granular; soft, very friable, slightly sticky and slightly plastic; common fine and many very fine roots; many very fine interstitial pores; common distinct iron concentrations that are brown (10YR 4/3) when moist; neutral (pH 7.0); clear smooth boundary.
A2-5 to 14 inches; gray (10YR 5/1) silt loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; few fine and common very fine roots; common very fine tubular pores; common lenses of sand; common distinct iron concentrations that are brown (10YR 4/3) when moist; neutral (pH 6.8); clear smooth boundary.
A3-14 to 34 inches; dark gray (10YR 4/1) silt loam, very dark gray (10YR 3/1) moist; weak medium subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; few very fine roots; common very fine tubular pores; few faint iron concentrations that are brown (10YR 4/3) when moist; neutral (pH 6.8); gradual smooth boundary.
C-34 to 60 inches; light brownish gray (10YR 6/2) loam, very dark grayish brown (10YR 3/2) moist; massive; soft, very friable, slightly sticky and slightly plastic; few fine and very fine roots; few fine and common very fine tubular pores; common distinct iron concentrations that are brown (10YR 4/3) when moist; neutral (pH 7.2).

The mollic epipedon is 24 to 40 inches thick. Bedrock is at a depth of more than 60 inches. Frequent flooding or ponding occurs in spring. A high water table is present in winter, spring, and summer. The particle-size control section averages 0 to 15 percent rock fragments, mainly fine gravel, and 20 to 35 percent clay.

The upper part of the A horizon is silt loam or loam. It is 0 to 5 percent rock fragments and 15 to 20 percent clay. It is slightly acid or neutral.

The lower part of the A horizon and the C horizon are stratified sandy loam to silty clay loam. They are 0 to 15 percent rock fragments and 20 to 35 percent clay. They are slightly acid to slightly alkaline.

Wenas Series

The Wenas series consists of very deep, poorly drained soils that formed in alluvium. The soils are on stream terraces. Slope is 0 to 3 percent. Elevation is 3,500 to 3,900 feet. The mean annual precipitation is 9 to 12 inches, and the mean annual air temperature is 45 to 49 degrees F.

Taxonomic classification: Fine-loamy, mixed, mesic Cumulic Endoaquolls

Typical pedon of Wenas clay loam in an area of Wenas-Loupence-Cumulic

Haploxerolls complex, 0 to 3 percent slopes; about 1,200 feet north and 2,800 feet west of the southeast corner of sec. 25, T. 19 S., R. 33 E.; Moffit Table quadrangle.

Ap-0 to 10 inches; dark grayish brown (10YR 4/2) clay loam, very dark grayish brown (10YR 3/2) moist; strong medium and fine granular structure; hard, firm, very sticky and very plastic; many very fine and fine roots; many very fine and fine irregular pores and many very fine tubular pores; slightly effervescent with disseminated carbonates; slightly alkaline (pH 7.8); gradual smooth boundary.
Bg1-10 to 21 inches; grayish brown (10YR 5/2) fine sandy loam, very dark grayish brown (10YR 3/2) moist; moderate coarse, medium, and fine prismatic structure parting to moderate medium subangular blocky; slightly hard, friable, moderately sticky and slightly plastic; common very fine and fine roots; many very fine and common fine tubular pores; common fine faint iron concentrations that are dark yellowish brown (10YR 4/4) when moist; common fine faint manganese concentrations that are very dark grayish brown (10YR 3/2) when moist; discontinuous lens of sand at a depth of 21 inches; slightly alkaline (pH 7.6); clear smooth boundary.
Bg2—21 to 34 inches; grayish brown (2.5Y 5/2) loam, very dark grayish brown (10YR $3 / 2$) moist; moderate coarse prismatic structure parting to moderate coarse and medium subangular blocky; hard, friable, moderately sticky and moderately plastic; common very fine and fine roots; common very fine and fine tubular pores; common fine distinct iron concentrations that are dark brown (7.5YR 4/4) when moist; common fine faint manganese concentrations that are black (10YR 2/1) when moist; slightly alkaline (pH 7.6); diffuse smooth boundary.
Bg3—34 to 53 inches; grayish brown (2.5Y 5/2) loam, very dark grayish brown (10YR $3 / 2$) moist; weak coarse subangular blocky structure; hard, friable, moderately sticky and moderately plastic; few very fine and fine roots; common very fine and fine tubular pores; few fine distinct iron concentrations that are strong brown (7.5YR 4/6) when moist; few fine faint manganese concentrations that are black (10YR 2/1) when moist; slightly alkaline (pH 7.6); clear smooth boundary.
BCg-53 to 63 inches; grayish brown (2.5Y5/2) gravelly loam, very dark grayish brown (10YR 3/2) moist; weak coarse subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; few very fine and fine roots; common very fine and few fine tubular pores; common fine distinct iron concentrations that are dark brown (7.5YR $3 / 3$) when moist; 20 percent gravel; slightly alkaline (pH 7.5); clear smooth boundary.
2C-63 to 67 inches; grayish brown (2.5Y 5/2) very gravelly loamy sand, dark brown (10YR 3/3) moist; single grain; loose, nonsticky and nonplastic; few very fine roots; 5 percent cobbles and 40 percent gravel; slightly alkaline (pH 7.5).

The mollic epipedon is 24 to 35 inches thick. Bedrock is at a depth of more than 60 inches. Frequent flooding occurs in spring. A high water table is present late in winter, in spring, and early in summer. The particle-size control section averages 0 to 15 percent rock fragments, mainly gravel, and 18 to 27 percent clay. The profile is neutral or slightly alkaline.

The Ap horizon has hue of 10YR or 2.5 Y .
The Bg horizon is 18 to 27 percent clay and 0 to 25 percent rock fragments.
The 2 C horizon is 35 to 50 percent rock fragments.

Westbutte Series

The Westbutte series consists of moderately deep, well drained soils that formed in residuum and colluvium derived from basalt, andesite, rhyolite, and welded tuff. The soils are on mountains, hills, and plateaus. Slope is 2 to 65 percent. Elevation is 4,000
to 7,000 feet. The mean annual precipitation is 12 to 18 inches, and the mean annual air temperature is 40 to 45 degrees F.

Taxonomic classification: Loamy-skeletal, mixed, frigid Pachic Haploxerolls
Typical pedon of Westbutte extremely stony loam in an area of Westbutte-Lambring-Rock outcrop complex, 35 to 65 percent north slopes; about 400 feet south and 600 feet east of the northwest corner of sec. 19, T. 41 S., R. 35 E.; Van Horn Basin quadrangle.
A-0 to 12 inches; dark grayish brown (10YR 4/2) extremely stony loam, very dark grayish brown (10YR 3/2) moist; weak fine granular structure; soft, very friable, slightly sticky and slightly plastic; many very fine, fine, medium, and coarse roots; many fine and medium irregular pores; 5 percent gravel, 25 percent cobbles, and 30 percent stones; neutral (pH 6.7); gradual wavy boundary.
Bw-12 to 24 inches; brown (10YR 4/3) very cobbly loam, dark brown (10YR 3/3)
moist; weak medium subangular blocky structure; soft, very friable, slightly sticky and slightly plastic; common very fine, fine, medium, and coarse roots; many fine and medium irregular pores; 10 percent gravel, 20 percent cobbles, and
10 percent stones; neutral (pH 6.7); abrupt broken boundary.
R-24 inches; basalt.
The mollic epipedon is 20 to 34 inches thick. Thickness of the solum and depth to bedrock are 20 to 40 inches. The particle-size control section averages 35 to 70 percent rock fragments, mainly cobbles, and 18 to 30 percent clay.

The A horizon has value of 3 to 5 dry and 2 or 3 moist, and it has chroma of 1 or 2 moist or dry. It is very cobbly loam, very stony loam, or extremely stony loam. It is 20 to 75 percent rock fragments and 15 to 27 percent clay.

The Bw horizon has hue of 7.5 YR or 10YR, value of 4 or 5 dry and 2 or 3 moist, and chroma of 2 or 3 moist or dry. It is very cobbly loam, very cobbly clay loam, or very stony clay loam. It is 35 to 70 percent rock fragments and 18 to 30 percent clay. It is neutral or slightly alkaline.

Widowspring Series

The Widowspring series consists of very deep, moderately well drained soils that formed in lacustrine sediment. The soils are on lake plains. Slope is 0 to 2 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-silty, mixed, frigid Cumulic Haploxerolls
Typical pedon of Widowspring silt loam, 0 to 2 percent slopes, about 1,100 feet north and 400 feet east of the southwest corner of sec. 26, T. 22 S., R. 30 E.; Poison Creek quadrangle.
A1-0 to 7 inches; dark grayish brown (10YR 4/2) silt loam, very dark brown (10YR $2 / 2$) moist; moderate fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; many fine roots; slightly alkaline (pH 7.4); abrupt smooth boundary.
A2-7 to 22 inches; grayish brown (10YR 5/2) silt loam, very dark grayish brown (10YR 3/2) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; many fine roots; common very fine tubular pores; slightly alkaline (pH 7.4); clear wavy boundary.
AB-22 to 28 inches; brown (10YR 5/3) silt loam, dark brown (10YR 3/3) moist; moderate medium subangular blocky structure; slightly hard, friable, slightly sticky
and slightly plastic; common fine roots; many very fine tubular pores; neutral (pH 7.2); gradual wavy boundary.

Bw-28 to 43 inches; brown (10YR 5/3) silt loam, dark brown (10YR 3/3) moist; moderate coarse subangular blocky structure; slightly hard, friable, slightly sticky and slightly plastic; common fine roots; many very fine tubular pores; neutral (pH 7.0); clear wavy boundary.

2C-43 to 63 inches; yellowish brown (10YR 5/4) loam, dark yellowish brown (10YR 4/3) moist; massive; slightly hard, very friable, slightly sticky and slightly plastic; few fine roots; many distinct iron concentrations that are reddish brown (5YR 4/4) when moist; neutral (pH 7.0).

The solum and mollic epipedon are 20 to 45 inches thick. Bedrock is at a depth of more than 60 inches. Rare ponding occurs in spring. A high water table is present throughout the year. The particle-size control section is silt loam or silty clay loam with 20 to 35 percent clay. The profile is neutral or slightly alkaline.

The A horizon has value of 4 or 5 dry and 2 or 3 moist, and it has chroma of dominantly 2 moist or dry, but the lower part may have chroma of 3 .

The AB and Bw horizons are silt loam or silty clay loam with 20 to 35 percent clay.
The 2C horizon is silt loam or loam with 20 to 25 percent clay.

Windybutte Series

The Windybutte series consists of very deep, well drained soils that formed in alluvium. The soils are on lake terraces. Slope is 2 to 5 percent. Elevation is 4,000 to 4,200 feet. The mean annual precipitation is 10 to 12 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Fine-silty, mixed, frigid Argiduridic Argixerolls
Typical pedon of Windybutte silt loam, 2 to 5 percent slopes, about 500 feet south and 1,250 feet west of the northeast corner of sec. 24, T. 25 S., R. 33 E.; Crane quadrangle.
A-0 to 7 inches; grayish brown (10YR 5/2) silt loam, dark brown (10YR 3/3) moist; weak fine subangular blocky structure; slightly hard, very friable, slightly sticky and slightly plastic; common fine and many very fine roots; many fine vesicular pores; neutral (pH 7.2); clear wavy boundary.
Bt-7 to 13 inches; brown (10YR 5/3) silty clay loam, dark brown (10YR 3/3) moist; moderate fine subangular blocky structure; slightly hard, friable, moderately sticky and moderately plastic; few fine roots; few fine tubular pores; common faint clay films on faces of peds; moderately alkaline (pH 8.2); clear smooth boundary.
2Bkq-13 to 17 inches; pale brown (10YR 6/3) loam, brown (10YR 4/3) moist; massive; very hard, firm and brittle, slightly sticky and slightly plastic; common fine roots; few fine tubular pores; strongly effervescent with carbonates in filaments; 4 percent calcium carbonate equivalent; moderately alkaline (pH 8.4); clear smooth boundary.
2Bq1-17 to 32 inches; pale brown (10YR 6/3) loam, brown (10YR 4/3) moist; massive; very hard, firm and brittle, nonsticky and nonplastic; few fine roots; common very fine tubular pores; moderately alkaline (pH 8.2); gradual smooth boundary.
2Bq2-32 to 60 inches; very pale brown (10YR 7/3) loam, dark brown (10YR 5/3) moist; massive; very hard, firm and brittle, nonsticky and nonplastic; moderately alkaline (pH 8.2).

The mollic epipedon is 10 to 17 inches thick. Bedrock is at a depth of more than

60 inches. Depth to the brittle layer and carbonates is 10 to 17 inches. The particlesize control section is 25 to 35 percent clay.

The A horizon has chroma of 2 or 3 moist or dry. It is neutral or slightly alkaline.
The Bt horizon is silty clay loam or silt loam with 25 to 35 percent clay.
The 2Bkq horizon has value of 6 or 7 dry and 3 to 5 moist, and it has chroma of 2 to 4 dry or moist. It is loam or sandy loam with 10 to 20 percent clay. It is moderately alkaline or strongly alkaline. It has a calcium carbonate equivalent of 2 to 5 percent.

Wolverine Series

The Wolverine series consists of very deep, somewhat excessively drained soils that formed in eolian sand. The soils are on dunes. Slope is 2 to 15 percent. Elevation is 4,000 to 4,500 feet. The mean annual precipitation is 8 to 10 inches, and the mean annual air temperature is 43 to 45 degrees F.

Taxonomic classification: Mixed, frigid Xeric Torripsamments

Typical pedon of Wolverine fine sand, 2 to 15 percent slopes, about 1,250 feet north and 25 feet west of the southeast corner of sec. 33, T. 25 S., R. 31 E.; Northeast Harney Lake quadrangle.
A—0 to 6 inches; brown (10YR 5/3) fine sand, dark brown (10YR 3/3) moist; single grain; loose, nonsticky and nonplastic; many very fine and common fine roots; few very fine interstitial pores; neutral (pH 7.2); clear wavy boundary.
C1-6 to 37 inches; brown (10YR 5/3) sand, brown (10YR 3/3) moist; single grain; loose, nonsticky and nonplastic; common very fine and few fine roots; neutral (pH 7.2); diffuse wavy boundary.

C2—37 to 51 inches; light brownish gray (2.5Y 6/2) sand, dark brown (10YR 3/3) moist; single grain; loose, nonsticky and nonplastic; few very fine and common fine roots; slightly alkaline (pH 7.4); clear wavy boundary.
2Ck—51 to 70 inches; light brownish gray (2.5Y 6/2) sand, dark brown (10YR 3/3) moist; massive; slightly hard, friable, nonsticky and nonplastic; few fine roots; weakly consolidated lacustrine sediment with discontinuous filaments of carbonates; strongly effervescent; slightly alkaline (pH 7.8).
Bedrock is at a depth of more than 60 inches. The particle-size control section averages 2 to 5 percent clay. The profile is neutral or slightly alkaline. Depth to the 2Ck horizon is 40 to 60 inches or more.

The C and 2Ck horizons are fine sand, sand, or loamy fine sand. They are 0 to 10 percent rock fragments.

Formation of the Soils

Soils are a product of five influences, or soil-forming factors. The five factors are climate, topography, living organisms, time, and parent material (Jenny, 1941). These factors affect the physical and chemical weathering processes and determine the characteristics of soils.

Moisture, temperature, and other climatic features affect the development of soils. Precipitation leaches soluble compounds in soils, and the rate of chemical reaction increases as temperature increases.

The topography of the landscape on which a soil exists affects soil properties. Different soils develop on active, steep slopes than on stable, level slopes because of the differences in the rate of erosion and deposition. The microclimates on steeper slopes also differ. North-facing slopes have cooler temperatures and more effective moisture than do south-facing slopes.

Living organisms, including both plant and animals in and on the soil, affect the physical and chemical properties of the soil. The rate of organic matter accumulation in a soil is dependent on the biologic community associated with the soil. Animals such as ants and cicadas burrow into the soil and incorporate organic matter, commonly improving porosity and soil structure.

The effect of time is shown in the appearance of soils. Older soils on stable landforms develop more pronounced soil layers, or horizons. A clayey subsoil is an example of development in an older soil. Young or recent soils, such as those adjacent to stream terraces, may not exhibit distinct soil development.

Parent material is the mineral and organic material in which a soil develops. Examples of parent material are tuff and basalt, alluvial sediment from mixed sources, and slightly decomposed organic plant material.

Each of the 170 different soils in the survey area have a unique combination of soil-forming factors. The factors do not act alone; they always act in conjunction with the other factors. A soil profile reflects the effects of all the factors of soil development. The factors of soil formation as they have impacted the soils in the survey area are discussed briefly in the following paragraphs.

The present climate of the survey area is Mediterranean. Most of the precipitation is received in fall through spring, and summers are dry.

The mean annual precipitation and air temperature vary dramatically across the survey area. Precipitation ranges from about 7 inches annually in the Pueblo Valley to more than 50 inches at the summit of Steens Mountain (Daly and others, 1994). The mean annual air temperature ranges from 49 degrees F in the warmest valleys to 40 degrees in the mountains. The typical climate and soil moisture pattern throughout the survey area is illustrated in figure 17. Typically, the soil moisture regime is aridic bordering on xeric. Most of the precipitation is received in fall and winter, when evapotranspiration is either nonexistent or occurs at a low rate. As plant growth commences in April, precipitation decreases and is insufficient for continued plant growth in summer. When the soil dries out, usually in June, the native plants become dormant. The rainfall in fall, snowfall in winter, and snowmelt in spring replenish the soil moisture, and the cycle begins again. At the higher elevations, the temperature is cooler and the precipitation is higher, but a similar pattern of soil-moisture deficit and replenishment exists.

Figure 17.-Temperature and soil water balance for Burns, Oregon, in the period 1921 to 1950.

The present climate influences the current development of soils; however, on old stable landforms, the soils show evidence of a past wetter climate. In the Stampede soil, the alluvial parent material and the leached silica and carbonates that form a cemented duripan exhibit the effects of a wetter environment. The very cobbly lower horizons that were deposited by a much more active stream than the present-day Silver Creek is also evidence of a wetter climate. Lacustrine sediment deposited during the Ice Age is several feet higher in elevation than the current elevation of the lakes. The Poujade, Voltage, and Sandgap soils formed in this sediment. This is evidence of much more water in the basins during previous climatic periods. Airborne salts eroded from playas by wind are continuously deposited on the soil surface (Brasfield, 1982). Rainwater and meltwater from snow dissolve these salts and transport them into the soil profile. In the areas of lower precipitation, the precipitation is insufficient to flush the salts completely through the profile. In the 7- to 10-inch precipitation zone, carbonate salts are leached to a depth of less than 5 inches. Soils that have an annual precipitation of 8 to 12 inches have an accumulation of carbonate salts at a depth of 5 to 10 inches. In soils that have an annual precipitation of more than 12 inches, the salts have been leached from the profile.

The survey area is at the northernmost part of the Basin and Range Province. Except for the Malheur River drainageway in the northeastern part, all of the watersheds terminate in closed basins. During the Ice Age, extensive lakes filled the basins (Snyder and Zdenek, 1964). The maximum depth of the lake in Catlow Valley was 75 feet during the Ice Age. The relationship of the soils and landscapes in Catlow Valley are shown in figure 18. The Catlow, Enko, and Berdugo soils are on ancient beach and lake terrace deposits in and around Catlow Valley. These soils are evidence of the former high shoreline of the lake (fig. 19). On the basin floor, the episodic history of the elevational changes of the lakes is shown in the many different deposits of lacustrine sediment. The Spangenburg, Norad, and Boulder Lake soils formed in these deposits. The Norad soils formed in silty sediment, the Spangenburg soils formed in clayey over loamy sediment, and the Boulder Lake soils formed in very deep clayey sediment.

The maximum depth of the lake in Pueblo Valley was 200 feet during the Ice Age (Snyder and Zdenek, 1964). The relationship of the soils and landscapes in Pueblo

Figure 18.—Soil and landscape relationship in Catlow Valley.

Figure 19._Pleistocene lake shoreline deposit of rubble material in Catlow Valley. Enko-Catlow association, 2 to $\mathbf{2 0}$ percent slopes, in foreground.

Valley are shown in figure 20. The McConnel soils formed in the material deposited as cobbly beaches and offshore bars by the high-energy waves of the lake. The Outerkirk, Defenbaugh, and Rio King soils are on the gently sloping alluvial fans. These soils do not have cobbles or stones in the profile because the larger rock

Figure 20.-Soil and landscape relationship in Pueblo Valley.
fragments remained closer to the mountain front. The Goldrun soils formed on sand dunes that are on the downwind side of ancient or historic lakes. The Ozamis soils are in the central part of the former lake. These soils formed in concave areas. Water draining from higher areas collects in the concave areas and provides moisture for an extended period. The water also contributes fresh sediment that covers the soil surface. The repeated burial of the surface layer of these soils resulted in an irregular decrease in organic matter as depth increases. The moist soils provide a favorable environment for growth of living organisms. The abundant growth and subsequent death and decay of soil organisms and plant matter result in an increase in the content of organic matter and humus in the soil. The dark-colored mollic horizon at the surface of the Ozamis soils reflects this increase in organic matter content. The somewhat poorly drained Alvodest soils are on lake plains. The strong alkalinity of these soils restricts the plant growth to widely-spaced adapted plants. The lower productivity of the plant life results in less organic matter being incorporated into the soil surface, thus a light-colored ochric epipedon has formed at the surface.

Soils of the Lolak, Ausmus, Crowcamp, Poujade, and Lawen series formed on the lake plains and lake terraces in Harney Basin. Figure 21 illustrates the relationship of the soils and landscapes in the basin. The clayey Lolak soils are in the lowest positions on the lake plains. The Ausmus and Crowcamp soils are on slightly higher positions on the lake plains. The Poujade soils are on low-lying lake terraces that have a thin mantle of recent alluvium over lacustrine sediment. The Lawen soils are on slightly higher lying lake terraces, and they formed in loamy alluvium.

Near the margins of the basin, perennial streams deposit alluvium over the lacustrine sediment (fig. 22). The sediment eroding from the hills and plateaus is low in alkalinity. The Fury, Degarmo, and Widowspring soils formed in this alluvium. These soils have a very dark, thick surface layer, which is evidence of the high content of organic matter and high natural productivity. The moderately well drained Widowspring soils are in areas farther from streams, and the poorly drained Fury soils and somewhat poorly drained Degarmo soils are adjacent to streams.

Soils on the basin lake plains that are subject to a fluctuating water table have a high level of salinity and alkalinity. Through a process called evaporative recharge, salts and sodium are accumulating on the soil surface. Evaporative recharge occurs in areas where a seasonal high water table is near the soil surface. Water moves

Figure 21.-Soil and landscape relationship in Harney Basin.
upward to the soil surface by capillary migration. This rising water carries with it dissolved salts. Evaporation of the water then concentrates the salts on the soil surface, which appear as a white crust. A limited number of plant species are adapted to these saline or sodic conditions. Soils that have salts on the surface are those of the Icene, Droval, Alvodest, Thenarrows, Skidoosprings, Reese, and Turpin series.

The soils on the steep slopes adjacent to the basins illustrate the influence of topography and living organisms on soil development. The Felcher soils are on steep south and west aspects (fig. 22), and the Fitzwater, Westbutte, and Lambring soils are on steep north and east aspects. Because south- and west-facing slopes are warmer, the soils dry out earlier in summer. The soils on the south-facing slopes have lower plant productivity, and they have an ochric epipedon. The Westbutte, Lambring, and Fitzwater soils, which are on the cooler north- and east-facing slopes, stay moist longer in summer. These soils have a mollic epipedon, indicating a higher content of organic matter and a higher natural plant productivity.

The slopes are relatively stable on the plateaus and hills surrounding the basins, and a strong argillic horizon or a duripan has developed. The Ninemile, Carryback, Anawalt, and Observation soils are examples of soils that have a clayey argillic horizon. The Brace and Raz soils are examples of soils that have a silica-cemented duripan over the bedrock. In the areas that receive less than 12 inches of precipitation, organic matter accumulation is minimal and a light-colored ochric epipedon has formed. The Anawalt, Raz, and Brace soils formed in these areas. In the areas that receive more than 12 inches of precipitation, organic matter accumulates to a greater depth and the soils develop a mollic epipedon. The Ninemile and Carryback soils formed in these areas.

On the high-elevation mountains in the survey area, the soils are cold and precipitation is more than 12 inches. The higher precipitation and cooler temperatures are conducive to the accumulation of organic matter. The Baconcamp, Hapgood, and Hackwood soils in these areas have a thick mollic epipedon, which is evidence of the high content of organic matter in the soils. These soils formed in colluvium and residuum derived from basalt, andesite, and rhyolite. Because of the steep slopes, soil material erodes and creeps downslope, and the development of an argillic horizon is minimal or absent.

Figure 22.-Soil and landscape relationship near the margins of the basin.

References

American Association of State Highway and Transportation Officials (AASHTO). 2000. Standard specifications for transportation materials and methods of sampling and testing. 20th edition, 2 volumes.

American Society for Testing and Materials (ASTM). 2001. Standard classification of soils for engineering purposes. ASTM Standard D 2487-00.

Brasfield, James F. January 1982. Guy D. Smith discusses soil taxonomy. Soil Survey Horizons, page 27.

Brimlow, G.F. 1951. Harney County, Oregon, and its rangeland.
Cochran, P.H. 1979. Site index and height growth curves for managed even-aged stands of white or grand fir east of the Cascades in Oregon and Washington. U.S. Department of Agriculture, Forest Service, Pacific Northwest Region Research Paper 252.

Cochran, P.H. 1979. Site index and height growth curves for managed even-aged stands of Douglas-fir east of the Cascades in Oregon and Washington. U.S. Department of Agriculture, Forest Service, Pacific Northwest Region Research Paper 251.

Daly, C., R.P. Neilson, and D.L. Phillips. 1994. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology 33: 140-158.

Ferguson, Denzel and Nancy. 1978. Oregon's Great Basin country.
Greene, R.C., G.W. Walker, and R.E. Corcoran. 1972. Geologic map of the Burns quadrangle, Oregon. U.S. Geological Survey Miscellaneous Geologic Investigations Map I-680.

Greene, Robert C. 1972. The preliminary geologic map of the Burns and West Myrtle Butte 15-minute quadrangles, Oregon. U.S. Geological Survey Miscellaneous Field Studies Map MF-320.

Harney County Chamber of Commerce Centennial Committee. 1989. A lively little history of Harney County.

Jenny, Hans. 1941. Factors of soil formation.
Johnson, Charles Grier, and Rodrick R. Clausnitzer. 1991. Plant associations of the Blue and Ochoco Mountains.

Meyer, W.H. 1961. Yield of even-aged stands of ponderosa pine. U.S. Department of Agriculture Technical Bulletin 630.

Orr, Elizabeth and William, and Baldwin Ewart. 1992. Geology of Oregon. Fourth edition.

Snyder, C.T., F.F. Hardman Zdenek. 1964. Pleistocene lakes in the Great Basin. U.S. Geological Survey Miscellaneous Geologic Investigations Map I-416.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

Soil Survey Staff. 1975. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. Soil Conservation Service. U.S. Department of Agriculture Handbook 436.

Soil Survey Staff. 1994. Keys to soil taxonomy. 6th edition. U.S. Department of Agriculture, Soil Conservation Service.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. (http://soils.usda.gov/technical/nfmanual)

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. (http://www.glti.nrcs.usda.gov/technical publications/nrph.html)

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. (http://soils.usda.gov/technical/ handbook

United States Department of Agriculture, Natural Resources Conservation Service. 1996. Soil survey laboratory methods manual. Soil Survey Investigations Report 42.

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210.

United States Department of Agriculture, Soil Conservation Service. 1981. Land resource regions and major land resource areas of the United States. U.S. Department of Agriculture Handbook 296.

Walker, G.W. 1979. Revisions to Cenozoic stratigraphy of Harney Basin. U.S. Geological Survey Bulletin 1475.

Walker, G.W., and C.A. Repenning. 1965. Reconnaissance geologic map of the Adel quadrangle, Lake, Harney and Malheur Counties, Oregon. U.S. Geological Survey Miscellaneous Geologic Investigations Map I-446.

Wojcik, Donna M. 1976. The brazen overlanders of 1845.

Glossary

Aggregate, soil. Many fine particles held in a single mass or cluster. Natural soil aggregates, such as granules, blocks, or prisms, are called peds. Clods are aggregates produced by tillage or logging.
Alkali. Sodium carbonate or potassium carbonate or generally, any bitter-tasting salt at the near the soil surface in arid and semiarid regions.
Alkali (sodic) soil. A soil having so high a degree of alkalinity (pH 8.5 or higher) or so high a percentage of exchangeable sodium (15 percent or more of the total exchangeable bases), or both, that plant growth is restricted.
Alluvial fan. The fanlike deposit of a stream where it issues from a gorge upon a plain or of a tributary stream near or at its junction with its main stream.
Alluvium. Material, such as sand, silt, or clay, deposited on land by streams.
Animal unit month (AUM). The amount of forage required by one mature cow of approximately 1,000 pounds weight, with or without a calf, for 1 month.
Aquic conditions. Current soil wetness characterized by saturation, reduction, and redoximorphic features.
Argillic horizon. A subsoil horizon characterized by an accumulation of illuvial clay.
Ash (volcanic). Unconsolidated, pyroclastic material that is less than 2 millimeters in all dimensions.
Aspect. The direction in which a slope faces.
Association, soil. A group of soils or miscellaneous areas geographically associated in a characteristic repeating pattern and defined and delineated as a single map unit.
Available water capacity (available moisture capacity). The capacity of soils to hold water available for use by most plants. It is commonly defined as the difference between the amount of soil water at field moisture capacity and the amount at wilting point. It is commonly expressed as inches of water per inch of soil.
Backslope. The position that forms the steepest and generally linear, middle portion of a hillslope. In profile, backslopes are commonly bounded by a convex shoulder above and a concave footslope below.
Badland. Steep or very steep, commonly nonstony, barren land dissected by many intermittent drainage channels. Badland is most common in semiarid and arid regions where streams are entrenched in soft geologic material. Local relief generally ranges from 25 to 500 feet. Runoff potential is very high, and geologic erosion is active.
Basal area. The area of a cross section of a tree, generally referring to the section at breast height and measured outside the bark. It is a measure of stand density, commonly expressed in square feet.
Base saturation. The degree to which material having cation-exchange properties is saturated with exchangeable bases (sum of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}$, and K), expressed as a percentage of the total cation-exchange capacity.
Basin. A low area in the earth's crust that is tectonic in origin and in which sediment has accumulated.
Bedrock. The solid rock that underlies the soil and other unconsolidated material or that is exposed at the surface.

Bedrock-controlled topography. A landscape where the configuration and relief of the landforms are determined or strongly influenced by the underlying bedrock.
Blowout. A shallow depression from which all or most of the soil material has been removed by the wind. A blowout has a flat or irregular floor formed by a resistant layer or by an accumulation of pebbles or cobbles. In some blowouts the water table is exposed.
Bottom land. The normal flood plain of a stream, subject to flooding.
Boulders. Rock fragments larger than 2 feet (60 centimeters) in diameter.
Breast height. An average height of 4.5 feet above the ground surface; the point on a tree where diameter measurements are ordinarily taken.
Brush management. Use of mechanical, chemical, or biological methods to make conditions favorable for reseeding or to reduce or eliminate competition from woody vegetation and thus allow understory grasses and forbs to recover. Brush management increases forage production and thus reduces the hazard of erosion. It can improve the habitat for some species of wildlife.
Cable yarding. A method of moving felled trees to a nearby central area for transport to a processing facility. Most cable yarding systems involve use of a drum, a pole, and wire cables in an arrangement similar to that of a rod and reel used for fishing. To reduce friction and soil disturbance, felled trees generally are reeled in while one end is lifted or the entire log is suspended.
Calcareous soil. A soil containing enough calcium carbonate (commonly combined with magnesium carbonate) to effervesce visibly when treated with cold, dilute hydrochloric acid.
Canopy. The leafy crown of trees or shrubs. (See Crown.)
Canyon. A long, deep, narrow, very steep sided valley with high, precipitous walls in an area of high local relief.
Capillary migration. Movement of liquid water as a result of the molecular attraction of the rock material in the water.
Capillary water. Water held as a film around soil particles and in tiny spaces between particles. Surface tension is the adhesive force that holds capillary water in the soil.
Carbonate. A salt of carbonic acid; a compound containing the radical $\mathrm{CO}_{3}{ }^{+2}$.
Cation. An ion carrying a positive charge of electricity. The common soil cations are calcium, potassium, magnesium, sodium, and hydrogen.
Cation-exchange capacity. The total amount of exchangeable cations that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. The term, as applied to soils, is synonymous with base-exchange capacity but is more precise in meaning.
Chemical treatment. Control of unwanted vegetation through the use of chemicals.
Clay. As a soil separate, the mineral soil particles less than 0.002 millimeter in diameter. As a soil textural class, soil material that is 40 percent or more clay, less than 45 percent sand, and less than 40 percent silt.
Clay depletions. Low-chroma zones having a low content of iron, manganese, and clay because of the chemical reduction of iron and manganese and the removal of iron, manganese, and clay. A type of redoximorphic depletion.
Clay film. A thin coating of oriented clay on the surface of a soil aggregate or lining pores or root channels. Synonyms: clay coating, clay skin.
Claypan. A slowly permeable soil horizon that contains much more clay than the horizons above it. A claypan is commonly hard when dry and plastic or stiff when wet.
Climax plant community. The stabilized plant community on a particular site. The plant cover reproduces itself and does not change so long as the environment remains the same.

Coarse textured soil. Sand or loamy sand.
Cobble (or cobblestone). A rounded or partly rounded fragment of rock 3 to 10 inches (7.6 to 25 centimeters) in diameter.
Cobbly soil material. Material that has 15 to 35 percent, by volume, rounded or partially rounded rock fragments 3 to 10 inches (7.6 to 25 centimeters) in diameter. Very cobbly soil material has 35 to 60 percent of these rock fragments, and extremely cobbly soil material has more than 60 percent.
COLE (coefficient of linear extensibility). See Linear extensibility.
Colluvium. Soil material or rock fragments, or both, moved by creep, slide, or local wash and deposited at the base of steep slopes.
Complex slope. Irregular or variable slope. Planning or establishing terraces, diversions, and other water-control structures on a complex slope is difficult.
Complex, soil. A map unit of two or more kinds of soil or miscellaneous areas in such an intricate pattern or so small in area that it is not practical to map them separately at the selected scale of mapping. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas.
Concretions. Cemented bodies with crude internal symmetry organized around a point, a line, or a plane. They typically take the form of concentric layers visible to the naked eye. Calcium carbonate, iron oxide, and manganese oxide are common compounds making up concretions. If formed in place, concretions of iron oxide or manganese oxide are generally considered a type of redoximorphic concentration.
Consistence, soil. Refers to the degree of cohesion and adhesion of soil material and its resistance to deformation when ruptured. Consistence includes resistance of soil material to rupture and to penetration; plasticity, toughness, and stickiness of puddled soil material; and the manner in which the soil material behaves when subject to compression. Terms describing consistence are defined in the "Soil Survey Manual."
Control section. The part of the soil on which classification is based. The thickness varies among different kinds of soil, but for many it is that part of the soil profile between depths of 10 inches and 40 or 80 inches.
Coppice dune. A small dune of fine grained soil material stabilized around shrubs or small trees.
Corrosion. Soil-induced electrochemical or chemical action that dissolves or weakens concrete or uncoated steel.
Cover crop. A close-growing crop grown primarily to improve and protect the soil between periods of regular crop production, or a crop grown between trees and vines in orchards and vineyards.
Cropping system. Growing crops according to a planned system of rotation and management practices.
Crop residue management. Returning crop residue to the soil, which helps to maintain soil structure, organic matter content, and fertility and helps to control erosion.
Culmination of the mean annual increment (CMAI). The average annual increase per acre in the volume of a stand. Computed by dividing the total volume of the stand by its age. As the stand increases in age, the mean annual increment continues to increase until mortality begins to reduce the rate of increase. The point where the stand reaches its maximum annual rate of growth is called the culmination of the mean annual increment.
Cutbanks cave (in tables). The walls of excavations tend to cave in or slough.
Decreasers. The most heavily grazed climax range plants. Because they are the most palatable, they are the first to be destroyed by overgrazing.
Deferred grazing. Postponing grazing or resting grazing land for a prescribed period.
Depth, soil. Generally, the thickness of the soil over bedrock. Very deep soils are
more than 60 inches deep over bedrock; deep soils, 40 to 60 inches; moderately deep, 20 to 40 inches; shallow, 10 to 20 inches; and very shallow, less than 10 inches.
Desert pavement. On a desert surface, a layer of gravel or larger fragments that was emplaced by upward movement of the underlying sediments or that remains after finer particles have been removed by running water or the wind.
Dip slope. A slope of the land surface, roughly determined by and approximately conforming to the dip of the underlying bedrock.
Drainage class (natural). Refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognized-excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."
Drainage, surface. Runoff, or surface flow of water, from an area.
Draw. A small stream valley that generally is more open and has broader bottom land than a ravine or gulch.
Duripan. A subsurface soil horizon that is cemented by illuvial silica, commonly opal or microcrystalline forms of silica, to the degree that less than 50 percent of the volume of air-dry fragments will slake in water or HC1.
Ecological site. An area where climate, soil, and relief are sufficiently uniform to produce a distinct natural plant community. An ecological site is the product of all the environmental factors responsible for its development. It is typified by an association of species that differ from those on other ecological sites in kind and/or proportion of species or in total production.
Eluviation. The movement of material in true solution or colloidal suspension from one place to another within the soil. Soil horizons that have lost material through eluviation are eluvial; those that have received material are illuvial.
Endosaturation. A type of saturation of the soil in which all horizons between the upper boundary of saturation and a depth of 2 meters are saturated.
Eolian soil material. Earthy parent material accumulated through wind action; commonly refers to sandy material in dunes or to loess in blankets on the surface.
Ephemeral stream. A stream, or reach of a stream, that flows only in direct response to precipitation. It receives no long-continued supply from melting snow or other source, and its channel is above the water table at all times.
Episaturation. A type of saturation indicating a perched water table in a soil in which saturated layers are underlain by one or more unsaturated layers within 2 meters of the surface.
Erosion. The wearing away of the land surface by water, wind, ice, or other geologic agents and by such processes as gravitational creep.
Erosion (geologic). Erosion caused by geologic processes acting over long geologic periods and resulting in the wearing away of mountains and the building up of such landscape features as flood plains and coastal plains. Synonym: natural erosion.
Erosion (accelerated). Erosion much more rapid than geologic erosion, mainly as a result of human or animal activities or of a catastrophe in nature, such as a fire, that exposes the surface.
Erosion pavement. A layer of gravel or stones that remains on the surface after fine particles are removed by sheet or rill erosion.
Escarpment. A relatively continuous and steep slope or cliff breaking the general
continuity of more gently sloping land surfaces and resulting from erosion or faulting. Synonym: scarp.
Extrusive rock. Igneous rock derived from deep-seated molten matter (magma) emplaced on the earth's surface.
Fan terrace. A relict alluvial fan, no longer a site of active deposition, incised by younger and lower alluvial surfaces.
Fibric soil material (peat). The least decomposed of all organic soil material. Peat contains a large amount of well preserved fiber that is readily identifiable according to botanical origin. Peat has the lowest bulk density and the highest water content at saturation of all organic soil material.
Field moisture capacity. The moisture content of a soil, expressed as a percentage of the ovendry weight, after the gravitational, or free, water has drained away; the field moisture content 2 or 3 days after a soaking rain; also called normal field capacity, normal moisture capacity, or capillary capacity.
Fine textured soil. Sandy clay, silty clay, or clay.
Flood plain. A nearly level alluvial plain that borders a stream and is subject to flooding unless protected artificially.
Fluvial. Of or pertaining to rivers; produced by river action, as a fluvial plain.
Foothill. A steeply sloping upland that has relief of as much as 1,000 feet (300 meters) and fringes a mountain range or high-plateau escarpment.
Footslope. The position that forms the inner, gently inclined surface at the base of a hillslope. In profile, footslopes are commonly concave. A footslope is a transition zone between upslope sites of erosion and transport (shoulders and backslopes) and downslope sites of deposition (toeslopes).
Forb. Any herbaceous plant not a grass or a sedge.
Forest cover. All trees and other woody plants (underbrush) covering the ground in a forest.
Forest type. A stand of trees similar in composition and development because of given physical and biological factors by which it may be differentiated from other stands.
Genesis, soil. The mode of origin of the soil. Refers especially to the processes or soil-forming factors responsible for the formation of the solum, or true soil, from the unconsolidated parent material.
Gleyed soil. Soil that formed under poor drainage, resulting in the reduction of iron and other elements in the profile and in gray colors.
Gravel. Rounded or angular fragments of rock as much as 3 inches (2 millimeters to 7.6 centimeters) in diameter. An individual piece is a pebble.

Gravelly soil material. Material that has 15 to 35 percent, by volume, rounded or angular rock fragments, not prominently flattened, as much as 3 inches (7.6 centimeters) in diameter.
Ground water. Water filling all the unblocked pores of the material below the water table.
Gully. A miniature valley with steep sides cut by running water and through which water ordinarily runs only after rainfall. The distinction between a gully and a rill is one of depth. A gully generally is an obstacle to farm machinery and is too deep to be obliterated by ordinary tillage; a rill is of lesser depth and can be smoothed over by ordinary tillage.
Habitat type. The collective area occupied by a plant association. A habitat type is defined and described on the basis of the vegetation and its associated environment.
Hardpan. A hardened or cemented soil horizon, or layer. The soil material is sandy, loamy, or clayey and is cemented by iron oxide, silica, calcium carbonate, or other substance.

Hard to reclaim (in tables). Reclamation is difficult after the removal of soil for construction and other uses. Revegetation and erosion control are extremely difficult.
Hemic soil material (mucky peat). Organic soil material intermediate in degree of decomposition between the less decomposed fibric material and the more decomposed sapric material.
Hill. A natural elevation of the land surface, rising as much as 1,000 feet above surrounding lowlands, commonly of limited summit area and having a well defined outline; hillsides generally have slopes of more than 15 percent. The distinction between a hill and a mountain is arbitrary and is dependent on local usage.
Horizon, soil. A layer of soil, approximately parallel to the surface, having distinct characteristics produced by soil-forming processes. In the identification of soil horizons, an uppercase letter represents the major horizons. Numbers or lowercase letters that follow represent subdivisions of the major horizons. An explanation of the subdivisions is given in the "Soil Survey Manual." The major horizons of mineral soil are as follows:
O horizon.-An organic layer of fresh and decaying plant residue.
A horizon.-The mineral horizon at or near the surface in which an accumulation of humified organic matter is mixed with the mineral material. Also, a plowed surface horizon, most of which was originally part of a B horizon.
E horizon.-The mineral horizon in which the main feature is loss of silicate clay, iron, aluminum, or some combination of these.
B horizon.-The mineral horizon below an A horizon. The B horizon is in part a layer of transition from the overlying A to the underlying C horizon. The B horizon also has distinctive characteristics, such as (1) accumulation of clay, sesquioxides, humus, or a combination of these; (2) prismatic or blocky structure; (3) redder or browner colors than those in the A horizon; or (4) a combination of these.
C horizon.-The mineral horizon or layer, excluding indurated bedrock, that is little affected by soil-forming processes and does not have the properties typical of the overlying soil material. The material of a C horizon may be either like or unlike that in which the solum formed. If the material is known to differ from that in the solum, an Arabic numeral, commonly a 2 , precedes the letter C .
Cr horizon.-Soft, consolidated bedrock beneath the soil.
R layer.-Consolidated bedrock beneath the soil. The bedrock commonly underlies a C horizon, but it can be directly below an A or a B horizon.
Humus. The well decomposed, more or less stable part of the organic matter in mineral soils.
Hydrologic soil groups. Refers to soils grouped according to their runoff potential. The soil properties that influence this potential are those that affect the minimum rate of water infiltration on a bare soil during periods after prolonged wetting when the soil is not frozen. These properties are depth to a seasonal high water table, the infiltration rate and permeability after prolonged wetting, and depth to a very slowly permeable layer. The slope and the kind of plant cover are not considered but are separate factors in predicting runoff.
Igneous rock. Rock formed by solidification from a molten or partially molten state. Major varieties include plutonic and volcanic rock. Examples are andesite, basalt, and granite.
Illuviation. The movement of soil material from one horizon to another in the soil profile. Generally, material is removed from an upper horizon and deposited in a lower horizon.
Increasers. Species in the climax vegetation that increase in amount as the more
desirable plants are reduced by close grazing. Increasers commonly are the shorter plants and the less palatable to livestock.
Infiltration. The downward entry of water into the immediate surface of soil or other material, as contrasted with percolation, which is movement of water through soil layers or material.
Infiltration rate. The rate at which water penetrates the surface of the soil at any given instant, usually expressed in inches per hour. The rate can be limited by the infiltration capacity of the soil or the rate at which water is applied at the surface.
Intermittent stream. A stream, or reach of a stream, that flows for prolonged periods only when it receives ground-water discharge or long, continued contributions from melting snow or other surface and shallow subsurface sources.
Invaders. On range, plants that encroach into an area and grow after the climax vegetation has been reduced by grazing. Generally, plants invade following disturbance of the surface.
Iron depletions. Low-chroma zones having a low content of iron and manganese oxide because of chemical reduction and removal, but having a clay content similar to that of the adjacent matrix. A type of redoximorphic depletion.
Irrigation. Application of water to soils to assist in production of crops. Methods of irrigation are:
Basin.-Water is applied rapidly to nearly level plains surrounded by levees or dikes.
Border.-Water is applied at the upper end of a strip in which the lateral flow of water is controlled by small earth ridges called border dikes, or borders. Controlled flooding.-Water is released at intervals from closely spaced field ditches and distributed uniformly over the field.
Corrugation.-Water is applied to small, closely spaced furrows or ditches in fields of close-growing crops or in orchards so that it flows in only one direction. Drip (or trickle).-Water is applied slowly and under low pressure to the surface of the soil or into the soil through such applicators as emitters, porous tubing, or perforated pipe.
Furrow.-Water is applied in small ditches made by cultivation implements. Furrows are used for tree and row crops.
Sprinkler.-Water is sprayed over the soil surface through pipes or nozzles from a pressure system.
Subirrigation.-Water is applied in open ditches or tile lines until the water table is raised enough to wet the soil.
Wild flooding.-Water, released at high points, is allowed to flow onto an area without controlled distribution.
$\mathbf{K}_{\text {sat }}$. Saturated hydraulic conductivity. (See Permeability.)
Lacustrine deposit. Material deposited in lake water and exposed when the water level is lowered or the elevation of the land is raised.
Landslide. The rapid downhill movement of a mass of soil and loose rock, generally when wet or saturated. The speed and distance of movement, as well as the amount of soil and rock material, vary greatly.
Large stones (in tables). Rock fragments 3 inches (7.6 centimeters) or more across. Large stones adversely affect the specified use of the soil.
Leaching. The removal of soluble material from soil or other material by percolating water.
Linear extensibility. Refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. Linear extensibility is used to determine the shrink-swell potential of soils. It is an expression of the volume change between the water content of the clod at $1 / 3$ - or $1 / 10$-bar tension $(33 \mathrm{kPa}$ or 10 kPa tension) and oven dryness. Volume change is influenced by the
amount and type of clay minerals in the soil. The volume change is the percent change for the whole soil. If it is expressed as a fraction, the resulting value is COLE, coefficient of linear extensibility.
Liquid limit. The moisture content at which the soil passes from a plastic to a liquid state.
Loam. Soil material that is 7 to 27 percent clay particles, 28 to 50 percent silt particles, and less than 52 percent sand particles.
Low strength. The soil is not strong enough to support loads.
Masses. Concentrations of substances in the soil matrix that do not have a clearly defined boundary with the surrounding soil material and cannot be removed as a discrete unit. Common compounds making up masses are calcium carbonate, gypsum or other soluble salts, iron oxide, and manganese oxide. Masses consisting of iron oxide or manganese oxide generally are considered a type of redoximorphic concentration.
Mechanical treatment. Use of mechanical equipment for seeding, brush management, and other management practices.
Medium textured soil. Very fine sandy loam, loam, silt loam, or silt.
Metamorphic rock. Rock of any origin altered in mineralogical composition, chemical composition, or structure by heat, pressure, and movement. Nearly all such rocks are crystalline.
Microclimate. The climate of a small distinct area, such as a forest or city, or a confined space, such as a building or greenhouse.
Mineral soil. Soil that is mainly mineral material and low in organic material. Its bulk density is more than that of organic soil.
Miscellaneous area. An area that has little or no natural soil and supports little or no vegetation.
Moderately coarse textured soil. Coarse sandy loam, sandy loam, or fine sandy loam.
Moderately fine textured soil. Clay loam, sandy clay loam, or silty clay loam.
Mollic epipedon. A thick, dark, humus-rich surface horizon (or horizons) that has high base saturation and pedogenic soil structure. It may include the upper part of the subsoil.
Morphology, soil. The physical makeup of the soil, including the texture, structure, porosity, consistence, color, and other physical, mineral, and biological properties of the various horizons, and the thickness and arrangement of those horizons in the soil profile.
Mottling, soil. Irregular spots of different colors that vary in number and size. Descriptive terms are as follows: abundance—few, common, and many; sizefine, medium, and coarse; and contrast-faint, distinct, and prominent. The size measurements are of the diameter along the greatest dimension. Fine indicates less than 5 millimeters (about 0.2 inch); medium, from 5 to 15 millimeters (about 0.2 to 0.6 inch); and coarse, more than 15 millimeters (about 0.6 inch).

Mountain. A natural elevation of the land surface, rising more than 1,000 feet above surrounding lowlands, commonly of restricted summit area (relative to a plateau) and generally having steep sides. A mountain can occur as a single, isolated mass or in a group forming a chain or range.
Muck. Dark, finely divided, well decomposed organic soil material. (See Sapric soil material.)
Munsell notation. A designation of color by degrees of three simple variables-hue, value, and chroma. For example, a notation of $10 \mathrm{YR} 6 / 4$ is a color with hue of 10 YR , value of 6 , and chroma of 4 .
Natric horizon. A special kind of argillic horizon that contains enough exchangeable sodium to have an adverse effect on the physical condition of the subsoil.

Neutral soil. A soil having a pH value of 6.6 to 7.3. (See Reaction, soil.)
Nodules. Cemented bodies lacking visible internal structure. Calcium carbonate, iron oxide, and manganese oxide are common compounds making up nodules. If formed in place, nodules of iron oxide or manganese oxide are considered types of redoximorphic concentrations.
Nutrient, plant. Any element taken in by a plant essential to its growth. Plant nutrients are mainly nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, boron, and zinc obtained from the soil and carbon, hydrogen, and oxygen obtained from the air and water.
Organic matter. Plant and animal residue in the soil in various stages of decomposition.
Pan. A compact, dense layer in a soil that impedes the movement of water and the growth of roots. For example, hardpan, fragipan, claypan, plowpan, and traffic pan.
Parent material. The unconsolidated organic and mineral material in which soil forms.
Peat. Unconsolidated material, largely undecomposed organic matter, that has accumulated under excess moisture. (See Fibric soil material.)
Ped. An individual natural soil aggregate, such as a granule, a prism, or a block.
Pedon. The smallest volume that can be called "a soil." A pedon is three dimensional and large enough to permit study of all horizons. Its area ranges from about 10 to 100 square feet (1 square meter to 10 square meters), depending on the variability of the soil.
Percolation. The movement of water through the soil.
Permeability. The quality of the soil that enables water or air to move downward through the profile. The rate at which a saturated soil transmits water is accepted as a measure of this quality. In soil physics, the rate is referred to as "saturated hydraulic conductivity," which is defined in the "Soil Survey Manual." In line with conventional usage in the engineering profession and with traditional usage in published soil surveys, this rate of flow continues to be expressed as "permeability." Terms describing permeability, measured in inches per hour, are as follows:

Impermeable	less than 0.0015 inch
Very slow 0.0015 to 0.06 inch
Slow	0.06 to 0.2 inch
Moderately slow 0.2 to 0.6 inch
Moderate	. 0.6 inch to 2.0 inches
Moderately rapid 2.0 to 6.0 inches
Rapid 6.0 to 20 inches
Very rapid	.. more than 20 inches

Phase, soil. A subdivision of a soil series based on features that affect its use and management, such as slope, stoniness, and flooding.
pH value. A numerical designation of acidity and alkalinity in soil. (See Reaction, soil.)
Piping (in tables). Formation of subsurface tunnels or pipelike cavities by water moving through the soil.
Pitting (in tables). Pits caused by melting around ice. They form on the soil after plant cover is removed.
Plant association. A kind of climax plant community consisting of stands with essentially the same dominant species in corresponding layers.
Plasticity index. The numerical difference between the liquid limit and the plastic limit; the range of moisture content within which the soil remains plastic.

Plastic limit. The moisture content at which a soil changes from semisolid to plastic.
Plateau. An extensive upland mass with relatively flat summit area that is considerably elevated (more than 100 meters) above adjacent lowlands and separated from them on one or more sides by escarpments.
Playa. The generally dry and nearly level lake plain that occupies the lowest parts of closed depressional areas, such as those on intermontane basin floors. Temporary flooding occurs primarily in response to precipitation and runoff.
Ponding. Standing water on soils in closed depressions. Unless the soils are artificially drained, the water can be removed only by percolation or evapotranspiration.
Poorly graded. Refers to a coarse grained soil or soil material consisting mainly of particles of nearly the same size. Because there is little difference in size of the particles, density can be increased only slightly by compaction.
Potential rooting depth (effective rooting depth). Depth to which roots could penetrate if the content of moisture in the soil were adequate. The soil has no properties restricting the penetration of roots to this depth.
Prescribed burning. Deliberately burning an area for specific management purposes, under the appropriate conditions of weather and soil moisture and at the proper time of day.
Productivity, soil. The capability of a soil for producing a specified plant or sequence of plants under specific management.
Profile, soil. A vertical section of the soil extending through all its horizons and into the parent material.
Proper grazing use. Grazing at an intensity that maintains enough cover to protect the soil and maintain or improve the quantity and quality of the desirable vegetation. This practice increases the vigor and reproduction capacity of the key plants and promotes the accumulation of litter and mulch necessary to conserve soil and water.
Rangeland. Land on which the potential natural vegetation is predominantly grasses, grasslike plants, forbs, or shrubs suitable for grazing or browsing. It includes natural grasslands, savannas, many wetlands, some deserts, tundras, and areas that support certain forb and shrub communities.
Reaction, soil. A measure of acidity or alkalinity of a soil, expressed in pH values. A soil that tests to pH 7.0 is described as precisely neutral in reaction because it is neither acid nor alkaline. The degrees of acidity or alkalinity, expressed as pH values, are:

Ultr	3.5
Extremely acid	3.5 to 4.4
Very strongly acid	4.5 to 5.0
Strongly acid	. 5.1 to 5.5
Moderately acid	5.6 to 6.0
Slightly acid	6.1 to 6.5
Neutral	... 6.6 to 7.3
Slightly alkaline	. 7.4 to 7.8
Moderately alkaline	... 7.9 to 8.4
Strongly alkaline.	... 8.5 to 9.0
Very strongly alkalin	9.1 and higher

Redoximorphic concentrations. Nodules, concretions, soft masses, pore linings, and other features resulting from the accumulation of iron or manganese oxide. An indication of chemical reduction and oxidation resulting from saturation.
Redoximorphic depletions. Low-chroma zones from which iron and manganese oxide or a combination of iron and manganese oxide and clay has been removed.

These zones are indications of the chemical reduction of iron resulting from saturation.
Redoximorphic features. Redoximorphic concentrations, redoximorphic depletions, reduced matrices, a positive reaction to alpha,alpha-dipyridyl, and other features indicating the chemical reduction and oxidation of iron and manganese compounds resulting from saturation.
Reduced matrix. A soil matrix that has low chroma in situ because of chemically reduced iron (Fe II). The chemical reduction results from nearly continuous wetness. The matrix undergoes a change in hue or chroma within 30 minutes after exposure to air as the iron is oxidized (Fe III). A type of redoximorphic feature.
Regolith. The unconsolidated mantle of weathered rock and soil material on the earth's surface; the loose earth material above the solid rock.
Relief. The elevations or inequalities of a land surface, considered collectively.
Residuum (residual soil material). Unconsolidated, weathered or partly weathered mineral material that accumulated as consolidated rock disintegrated in place.
Rill. A steep-sided channel resulting from accelerated erosion. A rill generally is a few inches deep and not wide enough to be an obstacle to farm machinery.
Rock fragments. Rock or mineral fragments having a diameter of 2 millimeters or more; for example, pebbles, cobbles, stones, and boulders.
Rock outcrop. Exposures of barren bedrock.
Root zone. The part of the soil that can be penetrated by plant roots.
Rubble land. Areas of cobbles, stones, and boulders, commonly at the base of mountains.
Runoff. The precipitation discharged into stream channels from an area. The water that flows off the surface of the land without sinking into the soil is called surface runoff. Water that enters the soil before reaching surface streams is called ground-water runoff or seepage flow from ground water.
Saline soil. A soil containing soluble salts in an amount that impairs growth of plants. A saline soil does not contain excess exchangeable sodium.
Sand. As a soil separate, individual rock or mineral fragments from 0.05 millimeter to 2.0 millimeters in diameter. Most sand grains consist of quartz. As a soil textural class, a soil that is 85 percent or more sand and not more than 10 percent clay.
Sapric soil material (muck). The most highly decomposed of all organic soil material. Muck has the least amount of plant fiber, the highest bulk density, and the lowest water content at saturation of all organic soil material.
Saturation. Wetness characterized by zero or positive pressure of the soil water. Under conditions of saturation, the water will flow from the soil matrix into an unlined auger hole.
Sedimentary rock. Rock made up of particles deposited from suspension in water. The chief kinds of sedimentary rock are conglomerate, formed from gravel; sandstone, formed from sand; shale, formed from clay; and limestone, formed from soft masses of calcium carbonate. There are many intermediate types. Some wind-deposited sand is consolidated into sandstone.
Sequum. A sequence consisting of an illuvial horizon and the overlying eluvial horizon. (See Eluviation.)
Series, soil. A group of soils that have profiles that are almost alike, except for differences in texture of the surface layer. All the soils of a series have horizons that are similar in composition, thickness, and arrangement.
Sheet erosion. The removal of a fairly uniform layer of soil material from the land surface by the action of rainfall and surface runoff.
Shoulder. The position that forms the uppermost inclined surface near the top of a
hillslope. It is a transition from backslope to summit. The surface is dominantly convex in profile and erosional in origin.
Shrink-swell (in tables). The shrinking of soil when dry and the swelling when wet. Shrinking and swelling can damage roads, dams, building foundations, and other structures. It can also damage plant roots.
Side slope. A geomorphic component of hills consisting of a laterally planar area of a hillside. The overland waterflow is predominantly parallel.
Silica. A combination of silicon and oxygen. The mineral form is called quartz.
Silt. As a soil separate, individual mineral particles that range in diameter from the upper limit of clay (0.002 millimeter) to the lower limit of very fine sand (0.05 millimeter). As a soil textural class, soil that is 80 percent or more silt and less than 12 percent clay.
Similar soils. Soils that share limits of diagnostic criteria, behave and perform in a similar manner, and have similar conservation needs or management requirements for the major land uses in the survey area.
Site index. A designation of the quality of a forest site based on the height of the dominant stand at an arbitrarily chosen age. For example, if the average height attained by dominant and codominant trees in a fully stocked stand at the age of 50 years is 75 feet, the site index is 75 .
Slickensides. Polished and grooved surfaces produced by one mass sliding past another. In soils, slickensides may occur at the bases of slip surfaces on the steeper slopes; on faces of blocks, prisms, and columns; and in swelling clayey soils, where there is marked change in moisture content.
Slick spot. A small area of soil having a puddled, crusted, or smooth surface and an excess of exchangeable sodium. The soil generally is silty or clayey, is slippery when wet, and is low in productivity.
Slope. The inclination of the land surface from the horizontal. Percentage of slope is the vertical distance divided by horizontal distance, then multiplied by 100. Thus, a slope of 20 percent is a drop of 20 feet in 100 feet of horizontal distance.
Slow refill (in tables). The slow filling of ponds, resulting from restricted permeability in the soil.
Sodic (alkali) soil. A soil having so high a degree of alkalinity (pH 8.5 or higher) or so high a percentage of exchangeable sodium (15 percent or more of the total exchangeable bases), or both, that plant growth is restricted.
Sodicity. The degree to which a soil is affected by exchangeable sodium. Sodicity is expressed as a sodium adsorption ratio (SAR) of a saturation extract, or the ratio of Na^{+}to $\mathrm{Ca}^{++}+\mathrm{Mg}^{++}$. The degrees of sodicity and their respective ratios are:

Sodium adsorption ratio (SAR). A measure of the amount of sodium (Na) relative to calcium (Ca) and magnesium (Mg) in the water extract from saturated soil paste. It is the ratio of the Na concentration divided by the square root of one-half of the $\mathrm{Ca}+\mathrm{Mg}$ concentration.
Soil. A natural, three-dimensional body at the earth's surface. It is capable of supporting plants and has properties resulting from the integrated effect of climate and living matter acting on earthy parent material, as conditioned by relief over periods of time.
Soil separates. Mineral particles less than 2 millimeters in equivalent diameter and ranging between specified size limits. The names and sizes, in millimeters, of separates recognized in the United States are as follows:

Very coarse sand ... 2.0 to 1.0	
Coarse sand ... 1.0 to 0.5	
Medium sand .. 0.5 to 0.25	
Fine sand .. 0.25 to 0.10	
Very fine sand ... 0.10 to 0.05	
Silt .. 0.05 to 0.002	
Clay	ess than 0.002

Solum. The upper part of a soil profile, above the C horizon, in which the processes of soil formation are active. The solum in soil consists of the $A, E, a n d$ horizons. Generally, the characteristics of the material in these horizons are unlike those of the material below the solum. The living roots and plant and animal activities are largely confined to the solum.
Stone line. A concentration of coarse fragments in a soil. Generally, it is indicative of an old weathered surface. In a cross section, the line may be one fragment or more thick. It generally overlies material that weathered in place and is overlain by recent sediment of variable thickness.
Stones. Rock fragments 10 to 24 inches (25 to 60 centimeters) in diameter if rounded or 15 to 24 inches (38 to 60 centimeters) in length if flat.
Stony. Refers to a soil containing stones in numbers that interfere with or prevent tillage.
Structure, soil. The arrangement of primary soil particles into compound particles or aggregates. The principal forms of soil structure are-platy (laminated), prismatic (vertical axis of aggregates longer than horizontal), columnar (prisms with rounded tops), blocky (angular or subangular), and granular. Structureless soils are either single grained (each grain by itself, as in dune sand) or massive (the particles adhering without any regular cleavage, as in many hardpans).
Subsoil. Technically, the B horizon; roughly, the part of the solum below plow depth.
Subsoiling. Tilling a soil below normal plow depth, ordinarily to shatter a hardpan or claypan.
Substratum. The part of the soil below the solum.
Subsurface layer. Any surface soil horizon ($\mathrm{A}, \mathrm{E}, \mathrm{AB}$, or EB) below the surface layer.
Summit. The topographically highest position of a hillslope. It has a nearly level (planar or only slightly convex) surface.
Surface layer. The soil ordinarily moved in tillage, or its equivalent in uncultivated soil, ranging in depth from 4 to 10 inches (10 to 25 centimeters). Frequently designated as the "plow layer," or the "Ap horizon."
Surface soil. The A, E, AB, and EB horizons, considered collectively. It includes all subdivisions of these horizons.
Talus. Fragments of rock and other soil material accumulated by gravity at the foot of cliffs or steep slopes.
Taxadjuncts. Soils that cannot be classified in a series recognized in the classification system. Such soils are named for a series they strongly resemble and are designated as taxadjuncts to that series because they differ in ways too small to be of consequence in interpreting their use and behavior. Soils are recognized as taxadjuncts only when one or more of their characteristics are slightly outside the range defined for the family of the series for which the soils are named.
Terrace. An embankment, or ridge, constructed across sloping soils on the contour or at a slight angle to the contour. The terrace intercepts surface runoff so that water soaks into the soil or flows slowly to a prepared outlet. A terrace in a field generally is built so that the field can be farmed. A terrace intended mainly for drainage has a deep channel that is maintained in permanent sod.

Terrace (geologic). An old alluvial plain, ordinarily flat or undulating, bordering a river, a lake, or the sea.
Texture, soil. The relative proportions of sand, silt, and clay particles in a mass of soil. The basic textural classes, in order of increasing proportion of fine particles, are sand, loamy sand, sandy loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, and clay. The sand, loamy sand, and sandy loam classes may be further divided by specifying "coarse," "fine," or "very fine."
Thin layer (in tables). Otherwise suitable soil material that is too thin for the specified use.
Tilth, soil. The physical condition of the soil as related to tillage, seedbed preparation, seedling emergence, and root penetration.
Toeslope. The position that forms the gently inclined surface at the base of a hillslope. Toeslopes in profile are commonly gentle and linear and are constructional surfaces forming the lower part of a hillslope continuum that grades to valley or closed-depression floors.
Topsoil. The upper part of the soil, which is the most favorable material for plant growth. It is ordinarily rich in organic matter and is used to topdress roadbanks, lawns, and land affected by mining.
Tuff. A compacted deposit that is 50 percent or more volcanic ash and dust.
Variegation. Refers to patterns of contrasting colors assumed to be inherited from the parent material rather than to be the result of poor drainage.
Water bars. Smooth, shallow ditches or depressional areas that are excavated at an angle across a sloping road. They are used to reduce the downward velocity of water and divert it off and away from the road surface. Water bars can easily be driven over if constructed properly.
Weathering. All physical and chemical changes produced in rocks or other deposits at or near the earth's surface by atmospheric agents. These changes result in disintegration and decomposition of the material.
Well graded. Refers to soil material consisting of coarse grained particles that are well distributed over a wide range in size or diameter. Such soil normally can be easily increased in density and bearing properties by compaction. Contrasts with poorly graded soil.
Wilting point (or permanent wilting point). The moisture content of soil, on an ovendry basis, at which a plant (specifically a sunflower) wilts so much that it does not recover when placed in a humid, dark chamber.
Windthrow. The uprooting and tipping over of trees by the wind.

Tables

Month	Temperature						Precipitation						
				2 years in		Average	Average	2 years in 10\|			Average		
				10 will have--				will have--		$\begin{array}{\|c\|} \text { Average } \\ \mid \text { number of } \end{array}$			
	\|Average		Average	\|Average									
	daily	daily	daily	Maximum	Minimum	growing		Less	More	\|number of days with	snowfall		
	\|maximum		minimum\|		temperature\|	temperature	degree		\| than--	than--	\|0.10 inch		
				higher	lower	days*				or more			
				than--	than--								
January-----	${ }^{\circ} \mathrm{F}$	Units	In	In	In	In							
	41.5	19.6	30.6	59	-11	14	0.80	0.46	1.16	2	5.1		
February----	48.1	24.7	36.4	66	-3	41				2	3.1		
							0.79	0.31	1.19 \|				
March------	53.8	27.0	40.4	72	8	89	1.06	0.47	1.57	3	2.9		
April------													
	62.2	30.5	46.3	83	13	212	0.89	0.35	1.34	2	0.6		
	72.4	37.7	55.1	93	20	465	0.86	0.21	1.44	2	0.2		
May---------													
June--------	81.8	45.9	63.9	100	29	708	0.90	0.31	1.59	2	0.2		
July--------	91.8	52.1	71.9	103	35	972	0.27	0.12	0.53	0	0		
August------	89.7	51.0	70.3	103	35	941	0.48	0.16	1.13	1	0		
September---	79.0	41.1	60.0	97	23	590	0.59	0.33	1.13	1	0		
October-----	66.9	32.5	49.7	87	12	310	0.56	0.23	0.97	1	0.3		
November----	51.7	25.8	38.7	72	2	74	1.11	0.39	1.71	4	4.1		
December----	42.2	20.1	31.2	59	-11	15	0.78	0.33	1.27	3	6.0		
Yearly:													
Average----	65.1	34.0	49.5	---	---	---	---	---	---	---	---		
Extreme----	107.0	-25.0	---	108	-15	---	--	---	---	---	---		
Total------	- ---	---	--- \|	--- \|	---	4,431	9.10	5.07	10.83	23	22.5		

Average number of days per year with at least 1 inch of snow on the ground: 12
See footnote at end of table.

Table 1.--Temperature and Precipitation--Continued
(Recorded in the period 1961-90 at P Ranch Refuge, Oregon)

Average number of days per year with at least 1 inch of snow on the ground: 10
See footnote at end of table.

Table 1.--Temperature and Precipitation--Continued
(Recorded in the period 1961-90 at Northern Great Basin Range Experiment Station, Oregon)

Average number of days per year with at least 1 inch of snow on the ground: 48

* A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minimum daily temperatures, dividing the sum by 2 , and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees F).

Fable 2. --Freeze Dates in Spring and Fall
(Recorded in the period 1961-90 at Denio Junction, Nevada; P Ranch Refuge, Oregon; and Northern Great Basin Range Experiment Station, Oregon)

Probability	Temperature			
	$\begin{gathered} 24 \mathrm{O}_{\mathrm{F}} \\ \text { or lower } \end{gathered}$	$\begin{gathered} 28{ }^{\circ} \mathrm{F} \\ \text { or lower } \end{gathered}$	$\begin{gathered} 32{ }_{\mathrm{o}}^{\mathrm{F}} \\ \text { or lower } \end{gathered}$	
DENIO JUNCTION:				
Last freezing temperature				
in spring:				
1 year in 10				
later than--	May 20	June 5	June	28
2 years in 10				
later than--	May 14	May 29	June	22
5 years in 10				
later than--	May 4	May 17	June	9
1 year in 10 earlier than--	September 21	\| September 11	August	
2 years in 10 earlier than--	\|September 27	\| September 17	\| September	4
5 years in 10 earlier than--	October 8	September 28	\| September	
P RANCH REFUGE:				
Last freezing temperature in spring:				
1 year in 10				
later than--	May 14	May 31	June	2
2 years in 10				
later than--	May 8	May 26	June	23
5 years in 10				
later than--	April 28	May 27	June	7
First freezing temperature in fall:				
1 year in 10 earlier than--				
	September 11	\|September 2	August	
2 years in 10 earlier than--	\| September 17	\| September 5	August	
5 years in 10 earlier than--	\| September 30	\| September 13	\| September	3

Table 2.--Freeze Dates in Spring and Fall--Continued

Fable 3.--Growing Season
(Recorded in the period 1961-90 at Denio Junction, Nevada; P Ranch Refuge, Oregon; and Northern Great Basin Range Experiment Station, Oregon)

Probability	Daily minimum temperature during growing season		
	Higher than $24^{\circ} \mathrm{F}$	$\begin{aligned} & \text { Higher } \\ & \text { than } \\ & 28 \circ_{F} \end{aligned}$	
	Days	Days	Days
DENIO JUNCTION:			
9 years in 10	133	113	71
8 years in 10	141	120	80
5 years in 10	156	133	98
2 years in 10	172	146	115
1 year in 10	180	153	124
P RANCH REFUGE:			
9 years in 10	123	100	66
8 years in 10	132	107	75
5 years in 10	151	120	92
2 years in 10	170	133	110
1 year in 10	180	139	119
NORTHERN GREAT			
BASIN RANGE			
EXPERIMENT			
STATION:			
9 years in 10	132	108	58
8 years in 10	143	117	68
5 years in 10	163	134	87
2 years in 10	183	151	106
1 year in 10	194	160	116

Fable 4.--Acreage and Proportionate Extent of the Soils

Table 4.--Acreage and Proportionate Extent of the Soils--Continued

$\begin{aligned} & \text { Map } \\ & \text { symbol } \end{aligned}$	Soil name	Acres	\mid Percent
67	\|Crowcamp loam, 0 to 1 percent slop	6,079	0.1
68	\|Crowcamp-Ausmus-Poujade complex, 0 to 5 percent slope	33,825	0.6
69	\| Davey sandy loam, 0 to 8 percent slopes	18,410	0.3
70	\|Davey-Oreanna complex, 0 to 8 percent slope	5,366	*
71	\|Defenbaugh loam, 0 to 2 percent slopes	6,073	0.1
72	\mid Deppy very gravelly loam, 5 to 15 percent slop	10,098	0.2
73	\|Deppy-Tumtum complex, 5 to 15 percent slopes	73,598	1.2
74	\|Dickle very cobbly clay loam, 3 to 12 percent slopes	4,697	*
75	\|Dixon gravelly fine sandy loam, 0 to 5 percent slope	1,144	*
76	\|Dixon gravelly fine sandy loam, alkali, 0 to 2 percent slopes	3,840	
77	\mid Dixon gravelly sandy clay loam, 3 to 15 percent slopes-	8,983	0.1
78	\|Dixon-Droval complex, 0 to 2 percent slopes	6,363	0.1
79	\|Dogmountain gravelly loam, 4 to 20 percent slo	6,967	0.1
80	\mid Doyn very stony loam, 2 to 20 percent slopes	11,046	0.2
81	\|Doyn-Merlin complex, 2 to 20 percent slopes	23,122	0.4
82	\|Doyn-Arcia association, 2 to 30 percent slopes	27,909	0.5
83	\mid Drewsey very fine sandy loam, 1 to 5 percent slope	208	*
84	\|Drewsey very fine sandy loam, 2 to 20 percent slopes	3,038	
85	\|Drewsey-Torriorthents-Gumble complex, 2 to 40 percent	4,153	*
86	\|Droval loam, 0 to 3 percent slopes	26,285	0.4
87	\|Duff loam, 3 to 12 percent slopes	3,331	*
88	\|Duff-Clamp complex, 5 to 20 percent slopes	19,177	0.3
89	\|Duff-Clamp complex, 20 to 40 percent north slope	4,775	*
90	\mid Duff-Hackwood complex, 2 to 30 percent slopes	3,244	
91	\mid Edemaps loam, 5 to 20 percent slopes	16,792	0.3
92	\|Edemaps-Carryback association, 2 to 10 percent slope	9,014	0.1
93	\mid Enko loamy sand, 2 to 8 percent slopes	33,919	0.6
94	\|Enko-Catlow complex, 1 to 7 percent slopes	52,555	0.9
95	\mid Enko-Catlow complex, 7 to 15 percent slopes	1,826	*
96	\mid Enko-Catlow association, 2 to 20 percent slopes	27,998	0.5
97	\mid Erakatak extremely stony silty clay loam, 50 to 80 percent north slopes--	4,368	*
98	\|Erakatak-Lambring-Rock outcrop complex, 20 to 60 percent north slopes--	240	
99	\mid Erakatak-Merlin-Westbutte complex, 10 to 60 percent slopes------------	11,732	0.2
100	\|Erakatak-Rock outcrop complex, 20 to 60 percent slopes-	909	
101	\|Erakatak-Ninemile-Hapgood association, 5 to 40 percent slopes	6,921	0.1
102	\mid Felcher extremely stony clay loam, 20 to 40 percent south slopes	34,227	0.6
103	\mid Felcher-Rock outcrop complex, 40 to 70 percent south slopes	72,388	1.2
104	\mid Felcher-Rock outcrop-Brezniak complex, 30 to 65 percent south slopes-----	4,397	
105	\mid Felcher-Rock outcrop-Westbutte complex, 20 to 40 percent slopes---------	2,352	*
106	\mid Felcher-Sagehen complex, 5 to 30 percent slopes-	6,791	0.1
107	\mid Felcher-Sagehen complex, 40 to 70 percent south slopes-	6,374	0.1
108	\mid Felcher-Fitzwater-Rock outcrop association, 20 to 60 percent slopes------	24,824	0.4
109	\mid Felcher-Pernty-Ninemile association, 10 to 35 percent slopes	1,847	*
110	\mid Felcher-Westbutte association, 20 to 40 percent slopes	21,835	0.4
111	\mid Final silt loam, 0 to 2 percent slopes-	867	*
112	\mid Fitzwater-Hapgood association, 20 to 40 percent slopes-	5,103	*
113	\|Fitzwater-Rock outcrop complex, 20 to 60 percent north slopes-----------	9,016	0.1
114	\|Flank-Lava flows complex, 1 to 40 percent slopes---------------------------	1,382	*
115	\|Fourwheel stony loam, 3 to 12 percent slopes-	956	*
116	\|Fourwheel extremely cobbly loam, 20 to 40 percent north slopes----------	1,041	*
117	\mid Freznik very stony silt loam, 2 to 15 percent slopes--------------------	9,230	0.2
118		19,176	0.3
119	\|Fury silt loam, 0 to 1 percent slopes, ponded	1,188	*
120	\|Fury-Degarmo complex, 0 to 2 percent slopes---------------------------------	14,198	0.2
121	\|Fury-Housefield complex, 0 to 1 percent slopes---------------------------	9,860	0.2
122	\|Fury-Housefield-Skidoosprings complex, 0 to 2 percent slopes------------	6,785	0.1
123	\|Fury-Opie complex, 0 to 1 percent slopes-----------------------------------	12,420	0.2
124	\|Fury-Skidoosprings-Opie complex, 0 to 2 percent slopes	42,493	0.7
125	\|Fury-Widowspring complex, 0 to 2 percent slopes-	14,817	0.2
126	\|Gaib gravelly loam, 2 to 20 percent slopes	12,643	0.2
127	\|Gaib-Ateron complex, 2 to 15 percent slopes--------------------------------	2,530	*
128	\|Gaib-Rock outcrop complex, 20 to 60 percent slopes----------------------	6,242	0.1
129	\|Gilispie-Noname complex, 3 to 15 percent slopes---------------------------	10,300	0.2
130	\|Gochea sandy loam, 0 to 2 percent slopes------------------------------------	3,971	*
131	\|Goldrun-Alvodest complex, 0 to 12 percent slopes-------------------------	32,217	0.5
132	\|Gradon gravelly fine sandy loam, 0 to 8 percent slopes---------------------	11,245	0.2

Table 4.--Acreage and Proportionate Extent of the Soils--Continued

$\begin{aligned} & \text { Map } \\ & \text { symbol } \end{aligned}$	Soil name	Acres	\mid Percent
133	\|Guano gravelly sandy loam, 2 to 15 percent slopes	11,475	0.2
134	\|Gumble very gravelly silt loam, 2 to 20 percent slopes	735	*
135	\mid Gumble very stony loam, 20 to 40 percent south slopes-	3,314	*
136	\|Gumble-Mahoon-Cagle complex, 2 to 40 percent slopes	14,868	0.2
137	\|Hackwood gravelly loam, 20 to 35 percent slopes	10,891	0.2
138	\|Hackwood-Baconcamp complex, 20 to 35 percent north slope	17,653	0.3
139	\mid Hapgood very cobbly loam, 2 to 12 percent slopes-	6,235	0.1
140	\|Hart Camp cobbly loam, 5 to 15 percent slopes-	6,743	0.1
141	\|Hart Camp cobbly loam, 15 to 30 percent slopes	4,551	*
142	\mid Helphenstein-Goldrun complex, 0 to 15 percent slop	552	*
143	\mid Homefield mucky silt loam, 0 to 1 percent slopes	2,909	*
144	\mid Housefield mucky silt loam, 0 to 1 percent slopes	2,120	*
145	\mid Housefield-Doubleo complex, 0 to 1 percent slopes	5,295	*
146	\|Icene-Playas complex, 0 to 1 percent slopes-	7,161	0.1
147	\|Icene-Playas complex, slightly alkaline, 0 to 1 percent	6,656	0.1
148	\|Jesse Camp silt loam, 2 to 5 percent slopes	45	*
149	\mid Jimgreen muck, 0 to 1 percent slopes	1,115	*
150	\|Jimgreen-Housefield complex, 0 to 1 percent slope	2,702	*
151	\mid Kegler fine sandy loam, 2 to 5 percent slopes	12,410	0.2
152	\|Kerrfield loam, 3 to 20 percent slopes-	20,376	0.3
153	\|Klicker very gravelly loam, 35 to 60 percent north slop	799	*
154	\mid Klicker extremely cobbly loam, 15 to 35 percent north slope	2,926	*
155	\mid Krackle complex, 20 to 40 percent slopes	8,576	0.1
156		6,141	0.1
157	\mid Krackle-Baconcamp-Rock outcrop complex, high precipitation, 3 to 30 \mid percent slopes---	2,946	*
158	\mid Krackle-Rock outcrop complex, 25 to 50 percent south slopes-	1,656	*
159	\|Krackle-Baconcamp-Hackwood association, 20 to 35 percent slopes	2,117	*
160	\mid Ladycomb cobbly clay loam, 8 to 25 percent slopes	4,165	*
161	\mid Lambranch gravelly loam, 2 to 8 percent slopes	766	*
162	\|Lambring-Egyptcreek-Rock outcrop complex, 20 to 60 percent slopes	3,139	*
163	\mid Lambring-Rock outcrop complex, 30 to 70 percent north slopes	2,720	
164	\|Lambring-Rubble land complex, 30 to 50 percent slopes-	783	*
165	\|Langslet silty clay, 0 to 2 percent slopes	3,738	
166	\|Lava flows	3,947	*
167	\|Lava flows-Flank complex, 1 to 40 percent slope	3,410	
168	\|Lawen fine sandy loam, 2 to 5 percent slopes	37,646	0.6
169	\|Leathers silt loam, 0 to 2 percent slopes	580	*
170	\|Leathers silt loam, 1 to 3 percent slopes-	7,678	0.1
171	\mid Leemorris-Buckwilder complex, 3 to 15 percent slope	10,436	0.2
172	\|Leemorris-Buckwilder complex, 15 to 35 percent slope	5,291	*
173	\|Legler silty clay loam, 0 to 3 percent slopes	7,803	0.1
174	\|Locane very cobbly loam, 5 to 25 percent slopes	728	*
175	\mid Lolak very fine sandy loam, 0 to 1 percent slopes	6,862	0.1
176	\|Lolak-Ausmus complex, 0 to 1 percent slopes	12,064	0.2
177	\|Lonely-Doyn association, 2 to 20 percent slopes	22,232	0.4
178	\|Lonely-Robson association, 5 to 25 percent slopes	108,391	1.8
179	\mid Longcreek-Cleavage complex, 20 to 50 percent slopes	1,466	*
180	\|Longcreek-Rock outcrop complex, 40 to 70 percent south slopes	1,533	*
181	\|Loupence silt loam, 0 to 2 percent slopes--	15,453	0.3
182	\mid Madeline very stony loam, 15 to 40 percent south slopes	13,042	0.2
183	\mid Madeline very stony loam, 20 to 60 percent north slopes	747	*
184	\|Madeline-Ninemile complex, 15 to 35 percent slopes	5,041	*
185	\mid Madeline-Rock outcrop complex, 40 to 70 percent slopes	407	*
186	\|Mahoon very cobbly loam, 2 to 20 percent slopes-	5,129	*
187	\mid Mahoon-Brezniak-Longcreek complex, 2 to 20 percent slopes	14,263	0.2
188	\|Mahoon-Cagle complex, 10 to 40 percent slopes-	3,228	*
189	\|Mahoon-Risley complex, 2 to 20 percent slopes	4,799	*
190	\mid Mahoon-Cotant association, 15 to 30 percent slopes	6,993	0.1
191	\mid Mcbain-Ausmus complex, 0 to 2 percent slopes-	4,338	*
192	$\mid \mathrm{Mc}$ Connel cobbly sandy loam, 3 to 8 percent slopes	25,435	0.4
193	\mid Merlin very stony loam, 2 to 15 percent slopes-	30,091	0.5
194	\|Merlin complex, 2 to 20 percent slopes-	8,955	0.1
195	\mid Merlin-Ateron complex, 2 to 20 percent slopes--	4,991	*
196	\mid Merlin-Ateron-Rubble land complex, 2 to 20 percent slopes	27,278	0.5
197	\|Merlin-Ateron-Ticino complex, 2 to 20 percent slopes-	8,597	0.1

Table 4.--Acreage and Proportionate Extent of the Soils--Continued

Map symbol	Soil name	Acres	\mid Percent	
198	\|Merlin-Erakatak-Teguro complex, 2 to 20 percent	2,299	*	
199	\mid Merlin-Observation complex, 2 to 20 percent slopes-	49,628	0.8	
200	\mid Merlin-Observation complex, 20 to 40 percent north slopes---------------\|	6,310	0.1	
201	\mid Merlin-Rubble land complex, 2 to 15 percent slopes	16,594	0.3	
202	\mid Merlin-Teguro complex, 2 to 15 percent slopes----------------------------	12,290	0.2	
203	\mid Merlin-Teguro complex, moist, 2 to 20 percent slopes	19,470	0.3	
204	\mid Mesman loamy fine sand, 0 to 5 percent slopes	3,510	*	
205	$\mid M e s m a n ~ f i n e ~ s a n d y ~ l o a m, ~ 0 ~ t o ~ 5 ~ p e r c e n t ~ s l o p e s ~$	7		
206	\mid Mesman-Norad complex, 0 to 2 percent slopes-	5,617	*	
207	\mid Middlebox gravelly sandy loam, 5 to 20 percent slop	23,754	0.4	
208	\mid Middlebox complex, 15 to 40 percent slopes	3,622	*	
209	\mid Minam silt loam, 0 to 2 percent slopes	1,411		
210	\mid Minam-Welch complex, 0 to 3 percent slopes	354	*	
211	\mid Modoc gravelly sandy loam, 2 to 15 percent slopes	3,992		
212	\|Morfitt loam, 0 to 2 percent slopes-	582	*	
213	\mid Morganhills sandy loam, 2 to 12 percent slope	17,310	0.3	
214	\mid Morganhills complex, 2 to 35 percent slopes	5,957	*	
215	\mid Mound stony loam, 2 to 20 percent slopes-	2,376		
216	\mid Nevador very gravelly sandy loam, 3 to 12 percent slope	11,508	0.2	
217	\|Ninemile gravelly loam, hummocky, 0 to 8 percent slopes	79,911	1.3	
218	\|Ninemile very cobbly clay loam, low precipitation, 2 to 30 percent slopes	30,166	0.5	
219	\mid Ninemile very stony clay loam, 0 to 20 percent slopes	43,100	0.7	
220	\|Ninemile-Carvix complex, 0 to 8 percent slopes-	3,439	*	
221	\mid Ninemile-Doyn complex, 2 to 20 percent slopes	1,450		
222	\|Ninemile-Edemaps complex, 2 to 10 percent slopes	19,658	0.3	
223	\mid Ninemile-Madeline complex, 2 to 15 percent slopes	1,491		
224	\|Ninemile-Pearlwise complex, 20 to 35 percent slope	4,816	*	
225	\|Ninemile-Reluctan complex, 0 to 15 percent slopes	64,585	1.1	
226	\|Ninemile-Reluctan-Rubble land complex, 2 to 30 percent slope	42,248	0.7	
227	\|Ninemile-Rock outcrop complex, 40 to 70 percent south slopes-	69	*	
228	\|Ninemile-Rubble land complex, 5 to 20 percent slopes	14,673	0.2	
229	\|Ninemile-Westbutte complex, 2 to 15 percent slopes	11,684	0.2	
230	\mid Ninemile-Westbutte-Ninemile complex, 2 to 30 percent slope	17,824	0.3	
231	\mid Ninemile association, 2 to 12 percent slopes	80,891	1.3	
232	\|Ninemile-Felcher association, 5 to 30 percent slope	6,098	0.1	
233	\|Noname-Dickle complex, 3 to 12 percent slopes-	1,914	*	
234	\|Noname-Duff-Rock outcrop complex, 20 to 80 percent slopes	6,534	0.1	
235	\mid Norad silt loam, 0 to 1 percent slopes-	35,995	0.6	
236	\mid Norad-Spangenburg complex, 0 to 2 percent slopes	1,688	*	
237	\mid Nuss stony loam, 20 to 40 percent south slopes-	2,906		
238	\mid Nuss-Merlin complex, 20 to 40 percent north slopes	1,911	*	
239	\|Nuss-Rock outcrop complex, 20 to 40 percent south slope	5,278		
240	\| Observation stony loam, 2 to 20 percent slopes-	3,608	*	
241	\| Observation-Rock outcrop complex, 5 to 20 percent slopes	8,648	0.1	
242	\|Observation-Royst-Merlin complex, 2 to 30 percent slopes	8,024	0.1	
243	\| Observation-Teguro complex, 2 to 20 percent slopes-----------------------	3,392	*	
244	\| Observation-Lambring-Rock outcrop association, 20 to 50 percent slopes---		17,040	0.3
245	\|Olac-Atlow complex, 2 to 10 percent slopes	461		
246	\|Opie silt loam, 0 to 1 percent slopes-	3,085		
247	\|Oreneva gravelly loam, 0 to 12 percent slopes-----------------------------	5,921		
248	\|Outerkirk sandy loam, 1 to 4 percent slopes	13,383	0.2	
249	\|Outerkirk sandy loam, silty substratum, 2 to 6 percent slopes-----------		5,334	*
250	\|Outerkirk-Defenbaugh association, 1 to 4 percent slopes	30,051	0.5	
251	\| Ozamis silt loam, 0 to 1 percent slopes-----------------------------------	11,194	0.2	
252	\mid Pearlwise stony loam, 30 to 65 percent north slopes	2,040	*	
253	\mid Pernty gravelly silt loam, 3 to 15 percent slopes	18,882	0.3	
254	\|Pernty gravelly silt loam, 15 to 40 percent slopes	4,634	*	
255	\mid Pernty cobbly loam, 30 to 50 percent north slopes-----------------------	11,426	0.2	
256	\|Pernty-Rock outcrop complex, 30 to 70 percent south slopes--------------		54,848	0.9
257	\| Pernty-Westbutte-Ninemile association, 5 to 50 percent slopes-----------		12,807	0.2
258	\|Pits	142	*	
259	\|Playas---	43,759	0.7	
260	\mid Playas-Thenarrows complex, 0 to 2 percent slopes	5,260	*	
261	\| Poall silt loam, 2 to 20 percent slopes-----------------------------------	8,407	0.1	
262	\| Poall-Gumble complex, 2 to 20 percent slopes-----------------------------	11,114	0.2	
263	\| Pomerening very gravelly loamy sand, 2 to 20 percent slopes-------------		4,569	*

Table 4.--Acreage and Proportionate Extent of the Soils--Continued

Map symbol	Soil name	Acres	\| Percent
264	\| Pomerening-Flank-Lava flows complex, 2 to 20 percent slopes	2,802	*
265	\mid Porterfield loam, 2 to 20 percent slopes	4,493	
266	\mid Porterfield very stony loam, 20 to 40 percent south slopes	2,502	*
267	\|Porterfield-Tincan-Rock outcrop association, 20 to 60 percent slope	7,377	0.1
268	\mid Poujade very fine sandy loam, 0 to 2 percent slopes	16,780	0.3
269	\mid Poujade very fine sandy loam, 2 to 5 percent slopes	51,677	0.9
270	\|Poujade-Ausmus complex, 0 to 2 percent slopes	12,583	0.2
271	\| Raz cobbly fine sandy loam, 1 to 10 percent slopes	1,849	*
272	\mid Raz-Brace complex, 2 to 20 percent slopes-	559,766	9.3
273	\mid Raz-Brace complex, low precipitation, 2 to 20 percent slopes	62,443	1.0
274	\|Reallis sandy loam, 3 to 8 percent slopes	24,880	0.4
275	\|Reallis fine sandy loam, 0 to 3 percent slope	36,030	0.6
276	\mid Reese loam, 0 to 1 percent slopes	528	*
277	\mid Reluctan loam, 2 to 20 percent slopes	14,699	0.2
278	\mid Reluctan very stony silt loam, 2 to 20 percent slop	12,907	0.2
279	\|Riddleranch-Lambring-Rock outcrop complex, 20 to 50 percent slopes	12,190	0.2
280	\mid Riddleranch-Rock outcrop complex, 20 to 70 percent south slopes	10,428	0.2
281	\mid Rinconflat stony loam, 3 to 10 percent slopes	29,361	0.5
282	\mid Rio King loam, 1 to 6 percent slopes	11,920	0.2
283	\|Rio King-Droval complex, 0 to 2 percent slopes	5,143	*
284	\mid Risley-Gumble complex, 2 to 20 percent slopes	35,615	0.6
285	\mid Risley-Gumble-Torriorthents complex, 2 to 25 percent slope	23,045	0.4
286	\mid Risley-Rock outcrop complex, 5 to 20 percent slopes	7,174	0.1
287	\|Robson-Anawalt complex, 2 to 15 percent slopes-	18,741	0.3
288	\|Robson-Fourwheel complex, 3 to 30 percent slopes	89,716	1.5
289	\|Robson-Felcher association, 3 to 70 percent slopes	20,957	0.3
290	\mid Roca very cobbly clay loam, 15 to 40 percent south slope	19,135	0.3
291	\mid Rock outcrop and Rubble land, 20 to 60 percent slopes	7,382	0.1
292	\mid Rock outcrop-Baconcamp complex, 30 to 80 percent slope	22,350	0.4
293	\mid Royst-Merlin complex, 2 to 20 percent slopes	8,094	0.1
294	\|Rubble land-Nuss-Ateron association, 20 to 60 percent slope	2,425	*
295	\|Sagehen-Rock outcrop complex, 5 to 30 percent slopes	9,870	0.2
296	\|Sagehen-Rock outcrop complex, 30 to 70 percent slope	3,241	*
297	\|Sandgap sand, 3 to 8 percent slopes-	5,255	
298	\|Sandgap sand, 1 to 4 percent slopes, flooded	861	*
299	\|Seharney cobbly silt loam, 3 to 12 percent slopes	28,112	0.5
300	\|Skedaddle-Atlow-Rock outcrop complex, 5 to 30 percent slopes	36,459	0.6
301	\|Skedaddle-Atlow-Rock outcrop complex, 30 to 50 percent slopes	12,538	0.2
302	\|Skedaddle-Rock outcrop complex, 40 to 70 percent slope	3,213	*
303	\mid Skedaddle association, 30 to 50 percent slopes	8,127	0.1
304	\|Skidoosprings sandy loam, 0 to 3 percent slopes	10,670	0.2
305	\|Skidoosprings sandy loam, 0 to 1 percent slopes, flooded	140	*
306	\|Skunkfarm-Cumulic Haploxerolls complex, 0 to 2 percent slope	2,905	*
307	\|Skunkfarm-Doubleo complex, 0 to 1 percent slopes-	1,866	
308	\|Skunkfarm-Mcbain-Doubleo complex, 0 to 2 percent slope	10,425	0.2
309	\|Skunkfarm-Skidoosprings complex, 0 to 2 percent slopes	18,328	0.3
310	\mid Spangenburg silty clay loam, 0 to 1 percent slopes	27,089	0.4
311	\|Spangenburg silty clay loam, moist, 0 to 1 percent slopes-	20,898	0.3
312	\|Spangenburg silty clay loam, thick surface, 0 to 2 percent slopes	50,240	0.8
313	\|Srednic-Aval complex, 2 to 20 percent slopes	7,749	0.1
314	\|Stampede loam, 1 to 5 percent slopes	19,298	0.3
315	\|Swaler silt loam, 0 to 1 percent slopes	2,634	*
316	\|Swaler-Swalesilver association, 0 to 2 percent slopes	13,733	0.2
317	\|Swalesilver silt loam, 0 to 2 percent slopes	31,003	0.5
318	\|Swalesilver silt loam, dry, 0 to 2 percent slopes	5,105	*
319	\|Swalesilver silt loam, 0 to 1 percent slopes, flooded	2,542	*
320	\mid Teguro gravelly loam, 5 to 20 percent slopes	1,510	*
321	\|Teguro very cobbly loam, 2 to 20 percent slopes-	17,674	0.3
322	\mid Teguro very stony loam, thin surface, 2 to 20 percent slopes	8,450	0.1
323	\mid Teguro-Anatone complex, 2 to 20 percent slopes-	1,992	*
324	\|Teguro-Ateron complex, 2 to 20 percent slopes-	4,741	*
325	\mid Thenarrows-Duckclub complex, 0 to 1 percent slopes	25,228	0.4
326	\mid Thenarrows-Duckclub-Dentdraw complex, 0 to 2 percent slopes-	3,559	*
327	\|Thenarrows-Duckclub-Sandgap complex, 0 to 4 percent slopes	6,377	0.1
328	\mid Ticino-Merlin complex, 2 to 10 percent slopes-	3,622	*
329	\|Ticino-Observation complex, 2 to 20 percent slopes-	6,509	0.1

Table 4.--Acreage and Proportionate Extent of the Soils--Continued

$\begin{aligned} & \text { Map } \\ & \text { symbol } \end{aligned}$	Soil name	Acres	\mid Percent	
330	\|Ticino-Rock outcrop complex, 2 to 20 percent	1,252	*	
331	\|Toll sand, 2 to 15 percent slopes-	3,871	*	
332	\|Toll-Nevador complex, 0 to 15 percent slope	2,678	*	
333	\|Torriorthents-Gumble complex, 2 to 35 percent slopes---------------------		7,244	0.1
334	\|Tumtum cobbly loam, 4 to 15 percent slopes---------------------------------1	35,609	0.6	
335	\|Tumtum cobbly loam, high precipitation, 2 to 8 percent slopes-----------		647	*
336	\|Turpin sandy clay loam, 0 to 1 percent slopes---------------------------	214	*	
337	\|Vanwyper-Rock outcrop complex, 45 to 80 percent north slopes------------		1,034	*
338	\|Vergas gravelly loam, 0 to 3 percent slopes--------------------------------	51,306	0.9	
339		8,012	0.1	
340	\|Vining loam, 2 to 20 percent slopes---------------------------------------1	4,139	*	
341	\|Vining-Tuffo complex, 5 to 30 percent slopes-------------------------------	15,574	0.3	
342	\mid Vitale very stony loam, 5 to 20 percent slopes-----------------------------	12,029	0.2	
343	\|Vitale-Merlin complex, 2 to 20 percent slopes------------------------------	34,148	0.6	
344	\|Vitale-Merlin-Doyn complex, 2 to 20 percent slopes-----------------------		23,952	0.4
345	\|Vitale-Observation complex, 2 to 20 percent slopes-------------------------	3,481	*	
346	\|Vitale-Rock outcrop complex, 20 to 60 percent south slopes--------------		2,261	*
347	\|Voltage silt loam, 0 to 2 percent slopes------------------------------------	832	*	
348	\|Voltage-Crowcamp complex, 0 to 2 percent slopes---------------------------	13,189	0.2	
349	\|Voltage-Crowcamp complex, 0 to 2 percent slopes, flooded----------------		2,405	*
350	\|Voltage-Widowspring complex, 0 to 2 percent slopes------------------------	7,920	0.1	
351	\|Wagontire gravelly clay loam, 2 to 20 percent slopes---------------------		3,739	*
352	\|Wagontire-Vil complex, 2 to 20 percent slopes------------------------------	1,839	*	
353	\|Waspo-Poall complex, 2 to 8 percent slopes-------------------------------	554	*	
354	\|Water---	65,584	1.1	
355	\|Welch silt loam, cold, 0 to 5 percent slopes-----------------------------	255	*	
356	\|Welch silt loam, cool, 0 to 5 percent slopes-----------------------------	1,051	*	
357	\|Welch-Roschene-Cumulic Haploxerolls complex, 0 to 3 percent slopes-------		8,981	0.1
358	\|Wenas-Loupence-Cumulic Haploxerolls complex, 0 to 3 percent slopes-------		4,581	*
359	\|Westbutte very stony loam, 20 to 50 percent north slopes----------------		2,118	*
360	\|Westbutte extremely stony loam, 5 to 25 percent slopes------------------		5,888	*
361	\|Westbutte-Bocker complex, 20 to 60 percent slopes------------------------	4,394	*	
362	\|Westbutte-Lambring-Rock outcrop complex, 35 to 65 percent north slopes---		65,659	1.1
363	\|Westbutte-Rock outcrop complex, 20 to 60 percent north slopes-----------		17,788	0.3
364	\|Westbutte-Rock outcrop complex, 20 to 60 percent south slopes------------		13,704	0.2
365	\|Westbutte-Lambring-Rock outcrop association, 20 to 60 percent slopes-----		46,176	0.8
366	\|Westbutte-Lambring-Rock outcrop association, cool, 20 to 60 percent slopes	8,827	0.1	
367	\|Westbutte-Lambring-Rock outcrop association, moist, 20 to 60 percent slopes	7,074	0.1	
368	\|Westbutte-Observation association, 5 to 40 percent slopes---------------		12,542	0.2
369	\|Westbutte-Rock outcrop-Pernty association, 20 to 40 percent slopes-------		5,838	*
370	\|Widowspring silt loam, 0 to 2 percent slopes------------------------------	19,398	0.3	
371	\|Windybutte silt loam, 2 to 5 percent slopes-------------------------------	13,622	0.2	
372	\|Wolverine fine sand, 2 to 15 percent slopes-----------------------------	3,873	*	
373	\|Denied access--1	2,254	*	
	Total---1	6,032,528	100.0	

* Less than 0.1 percent.

Fable 5.--Land Capability and Yields per Acre of Crops and Pasture
(The "N" column is for nonirrigated areas; the "I" columns are for irrigated areas. Yields are those that can be expected under a high level of management. Absence of a yield indicates that the soil is not suited to the crop or the crop generally is not grown on the soil)

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability		Alfalfa hay	Grass hay	Pasture
	N	I	I	I	I
			Tons	Tons	AUM
28:					
Baconcamp-	$6 e$	---	---	---	---
Clamp-	7s	---	---	---	---
29:					
Baconcamp-	6 e	---	---	---	---
Clamp-	7s	---	--	---	--
$30:$					
Baconcamp-	7 e	-	---	---	---
Clamp---	7 e	-	---	---	---
Rock outcrop-	8	-	---	--	---
31:					
Baconcamp---	6 e	---	---	-	-
Rock outcrop-	8	-	--	---	---
32 :					
Baconcamp-	$6 e$	---	--	---	---
Rock outcrop-	8	---	---	---	---
33:					
Baconcamp-	6 e	---	---	---	---
Rock outcrop-	8	-	-	--	--
Hackwood-	$6 e$	-	-	---	---
34 :					
Baconcamp-	6 e	---	---	---	---
Hapgood-	6 e	-	---	---	---
Rock outcrop-	8	-	--	--	---
35:					
Baconcamp-	6 e	---	---	---	---
Krackle-	$6 e$	-	---	---	---
Rock outcrop-------	8	-	---	---	---
36:					
Berdugo------------	6 s	-	---	---	---
37 :					
Berdugo-	6 e	---	--	---	---
Catlow-	6 e	---	---	---	---
$38:$					
Bigfrog-----------	6 s	-	---	---	---
Brock--	6s	---	---	---	---
$39:$					
Bocker------------	7s	-	---	---	---
Westbutte----------	7s	---	---	---	---

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability		Alfalfa hay	Grass hay	Pasture
	N	I	I	I	I
			Tons	Tons	AUM
40:					
Boravall--------------- \|	6 s	---	---	---	---
Playas----------------- \|	8	---	---	---	---
41:					
Borobey---------------- \|	6 e	---	---	---	---
42 :					
Boulder Lake------------	6w	-	---	---	---
43:					
Boulder Lake------------ \|	6w	-	---	---	---
Merlin------------------	6 e	---	---	---	---
44:					
Boulder Lake------------	6w	4w	1.00	---	---
Spangenburg------------- \|	6 s	3s	3.50	---	---
45:					
Brabble---------------- \|	6 e	-	---	---	---
Calderwood-	7s	---	---	---	---
46:					
Brace------------------ \|	6 e	---	---	---	---
Coztur------------------	6 e	---	---	---	---
Rock outcrop------------ \|	8	-	---	---	---
47:					
Brace------------------- \|	6 e	-	---	---	---
Vergas------------------ \|	6 e	-	---	---	---
48:					
Bruncan, thick surface--\|	6 e	-	---	---	---
Bruncan, thin surface---	6 e	-	---	---	---
49:					
Brunzell---------------- \|	4s	-	---	---	---
50:					
Bucklake----------------	6 e	---	---	---	---
51:					
Bucklake--------------- \|	6 e	-	---	---	---
Mahoon------------------ \|	6 e	---	---	---	---
Rubble land------------- \|	8	---	---	---	---
52 :					
Calderwood-------------\|	7s	---	---	---	---
53 :					
Calderwood------------- \|	7s	-	---	---	---
McConnel--------------- \|	6 e	---	---	---	---
54:					
Carryback	6 e	---	---	---	---

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability		Alfalfa hay	Grass hay	Pasture
	N	I	I	I	I
			Tons	Tons	AUM
55:					
Carryback-------------- \|	$6 e$	---	---	---	---
56:					
Carryback---------------	6 e	---	-	-	---
57:					
Carryback--------------\|	6 e	-	---	---	---
58 :					
Carryback, thin surface	6 e	---	---	-	-
Carryback, thick surface\|	6 e	---	---	---	---
59 :					
Carryback, thin surface	6 e	---	-	-	---
Carryback, south slopes	$6 e$	---	-	---	-
Carryback, north slopes	6 e	---	---	---	---
60 :					
Carryback, south slopes	6 e	---	---	---	---
Carryback, north slopes	6 e	-	-	---	---
61:					
Carryback-------------- \|	7s	---	---	---	---
Pearlwise--------------\|	4 e	-	--	---	---
62 :					
Carryback--------------\|	7s	---	---	---	---
Pearlwise-------------- \|	6 e	---	---	---	---
Rock outcrop----------- \|	8	---	--	---	---
63 :					
Carryback--------------\|	6 e	---	--	--	---
Dickle-----------------\|	6 e	---	---	---	---
64:					
Carvix-----------------\|	6 c	4c	5.00	2.50	5.50
65:					
Clamp------------------ \|	7s	-	---	---	---
Baconcamp-------------- \|	6 e	-	---	---	---
Hackwood---------------- \|	6 e	-	---	---	---
66:					
Coztur-----------------\|	6 e	-	---	---	---
67 :					
Crowcamp----------------\|	6w	4w	4.00	2.00	4.40
68 :					
Crowcamp----------------\|	6w	4w	4.00	2.00	4.40
Ausmus-----------------\|	6s	6 s	4.00	1.00	2.20
Poujade---------------- \|	6 s	6 s	4.00	1.50	3.30

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability		Alfalfa hay	Grass hay	Pasture				
	N	I	I	I	I				
			Tons	Tons	AUM				
69:									
Davey-	6 e	---	---	---	---				
70 :									
Davey------------	6 e	-	---	---	---				
Oreanna----------	6 s	---	---	---	---				
71:									
Defenbaugh-	6 s	-	-	---	--				
72 :									
Deppy-	6 e	---	---	---	---				
73:									
Deppy-	6 e	---	---	---	---				
Tumtum-	6 e	---	---	---	---				
74:									
Dickle-	6 e	--	---	---	---				
75:									
Dixon-	6 s	---	---	---	---				
76:									
Dixon-	6 s	---	---	---	---				
77:									
Dixon-	6 e	-	---	---	---				
78:									
Dixon-	6 s	-	---	---	---				
Droval-	6s	-	---	---	---				
79 :									
Dogmountain-------	6 e	$6 e$	4.00	---	---				
80 :									
Doyn-	7s	-	---	---	---				
$81:$									
Doyn-------------	7s	---	--	---	---				
Merlin-	6 e	---	---	---	---				
82:									
Doyn--------------	7s	-	--	---	---				
Arcia-	7s	-	---	---	---				
83:									
Drewsey-----------	6 e	-	--	---	---				
84:									
Drewsey-----------	$6 e$	-	---	---	---				
85:									
Torriorthents---------\| 7s	---	---	---	---					
Gumble---------------- 6 e \| ---	---	---	---						
86:									
Droval 					---				

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability		Alfalfa hay	Grass hay	Pasture
	N	I	I	I	I
			Tons	Tons	AUM
87:					
Duff-	6 e	-	---	---	---
88:					
Duff-	$6 e$	--	---	---	---
Clamp-	7s	---	---	---	---
89 :					
Duff-	$6 e$	---	---	---	---
Clamp-	7s	---	---	---	---
90:					
Duff-	6 e	-	---	---	---
Hackwood-	6 e	---	---	---	---
91:					
Edemaps-	6 e	-	---	---	---
92:					
Edemaps--	6 e	-	---	---	---
Carryback-	$6 e$	---	---	---	---
93:					
Enko-	6 e	3 e	6.00	---	---
94:					
Enko-	6 e	3 e	6.00	---	---
Catlow-	6 e	3 e	4.00	---	---
95:					
Enko--	6 e	-	---	---	---
Catlow-	6 e	---	---	---	---
96:					
Enko-	6 e	---	---	---	---
Catlow-	6 e	-	---	---	---
97:					
Erakatak-	7 e	---	---	---	---
98:					
Erakatak-	6 e	---	---	---	---
Lambring---------	$6 e$	---	---	---	---
Rock outcrop------	8	---	---	---	---
99:					
Erakatak-	6 e	---	---	---	---
Merlin---	6 e	---	---	---	---
Westbutte---------	6 e	---	---	---	---
100:					
Erakatak----------	6 e	---	---	---	---
Rock outcrop------	8	---	---	---	---

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability		Alfalfa hay	Grass hay	Pasture
	N	I	I	I	I
			Tons	Tons	AUM
128:					
Gaib-	7s	---	---	---	---
Rock outcrop-	8	---	---	---	---
129:					
Gilispie-	7 s	--	---	---	---
Noname--	7s	---	---	---	---
130:					
Gochea-	6 e	---	---	---	---
131:					
Goldrun-	6 e	---	---	---	---
Alvodest-	6 s	---	---	---	---
132:					
Gradon-	6 e	-	---	---	---
133:					
Guano-------------134:	6 e	---	---	---	---
134: Gumble	6 e	---	---	---	---
135:					
Gumble	6 e	---	---	---	---
$136:$					
Gumble	6 e	---	---	---	---
Mahoon-	6 e	---	---	---	---
Cagle-------------137:	6 e	---	---	---	---
Hackwood	6 e	-	---	---	---
$138 \text { : }$					
Hackwood--------------------	6 e	---	---	---	---
	6 e	--	---	---	---
139:					
Hapgood-	6 e	---	---	---	---
140:					
Hart Camp	6 e	---	---	---	---
141:					
Hart Camp	6 e	---	---	---	---
142:					
Helphenstein------	6 s	---	---	---	---
	6 e	---	---	---	---
Goldrun-					
143:					
Homefield-	5w	---	---	---	---
144 :					
Housefield-	5w	5w	---	2.00	4.40

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability		Alfalfa hay	Grass hay	Pasture
	N	I	I	I	I
			Tons	Tons	AUM
160 :					
Ladycomb----------------	7s	---	---	--	---
161:					
Lambranch--------------	6 e	-	---	---	---
162 :					
Lambring---------------	6 e	--	---	---	---
Egyptcreek-------------	6 e	---	---	---	---
Rock outcrop-----------	8	---	---	---	---
163:					
Lambring, thick surface	6 e	---	---	---	--
Lambring, thin surface--	6 e	---	---	---	---
Rock outcrop--	8	---	---	---	---
164:					
Lambring----------------	7s	-	---	--	---
Rubble land------------	8	---	---	---	---
165:					
Langslet-	6 s	---	---	---	---
166:					
Lava flows-	8	-	---	---	---
167:					
Lava flows--------------	8	---	-	---	---
Flank--	7s	-	---	---	---
168 :					
Lawen-------------------	6 e	4 e	6.00	---	---
169 :					
Leathers----------------	6 s	-	---	---	---
170:					
Leathers----------------	6s	-	---	---	---
171:					
Leemorris---------------	6 e	-	---	---	---
Buckwilder-------------	6 e	--	---	---	---
172 :					
Leemorris---------------	6 e	---	---	---	---
Buckwilder-------------	6 e	-	---	---	---
173 :					
Legler-----------------	6 c	-	---	---	---
174:					
Locane------------------	7s	---	---	---	---
175:					
Lolak-------------------	6 s	---	---	---	---
176:					
Lolak-------------------	6 s	---	---	---	---

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability		Alfalfa hay	Grass hay	Pasture
	N	I	I	I	I
			Tons	Tons	AUM
176 :					
Ausmus-	6 s	---	---	---	---
177:					
Lonely-	6 e	---	---	-	---
Doyn-	7s	---	---	---	---
178:					
Lonely-	6 e	---	---	---	---
Robson--	7s	---	--	---	---
179 :					
Longcreek-	7 s	---	---	--	---
Cleavage-	7s	---	--	---	---
180:					
Longcreek-	7s	---	---	---	---
Rock outcrop-	8	---	---	---	---
181:					
Loupence-	3 c	3 c	--	2.50	5.50
182:					
Madeline--	6 e	---	---	---	---
183 :					
Madeline--	6 e	---	---	---	---
184 :					
Madeline-	6 e	---	--	---	---
Ninemile-	6 e	---	---	---	---
185:					
Madeline-	6 e	---	---	---	---
Rock outcrop-	8	---	--	---	---
186:					
Mahoon-	6 e	---	---	---	---
187:					
Mahoon-	6 e	---	---	---	---
Brezniak-	7s	---	---	---	---
Longcreek-	7s	---	---	---	---
188:					
Mahoon-	6 e	-	---	---	---
Cagle-------------	6 e	-	---	---	---
189 :					
Mahoon------------	6 e	-	---	---	---
Risley-	6 e	---	---	---	---
190:					
Mahoon------------------ \|	6 e	-	---	---	---
Cotant------------	6 e	---	---	---	---

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability		Alfalfa hay	Grass hay	Pasture
	N	I	I	I	I
			Tons	Tons	AUM
204:					
Mesman-	6 s	---	---	---	---
205:					
Mesman----------------	6 s	---	---	---	---
206:					
Mesman------------------	6 s	---	--	---	---
Norad-----------------	6 c	---	---	---	---
207:					
Middlebox-------------	6 e	-	--	---	---
208:					
Middlebox, north slopes	6 e	-	--	---	---
Middlebox, south slopes	6 e	---	---	---	---
209:					
Minam------------------	4c	-	-	---	---
210:					
Minam-	4c	---	---	---	---
Welch--	5w	---	---	---	---
211:					
Modoc-------------------	6 e	---	---	---	---
212 :					
Morfitt--------------	6 c	---	---	---	---
213 :					
Morganhills-----------	7s	$6 e$	3.50	---	---
214:					
Morganhills, more than					
12 percent slopes-----	7s	---	---	---	---
Morganhills, less than					
12 percent slopes------	7s	-	---	---	---
215:					
Mound-	4 e	---	---	---	---
216:					
Nevador-	6 e	-	---	---	---
217:					
Ninemile---------------	6 e	---	---	---	---
218:					
Ninemile---------------	6 e	---	---	---	---
219 :					
Ninemile---------------	6 e	---	---	---	---
220:					
Ninemile---------------	6 e	---	---	---	---
Carvix-----------------	6 c	---	---	---	---
221:					
Ninemile---------------	6 e	---	---	---	---
Doyn-------------------	7s	---	---	---	---

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability		Alfalfa hay	Grass hay	Pasture
	N	I	I	I	I
			Tons	Tons	AUM
234:					
Noname-	7s	---	---	---	---
Duff--	6 e	---	---	---	---
Rock outcrop-	8	---	---	---	---
235:					
Norad---	6 c	---	---	---	---
236:					
Norad--	6 c	---	---	---	---
Spangenburg-	6 s	---	---	---	---
237 :					
Nuss-	6 e	---	---	---	---
238:					
Nuss-	6 e	-	---	---	---
Merlin-	6 e	---	---	---	---
239 :					
Nuss--	6 e	-	---	---	---
Rock outcrop-	8	-	---	---	---
240 :					
Observation-	4 e	-	---	---	---
241:					
Observation--	4 e	-	---	---	---
Rock outcrop-	8	---	---	---	---
242:					
Observation--	4 e	---	---	---	---
Royst--	4 e	---	---	---	---
Merlin--	6 e	-	---	---	---
243 :					
Observation-	4 e	-	---	---	---
Teguro------------	6 e	---	---	---	---
244 :					
Observation-	6 e	---	---	---	---
Lambring----------	6 e	---	---	---	---
Rock outcrop------	8	---	---	---	---
245:					
Olac-------------	7s	---	---	---	---
Atlow--------------	7s	---	---	---	---
246:					
Opie--------------	6 s	6 s	---	2.00	4.40
247:					
Oreneva-----------	6 e	---	---	---	---

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability		Alfalfa hay	Grass hay	Pasture
	N	I	I	I	I
			Tons	Tons	$A U M$
295:					
Sagehen----------------	7s	---	---	---	--
Rock outcrop------------	8	---	---	---	---
296:					
Sagehen----------------\|	7s	---	---	--	---
Rock outcrop-----------	8	---	---	---	---
297:					
Sandgap-----------------	6 e	---	---	---	---
298:					
Sandgap-----------------	6 s	-	---	---	--
299 :					
Seharney---------------	7s	-	---	-	-
300 :					
Skedaddle---------------	7s	---	---	---	---
Atlow-------------------	7s	---	---	---	---
Rock outcrop------------	8	---	--	---	--
301:					
Skedaddle---------------	7s	---	---	---	---
Atlow-------------------	7s	---	---	---	---
Rock outcrop-----------	8	---	-	---	---
302 :					
Skedaddle--------------	7s	-	---	---	---
Rock outcrop-----------	8	-	--	---	---
303 :					
Skedaddle, south slopes	7s	-	--	--	--
Skedaddle, north slopes	7s	-	---	---	---
304 :					
Skidoosprings----------\|	6 s	-	--	---	---
305 :					
Skidoosprings----------\|	$6 s$	-	--	---	---
306:					
Skunkfarm---------------	5w	5w	---	2.00	4.40
Cumulic Haploxerolls----	$6 s$	---	---	---	---
307 :					
Skunkfarm---------------	5w	5w	---	2.00	4.40
Doubleo-----------------	5w	---	---	---	---
308:					
Skunkfarm---------------	5w	5w	---	2.00	4.40
Mcbain-----------------	$6 s$	---	---	---	---
Doubleo----------------	5w	---	---	---	---

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability		Alfalfa hay	Grass hay	Pasture
	N	I	I	I	I
			Tons	Tons	AUM
309 :					
Skunkfarm-	5w	5w	---	2.00	4.40
Skidoosprings-	6 s	$6 s$	---	1.50	3.30
310 :					
Spangenburg---	6 s	---	---	---	---
311:					
Spangenburg-	6 s	3s	3.50	2.00	4.40
312 :					
Spangenburg--	6 s	3 s	3.50	---	---
313 :					
Srednic-	6 e	---	---	---	---
Aval--	$6 e$	---	---	---	---
314 :					
Stampede-	6 e	---	---	---	---
315:					
Swaler-	6 s	---	---	---	---
316:					
Swaler-	6 s	---	---	---	---
Swalesilver-	6w	---	---	---	---
317:					
Swalesilver-------	6w	---	-	---	---
318:					
Swalesilver-	6w	-	-	---	---
319:					
Swalesilver-------	6w	---	---	---	---
320:					
Teguro-	6 e	---	---	---	---
321:					
Teguro-------------	$6 e$	---	---	---	---
322 :					
Teguro------------	6 e	-	-	---	---
323 :					
Teguro-------------	6 e	-	--	---	---
Anatone, moist----	7s	---	---	---	---
324:					
Teguro------------	6 e	-	---	---	---
Ateron--	7s	-	---	---	---
325:					
Thenarrows---------	6 s	-	---	---	---
Duckclub-----------	6 s	-	---	---	---
326:					
Thenarrows---------	6 s	---	---	---	---
Duckclub----------	6 s	---	---	---	---

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability		Alfalfa hay	Grass hay	Pasture			
	N	I	I	I	I			
			Tons	Tons	AUM			
326:								
Dentdraw-	6 s	-	---	---	---			
327:								
Thenarrows--	6s	-	---	---	---			
Duckclub----	6 s	---	---	---	---			
Sandgap-	6 s	-	---	---	---			
$328:$								
Ticino--	4 e	---	---	---	---			
Merlin-	6 e	---	---	---	---			
329 :								
Ticino----	4 e	-	---	---	---			
Observation-	4 e	---	---	---	---			
330:								
Ticino--	4 e	---	---	---	---			
Rock outcrop-	8	---	---	---	---			
331:								
Toll-	6 e	---	---	---	---			
332:								
Toll--	6 e	---	---	---	---			
Nevador-	6 e	---	---	---	---			
333:								
Torriorthents-	7s	-	---	---	---			
Gumble-	6 e	---	---	---	---			
334:								
Tumtum-	6 e	---	---	---	---			
335:								
Tumtum--	6 e	---	---	---	---			
336:								
Turpin-----------	6 s	---	---	---	---			
337:								
Vanwyper----------	7 e	---	---	---	---			
Rock outcrop-	8	---	---	---	---			
338:								
Vergas--	6 s	---	---	---	---			
339:								
Vil-	6 e	---	---	---	---			
340:								
Vining------------	6 e	---	---	---	---			
341:								
Vining---------------- 6 e \| ---	---	---	---					

342:								
Vitale-----	$6 s$	---	---	---	---			

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Table 5.--Land Capability and Yields per Acre of Crops and Pasture--Continued

Map symbol and soil name	Land capability		Alfalfa hay	Grass hay	Pasture
	N	I	I	I	I
			Tons	Tons	AUM
370:					
Widowspring-	4 c	4 c	6.00	2.50	5.50
371:					
Windybutte--	6 e	4 e	6.00	--	---
372 :					
Wolverine--	6 e	---	---	---	--
373 :					
Denied access-----	-	-	---	---	---

Fable 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities
(Composition of the forest understory is based on percent canopy cover; composition of the range sites is based on percent weight)

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	$\begin{aligned} & \text { \| Dry } \\ & \text { \|Weight } \end{aligned}$		\|Forest	\|Range
			\| Lb/acre		Pct	PCt
8:						
Anatone, moist--\|			1,200	\| Idaho fescue		40
	(R010XC0820R)	Normal	900	\|Bluebunch wheatgrass		25
		\|Unfavorable	600	\| Sandberg bluegrass		5
				\|Antelope bitterbrush		5
				\mid Mountain big sagebrush		5
				\| Ponderosa pine		5
				\|Western juniper		5
	SR MAHOGANY MOUNTAIN LOAM	Favorable		Idaho fescue		25
Anatone-	\| 14-18PZ (R010XC0800R)	\| Normal	1,200	\| Curl-leaf mountain mahogany		25
		Unfavorable	1,000	\| Antelope bitterbrush		15
				\| Bluebunch wheatgrass		15
				\|Mountain big sagebrush		5
				\| Ponderosa pine		5
9:						
Anatone	\| JD MOUNTAIN CLAYPAN $12-16 \mathrm{PZ}$\| (R010XB0800R)	Favorable	700	\| Idaho fescue		50
		Normal	500	\|Bluebunch wheatgrass		15
		\|Unfavorable	300	\| Low sagebrush		15
				\| Onespike oatgrass		8
				\|Sandberg bluegrass		5
Teguro---------	SR MAHOGANY MOUNTAIN LOAM 14-18PZ (R010XC0800R)	Favorable		Idaho fescue		25
		\|Normal	$1,200$	\|Curl-leaf mountain mahogany		25
		\|Unfavorable	$1,000$	\| Antelope bitterbrush		15
				\| Bluebunch wheatgrass		15
				\|Mountain big sagebrush		5
				\| Ponderosa pine		5
Observation----- \|	$\begin{aligned} & \text { \|SR MOUNTAIN CLAYEY 12-16PZ } \\ & \text { (R010XC0320R) } \end{aligned}$					70
		\|Normal	1,500	\|Bluebunch wheatgrass		10
		\|Unfavorable	1,000			10
				\|Thurber needlegrass		5
10:						
Anatone, moist--\|	SR DRY PINE 14-16PZ (R010XC0820R)		1,200	\|Idaho fescue		
		\|Normal	900	\|Bluebunch wheatgrass		25
		\|Unfavorable	600	\|Sandberg bluegrass		5
				\|Antelope bitterbrush		5
				\|Mountain big sagebrush		5
				\| Ponderosa pine		5
				\|Western juniper		5
Egyptcreek------	\|Ponderosa pine/mountain big sagebrush/Idaho fescuebluebunch wheatgrass (CPS131)		1,000			
		\|Normal	800	\| Antelope bitterbrush	15	
		\|Unfavorable	600		10	
				\|Mountain big sagebrush	5	
				\| Ponderosa pine	5	
				\|Wax currant	5	
Rock outcrop.						
11:						
Anatone, moist--\|	$\begin{aligned} & \text { \|SR DRY PINE 14-16PZ } \\ & \text { (R010xC0820R) } \end{aligned}$		1,200	\| Idaho fescue		40
		\| Normal	900	\|Bluebunch wheatgrass		25
		\|Unfavorable	600	\|Sandberg bluegrass		5
				\| Antelope bitterbrush		5
				\mid Mountain big sagebrush		5
				\| Ponderosa pine		5
				\|Western juniper		5
Minam----------	SR DRY MOUNTAIN SWALE $12-16 \mathrm{PZ}$(R010XC0190R)			Idaho fescue		70
		\| Normal	1,800	\|Bluebunch wheatgrass		15
		\|Unfavorable	1,600	\| Sedge		10
				\|Mountain big sagebrush		5

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		Kind of year	$\begin{aligned} & \text { Dry } \\ & \text { \|Weight } \end{aligned}$		\| Forest	Range	
			\| Lb/acre		PCt	PCt	
11:							
Rock outcrop.							
12 :							
Anatone---------	\|SR MOUNTAIN SHALLOW SOUTH	\|Favorable	900	\|Bluebunch wheatgrass		60	
	12-16PZ (R010xC054OR)	\|Normal		\| Sandberg bluegrass		8	
		\|Unfavorable		\| Idaho fescue		5	
				\| Antelope bitterbrush		5	
				\|Mountain big sagebrush		5	
				\|Squaw apple		5	
Teguro---------	\| SR MOUNTATN SHALLOW 12-16PZ						
	\|SR MOUNTAIN SHALLOW 12-16PZ (R010XC037OR)	\| Favorable	Normal	$\begin{aligned} & 1,500 \\ & 1,200 \end{aligned}$	Idaho fescue \|Bluebunch wheatgrass		70 15
		\|Unfavorable	1,000	\|Mountain big sagebrush		10	
				\|Sandberg bluegrass		5	
Rock outcrop.							
13:							
Anatone--------	\|SR MOUNTAIN SHALLOW SOUTH	\|Favorable	900	\|Bluebunch wheatgrass		60	
	12-16PZ (R010XC054OR)	\| Normal	600	\| Sandberg bluegrass		8	
		\|Unfavorable	400	\| Idaho fescue		5	
				\| Antelope bitterbrush		5	
				\|Mountain big sagebrush		5	
				\|Squaw apple		5	
Westbutte------	\|SR MOUNTAIN NORTH $12-16 \mathrm{PZ}$	\|Favorable	2,200	\| Idaho fescue		75	
	(R010XC0660R)	\|Normal	1,600	\|Bluebunch wheatgrass		8	
		\|Unfavorable	1,000	\|Mountain big sagebrush		5	
Rock outcrop.							
14:							
Anawalt--------	\| CLAYPAN 10-12PZ (R023XY2140R)	\|Favorable	900	\|Bluebunch wheatgrass		40	
		\| Normal	700	\|Low sagebrush		20	
		\|Unfavorable	500	\| Sandberg bluegrass		10	
				\| Balsamroot		5	
				\| Lomatium		5	
				\|Lupine		5	
15:							
Anawalt---------	\| CLAYPAN 10-12PZ (R023XY2140R)	\|Favorable	900	\|Bluebunch wheatgrass		40	
		\| Normal	700	\| Low sagebrush		20	
		\|Unfavorable	500	\| Sandberg bluegrass		10	
				\| Balsamroot		5	
				\| Lomatium		5	
				\|Lupine		5	
Lonely---------	\|LOAMY 10-12PZ (R023XY2120R)			\| Thurber needlegrass		40	
		\|Normal	800	\| Bluebunch wheatgrass		25	
		\|Unfavorable	600	\|Sandberg bluegrass		10	
				\|Wyoming big sagebrush		10	
				\|Bottlebrush squirreltail		8	
				\| Indian ricegrass		7	
				\|Spiny hopsage		5	
16:							
Anawalt--------	\|SHALLOW GRAVELLY LOAM 10-12PZ	\|Favorable	700	\| Thurber needlegrass		50	
	(R023XY2150R)	\|Normal	500	\|Bluebunch wheatgrass		15	
		\|Unfavorable	300	\| Low sagebrush		10	
				\|Sandberg bluegrass		5	
				\|Bottlebrush squirreltail		5	

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		\|Kind of year	$\begin{aligned} & \mid \text { Dry } \\ & \text { \|Weight } \end{aligned}$		Forest	Range	
			\| Lb/acre			Pct	Pct
16:							
Oreneva--------\|	\|LOAMY 10-12PZ (R023XY2120R)	Favorable	1,000	\|Thurber needlegrass		40	
		Normal	800	\|Bluebunch wheatgrass		25	
		Unfavorable	600	\|Sandberg bluegrass		10	
				\|Wyoming big sagebrush		10	
				\|Bottlebrush squirreltail		8	
				\| Indian ricegrass		7	
				\| Spiny hopsage		5	
17:							
Anawalt---------	\| CLAYPAN 10-12PZ (R023XY2140R)	Favorable	900	\| Bluebunch wheatgrass		40	
		\|Normal	700	\| Low sagebrush		20	
		Unfavorable	500	\| Sandberg bluegrass		10	
				\|Balsamroot		5	
				\| Lomatium		5	
				\| Lupine		5	
Raz	\|LOAMY 10-12PZ (R023XY2120R)	Favorable	1,000	\|Thurber needlegrass		40	
		Normal	800	\| Bluebunch wheatgrass		25	
		Unfavorable	600	\| Sandberg bluegrass		10	
				\|Wyoming big sagebrush		10	
				\|Bottlebrush squirreltail		8	
				\| Indian ricegrass		7	
				\| Spiny hopsage		5	
18:							
Ateron----------	$\begin{aligned} & \text { \|SR MOUNTAIN SHALLOW } 12-16 \mathrm{PZ} \\ & \text { (R010XC037OR) } \end{aligned}$	\|Favorable	1,500	\| Idaho fescue		70	
		\| Normal	1,200	\| Bluebunch wheatgrass		15	
		Unfavorable	1,000	\| Mountain big sagebrush		10	
				\| Sandberg bluegrass		5	
19:							
Ateron--------- \|	$\begin{aligned} & \text { \|SR MOUNTAIN SHALLOW 12-16PZ } \\ & \text { (R010XC0370R) } \end{aligned}$	Favorable	1,500	\| Idaho fescue		70	
		\| Normal	1,200	\| Bluebunch wheatgrass		15	
		\|Unfavorable	1,000	\|Mountain big sagebrush		10	
				\|Sandberg bluegrass		5	
Rubble land.							
20:							
Ateron---------- \|	$\begin{aligned} & \text { \|SR MOUNTAIN SHALLOW 12-16PZ } \\ & \text { \| (R010XC037OR) } \end{aligned}$	Favorable	1,500	\| Idaho fescue		70	
		\|Normal	1,200	\| Bluebunch wheatgrass		15	
		Unfavorable	1,000	\| Mountain big sagebrush		10	
				\| Sandberg bluegrass		5	
Observation-----\|	$\begin{aligned} & \text { \|SR MOUNTAIN CLAYEY 12-16PZ } \\ & \text { \| (R010XC032OR) } \end{aligned}$		2,000	\| Idaho fescue		70	
		\| Normal	1,500	\|Bluebunch wheatgrass		10	
		Unfavorable	1,000	\| Mountain big sagebrush		10	
				\|Thurber needlegrass		5	
21:							
Atlow	$\begin{aligned} & \text { \|SHALLOW LOAM 8-10PZ } \\ & \text { \| (R024XY017OR) } \end{aligned}$	Favorable	700	\|Thurber needlegrass		35	
		\| Normal	500	\| Indian ricegrass		15	
		\|Unfavorable	300	\|Wyoming big sagebrush		15	
				\|Bluebunch wheatgrass		15	
				\|Bottlebrush squirreltail		10	
				\|Spiny hopsage		10	
22:							
Atlow----------	SHALLOW LOAM 8-10PZ (R024XY017OR)			\|Thurber needlegrass			
		\|Normal	500	\| Indian ricegrass		15	
		\|Unfavorable	300	Wyoming big sagebrush		15	
				\| Bluebunch wheatgrass		15	
				\|Bottlebrush squirreltail		10	
				\|Spiny hopsage		10	
Rock outcrop.							

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition				
		Kind of year	$\begin{aligned} & \mid \text { Dry } \\ & \text { \|Weight } \end{aligned}$		\|Forest	\|Range			
			Lb/acre		Pct	PCt			
23:									
Atlow-	\|SHALLOW LOAMY SLOPES 6-10PZ	Favorable	700	\| Indian ricegrass		30			
	(R024XY0300R)	Normal	500	\|Wyoming big sagebrush		25			
		Unfavorable	300			10			
				\|Spiny hopsage		10			
Rock outcrop.									
24:									
Atlow-----------	\|SHALLOW LOAM 8-10PZ\quad (R024XY017OR)	\|Favorable	700	\|Thurber needlegrass		35			
		Normal	500	Indian ricegrass		15			
		Unfavorable	300	\|Wyoming big sagebrush		15			
				\|Bluebunch wheatgrass		15			
				\|Bottlebrush squirreltail		10			
				\|Spiny hopsage		10			
Skedaddle------	DESERT LOAM 6-10PZ (R024XY0150R)	Favorable	700	\|Shadscale		35			
		Normal	500	\|Bud sagebrush		25			
		Unfavorable	400	Indian ricegrass		15			
				\|Bottlebrush squirreltail		10			
				\|Spiny hopsage		5			
25:									
Ausmus---------		SODIC BOTTOM (R024XY0030R)	Favorable	1,700	\| Basin wildrye		60		
	Normal		1,400	\|Black greasewood		15			
	\|Unfavorable		1,100	\| Inland saltgrass		5			
26:									
Ausmus	\|SODIC LAKE TERRACE (R024XY1140R)		1,000	\|nland saltgrass		60			
		\| Normal	800	\|Lemmon's alkaligrass		20			
		Unfavorable	600	\|Black greasewood		15			
Baconcamp------	NORTH SLOPES 12-16PZ (R023XY3100R)	Favorable	1,800	\| Idaho fescue		45			
		\| Normal	1,400	\|Basin wildrye		10			
		\|Unfavorable	1,000	\|Bluebunch wheatgrass		10			
				\|Mountain big sagebrush		10			
				\| Sandberg bluegrass		5			
						5			
				\|Common snowberry		5			
28:									
Baconcamp------	SHALLOW LOAM 16-25PZ(RO23XY5010R)		1,600	\|Idaho fescue		50			
		Normal	1,200	\|Sheep fescue		15			
		Unfavorable	800	\|Mountain big sagebrush		10			
				\|Letterman needlegrass		5			
				\| Basin wildrye		5			
				\|Sedge		5			
				\|Western needlegrass		5			
Clamp----------	\| CLAYPAN 16-25PZ (R023XY5070R)		1,100	\|Idaho fescue		45			
		\| Normal	900	\|Low sagebrush		15			
		Unfavorable	700	\|Onespike oatgrass		10			
				\|Sheep fescue		10			
				\|Letterman needlegrass		5			
				\|Prairie junegrass		5			
				\|Western needlegrass		5			
29:									
Baconcamp-------	DEEP NORTH 12-18PZ (R023XY4040R)	\|Favorable	1,800	\| Idaho fescue		60			
		\| Normal	1,500	\|Needlegrass		15			
		\|Unfavorable	1,200	\|Mountain big sagebrush		8			
				\|Bluebunch wheatgrass		7			
				\|Bluegrass		5			
				\|Whortleleaf snowberry		5			

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition			
		Kind of year	$\begin{array}{\|c\|} \mid \text { Dry } \\ \mid \text { Weight } \end{array}$		Forest	\|Range		
			\| Lb/acre			Pct	Pct	
29:								
Clamp-----------			1,200	\| Idaho fescue		50		
	\| (R023XY3120R)	\|Normal	900	\|Low sagebrush		20		
		\|Unfavorable	700			10		
				\|Sandberg bluegrass		5		
30:								
Baconcamp------	$\begin{aligned} & \text { \|NORTH SLOPES } 12-16 \mathrm{PZ} \\ & \quad \text { (RO23XY3100R) } \end{aligned}$	\|Favorable	1,800	\| Idaho fescue		45		
		\|Normal	$1,400$	\| Basin wildrye		10		
		\|Unfavorable	1,000	\|Bluebunch wheatgrass		10		
				\|Mountain big sagebrush		10		
				\| Sandberg bluegrass		5		
				\|Antelope bitterbrush		5		
				\| Common snowberry		5		
Clamp-----------	SHALLOW NORTH 12-16PZ (R023XY3120R)			Idaho fescue				
		\| Favorable	Normal	$\begin{array}{r} 1,200 \\ 900 \end{array}$	Idaho fescue \|Low sagebrush		50 20	
		\|Unfavorable	700			10		
				\|Sandberg bluegrass		5		
Rock outcrop.								
31:								
Baconcamp------	SHALLOW LOAM 16-25PZ(RO23XY5010R)	\| Favorable	1,600	\| Idaho fescue		50		
		\| Normal	1,200	\| Sheep fescue		15		
		\|Unfavorable	800	\|Mountain big sagebrush		10		
				\|Letterman needlegrass		5		
				\| Basin wildrye		5		
				\| Sedge		5		
				\|Western needlegrass		5		
Rock outcrop.								
32:								
Baconcamp-------	DEEP NORTH 12-18PZ (R023XY4040R)		1,800	\| Idaho fescue		60		
		\|Normal	1,500	\|Needlegrass		15		
		\|Unfavorable	1,200	\|Mountain big sagebrush		8		
				\|Bluebunch wheatgrass		7		
				\|Bluegrass		5		
				\|Whortleleaf snowberry		5		
Rock outcrop.								
33:								
Baconcamp-------	$\begin{aligned} & \text { \|SUBALPINE SLOPES } 16-35 \mathrm{PZ} \\ & \text { (R023XY509OR) } \end{aligned}$							
		\| Normal	$1,000$	\|Mountain big sagebrush		15		
		\|Unfavorable	800	\|Whortleleaf snowberry		10		
				\|Letterman needlegrass		5		
				\|Basin wildrye		5		
				\|Bluebunch wheatgrass		5		
				\| Sedge		5		
Rock outcrop.								
Hackwood-------	ASPEN 16-35PZ (R023XY4180R)			Quaking aspen		40		
		\| Normal	2,000	\|Sedge		15		
		\|Unfavorable	1,500	\| Needlegrass		10		
				\|Whortleleaf snowberry		10		
				$\mid \mathrm{Melic}$		5		
				\|Mountain big sagebrush		5		
				\|Mountain brome		5		

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition				
		\|Kind of year	$\begin{aligned} & \text { \| Dry } \\ & \text { \|Weight } \end{aligned}$		\| Forest	\|Range			
			\| Lb/acre		Pct	PCt			
Spangenburg-----	CLAYEY PLAYETTE (R024XY0080R)	Favorable	700	\|Wyoming big sagebrush		40			
		\| Normal	500	\|Bottlebrush squirreltail		20			
		Unfavorable	300	\|Sandberg bluegrass		10			
				\| Thurber needlegrass		10			
				\| Indian ricegrass		8			
45:									
Brabble-------- \|	SHALLOW LOAM $8-10 \mathrm{PZ}$$\quad($ RO24XYO17OR $)$	Favorable	700	\| Thurber needlegrass		35			
		\|Normal	500	\| Indian ricegrass		15			
		Unfavorable	300	\|Wyoming big sagebrush		15			
				\|Bluebunch wheatgrass		15			
				\|Bottlebrush squirreltail		10			
				\|Spiny hopsage		10			
Calderwood------	$\begin{aligned} & \text { \|SHALLOW LOAM 8-10PZ } \\ & \text { (R024XY0170R) } \end{aligned}$	Favorable	700	\|Thurber needlegrass		35			
		\| Normal	500	Indian ricegrass		15			
		Unfavorable	300	\|Wyoming big sagebrush		15			
				\|Bluebunch wheatgrass		15			
				\|Bottlebrush squirreltail		10			
				\|Spiny hopsage		10			
46:									
Brace----------	\|LOAMY 10-12PZ (R023XY2120R)		1,000	\| Thurber needlegrass		40			
		\|Normal	800	\|Bluebunch wheatgrass		25			
		\|Unfavorable	600	\|Sandberg bluegrass		10			
				\|Wyoming big sagebrush		10			
				\| Bottlebrush squirreltail		8			
				\| Indian ricegrass		7			
				\| Spiny hopsage		5			
Coztur----------	\|LOAMY 10-12PZ (R023XY2120R)		1,000	\| Thurber needlegrass					
		\|Normal	800	\|Bluebunch wheatgrass		25			
		Unfavorable	600	\| Sandberg bluegrass		10			
				\|Wyoming big sagebrush		10			
				\| Bottlebrush squirreltail		8			
				\| Indian ricegrass		7			
				\| Spiny hopsage		5			
		Rock outcrop.							
47:									
Brace----------	\|LOAMY 10-12PZ (R023XY2120R)	\|Favorable	1,000	\|Thurber needlegrass		40			
		\|Normal	800	\| Bluebunch wheatgrass		25			
		\|Unfavorable	600	\| Sandberg bluegrass		10			
				\|Wyoming big sagebrush		10			
				\| Bottlebrush squirreltail		8			
				\| Indian ricegrass		7			
				\| Spiny hopsage		5			
Vergas----------	\|LOAMY 10-12PZ (R023XY2120R)	\|Favorable	1,000	\|Thurber needlegrass		40			
		\| Normal	800	\|Bluebunch wheatgrass		25			
		\|Unfavorable	600	\| Sandberg bluegrass		10			
				\|Wyoming big sagebrush		10			
				\| Bottlebrush squirreltail		8			
				\| Indian ricegrass		7			
				\| Spiny hopsage		5			
48:									
Bruncan, thick surface									
	$\begin{aligned} & \text { \|SHALLOW LOAM 8-10PZ } \\ & \mid \text { (R024XYO17OR) } \end{aligned}$		700	\| Thurber needlegrass		35			
		\| Normal	500	\| Indian ricegrass		15			
		\|Unfavorable	300	Wyoming big sagebrush		15			
				\|Bluebunch wheatgrass		15			
				\|Bottlebrush squirreltail		10			
				\|Spiny hopsage		10			

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		Kind of year	$\begin{array}{\|c} \text { Dry } \\ \text { \|Weight } \end{array}$		\| Forest	Range	
			\| Lb/acre			Pct	Pct
55:							
Carryback-------\|	LOAMY 12-16PZ (R023XY3180R)	Favorable	1,400	\| Idaho fescue		50	
		Normal	1,000	\| Thurber needlegrass		15	
		\|Unfavorable	700	\|Bluebunch wheatgrass		10	
				\|Mountain big sagebrush		10	
				\|Sandberg bluegrass		5	
				\| Basin big sagebrush		5	
56:							
Carryback-------	\| CLAYPAN 12-16PZ (R023XY2160R)	\|Favorable	1,000	\| Idaho fescue		50	
		\| Normal	800	\|Bluebunch wheatgrass		15	
		\|Unfavorable	600	\|Low sagebrush		15	
				\| Sandberg bluegrass		8	
				\|Thurber needlegrass		7	
57:							
Carryback-------	LOAMY 10-12PZ (R023XY2120R)	\|Favorable	1,000	\|Thurber needlegrass		40	
		\|Normal	800	\|Bluebunch wheatgrass		25	
		\|Unfavorable	600	\| Sandberg bluegrass		10	
				\|Wyoming big sagebrush		10	
				\|Bottlebrush squirreltail		8	
				\| Indian ricegrass		7	
				\| Spiny hopsage		5	
58:							
Carryback, thin surface-							
	\| CLAYPAN 12-16PZ (R023XY2160R)		1,000	\| Idaho fescue		50	
		Normal	800	\|Bluebunch wheatgrass		15	
		\|Unfavorable	600	\|Low sagebrush		15	
				\|Sandberg bluegrass		8	
				\|Thurber needlegrass		7	
Carryback, thick surface	\|DROUGHTY LOAM 11-13PZ(R023XY316OR)	\|Favorable	1,400	Idaho fescue		35	
		\| Normal	1,200	\|Thurber needlegrass		25	
		\|Unfavorable	900	\|Bluebunch wheatgrass		20	
				\|Basin big sagebrush		10	
				\|Sandberg bluegrass		5	
59:							
Carryback, thin surface	\| CLAYPAN 12-16PZ (R023XY2160R)						
		\|Favorable	1,000	\| Idaho fescue		50	
		Normal	800	\|Bluebunch wheatgrass		15	
		\|Unfavorable	600	\|Low sagebrush		15	
				\| Sandberg bluegrass		8	
				\| Thurber needlegrass		7	
Carryback, south slopes							
	DROUGHTY SOUTH SLOPES 11-13PZ (R023XY3010R)			\| Bluebunch wheatgrass		40	
		\|Normal	900	\|Thurber needlegrass		25	
		\|Unfavorable	700	\| Basin big sagebrush		10	
				\| Idaho fescue		8	
				\|Sandberg bluegrass		5	
				\|Wyoming big sagebrush		5	
				\| Balsamroot		5	
Carryback, north\|							
slopes	$\left\lvert\, \begin{aligned} & \text { NORTH SLOPES 12-16PZ } \\ & \text { (RO23XY3100R) }\end{aligned}\right.$		1,800	Idaho fescue		45	
		\|Normal	1,400	\| Basin wildrye		10	
		\|Unfavorable	1,000	\| Bluebunch wheatgrass		10	
				\|Mountain big sagebrush		10	
				\| Sandberg bluegrass		5	
				\| Antelope bitterbrush		5	
				\| Common snowberry		5	

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	$\begin{aligned} & \text { \| Dry } \\ & \text { \|Weight } \end{aligned}$		\|Forest	\|Range
			\| Lb/acre		PCt	Pct
60:						
Carryback, south slopes						
	\|SOUTH SLOPES 8-12PZ	Favorable	1,000	\|Bluebunch wheatgrass		50
	(R023XY3000R)	\| Normal	700	\|Thurber needlegrass		15
			500	\|Wyoming big sagebrush		10
				\| Antelope bitterbrush		10
				\| Indian ricegrass		5
				\| Sandberg bluegrass		5
				\|Basin big sagebrush		5
$\begin{aligned} & \text { Carryback, north } \\ & \text { slopes-------- } \end{aligned}$						
		\|Favorable	1,500	\|Idaho fescue		50
	(R023XY3080R)	Normal	1,200	\|Wyoming big sagebrush		10
		\|Unfavorable	1,000	\|Bluebunch wheatgrass		10
				\|Skyline bluegrass		10
				\|Sandberg bluegrass		5
				\| Basin big sagebrush		5
61:						
Carryback------\|	\| CLAYPAN 12-16PZ (R023XY2160R)	\|Favorable	1,000	\|Idaho fescue		50
		\| Normal	800	\|Bluebunch wheatgrass		15
		\|Unfavorable	600	\|Low sagebrush		15
				\| Sandberg bluegrass		8
				\|Thurber needlegrass		7
Pearlwise-------	\|LOAMY 12-16PZ (R023XY3180R)	\|Favorable	1,400	\| Idaho fescue		50
		\| Normal	1,000	\|Thurber needlegrass		15
		\|Unfavorable	700	\|Bluebunch wheatgrass		10
				\|Mountain big sagebrush		10
				\| Sandberg bluegrass		5
				\|Basin big sagebrush		5
62 :						
Carryback------	\|SHALLOW NORTH 12-16PZ	\|Favorable	1,200	\| Idaho fescue		50
	(R023XY3120R)	\|Normal	900	\|Low sagebrush		20
		\|Unfavorable	700	\| Bluebunch wheatgrass		10
				\|Sandberg bluegrass		5
Pearlwise-------\|	DEEP NORTH 12-18PZ (R023XY404OR)			\| Idaho fescue		
	DEEP NORTH 12-18PZ (R023XY4040R)	\| ${ }^{\text {Favormal }}$	1,800 1,500	Idaho fescue \| Needlegrass		60 15
		\|Unfavorable	1,200	\|Mountain big sagebrush		8
				\|Bluebunch wheatgrass		7
				\|Bluegrass		5
				\|Whortleleaf snowberry		5
Rock outcrop.						
63:						
Carryback-------				\| Idaho fescue		
	(R023XY3120R)	\|Normal	900	\|Low sagebrush		20
		\|Unfavorable	700			10
				\|Sandberg bluegrass		5
Dickle---------	SHALLOW NORTH 12-16PZ	\|Favorable	1,200	Idaho fescue		50
	(R023XY3120R)	\|Normal	1,200 900	\|Low sagebrush		20
		\|Unfavorable	700	\|Bluebunch wheatgrass		10
				\| Sandberg bluegrass		5
64:						
Carvix---------- \|	\| SWALE 10-14PZ (R023XY2020R)	\|Favorable	2,000	\|Basin wildrye		35
		\| Normal	1,800	\| Basin big sagebrush		20
		\|Unfavorable	1,500	Idaho fescue		10
				\| Bluebunch wheatgrass		10
				\| Sandberg bluegrass		5
				\|Thurber needlegrass		5
				\|Western needlegrass		5

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	$\begin{array}{\|c\|} \mid \text { Dry } \\ \text { \|Weight } \end{array}$		\|Forest	\| Range
			\| Lb/acre		Pct	PCt
65:						
Clamp-----------	\|SHALLOW NORTH 12-16PZ	Favorable	1,200	\| Idaho fescue		50
	(R023XY3120R)	Normal	900	\|Low sagebrush		20
		\|Unfavorable	700	\| Bluebunch wheatgrass		10
				\|Sandberg bluegrass		5
Baconcamp------	\|DEEP NORTH 12-18PZ (R023XY404OR)	Favorable	1,800	\| Idaho fescue		60
		\| Normal	1,500	\| Needlegrass		15
		\|Unfavorable	1,200	\|Mountain big sagebrush		8
				\|Bluebunch wheatgrass		7
				\|Bluegrass		5
				\|Whortleleaf snowberry		5
Hackwood-------	\|ASPEN 16-35PZ (R023XY4180R)	Favorable	2,500	\|Quaking aspen		40
		\| Normal	2,000	\| Sedge		15
		\|Unfavorable	1,500	\| Needlegrass		10
				\|Whortleleaf snowberry		10
				\mid Melic		5
				\|Mountain big sagebrush		5
				\|Mountain brome		5
66:						
Coztur	\| LOAMY 10-12PZ (R023XY2120R)	Favorable	1,000	\|Thurber needlegrass		40
		\|Normal	800	\| Bluebunch wheatgrass		25
		Unfavorable	600	\|Sandberg bluegrass		10
				\|Wyoming big sagebrush		10
				\|Bottlebrush squirreltail		8
				\| Indian ricegrass		7
				\| Spiny hopsage		5
67:						
Crowcamp--------	\| PONDED CLAY (R023XY2000R)	\|Favorable	1,800	\| Sandberg bluegrass		45
		Normal	1,500	\|Beardless wildrye		15
		\|Unfavorable	1,000	\|Silver sagebrush		10
				\|Mat muhly		5
68:						
Crowcamp--------	\| PONDED CLAY (R023XY2000R)	\|Favorable	1,800	\|Sandberg bluegrass		45
		\| Normal	1,500	\|Beardless wildrye		15
		\|Unfavorable	1,000	\|Silver sagebrush		10
				\|Mat muhly		5
Ausmus----------	\|SODIC BOTTOM (R024XY0030R)	\|Favorable	1,700	\|Basin wildrye		60
	SODIC BOTHM (R024XY030R)	\| Normal	1,400	\|Black greasewood		15
		Unfavorable	1,100	\| Inland saltgrass		5
Poujade--------	DRY BASIN (R024XY0090R)	\|Favorable	1,800	\|Basin wildrye		50
		\| Normal	1,500	\|Beardless wildrye		15
		\|Unfavorable	1,000	\|Basin big sagebrush		10
				\|Black greasewood		8
				\| Inland saltgrass		5
				\|Needleandthread		5
69:						
Davey----------	\|SANDY 6-10PZ (R024XY0120R)	\|Favorable	1,000	\| Needleandthread		30
		\| Normal	800	\|Fourwing saltbush		25
		\|Unfavorable	500	\| Indian ricegrass		20
				\|Basin big sagebrush		10
				\|Basin wildrye		5
				\|Beardless wildrye		5

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	Dry \|Weight		Forest	Range
			\| Lb/acre		PCt	PCt
Dixon----------	SODIC FAN 6-10PZ (R024XY1130R)	\|Favorable	800	\| Indian ricegrass		40
		\| Normal	600	\| Basin wildrye		20
		\|Unfavorable	400	\|Basin big sagebrush		10
				\| Black greasewood		7
				\|Wyoming big sagebrush		5
				\|Bottlebrush squirreltail		5
				\|Spiny hopsage		5
78:						
Dixon----------	DRY FLOODPLAIN (R024XY004OR)	\|Favorable	4,500	\| Basin wildrye		75
		\| Normal	3,000	\| Beardless wildrye		10
		\|Unfavorable	1,000	\| Basin big sagebrush		5
Droval----------	SODIC BOTTOM (R024XY0030R)	\| Favorable	1,700	\| Basin wildrye		60
		\|Normal	1,400	\|Black greasewood		15
		\| Unfavorable	1,100	\| Inland saltgrass		5
79 :						
Dogmountain-----	\|LOAMY 10-12PZ (R023XY2120R)	\| Favorable	1,000	\|Thurber needlegrass		40
		\| Normal	800	\| Bluebunch wheatgrass		25
		\| Unfavorable	600	\| Sandberg bluegrass		10
				\|Wyoming big sagebrush		10
				\| Bottlebrush squirreltail		8
				\| Indian ricegrass		7
				\|Spiny hopsage		5
80:						
Doyn	SR MOUNTAIN VERY SHALLOW	\|Favorable	600	\| Onespike oatgrass		30
	12-16PZ (R010XC0390R)	\| Normal	400	\|Stiff sagebrush		25
		\|Unfavorable	200	\| Idaho fescue		15
				\| Sandberg bluegrass		15
				\|Bluebunch wheatgrass		10
81:						
Doyn	SR MOUNTAIN VERY SHALLOW	\|Favorable	600	\| Onespike oatgrass		30
	12-16PZ (R010XC0390R)	\| Normal	400	\|Stiff sagebrush		25
		\| Unfavorable	200	\| Idaho fescue		15
				\| Sandberg bluegrass		15
				\|Bluebunch wheatgrass		10
Merlin---------	JD MOUNTAIN CLAYPAN 12-16PZ (R010XB0800R)		700	\| Idaho fescue		50
		\|Normal	500	\|Bluebunch wheatgrass		15
		\| Unfavorable	300	\| Low sagebrush		15
				\| Onespike oatgrass		8
				\| Sandberg bluegrass		5
82:						
Doyn-----------	SR MOUNTAIN VERY SHALLOW 12-16PZ (R010XC0390R)	\|Favorable	600	\| Onespike oatgrass		30
		\| Normal	400	\|Stiff sagebrush		25
		\|Unfavorable	200	\| Idaho fescue		15
				\| Sandberg bluegrass		15
				\|Bluebunch wheatgrass		10
Arcia----------	SR MOUNTAIN CLAYEY 12-16PZ (R010XC0320R)			\| Idaho fescue		70
		\| Normal	1,500	\|Bluebunch wheatgrass		10
		\| Unfavorable	1,000	Mountain big sagebrush		10
				\|Thurber needlegrass		5
83:						
Drewsey	SR LOAMY 9-12PZ (R010XC0200R)	\|Favorable	1,400	\| Bluebunch wheatgrass		40
		\| Normal	1,000	\|Thurber needlegrass		25
		\| Unfavorable	800	\| Wyoming big sagebrush		10
				\| Needleandthread		10
				\| Basin wildrye		5
				\|Squaw apple		5

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	$\begin{aligned} & \mid \text { Dry } \\ & \mid \text { Weight } \end{aligned}$		Forest	Range
			\| Lb/acre		Pct	Pct
84:						
Drewsey---------	\|SR LOAMY 9-12PZ (R010XC0200R)	Favorable	1,400	\|Bluebunch wheatgrass		40
		Normal	1,000	\|Thurber needlegrass		25
		Unfavorable	800	\|Wyoming big sagebrush		10
				Needleandthread		10
				\| Basin wildrye		5
				\|Squaw apple		5
85:						
Drewsey---------	\|SR LOAMY 9-12PZ (R010XCO200R)	Favorable	1,400	\| Bluebunch wheatgrass		40
		\|Normal	1,000	\|Thurber needlegrass		25
		\|Unfavorable	800	\|Wyoming big sagebrush		10
				Needleandthread		10
				\| Basin wildrye		5
				\|Squaw apple		5
Torriorthents---	\|SR SHALLOW ESCARPMENT 9-12PZ	Favorable	400	\| Bluebunch wheatgrass		40
	(R010XC0570R)	Normal	300	\|Thurber needlegrass		30
		Unfavorable	100	Wyoming big sagebrush		10
				Antelope bitterbrush		8
				\|Squaw apple		8
Gumble--------- \|	\| SR SHALLOW 9-12PZ (R010XC0350R)	Favorable	1,000	\| Bluebunch wheatgrass		50
		Normal	600	\| Thurber needlegrass		30
		Unfavorable	300	\|Wyoming big sagebrush		8
86:						
Droval----------	\|SODIC BOTTOM (R024XY003OR)	Favorable	1,700	\| Basin wildrye		60
		\| Normal	1,400	\|Black greasewood		15
		\|Unfavorable	1,100	\| Inland saltgrass		5
87:						
Duff-----------	\|SWALE 12-16PZ (R023XY406OR)	Favorable	3,000	\| Basin wildrye		40
		Normal	2,500	\|Skyline bluegrass		15
		Unfavorable	2,000	\|Idaho fescue		10
				\|Mountain big sagebrush		10
				\|Green rabbitbrush		8
				\|Whortleleaf snowberry		8
				\|Antelope bitterbrush		5
88:						
Duff------------	\|LOAMY 12-16PZ (R023XY3180R)	Favorable	1,400	\| Idaho fescue		50
		\| Normal	1,000	\|Thurber needlegrass		15
		\|Unfavorable	700	\| Bluebunch wheatgrass		10
				\|Mountain big sagebrush		10
				\|Sandberg bluegrass		5
				\|Basin big sagebrush		5
Clamp-----------	\| CLAYPAN 12-16PZ (R023XY2160R)	Favorable	1,000	\| Idaho fescue		50
		\| Normal	\| 800	\|Bluebunch wheatgrass		15
		Unfavorable	600	\|Low sagebrush		15
				\|Sandberg bluegrass		8
				\|Thurber needlegrass		7
89:						
Duff------------			1,800	\| Idaho fescue		45
	(R023XY3100R)	\| Normal	1,400	\| Basin wildrye		10
		\|Unfavorable	1,000	\|Bluebunch wheatgrass		10
				\|Mountain big sagebrush		10
				\| Sandberg bluegrass		5
				\|Antelope bitterbrush		5
				\| Common snowberry		5
Clamp-----------	\| SHALLOW NORTH 12-16PZ	\|Favorable	1,200	\| Idaho fescue		50
	\| (R023XY3120R)	\| Normal	900	\|Low sagebrush		20
		\|Unfavorable	700	\|Bluebunch wheatgrass		10
				\|Sandberg bluegrass		5

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		\|Kind of year	$\begin{array}{\|c} \mid \text { Dry } \\ \mid \text { Weight } \end{array}$		\|Forest	\|Range	
			\| Lb/acre			Pct	Pct
$90:$							
Duff------------	\|SWALE 12-16PZ (R023XY4060R)	Favorable	3,000	\|Basin wildrye		40	
		\| Normal	2,500	\|Skyline bluegrass		15	
		\|Unfavorable	2,000	\|Idaho fescue		10	
				\|Mountain big sagebrush		10	
				\|Green rabbitbrush		8	
				\|Whortleleaf snowberry		8	
				\| Antelope bitterbrush		5	
Hackwood-------	ASPEN 16-35PZ (R023XY4180R)	Favorable	2,500	\|Quaking aspen		40	
		\| Normal	2,000	\| Sedge		15	
		\|Unfavorable	1,500	\| Needlegrass		10	
				\|Whortleleaf snowberry		10	
				\mid Melic		5	
				\|Mountain big sagebrush		5	
				\|Mountain brome		5	
91:							
Edemaps---------	DROUGHTY LOAM 11-13PZ$\quad($ RO23XY316OR)		1,400	\| Idaho fescue		35	
		\|Normal	1,200	\| Thurber needlegrass		25	
		\|Unfavorable	900	\|Bluebunch wheatgrass		20	
				\|Basin big sagebrush		10	
				\|Sandberg bluegrass		5	
92:							
Edemaps---------	DROUGHTY LOAM 11-13PZ (R023XY316OR)	\|Favorable	1,400	\| Idaho fescue		35	
			1,200	\|Thurber needlegrass		25	
		Unfavorable	900	\|Bluebunch wheatgrass		20	
				\|Basin big sagebrush		10	
				\|Sandberg bluegrass		5	
Carryback------	\| CLAYPAN 12-16PZ (R023XY2160R)	\|Favorable	1,000	\| Idaho fescue		50	
				\|Bluebunch wheatgrass		15	
		\|Unfavorable	600	\|Low sagebrush		15	
				\|Sandberg bluegrass		8	
				\|Thurber needlegrass		7	
93 :							
Enko------------	SANDY LOAM 8-10PZ (R024XY0180R)					50	
		Normal	600	\| Indian ricegrass		30	
		\|Unfavorable	400	\| Basin big sagebrush		10	
				Thurber needlegrass		5	
				\| Basin wildrye		5	
94 :							
Enko------------	\|SANDY LOAM 8-10PZ (R024XY0180R)	\|Favorable	800	Needleandthread		50	
		\|Normal	600	\| Indian ricegrass		30	
		\|Unfavorable	400	\| Basin big sagebrush		10	
				\|Thurber needlegrass		5	
				\| Basin wildrye		5	
Catlow----------\|	LOAMY 8-10PZ (R024XY0160R)	\|Favorable	900	\| Indian ricegrass		30	
		\| Normal	700	\|Thurber needlegrass		30	
		\|Unfavorable	400	\|Bluebunch wheatgrass		15	
				\|Wyoming big sagebrush		10	
				\| Basin big sagebrush		5	
				\|Bottlebrush squirreltail		5	
95:							
Enko----------- \|	\|SANDY LOAM 8-10PZ (R024XY0180R)	\|Favorable	800	\| Needleandthread		50	
		\| Normal	600	\| Indian ricegrass		30	
		\|Unfavorable	400	\| Basin big sagebrush		10	
				\|Thurber needlegrass		5	
				\| Basin wildrye		5	

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	Dry		Forest	Range
			Weight			
			Lb/acre		Pct	Pct
95:						
Catlow---------	\|LOAMY 8-10PZ (R024XY0160R)	Favorable	900	\| Indian ricegrass		30
		Normal	700	\|Thurber needlegrass		30
		Unfavorable	400	\|Bluebunch wheatgrass		15
				\|Wyoming big sagebrush		10
				\|Basin big sagebrush		5
				\|Bottlebrush squirreltail		5
96:						
Enko-----------	SANDY LOAM 8-10PZ (R024XY0180R)	Favorable	800	\| Needleandthread		50
		Normal	600	\| Indian ricegrass		30
		Unfavorable	400	\|Basin big sagebrush		10
				\|Thurber needlegrass		5
				\| Basin wildrye		5
Catlow---------	LOAMY 10-12PZ (R023XY2120R)	Favorable	1,000	\|Thurber needlegrass		40
		Normal	800	\| Bluebunch wheatgrass		25
		Unfavorable	600	\|Sandberg bluegrass		10
				\|Wyoming big sagebrush		10
				\|Bottlebrush squirreltail		8
				\|Indian ricegrass		7
				\|Spiny hopsage		5
97:						
Erakatak-	NORTH SLOPES 12-16PZ (R023XY3100R)	Favorable	1,800	\| Idaho fescue		45
		Normal	1,400	\| Basin wildrye		10
		Unfavorable	1,000	\|Bluebunch wheatgrass		10
				\|Mountain big sagebrush		10
				\|Sandberg bluegrass		5
				\| Antelope bitterbrush		5
				\| Common snowberry		5
98:						
Erakatak-------	SHALLOW NORTH 12-16PZ (R023XY3120R)	Favorable	1,200	\| Idaho fescue		50
		Normal	900	\|Low sagebrush		20
		Unfavorable	700	\|Bluebunch wheatgrass		10
				\|Sandberg bluegrass		5
Lambring-------	$\begin{aligned} & \text { NORTH SLOPES } 12-16 \text { PZ } \\ & (\text { R023XY310OR) } \end{aligned}$		1,800	\| Idaho fescue		45
		\|Normal	1,400	\| Basin wildrye		10
		Unfavorable	1,000	\| Bluebunch wheatgrass		10
				\|Mountain big sagebrush		10
				\|Sandberg bluegrass		5
				\| Antelope bitterbrush		5
				\| Common snowberry		5
Rock outcrop.						
99:						
Erakatak-------	SR MOUNTAIN NORTH 12-16PZ (R010XC0660R)	\|Favorable	2,200	\| Idaho fescue		75
		\| Normal	1,600	\|Bluebunch wheatgrass		8
		\|Unfavorable	1,000	\| Mountain big sagebrush		5
Merlin---------	JD MOUNTAIN CLAYPAN 12-16PZ (R010XB0800R)	Favorable	700	\| Idaho fescue		50
		\|Normal	500	\|Bluebunch wheatgrass		15
		\|Unfavorable	300	\|Low sagebrush		15
				\| Onespike oatgrass		8
				\|Sandberg bluegrass		5
Westbutte-------	\|SR MOUNTAIN SOUTH 12-16PZ (R010XC0470R)	\|Favorable	1,400	\|Bluebunch wheatgrass		50
		\|Normal	1,000	\| Idaho fescue		20
		\|Unfavorable	700	\|Thurber needlegrass		5
				\| Antelope bitterbrush		5
				\|Mountain big sagebrush		5
				\|Squaw apple		5

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		Kind of year	$\begin{aligned} & \text { \| Dry } \\ & \text { \|Weight } \end{aligned}$		\|Forest	Range	
			\| Lb/acre		Pct	Pct	
100:							
Erakatak--------	\|JUNIPER SOUTH SLOPES $12-16 \mathrm{PZ}$(R023XY3200R)			\| Bluebunch wheatgrass		25	
		\| Normal	500	\|Idaho fescue		20	
		\|Unfavorable	300	\|Thurber needlegrass		15	
				\|Western juniper		15	
				\|Mountain big sagebrush		10	
				\|Skyline bluegrass		8	
Rock outcrop.							
101:							
Erakatak-	SOUTH SLOPES 12-16PZ (R023XY302OR)	\|Favorable	1,400	\| Bluebunch wheatgrass		40	
		\|Normal	$1,100$	\|Mountain big sagebrush		10	
		\|Unfavorable	700	\| Idaho fescue		5	
				\| Sandberg bluegrass		5	
				\| Antelope bitterbrush		5	
				\|Arrowleaf balsamroot		5	
Ninemile--------	\| CLAYPAN 12-16PZ (R023XY2160R)	\|Favorable	1,000	\| Idaho fescue		50	
		\| Normal	800	\| Bluebunch wheatgrass		15	
		\|Unfavorable	600	\|Low sagebrush		15	
				\| Sandberg bluegrass		8	
				\| Thurber needlegrass		7	
Hapgood--------	DEEP NORTH 12-18PZ (R023XY4040R)	\|Favorable	1,800	\| Idaho fescue		60	
		\| Normal	1,500	\| Needlegrass		15	
		\|Unfavorable	1,200	\|Mountain big sagebrush		8	
				\mid Bluebunch wheatgrass		7	
				\|Bluegrass		5	
				\|Whortleleaf snowberry		5	
102:							
Felcher--------		SOUTH SLOPES 8-12PZ(R023XY3000R)		1,000	\| Bluebunch wheatgrass		50
	\|Normal		700	\| Thurber needlegrass		15	
	\|Unfavorable		500	\|Wyoming big sagebrush		10	
				\| Antelope bitterbrush		10	
				\| Indian ricegrass		5	
				\| Sandberg bluegrass		5	
				\| Basin big sagebrush		5	
103:							
Felcher-	SOUTH SLOPES 8-12PZ (R023XY3000R)	\|Favorable	1,000	\| Bluebunch wheatgrass		50	
		\|Normal	700	\|Thurber needlegrass		15	
		\|Unfavorable	500	\|Wyoming big sagebrush		10	
				\| Antelope bitterbrush		10	
				\| Indian ricegrass		5	
				\| Sandberg bluegrass		5	
				\| Basin big sagebrush		5	
Rock outcrop.							
104:							
Felcher--------	$\begin{aligned} & \text { \| SOUTH SLOPES 8-12PZ } \\ & \mid \text { (R023XY3000R) } \end{aligned}$			\| Bluebunch wheatgrass		50	
		Normal	700	\| Thurber needlegrass		15	
		\|Unfavorable	500	Wyoming big sagebrush		10	
				\| Antelope bitterbrush		10	
				\| Indian ricegrass		5	
				\| Sandberg bluegrass		5	
				\| Basin big sagebrush		5	
Rock outcrop.							

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	$\begin{aligned} & \text { \| Dry } \\ & \text { \|Weight } \end{aligned}$		\|Forest	Range
			\| Lb/acre		PCt	Pct
104:						
Brezniak-------	\|SOUTH SLOPES 8 -12PZ	Favorable	1,000	\|Bluebunch wheatgrass		50
	(R023XY3000R)	Normal	700	\|Thurber needlegrass		15
		\|Unfavorable	500	Wyoming big sagebrush		10
				\|Antelope bitterbrush		10
				\| Indian ricegrass		5
				\|Sandberg bluegrass		5
				\|Basin big sagebrush		5
105:						
Felcher--------	SOUTH SLOPES 8-12PZ	Favorable	1,000	\|Bluebunch wheatgrass		50
	(R023XY3000R)	\|Normal	700	\| Thurber needlegrass		15
		\|Unfavorable	500	\|Wyoming big sagebrush		10
				\|Antelope bitterbrush		10
				\| Indian ricegrass		5
				\|Sandberg bluegrass		5
				\| Basin big sagebrush		5
Rock outcrop.						
Westbutte-------	NORTH SLOPES 12-16PZ	\|Favorable	1,800	\| Idaho fescue		45
	(R023XY3100R)	\| Normal	1,400	\|Basin wildrye		10
		\|Unfavorable	1,000	\|Bluebunch wheatgrass		10
				\mid Mountain big sagebrush		10
				\|Sandberg bluegrass		5
				\|Antelope bitterbrush		5
				\| Common snowberry		5
106:						
Felcher--------	\|LOAMY 10-12PZ (R023XY2120R)	\|Favorable	1,000	\|Thurber needlegrass		40
		\|Normal	800	\| Bluebunch wheatgrass		25
		\|Unfavorable	600	\|Sandberg bluegrass		10
				\|Wyoming big sagebrush		10
				\|Bottlebrush squirreltail		8
				\|Indian ricegrass		7
				\|Spiny hopsage		5
Sagehen--------	\| CLAYPAN 10-12PZ (R023XY2140R)	\|Favorable	900	\| Bluebunch wheatgrass		40
		\|Normal	700	\|Low sagebrush		20
		\|Unfavorable	500	\| Sandberg bluegrass		10
				\| Balsamroot		5
				\|Lomatium		5
				\|Lupine		5
107:						
Felcher--------	\|SOUTH SLOPES $8-12 \mathrm{PZ}$	\|Favorable	1,000	\| Bluebunch wheatgrass		50
	(R023XY3000R)	\|Normal	700	\|Thurber needlegrass		15
		\|Unfavorable	500	Wyoming big sagebrush		10
				\| Antelope bitterbrush		10
				\| Indian ricegrass		5
				\|Sandberg bluegrass		5
				\|Basin big sagebrush		5
Sagehen---------	CLAYPAN 10-12PZ (R023XY2140R)	\|Favorable	900	\|Bluebunch wheatgrass		40
	CLAYPAN 10-12PZ (R023XY2140R)	\|Normal	700	\| Low sagebrush		20
		\|Unfavorable	500	\| Sandberg bluegrass		10
				\|Balsamroot		5
				\| Lomatium		5
				\|Lupine		5

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		Kind of year	$\begin{aligned} & \text { Dry } \\ & \text { \|Weight } \end{aligned}$		Forest	\| Range	
			\| Lb/acre			Pct	Pct
108:							
Felcher---------	\|SOUTH SLOPES 8 -12PZ	Favorable	1,000	\|Bluebunch wheatgrass		50	
	(R023XY3000R)	Normal	700	\| Thurber needlegrass		15	
		Unfavorable	500	\|Wyoming big sagebrush		10	
				\|Antelope bitterbrush		10	
				\| Indian ricegrass		5	
				\| Sandberg bluegrass		5	
				\| Basin big sagebrush		5	
	NORTH SLOPES 10-12PZ	Favorable		\| Idaho fescue		50	
Fitzwater------	(R023XY3080R)	\| Normal	1,200	\|Wyoming big sagebrush		10	
		Unfavorable	1,000	\| Bluebunch wheatgrass		10	
				\|Skyline bluegrass		10	
				\|Sandberg bluegrass		5	
				\|Basin big sagebrush		5	
Rock outcrop.							
109:							
Felcher	\|SOUTH SLOPES $8-12 \mathrm{PZ}$	\|Favorable	1,000	\| Bluebunch wheatgrass		50	
	(R023XY3000R)	\| Normal	700	\| Thurber needlegrass		15	
		\|Unfavorable	500	\|Wyoming big sagebrush		10	
				\|Antelope bitterbrush		10	
				\| Indian ricegrass		5	
				\|Sandberg bluegrass		5	
				\|Basin big sagebrush		5	
Pernty---------	SHALLOW NORTH 12-16PZ	\mid Favorable	1,200 900	\| Idaho fescue		50	
	(R023XY3120R)	\|Normal	900	\|Low sagebrush		20	
		\|Unfavorable	700	\| Bluebunch wheatgrass		10	
				\|Sandberg bluegrass		5	
Ninemile-------	\| CLAYPAN 10-12PZ (R023XY214OR)	Favorable	900	\| Bluebunch wheatgrass		40	
		\| Normal	700	\|Low sagebrush		20	
		\|Unfavorable	500	\|Sandberg bluegrass		10	
				\|Balsamroot		5	
				\|Lomatium		5	
				\|Lupine		5	
110:							
Felcher---------							
	\| (R023XY3000R)	\|Normal	700	\|Thurber needlegrass		15	
		\|Unfavorable	500	\|Wyoming big sagebrush		10	
				\|Antelope bitterbrush		10	
				\| Indian ricegrass		5	
				\|Sandberg bluegrass		5	
				\| Basin big sagebrush		5	
				Idaho fescue			
Westbutte------	NORTH SLOPES 12-16PZ \| (R023XY3100R)	Favorable \| Normal	1,800 1,400	\| Idaho fescue		45 10	
		\|Unfavorable	1,000	\| Bluebunch wheatgrass		10	
				\|Mountain big sagebrush		10	
				\| Sandberg bluegrass		5	
				\| Antelope bitterbrush		5	
				\| Common snowberry		5	
111:							
Final-----------	\|SODIC BOTTOM (R010XY0070R)	\|Favorable	5,000	\| Basin wildrye		80	
		\| Normal	4,000	\| Inland saltgrass		10	
		\|Unfavorable	3,000	\|Black greasewood		5	

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition			
		Kind of year	$\begin{aligned} & \text { Dry } \\ & \mid \text { Weight } \end{aligned}$		Forest	Range		
			\| Lb/acre			Pct	Pct	
112:								
Fitzwater------	SOUTH SLOPES 12-16PZ(RO23XY302OR)	Favorable	1,400	\|Bluebunch wheatgrass		40		
		Normal	1,100	\|Mountain big sagebrush		10		
		Unfavorable	700	\| Idaho fescue		5		
				\|Sandberg bluegrass		5		
				\| Antelope bitterbrush		5		
				\|Arrowleaf balsamroot		5		
Hapgood, thick surface-								
	$\left\lvert\, \begin{aligned} & \text { \|NORTH SLOPES 12-16PZ } \\ & \text { (RO23XY3100R) }\end{aligned}\right.$	Favorable	1,800	\| Idaho fescue		45		
		Normal	1,400	\| Basin wildrye		10		
		Unfavorable	1,000	\|Bluebunch wheatgrass		10		
				\|Mountain big sagebrush		10		
				\|Sandberg bluegrass		5		
				\| Antelope bitterbrush		5		
				\|Common snowberry		5		
Hapgood, thin surface-----	SHALLOW NORTH 12-16PZ (R023XY3120R)	Favorable	1,200	\|Idaho fescue		50		
		Normal	1,200 900	\| Low sagebrush		20		
		Unfavorable	700			10		
				\|Sandberg bluegrass		5		
113:								
Fitzwater-------	\|NORTH SLOPES $10-12 P Z$(RO23XY308OR)					50		
		Normal	1,200	\|Wyoming big sagebrush		10		
		Unfavorable	1,000	\|Bluebunch wheatgrass		10		
				\|Skyline bluegrass		10		
				\| Sandberg bluegrass		5		
				\| Basin big sagebrush		5		
Rock outcrop.								
114:								
Flank	SHALLOW LAVA 10-12PZ (R023XY2220R)			\|Thurber needlegrass		25		
		Normal	300	\| Basin big sagebrush		25		
		Unfavorable	200			20		
				\|Sandberg bluegrass		10		
Lava flows.								
115:								
Fourwheel	CLAYEY 10-12PZ (R023XY2200R)	Favorable	1,200	\|Bluebunch wheatgrass		60		
		Normal	900	\| Sandberg bluegrass		10		
		Unfavorable	700	\|Wyoming big sagebrush		10		
				\| Thurber needlegrass		5		
				\|Skyline bluegrass		5		
116:								
Fourwheel	NORTH SLOPES 10-12PZ(RO23XY3080R)	Favorable		\| Idaho fescue		50		
		Normal	1,200	\|Wyoming big sagebrush		10		
		Unfavorable	1,000	\| Bluebunch wheatgrass		10		
				\|Skyline bluegrass		10		
				\| Sandberg bluegrass		5		
				\| Basin big sagebrush		5		
117:								
Freznik-	\|THIN SURFACE CLAYPAN $10-16 \mathrm{PZ}$(R023XY2180R)		300	\| Sandberg bluegrass		45		
		\| Normal	200	\|Low sagebrush		20		
		\|Unfavorable	100					
118:								
Fury-----------	BASIN WET MEADOW (R023XY1170R)	\|Favorable	3,000	\| Nebraska sedge		50		
		\| Normal	2,000	\|Baltic rush		30		
		\|Unfavorable	1,500	\| Spikerush		15		

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		\|Kind of year	$\begin{aligned} & \text { \| Dry } \\ & \text { \|Weight } \end{aligned}$		Forest	Range	
			Lb/acre		Pct	Pct	
119 :							
Fury------------	LAKEBED (R023XY1000R)	\| Favorable	2,000	\|Spikerush		40	
		\| Normal	1,400	\|Dock		30	
		\|Unfavorable	1,000	\|Baltic rush		15	
				\|Bottlebrush squirreltail		5	
				\|Mat muhly		5	
				\| Povertyweed		5	
120:							
Fury-----------	BASIN WET MEADOW (R023XY1170R)	\| Favorable	3,000	\| Nebraska sedge		50	
		\| Normal	2,000	\|Baltic rush		30	
		\|Unfavorable	1,500	\|Spikerush		15	
Degarmo---------	LOAMY BOTTOM (R023XY104OR)	\|Favorable	6,000	\|Basin wildrye		70	
		\| Normal	4,500	\| Basin big sagebrush		10	
		Unfavorable	2,000	\|Beardless wildrye		5	
121:							
Fury------------	BASIN WET MEADOW (R023XY1170R)	\|Favorable	3,000	\| Nebraska sedge		50	
		\| Normal	2,000	\|Baltic rush		30	
		\|Unfavorable	1,500	\| Spikerush		15	
Housefield-----	WET MARSH (R023XY1150R)	\| Favorable	6,000	\|Hardstem bulrush		50	
		\|Normal	4,000	\|Broadfruit burreed		45	
		\|Unfavorable	3,000	\| Cattail		5	
122 :							
Fury------------	BASIN WET MEADOW (R023XY1170R)	\| Favorable	3,000	\| Nebraska sedge		50	
		\| Normal	2,000	\|Baltic rush		30	
		\|Unfavorable	1,500	\| Spikerush		15	
Housefield------	\|WET MARSH (R023XY1150R)	\| Favorable	6,000	\|Hardstem bulrush		50	
		\| Normal	4,000	\|Broadfruit burreed		45	
		\|Unfavorable	3,000	\| Cattail		5	
Skidoosprings---	SODIC BOTTOM (R024XY0030R)	\mid Favorable	1,700	\| Basin wildrye		60	
		\| Normal	1,400	\|Black greasewood		15	
		\|Unfavorable	1,100	\| Inland saltgrass		5	
123:							
Fury------------	BASIN WET MEADOW (R023XY1170R)	\|Favorable	3,000	\| Nebraska sedge		50	
		\| Normal	2,000	\|Baltic rush		30	
		\|Unfavorable	1,500	\|Spikerush		15	
Opie------------	SODIC ME:ADOW (R024XY002OR)	\|Favorable	1,200	\|Alkali sacaton		25	
		\| Normal	1,000	\| Sandberg bluegrass		20	
		\|Unfavorable	700	\| Inland saltgrass		20	
				\|Alkali cordgrass		10	
124:							
Fury------------	BASIN WET MEADOW (R023XY1170R)	\| Favorable	3,000	\| Nebraska sedge		50	
		\| Normal	2,000	\|Baltic rush		30	
		\|Unfavorable	1,500	\| Spikerush		15	
Skidoosprings---	SODIC BOTTOM (R024XY0030R)	\| Favorable	1,700	\| Basin wildrye		60	
		\| Normal	1,400	\|Black greasewood		15	
		\|Unfavorable	1,100	\|nland saltgrass		5	
		\| Favorable	1,200	\|Alkali sacaton		25	
Opie------------	SODIC MEADOW (R024XY0020R)	\| Normal	1,000	\| Sandberg bluegrass		20	
		\|Unfavorable	700	\| Inland saltgrass		20	
				\|Alkali cordgrass		10	
125:							
Fury-----------		BASIN WET MEADOW (R023XY1170R)	\|Favorable	3,000	\| Nebraska sedge		50
	\| Normal		2,000	\|Baltic rush		30	
	\|Unfavorable		1,500	\| Spikerush		15	

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	$\begin{aligned} & \mid \text { Dry } \\ & \text { \|Weight } \end{aligned}$		Forest\|	\|Range
			\| Lb/acre		PCt	Pct
Widowspring-----	LOAMY BOTTOM (R023XY104OR)	\|Favorable	6,000	\|Basin wildrye		70
		\| Normal	4,500	\|Basin big sagebrush		10
		\|Unfavorable	2,000	\|Beardless wildrye		5
126:						
Gaib-----------	\|Ponderosa pine/mountain big sagebrush/Idaho fescuebluebunch wheatgrass (CPS131)	\| Favorable	1,000	\| Idaho fescue	50	
		\| Normal	800	\| Antelope bitterbrush	15	
		\|Unfavorable	600	\| Bluebunch wheatgrass	10	
				\|Mountain big sagebrush	5	
				\mid Ponderosa pine	5	
				\|Wax currant	5	
127:						
Gaib-----------	Ponderosa pine/mountain big sagebrush/Idaho fescuebluebunch wheatgrass (CPS131)	\| Favorable	1,000	\| Idaho fescue	50	
		Normal	800	\| Antelope bitterbrush	15	
		\|Unfavorable	600	\|Bluebunch wheatgrass	10	
				\|Mountain big sagebrush	5	
				\| Ponderosa pine	5	
				\| Wax currant	5	
Ateron---------	\|JD SHRUBBY MOUNTAIN CLAYEY12-16PZ (RO10XB0280R)		2,000	\|Idaho fescue		60
		Normal	1,500	\| Antelope bitterbrush		10
		\|Unfavorable	1,000	\| Thurber needlegrass		5
				\|Bluebunch wheatgrass		5
				\|Bluegrass		5
				\|Mountain big sagebrush		5
128:						
Gaib-----------	\|Ponderosa pine/mountain big sagebrush/Idaho fescuebluebunch wheatgrass (CPS131)			\| Idaho fescue		
		Normal	800	\| Antelope bitterbrush	15	
		\|Unfavorable	600	\|Bluebunch wheatgrass	10	
				\|Mountain big sagebrush	5	
				\| Ponderosa pine	5	
				\|Wax currant	5	
Rock outcrop.						
129:						
Gilispie--------	\|LOAMY 12-16PZ (R023XY3180R)			\| Idaho fescue		50
		\| Normal	1,000	\| Thurber needlegrass		15
		\|Unfavorable	700	\|Bluebunch wheatgrass		10
				\|Mountain big sagebrush		10
				\| Sandberg bluegrass		5
				\| Basin big sagebrush		5
Noname----------	$\begin{aligned} & \text { \|ROCKY RIDGES 12-16PZ } \\ & \text { (RO23XY4080R) } \end{aligned}$	\|Favorable	900	\| Idaho fescue		40
		Normal	700	\| Curl-leaf mountain mahogany		20
		Unfavorable	500	\| Skyline bluegrass		15
				\|Western needlegrass		10
				\mid Mountain big sagebrush		5
				\|Whortleleaf snowberry		5
130:						
Gochea-	\|SANDY LOAM 10-12PZ (R023XY2130R)		1,400	\| Needleandthread		40
		\| Normal	1,200	\| Thurber needlegrass		20
		Unfavorable	1,000	\| Basin big sagebrush		10
				\| Basin wildrye		10
				\| Indian ricegrass		5
131:						
Goldrun---------	\|SODIC DUNES (R024XY0050R)	\|Favorable	700	\| Indian ricegrass		25
		\|Normal	500	\| Basin big sagebrush		15
		\|Unfavorable	300	\|Basin wildrye		10
				\| Black greasewood		10
				\|Needleandthread		10
				\|Beardless wildrye		5

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		Kind of year	$\begin{aligned} & \text { Dry } \\ & \mid \text { Weight } \end{aligned}$		Forest	\|Range	
			\| Lb/acre			Pct	Pct
Alvodest-------\|	SODIC FLAT (R024XY0010R)	\| Favorable	300	\|Black greasewood		40	
		Normal	200	\| Inland saltgrass		20	
		Unfavorable	100	\| Basin wildrye		10	
				\|Alkali sacaton		5	
				Bulrush		5	
132:							
Gradon---------	DROUGHTY LOAM 11-13PZ	Favorable	1,400	\| Idaho fescue		35	
	(R023XY3160R)	Normal	1,200	\| Thurber needlegrass		25	
		Unfavorable	900	Bluebunch wheatgrass		20	
				Basin big sagebrush		10	
				\|Sandberg bluegrass		5	
133:							
Guano---------- \|	LOAMY 8-10PZ (R024XY0160R)	Favorable	900	Indian ricegrass		30	
		Normal	700	\|Thurber needlegrass		30	
		Unfavorable	400	\| Bluebunch wheatgrass		15	
				\|Wyoming big sagebrush		10	
				\|Basin big sagebrush		5	
				\|Bottlebrush squirreltail		5	
134:							
Gumble----------	SR SHALLOW 9-12PZ (R010XC0350R)	Favorable	1,000	\| Bluebunch wheatgrass		50	
		Normal	600	\|Thurber needlegrass		30	
		Unfavorable	300	\|Wyoming big sagebrush		8	
135:							
Gumble	SR SHALLOW SOUTH 9-12PZ	\| Favorable	800	\| Bluebunch wheatgrass		70	
	(R010XC0500R)	\|Normal	500	\| Thurber needlegrass		20	
		Unfavorable	300	\| Sandberg bluegrass		5	
				\|Wyoming big sagebrush		5	
136:							
Gumble---------	SR SHALLOW 9-12PZ (R010XC0350R)		1,000	\| Bluebunch wheatgrass		50	
		\|Normal	600	\|Thurber needlegrass		30	
		Unfavorable	300	\|Wyoming big sagebrush		8	
Mahoon	SR SHALLOW SOUTH 9-12PZ	\|Favorable	800	\| Bluebunch wheatgrass		70	
	(R010XC0500R)	\| Normal	500	\| Thurber needlegrass		20	
		Unfavorable	300	\| Sandberg bluegrass		5	
				\|Wyoming big sagebrush		5	
Cagle----------		\| Favorable	1,600	\| Idaho fescue		80	
	(R010XC0650R)	\|Normal	1,100	\| Sandberg bluegrass		5	
		\| Unfavorable	800	\|Wyoming big sagebrush		5	
				\|Bluebunch wheatgrass		5	
137:							
Hackwood-------	ASPEN 16-35PZ (R023XY4180R)	\|Favorable	2,500	Quaking aspen		40	
		\| Normal	2,000	\|Sedge		15	
		\|Unfavorable	1,500	\|Needlegrass		10	
				\|Whortleleaf snowberry		10	
				Melic		5	
				Mountain big sagebrush		5	
				\|Mountain brome		5	
138:							
Hackwood-------	ASPEN 16-35PZ (R023XY4180R)	\| Favorable	2,500	Quaking aspen		40	
		\| Normal	2,000	\| Sedge		15	
		\|Unfavorable	1,500	\| Needlegrass	\|	10	
				\|Whortleleaf snowberry	\|	10	
				Melic		5	
				\|Mountain big sagebrush	1 \|	5	
				\mid Mountain brome	1 \|	5	

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	$\begin{aligned} & \text { \| Dry } \\ & \text { \|Weight } \end{aligned}$		\|Forest	\|Range
			\| Lb/acre		PCt	Pct
138:						
Baconcamp------ \|	\| SUBALPINE SLOPES 16-35PZ	Favorable	1,400	\| Idaho fescue		55
	(R023XY5090R)	Normal	1,000	\|Mountain big sagebrush		15
		\|Unfavorable	800	\|Whortleleaf snowberry		10
				\|Letterman needlegrass		5
				\| Basin wildrye		5
				\|Bluebunch wheatgrass		5
				\| Sedge		5
139:						
Hapgood---------	LOAMY 12-16PZ (R023XY3180R)	Favorable	1,400	\| Idaho fescue		50
		\|Normal	1,000	\| Thurber needlegrass		15
		\|Unfavorable	700	\| Bluebunch wheatgrass		10
				\|Mountain big sagebrush		10
				\|Sandberg bluegrass		5
				\| Basin big sagebrush		5
140:						
Hart Camp	SR MOUNTAIN SHALLOW 9-12PZ	\|Favorable	1,100	\| Idaho fescue		60
	(R010XC0360R)	\| Normal	600	\|Wyoming big sagebrush		15
		\|Unfavorable	300	\| Bluebunch wheatgrass		8
				\|Sandberg bluegrass		5
				\| Thurber needlegrass		5
				\|Squaw apple		1
141:						
Hart Camp-------			1,100	\| Idaho fescue		60
	\| (R010XC0360R)	\|Normal	600	\|Wyoming big sagebrush		15
		\|Unfavorable	300	\|Bluebunch wheatgrass		8
				\| Sandberg bluegrass		5
				\|Thurber needlegrass		5
				\|Squaw apple		1
142:						
Helphenstein----	\|SODIC FLAT (R024XY0010R)			\|Black greasewood		40
		\|Normal	200	\| Inland saltgrass		20
		\|Unfavorable	100	\|Basin wildrye		10
				\|Alkali sacaton		5
				\|Bulrush		5
Goldrun---------	SODIC DUNES (R024XY0050R)					25
	SODIC DUNES (R024XY0050R)	\| ${ }^{\text {\| }}$ / ${ }^{\text {avarmal }}$	500	\| Indian ricegrass		25 15
		\|Unfavorable	300	\|Basin wildrye		10
				\|Black greasewood		10
						10
				\|Beardless wildrye		5
143:						
Homefield-------	\|WET MARSH (R023XY1150R)			\|Hardstem bulrush		
		\| Normal	4,000	\|Broadfruit burreed		45
		\|Unfavorable	3,000	\| Cattail		5
144:						
Housefield------	\|BASIN WET MEADOW (R023XY1170R)	\|Favorable	3,000	\| Nebraska sedge		50
		\| Normal	2,000	\|Baltic rush		30
		\|Unfavorable	1,500	\|Spikerush		15
145:						
Housefield-----	\|WET MARSH (R023XY1150R)	\|Favorable	6,000	\|Hardstem bulrush		
		\| Normal	4,000	\|Broadfruit burreed		45
		\|Unfavorable	3,000	\| Cattail		5
Doubleo---------	SEMI-WET MARSH (R023XY1160R)	\|Favorable	7,000	\|Cattail		75
		\| Normal	5,000	\|Hardstem bulrush		15
		\|Unfavorable	4,000	\|Broadfruit burreed		5

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		Kind of year	$\begin{aligned} & \mid \text { Dry } \\ & \mid \text { Weight } \end{aligned}$		Forest	Range	
			\| Lb/acre			Pct	PCt
Icene	LOW SODIC TERRACE 6-10PZ (R024XY013OR)	\|Favorable	400	\|Black greasewood		25	
		\| Normal	300	\|Bud sagebrush		15	
		\|Unfavorable	200	\| Shadscale		15	
				\| Spiny hopsage		15	
				\|Bottlebrush squirreltail		7	
				\|Basin wildrye		5	
				\|Beardless wildrye		5	
Playas.							
147:							
Icene	$\begin{aligned} & \text { \|SODIC TERRACE 6-10PZ } \\ & \text { \| (R024XY014OR) } \end{aligned}$	\|Favorable	600	\|Basin big sagebrush		20	
		\| Normal	400	\| Indian ricegrass		15	
		\|Unfavorable	200	\|Spiny hopsage		15	
				\|Black greasewood		10	
				\| Basin wildrye		7	
				\|Bottlebrush squirreltail		7	
				\|Shadscale		5	
Playas.							
148:							
Jesse Camp------	\|SWALE 10-14PZ (R023XY2020R)	\|Favorable		\|Basin wildrye		35	
		\| Normal	1,800	\| Basin big sagebrush		20	
		\|Unfavorable	1,500	\| Idaho fescue		10	
				\|Bluebunch wheatgrass		10	
				\|Sandberg bluegrass		5	
				\|Thurber needlegrass		5	
				\|Western needlegrass		5	
149:							
Jimgreen--------	\|WET MARSH (R023XY1150R)	\|Favorable		\|Hardstem bulrush		50	
		\| Normal	4,000	\|Broadfruit burreed		45	
		\|Unfavorable	3,000	\| Cattail		5	
150:							
Jimgreen-------	\|WET MARSH (R023XY1150R)		6,000	\|Hardstem bulrush		50	
		\| Normal	4,000	\|Broadfruit burreed		45	
		\|Unfavorable	3,000	\|Cattail		5	
Housefield------\|	BASIN WET MEADOW (R023XY1170R)	\|Favorable	3,000	\| Nebraska sedge		50	
		\| Normal	2,000	\|Baltic rush		30	
		\|Unfavorable	1,500	\|Spikerush		15	
151:							
Kegler----------	\|SANDY LOAM 10-12PZ (R023XY2130R)	\|Favorable	1,400	\|Needleandthread		40	
		\| Normal	1,200	\| Thurber needlegrass		20	
		\|Unfavorable	1,000	\| Basin big sagebrush		10	
				\|Basin wildrye		10	
				\| Indian ricegrass		5	
Kerrfield-------\|	LLOAMY 8-10PZ (R024XY0160R)	\|Favorable	900	\| Indian ricegrass		30	
		\|Normal	700	\|Thurber needlegrass		30	
		\|Unfavorable	400	\|Bluebunch wheatgrass		15	
				\|Wyoming big sagebrush		10	
				\| Basin big sagebrush		5	
				\|Bottlebrush squirreltail		5	
153:							
Klicker---------	Douglas fir/elk sedge (CDG111)			\|Elk sedge	40		
		\| Normal	400	\| Douglas fir	5		
		\|Unfavorable	300	\| Pinegrass	5		
				\| Ponderosa pine	5		
				\|Western fescue	5		
				\|White fir	5		

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	$\begin{aligned} & \mid \text { Dry } \\ & \mid \text { Weight } \end{aligned}$		Forest	Range
			\| Lb/acre		Pct	Pct
154:						
	Ponderosa pine/elk sedge	\|Favorable	1,000	\|Elk sedge	70	
	(CPG222)	\| Normal	800	\| Idaho fescue	10	
		\|Unfavorable	600	\| Common snowberry	10	
				\|Bluebunch wheatgrass	5	
				\| Ponderosa pine	5	
155:						
Krackle, north						
slopes---------	\|NORTH SLOPES 12-16PZ	\|Favorable	1,800	\| Idaho fescue		45
	(R023XY3100R)	\|Normal	1,400	\| Basin wildrye		10
		\|Unfavorable	1,000	\| Bluebunch wheatgrass		10
				\| Mountain big sagebrush		10
				\|Sandberg bluegrass		5
				\| Antelope bitterbrush		5
				\| Common snowberry		5
Krackle, south slopes						
	\| SOUTH SLOPES 12-16PZ	\|Favorable	1,400	\|Bluebunch wheatgrass		40
	(R023XY3020R)	\| Normal	1,100	\|Mountain big sagebrush		10
		\|Unfavorable	700	\| Idaho fescue		5
				\| Sandberg bluegrass		5
				\|Antelope bitterbrush		5
				\|Arrowleaf balsamroot		5
156:						
Krackle---------	\|OPEN SLOPES 25-35PZ	\|Favorable	700	\| Sedge		25
	(R023XY5030R)	\| Normal	500	\|Letterman needlegrass		20
		\| Unfavorable	300	\|Sheep fescue		15
				\| Idaho fescue		10
				\|Prairie junegrass		5
				\mid Rough fescue		5
				\|Western needlegrass		5
Baconcamp-------	\|LOAMY 25-35PZ (R023XY5020R)			\|Sheep fescue		35
		\|Normal	600	\|Idaho fescue		15
		\|Unfavorable	400	\|Mountain big sagebrush		15
				\| Sedge		15
				\|Rough fescue		10
				\|Skyline bluegrass		10
Rock outcrop.						
157:						
Krackle---------						
	(R023XY505OR)	\|Normal	300	\|Skyline bluegrass		20
		\|Unfavorable	200	\| Idaho fescue		15
				\| Sandberg bluegrass		15
				\|Bottlebrush squirreltail		5
Baconcamp-------				\|Rough fescue		60
	(R023XY504OR)	\| Normal	600	\| Idaho fescue		10
		\|Unfavorable	400	\|Sheep fescue		10
				\|Skyline bluegrass		5
				\|Tufted hairgrass		5
Rock outcrop.						
158:						
Krackle--------\|				\| Bluebunch wheatgrass		
	(R023XY302OR)	\|Normal	$1,100$	\| Mountain big sagebrush		10
		\|Unfavorable	700	\| Idaho fescue		5
				\| Sandberg bluegrass		5
				\| Antelope bitterbrush		5
				\|Arrowleaf balsamroot		5
Rock outcrop.			1			

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition										
		Kind of year	$\begin{aligned} & \text { Dry } \\ & \text { \|Weight } \end{aligned}$		\|Forest	\|Range									
			\| Lb/acre			Pct	Pct								
163 :															
Lambring, thin surface	\mid SHALLOW NORTH $12-16 \mathrm{PZ}$														
		Favorable	1,200	\| Idaho fescue		50									
		\| Normal	900	\|Low sagebrush		20									
			700	\|Bluebunch wheatgrass		10									
				\| Sandberg bluegrass		5									
		Rock outcrop.													
164:															
Lambring-------	SR MAHOGANY ROCKLAND $12+\mathrm{PZ}$$\quad$ (R010XC0590R)	\|Favorable	1,300	\| Curl-leaf mountain mahogany		40									
		\|Normal	900	\|Bluebunch wheatgrass		30									
		\|Unfavorable	600	\| Idaho fescue		15									
				\|Antelope bitterbrush		10									
				\|Thurber needlegrass		5									
				\|Western juniper		5									
Rubble land.															
165:															
Langslet-------	CLAY BASIN 6-8PZ (R024XY0100R)	\|Favorable	600	\|Shadscale		70									
		\| Normal	400	\|Bottlebrush squirreltail		10									
		\|Unfavorable	300			10									
				\|Spiny hopsage		8									
166:															
Lava flows.															
167:															
Lava flows.															
Flank-----------	SHALLOW LAVA 10-12PZ (R023XY2220R)	\|Favorable	400	\| Thurber needlegrass		25									
			300	\|Basin big sagebrush		25									
		\|Unfavorable	200	\|Bluebunch wheatgrass		20									
				\|Sandberg bluegrass		10									
Lawen-----------	SANDY LOAM 10-12PZ (R023XY2130R)	\|Favorable	1,400	\| Needleandthread		40									
		\|Normal	1,200	\|Thurber needlegrass		20									
		\|Unfavorable	1,000	\| Basin big sagebrush		10									
				\|Basin wildrye		10									
				\| Indian ricegrass		5									
169 :															
Leathers-------	DRY SODIC FLOODPLAIN (R024XY1120R)			\|Black greasewood											
		Normal	300	\|Basin wildrye		15									
		\|Unfavorable	200			15									
				\|Basin big sagebrush		5									
				\| Rabbitbrush		5									
170:															
Leathers	\|LOW SODIC TERRACE 6-10PZ(R024XY0130R)	\|Favorable	400	\|Black greasewood		25									
		\| Normal	300	\|Bud sagebrush		15									
		\|Unfavorable	200	\|Shadscale		15									
				\| Spiny hopsage		15									
				\|Bottlebrush squirreltail		7									
				\|Basin wildrye		5									
				\|Beardless wildrye		5									
		171:													
Leemorris	LOAMY 12-16PZ (R023XY3180R)	\|Favorable	1,400	\| Idaho fescue		50									
		\| Normal	1,000	\|Thurber needlegrass		15									
		\|Unfavorable	700	\|Bluebunch wheatgrass		10									
				\|Mountain big sagebrush		10									
				\| Sandberg bluegrass		5									
				\|Basin big sagebrush		5									

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		\| Kind of year	$\begin{aligned} & \text { \| Dry } \\ & \text { \|Weight } \end{aligned}$		Forest	Range
			Lb/acre		Pct	Pct
Buckwilder------	\| CLAYPAN 12-16PZ (R023XY2160R)	\|Favorable	1,000	\| Idaho fescue		50
		\| Normal	800	\| Bluebunch wheatgrass		15
		\|Unfavorable	600	\|Low sagebrush		15
				\| Sandberg bluegrass		8
				\|Thurber needlegrass		7
172:						
Leemorris------	\|LOAMY 12-16PZ (R023XY3180R)	\|Favorable	1,400	\| Idaho fescue		50
		\|Normal	1,000	\| Thurber needlegrass		15
		Unfavorable	700	\| Bluebunch wheatgrass		10
				\|Mountain big sagebrush		10
				\|Sandberg bluegrass		5
				\| Basin big sagebrush		5
Buckwilder-----	\|CLAYPAN 12-16PZ (R023XY2160R)	Favorable	1,000	\| Idaho fescue		50
		Normal	800	\| Bluebunch wheatgrass		15
		Unfavorable	600	\|Low sagebrush		15
				\|Sandberg bluegrass		8
				\| Thurber needlegrass		7
173:						
Legler---------	\|SR SWALE 9-12PZ (R010XC0130R)	Favorable	3,500	\|Basin wildrye		40
		Normal	2,500	\|Bluebunch wheatgrass		40
		Unfavorable	2,000	\| Needleandthread		15
				\| Basin big sagebrush		5
174:						
Locane---------	\| CLAYEY 10-12PZ (R023XY2200R)	Favorable	1,200	\| Bluebunch wheatgrass		60
		Normal	900	\| Sandberg bluegrass		10
		Unfavorable	700	\|Wyoming big sagebrush		10
				\|Thurber needlegrass		5
				\|Skyline bluegrass		5
175:						
Lolak----------	\|SODIC MEADOW (R024XY0020R)			\|Alkali sacaton		
		Normal	1,000	\| Sandberg bluegrass		20
		Unfavorable	700	\| Inland saltgrass		20
				\|Alkali cordgrass		10
176:						
Lolak-----------	\|SODIC MEADOW (R024XY002OR)		1,200	\|Alkali sacaton		
		Normal	1,000	\| Sandberg bluegrass		20
		Unfavorable	700	\| Inland saltgrass		20
				\|Alkali cordgrass		10
	\|SODIC BOTTOM (R024XY0030R)	Favorable	1,700	\|Basin wildrye		60
Ausmus---------		Normal	1,400	\|Black greasewood		15
		Unfavorable	1,100	\|nland saltgrass		5
177:						
Lonely----------	\|LOAMY 10-12PZ (R023XY2120R)	Favorable		\|Thurber needlegrass		40
		Normal	800	\| Bluebunch wheatgrass		25
		Unfavorable	600	\| Sandberg bluegrass		10
				\|Wyoming big sagebrush		10
				\| Bottlebrush squirreltail		8
				\| Indian ricegrass		7
				\| Spiny hopsage		5
Doyn-----------	\|LOAMY 10-12PZ (R023XY2120R)	Favorable	1,000	\| Thurber needlegrass		40
		\|Normal	800	\| Bluebunch wheatgrass		25
		Unfavorable	600	\| Sandberg bluegrass		10
				\|Wyoming big sagebrush		10
				\| Bottlebrush squirreltail		8
				\| Indian ricegrass		7
				\| Spiny hopsage		5

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	$\begin{aligned} & \text { Dry } \\ & \text { \|Weight } \end{aligned}$		\|Forest	\|Range
			\| Lb/acre		Pct	PCt
178:						
Lonely---------	LOAMY 10-12PZ (R023XY2120R)	\|Favorable	1,000	\|Thurber needlegrass		40
		Normal	800	\| Bluebunch wheatgrass		25
		Unfavorable	600	\| Sandberg bluegrass		10
				\|Wyoming big sagebrush		10
				\|Bottlebrush squirreltail		8
				\| Indian ricegrass		7
				\|Spiny hopsage		5
Robson---------- \|	CLAYEY 10-12PZ (R023XY2200R)	Favorable	1,200			60
		\| Normal	900	\| Sandberg bluegrass		10
		Unfavorable	700	\|Wyoming big sagebrush		10
				\| Thurber needlegrass		5
				\|Skyline bluegrass		5
179:						
Longcreek------ \|	DROUGHTY SOUTH SLOPES 11-13PZ(R023XY3010R)	Favorable	1,200	\| Bluebunch wheatgrass		40
		\|Normal	900	\|Thurber needlegrass		25
		\|Unfavorable	700	\| Basin big sagebrush		10
				\|Idaho fescue		8
				\|Sandberg bluegrass		5
				\|Wyoming big sagebrush		5
				\| Balsamroot		5
Cleavage-------	\|SHALLOW NORTH 12-16PZ (R023XY3120R)	\|Favorable	1,200	\|Idaho fescue		50
		\|Normal	900	\|Low sagebrush		20
		\|Unfavorable	700			10
				\|Sandberg bluegrass		5
180:						
Longcreek------	DROUGHTY SOUTH SLOPES 11-13PZ(R023XY301OR)		1,200	\| Bluebunch wheatgrass		40
		\|Normal	900	\| Thurber needlegrass		25
		\|Unfavorable	700	\| Basin big sagebrush		10
				\|Idaho fescue		8
				\|Sandberg bluegrass		5
				\|Wyoming big sagebrush		5
				\| Balsamroot		5
Rock outcrop.						
181:						
Loupence-------	LOAMY BOTTOM (R010XY0050R)	\|Favorable	7,000	\|Basin wildrye		85
		\|Normal	5,000	\|Bluebunch wheatgrass		5
		\|Unfavorable	4,000	\|Bluegrass		5
				\|Willow		5
182:						
Madeline--------	SOUTH SLOPES 8-12PZ (R023XY3000R)	\|Favorable	1,000	\|Bluebunch wheatgrass		50
		\|Normal	700	\| Thurber needlegrass		15
		\|Unfavorable	500	\|Wyoming big sagebrush		10
				\| Antelope bitterbrush		10
				\| Indian ricegrass		5
				\|Sandberg bluegrass		5
				\|Basin big sagebrush		5
183:						
Madeline--------	NORTH SLOPES 12-16PZ (R023XY3100R)					
		\|Normal	1,400	\|Basin wildrye		10
		\|Unfavorable	1,000	\|Bluebunch wheatgrass		10
				\mid Mountain big sagebrush		10
				\| Sandberg bluegrass		5
				\| Antelope bitterbrush		5
				\| Common snowberry		5

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition			
		Kind of year	$\begin{aligned} & \text { \| Dry } \\ & \text { \|Weight } \end{aligned}$		Forest	Range		
			\| Lb/acre		PCt	Pct		
188:								
Cagle----------	\|SR MOUNTAIN NORTH $9-12 \mathrm{PZ}$(R010XC0650R)	\|Favorable	1,600	\| Idaho fescue		80		
		\| Normal	1,100	\| Sandberg bluegrass		5		
		\|Unfavorable	800	\|Wyoming big sagebrush		5		
				\|Bluebunch wheatgrass		5		
189 :								
Mahoon---------	\|SR CLAYEY 9-12PZ (R010XC0210R)	\|Favorable	1,500	\| Bluebunch wheatgrass		60		
		\| Normal	1,000	\| Thurber needlegrass		8		
		\|Unfavorable	600	\| Sandberg bluegrass		5		
				\|Wyoming big sagebrush		5		
				\|Basin big sagebrush		5		
				\| Basin wildrye		5		
Risley---------	JD CLAYPAN 9-12PZ (R010XB0290R)			\|Bluebunch wheatgrass				
		\|Normal	400	\|Low sagebrush		15		
		\|Unfavorable	300	\|Sandberg bluegrass		10		
				\|Prairie junegrass		5		
190:								
Mahoon---------	SR CLAYEY SOUTH 9-12PZ (R010XC0430R)			\|Bluebunch wheatgrass				
		Normal	800	\|Thurber needlegrass		15		
		\|Unfavorable	600	\| Sandberg bluegrass		5		
				\|Wyoming big sagebrush		5		
Cotant---------	SR MOUNTAIN NORTH 9-12PZ (R010XC0650R)	\|Favorable	1,600	\| Idaho fescue		80		
		\| Normal	1,100	\| Sandberg bluegrass		5		
		Unfavorable	800	Wyoming big sagebrush		5		
				\|Bluebunch wheatgrass		5		
191:								
Mcbain----------	DRY FLOODPLAIN (R024XY004OR)	\|Favorable	4,500	\| Basin wildrye		75		
		\| Normal	3,000	\|Beardless wildrye		10		
		\|Unfavorable	1,000	\|Basin big sagebrush		5		
Ausmus---------	SODIC BOTTOM (R024XY0030R)	\|Favorable	1,700	\|Basin wildrye		60		
		\| Normal	1,400	\|Black greasewood		15		
		\|Unfavorable	1,100	\|nland saltgrass		5		
192:								
McConnel--------	LOAMY 8-10PZ (R024XY0160R)	\|Favorable	900	\| Indian ricegrass		30		
		\| Normal	700	\|Thurber needlegrass		30		
		\|Unfavorable	400	\|Bluebunch wheatgrass		15		
				\|Wyoming big sagebrush		10		
				\|Basin big sagebrush		5		
				\|Bottlebrush squirreltail		5		
193 :								
Merlin---------	JD MOUNTAIN CLAYPAN 12-16PZ (R010XB0800R)	\|Favorable	700	\| Idaho fescue		50		
		\|Normal	500	\|Bluebunch wheatgrass		15		
		\|Unfavorable	300	\|Low sagebrush		15		
				\|Onespike oatgrass		8		
				\|Sandberg bluegrass		5		
194 :								
Merlin, very stony------								
	JD MOUNTAIN CLAYPAN 12-16PZ (R010XB0800R)	\|Favorable	700	\| Idaho fescue		50		
		\| Normal	500	\| Bluebunch wheatgrass		15		
		\|Unfavorable	300	\|Low sagebrush		15		
				\|Onespike oatgrass		8		
				\|Sandberg bluegrass		5		

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		\|Kind of year			Forest	\| Range
			Weight			
			Lb/acre		Pct	Pct
194:						
Merlin, very cobbly------						
	JD SHRUBBY MOUNTAIN CLAYPAN	\|Favorable	1,000	Idaho fescue		35
	12-16PZ (R010xB0820R)	\| Normal	800	\|Bluebunch wheatgrass		20
		\|Unfavorable	600	Antelope bitterbrush		15
				\|Low sagebrush		10
				\|Sandberg bluegrass		5
				\|Onespike oatgrass		5
195:						
Merlin	JD MOUNTAIN CLAYPAN 12-16PZ	\| Favorable	700	Idaho fescue		50
	(R010XB0800R)	\| Normal	500	\|Bluebunch wheatgrass		15
		\|Unfavorable	300	Low sagebrush		15
				Onespike oatgrass		8
				\| Sandberg bluegrass		5
Ateron	SR MAHOGANY MOUNTAIN LOAM	\|Favorable	1,500	\| Idaho fescue		25
	14-18PZ (R010XC0800R)	\| Normal	1,200	\| Curl-leaf mountain mahogany		25
		Unfavorable	1,000	Antelope bitterbrush		15
				\| Bluebunch wheatgrass		15
				Mountain big sagebrush		5
				\| Ponderosa pine		5
196:						
Merlin	JD MOUNTAIN CLAYPAN 12-16PZ	\| Favorable	700	Idaho fescue		50
	(R010XB0800R)	\| Normal	500	\|Bluebunch wheatgrass		15
		\| Unfavorable	300	\|Low sagebrush		15
				Onespike oatgrass		8
				\| Sandberg bluegrass		5
Ateron-		\| Favorable	600	\|Onespike oatgrass		30
	12-16PZ (R010XC0390R)	\| Normal	400	\|Stiff sagebrush		25
		\|Unfavorable	200	Idaho fescue		15
				Sandberg bluegrass		15
				\|Bluebunch wheatgrass		10
Rubble land.						
197:						
Merlin	JD MOUNTAIN CLAYPAN 12-16PZ	\| Favorable	700	Idaho fescue		50
	(R010xB0800R)	\| Normal	500	\|Bluebunch wheatgrass		15
		Unfavorable	300	\|Low sagebrush		15
				Onespike oatgrass		8
				\| Sandberg bluegrass		5
Ateron-			600	Onespike oatgrass		30
	12-16PZ (R010XC0390R)	\| Normal	400	\|Stiff sagebrush		25
		\|Unfavorable	200	Idaho fescue		15
				\| Sandberg bluegrass		15
				\|Bluebunch wheatgrass		10
Ticino				\| Idaho fescue		60
	12-16PZ (R010XB0280R)	\|Normal	1,500	Antelope bitterbrush		10
		\|Unfavorable	1,000	\| Thurber needlegrass		5
				\| Bluebunch wheatgrass		5
				\| Bluegrass		5
				Mountain big sagebrush		5
198:			\|			
Merlin	JD MOUNTAIN CLAYPAN 12-16PZ	\| Favorable	700	\| Idaho fescue		50
	(R010XB0800R)	\| Normal	500	\| Bluebunch wheatgrass		15
		\| Unfavorable	300	\|Low sagebrush	\|	15
				Onespike oatgrass		8
				\| Sandberg bluegrass		5

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		Kind of year	$\begin{aligned} & \mid \text { Dry } \\ & \text { \|Weight } \end{aligned}$		\|Forest	Range	
			\| Lb/acre		Pct	Pct	
198:							
Erakatak-------	SR MAHOGANY MOUNTAIN LOAM 14-18PZ (R010xC0800R)	Favorable	1,500	\| Idaho fescue		25	
		Normal	1,200	\| Curl-leaf mountain mahogany		25	
		\|Unfavorable	1,000	\| Antelope bitterbrush		15	
				\| Bluebunch wheatgrass		15	
				\|Mountain big sagebrush		5	
				\mid Ponderosa pine		5	
Teguro---------	JD SHRUBBY MOUNTAIN CLAYEY 12-16PZ (R010XB0280R)	Favorable	2,000	\| Idaho fescue		60	
		Normal	1,500	\|Antelope bitterbrush		10	
		Unfavorable	1,000	\| Thurber needlegrass		5	
				\|Bluebunch wheatgrass		5	
				\|Bluegrass		5	
				\|Mountain big sagebrush		5	
199 :							
Merlin----------	JD MOUNTAIN CLAYPAN 12-16PZ (R010XB0800R)	\|Favorable	700	\| Idaho fescue		50	
		\|Normal	500	\|Bluebunch wheatgrass		15	
		\|Unfavorable	300	\|Low sagebrush		15	
				\| Onespike oatgrass		8	
				\|Sandberg bluegrass		5	
Observation-----	SR MOUNTAIN CLAYEY 12-16PZ(R010xC032OR)	Favorable	2,000	\|Idaho fescue		70	
		Normal	1,500	\|Bluebunch wheatgrass		10	
		Unfavorable	1,000			10	
				\|Thurber needlegrass		5	
200:							
Merlin---------	JD MOUNTAIN CLAYPAN 12-16PZ (R010XB0800R)			\| Idaho fescue			
		\|Normal	500	\|Bluebunch wheatgrass		15	
		\|Unfavorable	300	\|Low sagebrush		15	
				\|Onespike oatgrass		8	
				\|Sandberg bluegrass		5	
Observation-----	$\begin{aligned} & \text { \|SR MOUNTAIN NORTH 12-16PZ } \\ & \text { (R010XC066OR) } \end{aligned}$						
		\|Favorable	Normal	2,200 1,600	\| Idaho fescue ${ }^{\text {\| }}$ Bluebunch wheatgrass		75 8
		\|Unfavorable	1,000	\|Mountain big sagebrush		5	
201:							
Merlin----------	JD MOUNTAIN CLAYPAN 12-16PZ (R010XB0800R)	\|Favorable	700	\| Idaho fescue		50	
		\|Normal	500	\|Bluebunch wheatgrass		15	
		\|Unfavorable	300	\|Low sagebrush		15	
				\| Onespike oatgrass		8	
				\|Sandberg bluegrass		5	
Rubble land.							
202:							
Merlin----------	JD MOUNTAIN CLAYPAN 12-16PZ (R010XB0800R)	\|Favorable	700	\|Idaho fescue		50	
		\| Normal	500	\| Bluebunch wheatgrass		15	
		\|Unfavorable	300	\|Low sagebrush		15	
				\| Onespike oatgrass		8	
				\|Sandberg bluegrass		5	
Teguro----------							
	SR MOUNTAIN SHALLOW 12-16PZ (R010XC0370R)	\|Favorable	1,500	\| Idaho fescue		70	
		\| Normal	1,200	\| Bluebunch wheatgrass		15	
		\|Unfavorable	1,000	\|Mountain big sagebrush		10	
				\|Sandberg bluegrass		5	
203:							
Merlin	JD MOUNTAIN CLAYPAN 12-16PZ (R010XB0800R)	\|Favorable	700	\| Idaho fescue		50	
		\|Normal	500	\|Bluebunch wheatgrass		15	
		\|Unfavorable	300	\|Low sagebrush		15	
				\| Onespike oatgrass		8	
				\| Sandberg bluegrass		5	

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	$\begin{aligned} & \text { \| Dry } \\ & \text { \|Weight } \end{aligned}$		\| Forest	\|Range
			\| Lb/acre		Pct	PCt
Teguro---------	JD Shrubby mountain Clayey	Favorable	2,000	\| Idaho fescue		60
	12-16PZ (R010XB0280R)	Normal	1,500	\| Antelope bitterbrush		10
		Unfavorable	1,000	\| Thurber needlegrass		5
				\|Bluebunch wheatgrass		5
				\|Bluegrass		5
				\|Mountain big sagebrush		5
204:						
Mesman----------	SODIC DUNES (R024XY0050R)		700	\| Indian ricegrass		25
		Normal	500	\| Basin big sagebrush		15
		Unfavorable	300	\|Basin wildrye		10
				\|Black greasewood		10
				\|Needleandthread		10
				\|Beardless wildrye		5
205:						
Mesman----------	LOAMY 8-10PZ (R024XY0160R)		900	\| Indian ricegrass		30
		\|Normal	700	\| Thurber needlegrass		30
		Unfavorable	400	\|Bluebunch wheatgrass		15
				\|Wyoming big sagebrush		10
				\|Basin big sagebrush		5
				\|Bottlebrush squirreltail		5
206:						
Mesman----------	$\begin{aligned} & \text { \|SODIC TERRACE 6-10PZ } \\ & \text { (R024XY014OR) } \end{aligned}$			\| Basin big sagebrush		20
		\|Normal	400	\| Indian ricegrass		15
		Unfavorable	200	\| Spiny hopsage		15
				\|Black greasewood		10
				\|Basin wildrye		7
				\|Bottlebrush squirreltail		7
				\|Shadscale		5
Norad-----------	SILTY 6-10PZ (R024XY0110R)	Favorable	500	\|Winterfat		60
		\| Normal	350	\| Indian ricegrass		15
		\|Unfavorable	200	\|Sickle saltbush		10
				\| Bottlebrush squirreltail		8
				\| Bud sagebrush		5
207:						
Middlebox------\|	LOAMY 10-12PZ (R023XY2120R)	\|Favorable	1,000	\|Thurber needlegrass		40
		Normal	800	\| Bluebunch wheatgrass		25
		Unfavorable	600	\| Sandberg bluegrass		10
				\|Wyoming big sagebrush		10
				\| Bottlebrush squirreltail		8
				\| Indian ricegrass		7
				\| Spiny hopsage		5
208:						
Middlebox, north\|						
slopes	NORTH SLOPES 12-16PZ (R023XY3100R)		1,800	Idaho fescue		45
		Normal	1,400	\| Basin wildrye		10
		\|Unfavorable	1,000	\| Bluebunch wheatgrass		10
				\|Mountain big sagebrush		10
				\|Sandberg bluegrass		5
				\| Antelope bitterbrush		5
				\| Common snowberry		5
Middlebox, south slopes						
	SOUTH SLOPES 8-12PZ (R023XY3000R)	\|Favorable	1,000	\| Bluebunch wheatgrass		50
		\|Normal	700	\|Thurber needlegrass		15
		\|Unfavorable	500	\|Wyoming big sagebrush		10
				\|Antelope bitterbrush		10
				\| Indian ricegrass		5
				\| Sandberg bluegrass		5
				\| Basin big sagebrush		5

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		Kind of year	$\begin{aligned} & \text { \| Dry } \\ & \mid \text { Weight } \end{aligned}$		Forest	Range	
			\| Lb/acre			Pct	Pct
	\|SR DRY MOUNTAIN SWALE 12-16PZ	\|Favorable	2,200	Idaho fescue		70	
	(R010XC0190R)	\| Normal	1,800	Bluebunch wheatgrass		15	
		Unfavorable	1,600	\|Sedge		10	
				Mountain big sagebrush		5	
210:							
Minam----------	SR DRY MOUNTAIN SWALE 12-16PZ (R010XC0190R)	\|Favorable	2,200	Idaho fescue		70	
		\| Normal	1,800	Bluebunch wheatgrass		15	
		\|Unfavorable	1,600	Sedge		10	
				Mountain big sagebrush		5	
Welch-----------	MOUNTAIN MEADOW (R010XY0020R)	Favorable	4,000	\|Tufted hairgrass		60	
		\| Normal	3,000	\| Bluegrass		5	
		\|Unfavorable	2,000	\|Rush		5	
				\|Willow		5	
211:							
Modoc	SR MOUNTAIN LOAMY 9-12PZ (R010XC0300R)	\|Favorable	1,300	\| Idaho fescue		50	
		\| Normal	900	\|Thurber needlegrass		15	
		\|Unfavorable	600	Wyoming big sagebrush		10	
				Needleandthread		8	
				\| Sandberg bluegrass		5	
				\|Bluebunch wheatgrass		5	
				\|Western needlegrass		5	
212:							
Morfitt---------	DRY PONDED CLAY 6-10PZ (R024XY007OR)	\|Favorable	1,000	\| Beardless wildrye		60	
		\| Normal	700	\| Basin big sagebrush		10	
		\|Unfavorable	500	\| Basin wildrye		10	
				\|Bottlebrush squirreltail		10	
				\|Bluegrass		5	
213:							
Morganhills-----	\|LOAMY 10-12PZ (R023XY2120R)	\|Favorable	1,000	\|Thurber needlegrass		40	
		\| Normal	800	\|Bluebunch wheatgrass		25	
		\|Unfavorable	600	\| Sandberg bluegrass		10	
				\| Wyoming big sagebrush		10	
				\|Bottlebrush squirreltail		8	
				Indian ricegrass		7	
				\|Spiny hopsage		5	
214:							
Morganhills,							
more than 12 percent slopes							
		\|Favorable	1,200	\|Needleandthread		30	
	(R023XY303OR)	\| Normal	1,000	\| Indian ricegrass		20	
		\|Unfavorable	800	\| Antelope bitterbrush		10	
				\| Basin big sagebrush		10	
				\|Basin wildrye		10	
Morganhills, less than 12 percent slopes							
	\|LOAMY 10-12PZ (R023XY2120R)	\|Favorable	1,000	\|Thurber needlegrass		40	
		\| Normal	800	\|Bluebunch wheatgrass		25	
		\|Unfavorable	600	\| Sandberg bluegrass		10	
				\|Wyoming big sagebrush		10	
				\|Bottlebrush squirreltail		8	
				\| Indian ricegrass		7	
				\|Spiny hopsage		5	
215:							
Mound-----------	Ponderosa pine/elk sedge (CPG222)	\|Favorable	1,000	\|Elk sedge	70		
		\| Normal	800	\| Idaho fescue	10		
		\|Unfavorable	600	\| Common snowberry	10		
				\|Bluebunch wheatgrass	5		
				\| Ponderosa pine	5		

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition			
		Kind of year	$\begin{aligned} & \text { \| Dry } \\ & \text { \|Weight } \end{aligned}$		Forest	\|Range		
			\| Lb/acre			Pct	Pct	
222:								
Edemaps-------- \|	DROUGHTY LOAM 11-13PZ	\|Favorable	1,400	\| Idaho fescue		35		
	(R023XY3160R)	\| Normal	1,200	\| Thurber needlegrass		25		
		\|Unfavorable	900	\|Bluebunch wheatgrass		20		
				\|Basin big sagebrush		10		
				\|Sandberg bluegrass		5		
223:								
Ninemile-------\|	\| CLAYPAN 10-12PZ (R023XY2140R)	\|Favorable	900	\|Bluebunch wheatgrass		40		
		\|Normal	700	\|Low sagebrush		20		
		\|Unfavorable	500	\| Sandberg bluegrass		10		
				\| Balsamroot		5		
				\|Lomatium		5		
				\|Lupine		5		
Madeline-------	SR MOUNTAIN SHALLOW 9-12PZ	\|Favorable	1,100	\| Idaho fescue		60		
	(R010XC0360R)	\| Normal	600	\|Wyoming big sagebrush		15		
		\|Unfavorable	300	\|Bluebunch wheatgrass		8		
				\|Sandberg bluegrass		5		
				\|Thurber needlegrass		5		
				\|Squaw apple		1		
	224:							
Ninemile	\| CLAYPAN 12-16PZ (R023XY2160R)	\|Favorable	1,000	\| Idaho fescue		50		
		\| Normal	800	\| Bluebunch wheatgrass		15		
		\|Unfavorable	600	\|Low sagebrush		15		
				\|Sandberg bluegrass		8		
				\|Thurber needlegrass		7		
Pearlwise------\|	\|DEEP NORTH 12-18PZ (R023XY4040R)	\|Favorable	1,800	\| Idaho fescue		60		
		\|Normal	1,500	\| Needlegrass		15		
		\|Unfavorable	1,200	\|Mountain big sagebrush		-		
				\|Bluebunch wheatgrass		7		
				\|Bluegrass		5		
				\|Whortleleaf snowberry		5		
225:								
Ninemile--------	\| CLAYPAN 12-16PZ (R023XY2160R)	\| Favorable	1,000	\| Idaho fescue		50		
		\|Normal	800	\|Bluebunch wheatgrass		15		
		\|Unfavorable	600	\|Low sagebrush		15		
						8		
				\|Thurber needlegrass		7		
Reluctan-------	DROUGHTY LOAM 11-13PZ	\|Favorable	1,400	\| Idaho fescue		35		
	(R023XY3160R)	\|Normal	1,200	\| Thurber needlegrass		25		
		\| Unfavorable	900	\|Bluebunch wheatgrass		20		
						10		
				\|Sandberg bluegrass		5		
226:								
Ninemile-------	\| CLAYPAN 12-16PZ (R023XY2160R)							
		\|Normal	800	\|Bluebunch wheatgrass		15		
		\|Unfavorable	600	\|Low sagebrush		15		
				\|Sandberg bluegrass		8		
				\|Thurber needlegrass		7		
Reluctan--------	(R023XY316OR)	Favorable \|Normal	1,400 1,200	\| Idaho fescue		35 25		
		\|Unfavorable	900	\|Bluebunch wheatgrass		20		
				\|Basin big sagebrush		10		
				\| Sandberg bluegrass		5		
Rubble land.								

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	$\begin{aligned} & \text { Dry } \\ & \text { \|Weight } \end{aligned}$		\|Forest	\mid Range
			\| Lb/acre		Pct	PCt
```231: Ninemile, extremely stony```						
	UUNIPER TABLELAND 10-14PZ	Favorable	1,000	Idaho fescue		40
	(R023XY2170R)	\| Normal	800	\| Bluebunch wheatgrass		20
		Unfavorable	600	\| Sandberg bluegrass		10
				\|Thurber needlegrass		10
				\|Low sagebrush		10
				\|Western juniper		10
232:						
Ninemile-------\|	CLAYPAN 10-12PZ (R023XY2140R)	Favorable	900	\|Bluebunch wheatgrass		40
		Normal	700	\| Low sagebrush		20
		Unfavorable	500	\| Sandberg bluegrass		10
				\|Balsamroot		5
				Lomatium		5
				\|Lupine		5
Felcher--------	SOUTH SLOPES 8-12PZ (R023XY3000R)	Favorable	1,000	\|Bluebunch wheatgrass		50
		Normal	700	\|Thurber needlegrass		15
		Unfavorable	500	\|Wyoming big sagebrush		10
				\| Antelope bitterbrush		10
				Indian ricegrass		5
				\|Sandberg bluegrass		5
				\| Basin big sagebrush		5
233:						
Noname---------- \|	$\begin{aligned} & \text { \|ROCKY RIDGES 16-35PZ } \\ & \text { (RO23XY5100R) } \end{aligned}$		1,000	\| Idaho fescue		25
		Normal	800	\| Curl-leaf mountain mahogany		25
		\|Unfavorable	600	\|Letterman needlegrass		5
				Mountain big sagebrush		5
				\|Sheep fescue		5
				\|Western needlegrass		5
				\|Whortleleaf snowberry		5
Dickle----------	CLAYPAN 16-25PZ (R023XY5070R)	Favorable	1,100	Idaho fescue		45
		Normal	1,100 900	\|Low sagebrush		15
		Unfavorable	700	\|Onespike oatgrass		10
				\|Sheep fescue		10
				\|Letterman needlegrass		5
				\| Prairie junegrass		5
				\|Western needlegrass		5
234:						
Noname--------- \|	\|ROCKY RIDGES 16-35PZ(R023XY5100R)	\|Favorable	1,000	\| Idaho fescue		25
		\| Normal	800	\| Curl-leaf mountain mahogany		25
		\|Unfavorable	600	\|Letterman needlegrass		5
				\|Mountain big sagebrush		5
				\|Sheep fescue		5
						5
				\|Whortleleaf snowberry		5
Duff-----------	SUBALPINE SLOPES $16-35 \mathrm{PZ}$(R023XY5090R)	\|Favorable	1,400	\| Idaho fescue		55
		\|Normal	1,000	Mountain big sagebrush		15
		Unfavorable	800	Whortleleaf snowberry		10
				\| Letterman needlegrass		5
				\| Basin wildrye		5
				\|Bluebunch wheatgrass		5
				\| Sedge		5
Rock outcrop.						

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	$\begin{aligned} & \mid \text { Dry } \\ & \text { \|Weight } \end{aligned}$		Forest	Range
			\| Lb/acre		Pct	Pct
Norad-	SILTY 6-10PZ (R024XY0110R)	Favorable	500	\|Winterfat		60
		Normal	350	\| Indian ricegrass		15
		Unfavorable	200	\|Sickle saltbush		10
				\|Bottlebrush squirreltail		8
				\|Bud sagebrush		5
236:						
Norad---------- \|	SILTY 6-10PZ (R024XY0110R)	Favorable	500	Winterfat		60
		Normal	350	\| Indian ricegrass		15
		Unfavorable	200	\| Sickle saltbush		10
				\|Bottlebrush squirreltail		8
				\|Bud sagebrush		5
Spangenburg-----	DRY PONDED CLAY 6-10PZ	Favorable	1,000	\|Beardless wildrye		60
	(R024XY0070R)	Normal	700	\| Basin big sagebrush		10
		\|Unfavorable	$500$	\|Basin wildrye		10
				\|Bottlebrush squirreltail		10
				\|Bluegrass		5
237:						
Nuss------------				\| Bluebunch wheatgrass		
	12-16PZ (R010XC0540R)	Normal		\|Sandberg bluegrass		8
		Unfavorable	400	\| Idaho fescue		5
				\| Antelope bitterbrush		5
				$\mid$ Mountain big sagebrush		5
				\|Squaw apple		5
	238:					
	\|SR MOUNTAIN SHALLOW NORTH	Favorable	1,200	\| Idaho fescue		
	12-16PZ (R010xC0750R)	Normal	900	\|Bluebunch wheatgrass		10
		Unfavorable	600	$\mid$ Mountain big sagebrush		-
				\| Sandberg bluegrass		5
Merlin----------		Favorable	700	\|Idaho fescue		50
	(R010XB0800R)	Normal	500	\|Bluebunch wheatgrass		15
		Unfavorable	300	\|Low sagebrush		15
				\| Onespike oatgrass		8
				\|Sandberg bluegrass		5
239 :						
Nuss	SR MOUNTAIN SHALLOW SOUTH	Favorable	900	\|Bluebunch wheatgrass		60
	12-16PZ (R010XC0540R)	Normal	600	\| Sandberg bluegrass		8
		Unfavorable	400	\| Idaho fescue		5
				\|Antelope bitterbrush		5
				\|Mountain big sagebrush		5
				\|Squaw apple		5
Rock outcrop.						
240:						
Observation-----	SR MAHOGANY MOUNTAIN LOAM	\|Favorable	1,500	\|Idaho fescue		25
	14-18PZ (R010xC0800R)	\| Normal	1,200	\| Curl-leaf mountain mahogany		25
		\|Unfavorable	1,000	\| Antelope bitterbrush		15
				\| Bluebunch wheatgrass		15
				$\mid$ Mountain big sagebrush		5
				\| Ponderosa pine		5
241:						
Observation-----	\|SR MOUNTAIN CLAYEY 12-16PZ	\|Favorable	2,000	\| Idaho fescue		70
	(R010xC0320R)	\|Normal	1,500	\|Bluebunch wheatgrass		10
		Unfavorable	1,000	\|Mountain big sagebrush		10
				\|Thurber needlegrass		5
Rock outcrop.						

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	$\begin{aligned} & \mid \text { Dry } \\ & \text { \|Weight } \end{aligned}$		Forest	Range
			\| Lb/acre		Pct	PCt
242:						
Observation-----	$\mid$ SR MOUNTAIN CLAYEY $12-16 \mathrm{PZ}$$\mid(\mathrm{RO} 10 \mathrm{XC} 0320 \mathrm{R})$	Favorable	2,000	\|Idaho fescue		70
		Normal	1,500	\| Bluebunch wheatgrass		10
		Unfavorable	1,000	\|Mountain big sagebrush		10
				\|Thurber needlegrass		5
Royst----------	\|SR DRY PINE $14-16 \mathrm{PZ}$$\mid \quad$ (R010xC0820R)	Favorable	1,200	\|Idaho fescue		40
		Normal	900	\| Bluebunch wheatgrass		25
		Unfavorable	600	\|Sandberg bluegrass		5
				\|Antelope bitterbrush		5
				\|Mountain big sagebrush		5
				\| Ponderosa pine		5
				\|Western juniper		5
Merlin----------	$\begin{aligned} & \text { \|JD MOUNTAIN CLAYPAN } 12-16 \mathrm{PZ} \\ & \text { (RO10XB0800R) } \end{aligned}$	Favorable	700	\| Idaho fescue		50
		Normal	500	\| Bluebunch wheatgrass		15
		Unfavorable	300	\|Low sagebrush		15
				\| Onespike oatgrass		8
				\| Sandberg bluegrass		5
243:						
Observation-----	SR MAHOGANY MOUNTAIN LOAM 14-18PZ (R010XC0800R)	Favorable	1,500	\|Idaho fescue		25
		Normal	1,200	\|Curl-leaf mountain mahogany		25
		Unfavorable	1,000	\| Antelope bitterbrush		15
				\| Bluebunch wheatgrass		15
				\|Mountain big sagebrush		5
				\| Ponderosa pine		5
Teguro---------	\|JD SHRUBBY MOUNTAIN CLAYEY   \| 12-16PZ (R010XB0280R)	Favorable	2,000	\| Idaho fescue		60
		Normal	1,500	\| Antelope bitterbrush		10
		Unfavorable	1,000	\|Thurber needlegrass		5
				\|Bluebunch wheatgrass		5
				\|Bluegrass		5
				\|Mountain big sagebrush		5
244:						
Observation-----	SR MOUNTAIN SOUTH $12-16 \mathrm{PZ}$(R010XC047OR)			\| Bluebunch wheatgrass		50
		Normal	1,000	\|Idaho fescue		20
		Unfavorable	700	\|Thurber needlegrass		5
				\|Antelope bitterbrush		5
				\|Mountain big sagebrush		5
				\|Squaw apple		5
Lambring-------	\|JD Shrubby mountain north	Favorable	2,000	\| Idaho fescue		60
	12-16PZ (R010xB0710R)	Normal	1,600	\| Antelope bitterbrush		15
		Unfavorable	1,200	\| Bluebunch wheatgrass		8
				\|Mountain big sagebrush		5
				\|Whortleleaf snowberry		2
Rock outcrop.						
245:						
Olac------------	$\begin{aligned} & \mid \text { THIN SURFACE 8-14PZ } \\ & \mid \quad \text { (R024XY0210R) } \end{aligned}$	Favorable	500	\|Black sagebrush		60
		Normal	400	\|Bottlebrush squirreltail		20
		Unfavorable	300	\| Sandberg bluegrass		10
				\| Thurber needlegrass		5
Atlow-----------	\|SHALLOW LOAM 8-10PZ(R024XY017OR)	Favorable	700	\|Thurber needlegrass		35
		Normal	500	Indian ricegrass		15
		Unfavorable	300	\|Wyoming big sagebrush		15
				\| Bluebunch wheatgrass		15
				\|Bottlebrush squirreltail		10
				\| Spiny hopsage		10

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued


Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition			
		Kind of year	$\begin{aligned} & \text { \| Dry } \\ & \text { \|Weight } \end{aligned}$		\|Forest	Range		
			\| Lb/acre			Pct	Pct	
253:								
Pernty--------- \|			1,400	Idaho fescue		35		
	(R023XY3160R)	Normal	$1,200$	\|Thurber needlegrass		25		
		Unfavorable	900	\|Bluebunch wheatgrass		20		
				\|Basin big sagebrush		10		
				\|Sandberg bluegrass		5		
254:								
Pernty--------- \|	SOUTH SLOPES 12-16PZ	Favorable	1,400	\| Bluebunch wheatgrass		40		
	(R023XY3020R)	\| Normal	1,100	\|Mountain big sagebrush		10		
		Unfavorable	700	\| Idaho fescue		5		
				\|Sandberg bluegrass		5		
				Antelope bitterbrush		5		
				\|Arrowleaf balsamroot		5		
255:								
Pernty----------	SHALLOW NORTH 12-16PZ	Favorable	1,200	Idaho fescue		50		
	(R023XY3120R)	Normal	900	\| Low sagebrush		20		
		Unfavorable	700	\|Bluebunch wheatgrass		10		
				\| Sandberg bluegrass		5		
256:								
Pernty--------- \|	SOUTH SLOPES 12-16PZ	Favorable	1,400	\| Bluebunch wheatgrass		40		
	(R023XY3020R)	Normal	1,100	Mountain big sagebrush		10		
		Unfavorable	700			5		
				\| Sandberg bluegrass		5		
				\|Antelope bitterbrush		5		
				Arrowleaf balsamroot		5		
Rock outcrop.								
257:								
Pernty--------- \|			$1,400$			40		
	(R023XY3020R)	Normal	$1,100$	\|Mountain big sagebrush		10		
		Unfavorable	700			5		
				Sandberg bluegrass		5		
				\|Antelope bitterbrush		5		
				\|Arrowleaf balsamroot		5		
Westbutte------\|								
	\|NORTH SLOPES 12-16PZ (RO23XY3100R)	\|Favorable   \|Normal	1,800 1,400	\|Idaho fescue		45 10		
		Unfavorable	1,000	\|Bluebunch wheatgrass		10		
				\|Mountain big sagebrush		10		
				\|Sandberg bluegrass		5		
				\|Antelope bitterbrush		5		
				\|Common snowberry		5		
Ninemile-------\|	\| CLAYPAN 12-16PZ (R023XY2160R)	Favorable	1,000	Idaho fescue		50		
		Normal	800	\|Bluebunch wheatgrass				
		Unfavorable	600	\|Low sagebrush		15		
						8		
				\|Thurber needlegrass		7		
258:								
Pits.								
259:								
Playas.								
260:								
Playas.								
Thenarrows------\|	SODIC MEADOW (R024XY0020R)	\|Favorable		\|Alkali sacaton		25		
		\| Normal	1,000	\| Sandberg bluegrass		20		
		Unfavorable	700	\| Inland saltgrass		20		
				\|Alkali cordgrass		10		

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of yea	Dry		Forest	Range
			Weight			
			Lb/acre \|		Pct	Pct
Poall----------\|	\|SR CLAYEY 9-12PZ (R010XC0210R)	\| Favorable	1,500	\|Bluebunch wheatgrass		60
		\| Normal	1,000	\|Thurber needlegrass		8
			600	\|Sandberg bluegrass		5
				\|Wyoming big sagebrush		5
				\|Basin big sagebrush		5
				\|Basin wildrye		5
262:						
Poall---------- \|	SR CLAYEY 9-12PZ (R010XC0210R)	\|Favorable	1,500	\|Bluebunch wheatgrass		60
		\| Normal	1,000	\|Thurber needlegrass		8
		\|Unfavorable	600	\| Sandberg bluegrass		5
				\|Wyoming big sagebrush		5
				\|Basin big sagebrush		5
				\|Basin wildrye		5
Gumble--------- \|	\|SR SHALLOW 9-12PZ (R010XC0350R)	\|Favorable	1,000	\| Bluebunch wheatgrass		50
		\| Normal	600	\| Thurber needlegrass		30
		\|Unfavorable	300	\|Wyoming big sagebrush		8
$263:$						
Pomerening------	SANDY LOAM 10-12PZ (R023XY2130R)	\|Favorable	1,400	\|Needleandthread		40
		\| Normal	1,200	\| Thurber needlegrass		20
		\|Unfavorable	1,000	\| Basin big sagebrush		10
				\|Basin wildrye		10
				\| Indian ricegrass		5
264:						
Pomerening----- \|	SANDY LOAM 10-12PZ (R023XY2130R)	\| Favorable	1,400	\|Needleandthread		40
		\| Normal	1,200	\|Thurber needlegrass		20
		\|Unfavorable	1,000	\| Basin big sagebrush		10
				\| Basin wildrye		10
				\| Indian ricegrass		5
Flank---------- \|	SHALLOW LAVA 10-12PZ (R023XY2220R)	\|Favorable	400	\|Thurber needlegrass		25
		\|Normal	300	\| Basin big sagebrush		25
		\|Unfavorable	200	\|Bluebunch wheatgrass		20
				\| Sandberg bluegrass		10
Lava flows.						
265:						
Porterfield	SR SHALLOW 9-12PZ (R010XC0350R)	\|Favorable	1,000	\|Bluebunch wheatgrass		
		\|Normal	600	\| Thurber needlegrass		30
		\|Unfavorable	300	\|Wyoming big sagebrush		8
266:						
Porterfield-----	$\begin{aligned} & \text { \|SR SHALLOW SOUTH 9-12PZ } \\ & \text { (R010XC0500R) } \end{aligned}$	\|Favorable	800	\|Bluebunch wheatgrass		70
		\| Normal	500	\|Thurber needlegrass		20
		\|Unfavorable	300	\| Sandberg bluegrass		5
				\|Wyoming big sagebrush		5
267:						
Porterfield-----\|	$\begin{aligned} & \text { \|SR SHALLOW SOUTH 9-12PZ } \\ & \text { \| (R010XC0500R) } \end{aligned}$	\| Favorable	800	\| Bluebunch wheatgrass		70
		\| Normal	500	\| Thurber needlegrass		20
		\|Unfavorable	300	\| Sandberg bluegrass		5
				\|Wyoming big sagebrush		5
Tincan---------	SR MOUNTAIN NORTH 9-12PZ (R010XC0650R)		1,600	\|Idaho fescue		
		\|Normal	1,100	\| Sandberg bluegrass		5
		\|Unfavorable	800	\|Wyoming big sagebrush		5
				\|Bluebunch wheatgrass		5
Rock outcrop.						

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		\|Kind of year	$\begin{array}{\|c} \mid \text { Dry } \\ \mid \text { Weight } \end{array}$		\|Forest	Range	
			\| Lb/acre			Pct	Pct
Poujade---------	\|SODIC TERRACE 6-10PZ	\| Favorable	600	\|Basin big sagebrush		20	
	\| (R024XY014OR)	\| Normal	400	Indian ricegrass		15	
		\|Unfavorable	200	\| Spiny hopsage		15	
				\|Black greasewood		10	
				\|Basin wildrye		7	
				\|Bottlebrush squirreltail		7	
				Shadscale		5	
$269:$							
Poujade---------	DRY BASIN (R024XY0090R)	\|Favorable	1,800	Basin wildrye		50	
		\| Normal	1,500	\|Beardless wildrye		15	
		Unfavorable	1,000	\|Basin big sagebrush		10	
				\| Black greasewood		8	
				Inland saltgrass		5	
				Needleandthread		5	
270:							
Poujade--------	DRY BASIN (R024XY0090R)	\|Favorable	1,800	Basin wildrye		50	
		\| Normal	1,500	\|Beardless wildrye		15	
		\|Unfavorable	1,000	Basin big sagebrush		10	
				\| Black greasewood		8	
				Inland saltgrass		5	
				Needleandthread		5	
Ausmus--------- \|	\|SODIC BOTTOM (R024XY003OR)	\|Favorable	1,700	\| Basin wildrye		60	
		\| Normal	1,400	\| Black greasewood		15	
		\|Unfavorable	1,100	Inland saltgrass		5	
271:							
Raz-------------	\| SANDY LOAM 10-12PZ (R023XY2130R)		1,400	Needleandthread		40	
		\|Normal	1,200	Thurber needlegrass		20	
		\|Unfavorable	1,000	\|Basin big sagebrush		10	
				\|Basin wildrye		10	
				Indian ricegrass		5	
272:							
Raz-------------	\|LOAMY 10-12PZ (R023XY2120R)	\|Favorable	1,000	Thurber needlegrass		40	
		\|Normal	800	\|Bluebunch wheatgrass		25	
		\|Unfavorable	600	\|Sandberg bluegrass		10	
				\|Wyoming big sagebrush		10	
				\|Bottlebrush squirreltail		8	
				Indian ricegrass		7	
				\|Spiny hopsage		5	
Brace-----------	\|LOAMY 10-12PZ (R023XY2120R)	\|Favorable	1,000	\|Thurber needlegrass		40	
			800	\|Bluebunch wheatgrass		25	
		\|Unfavorable	600	\|Sandberg bluegrass		10	
				Wyoming big sagebrush		10	
				\|Bottlebrush squirreltail		8	
				\|Indian ricegrass		7	
				Spiny hopsage		5	
273 :							
Raz-				\|Thurber needlegrass			
	\| (R024XY017OR)	\| Normal	500	Indian ricegrass		15	
		\|Unfavorable	300	Wyoming big sagebrush		15	
				\|Bluebunch wheatgrass		15	
				\|Bottlebrush squirreltail		10	
				\|Spiny hopsage		10	
Brace-----------	\|SHALLOW LOAM 8-10PZ	\|Favorable	700	Thurber needlegrass		35	
	(R024XY0170R)	\| Normal	500	Indian ricegrass		15	
		\|Unfavorable	300	Wyoming big sagebrush		15	
				\|Bluebunch wheatgrass		15	
				Bottlebrush squirreltail		10	
				\|Spiny hopsage		10	

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued


Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	$\begin{aligned} & \text { Dry } \\ & \text { Weight } \end{aligned}$		Forest	Range
			\|Lb/acre		Pct	Pct
281:						
	LOAMY 10-12PZ (R023XY2120R)	\|Favorable	1,000	\|Thurber needlegrass		40
		\| Normal	800	\| Bluebunch wheatgrass		25
		\|Unfavorable	600	\|Sandberg bluegrass		10
				\|Wyoming big sagebrush		10
				\|Bottlebrush squirreltail		8
				\| Indian ricegrass		7
				\|Spiny hopsage		5
282:						
Rio King	LOAMY BOTTOM (R010XY0050R)	\| Favorable	7,000	\|Basin wildrye		85
		\|Normal	5,000	\|Bluebunch wheatgrass		5
		\|Unfavorable	4,000	\|Bluegrass		5
				\|Willow		5
283:						
Rio King	LOAMY BOTTOM (R010XY0050R)	\|Favorable	7,000	\| Basin wildrye		85
		\| Normal	5,000	\|Bluebunch wheatgrass		5
		\|Unfavorable	4,000	\|Bluegrass		5
				\|Willow		5
Droval----------	\|SODIC BOTTOM (R024XY0030R)	\|Favorable	1,700	\|Basin wildrye		60
		\| Normal	1,400	\|Black greasewood		15
		\|Unfavorable	1,100	\| Inland saltgrass		5
284:						
Risley---------	\|SR CLAYEY 9-12PZ (R010XC0210R)	\|Favorable	1,500	\|Bluebunch wheatgrass		60
		\|Normal	1,000	\|Thurber needlegrass		8
		\|Unfavorable	600	\| Sandberg bluegrass		5
				\|Wyoming big sagebrush		5
				\|Basin big sagebrush		5
				\|Basin wildrye		5
Gumble---------	\|SR SHALLOW 9-12PZ (R010XC0350R)	\|Favorable	1,000	\|Bluebunch wheatgrass		50
		\| Normal	600	\| Thurber needlegrass		30
		\|Unfavorable	300	\|Wyoming big sagebrush		8
285:						
Risley---------	\| SR CLAYEY 9-12PZ (R010XCO210R)	\|Favorable	1,500	\|Bluebunch wheatgrass		60
		\| Normal	1,000	\|Thurber needlegrass		8
		\|Unfavorable	600	\| Sandberg bluegrass		5
				\|Wyoming big sagebrush		5
				\|Basin big sagebrush		5
				\|Basin wildrye		5
Gumble---------	\|SR SHALLOW 9-12PZ (R010XC0350R)	\|Favorable	1,000	\|Bluebunch wheatgrass		50
		\|Normal	600	\|Thurber needlegrass		30
		\|Unfavorable	300	\|Wyoming big sagebrush		8
Torriorthents--			400	\|Bluebunch wheatgrass		40
	(R010XC057OR)	\|Normal	300	\|Thurber needlegrass		30
		\|Unfavorable	100	\|Wyoming big sagebrush		10
				\|Antelope bitterbrush		8
				\|Squaw apple		8
286:						
Risley---------	\|SR CLAYEY 9-12PZ (R010XC0210R)	\| Favorable	1,500	\|Bluebunch wheatgrass		60
		\| Normal	1,000	\|Thurber needlegrass		8
		\|Unfavorable	600	\| Sandberg bluegrass		5
				\|Wyoming big sagebrush		5
				\|Basin big sagebrush		5
				\| Basin wildrye		5
Rock outcrop.					\|	

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition			
		Kind of year	$\begin{aligned} & \text { Dry } \\ & \text { \|Weight } \end{aligned}$		\| Forest	\|Range		
			\| Lb/acre		Pct	Pct		
287:								
Robson----------	\| CLAYEY 10-12PZ (R023XY2200R)		1,200	\|Bluebunch wheatgrass		60		
		\|Normal	900	\|Sandberg bluegrass		10		
		\|Unfavorable	700	\|Wyoming big sagebrush		10		
				Thurber needlegrass		5		
				\|Skyline bluegrass		5		
Anawalt---------	\|CLAYPAN 10-12PZ (R023XY214OR)	\| Favorable	900	\|Bluebunch wheatgrass		40		
		\| Normal	700	\| Low sagebrush		20		
		\|Unfavorable	500	\|Sandberg bluegrass		10		
				Balsamroot		5		
				\| Lomatium		5		
				\| Lupine		5		
288:								
Robson----------	\| CLAYEY 10-12PZ (R023XY2200R)	\|Favorable	1,200	\|Bluebunch wheatgrass		60		
		\| Normal	900	\| Sandberg bluegrass		10		
		\|Unfavorable	700	\|Wyoming big sagebrush		10		
				\|Thurber needlegrass		5		
				\|Skyline bluegrass		5		
Fourwheel------								
	CLAYEY 10-12PZ (R023XY2200R)	\| Favorable	1,200 900	\| Bluebunch wheatgrass		60 10		
		\|Unfavorable	700	\|Wyoming big sagebrush		10		
				\|Thurber needlegrass		5		
				\|Skyline bluegrass		5		
289:								
Robson----------	\| CLAYEY 10-12PZ (R023XY2200R)		1,200	\| Bluebunch wheatgrass		60		
		\|Normal	900	\| Sandberg bluegrass		10		
		\|Unfavorable	700			10		
				Thurber needlegrass		5		
				\|Skyline bluegrass		5		
				Bluebunch wheatgrass				
Felcher---------	(R023XY3000R)	\|Normal	1,000 700	\| Thurber needlegrass		50 15		
		\|Unfavorable	500	\|Wyoming big sagebrush		10		
				\|Antelope bitterbrush		10		
				\| Indian ricegrass		5		
				\|Sandberg bluegrass		5		
				\|Basin big sagebrush		5		
290:								
Roca------------	\|SOUTH SLOPES 8-12PZ	\| Favorable	1,000	\|Bluebunch wheatgrass		50		
	(R023XY3000R)	\|Normal	700	\| Thurber needlegrass		15		
		\|Unfavorable	500	\|Wyoming big sagebrush		10		
				\|Antelope bitterbrush		10		
				\|Indian ricegrass		5		
						5		
				\|Basin big sagebrush		5		
291:								
Rock outcrop.								
Rubble land.								
292:								
Rock outcrop.								
Baconcamp------	\| SUBALPINE SLOPES 16-35PZ	\|Favorable	1,400	\| Idaho fescue		55		
	(R023XY5090R)	\| Normal	1,000	\|Mountain big sagebrush		15		
		\|Unfavorable	800	\|Whortleleaf snowberry		10		
				\|Letterman needlegrass		5		
				\| Basin wildrye		5		
				\|Bluebunch wheatgrass		5		
				\|Sedge		5		

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition			
		Kind of year	$\begin{array}{\|c\|} \mid \text { Dry } \\ \mid \text { Weight } \end{array}$		Forest	Range		
			\| Lb/acre			Pct	PCt	
293:								
Royst-----------	$\begin{aligned} & \text { \|SR DRY PINE 14-16PZ } \\ & \text { (R010XC0820R) } \end{aligned}$	Favorable	1,200	\| Idaho fescue		40		
		Normal	900	\|Bluebunch wheatgrass		25		
		Unfavorable	600	\| Sandberg bluegrass		5		
				\| Antelope bitterbrush		5		
				\|Mountain big sagebrush		5		
				\| Ponderosa pine		5		
				\|Western juniper		5		
Merlin---------	\|JD MOUNTAIN CLAYPAN $12-16 \mathrm{PZ}$\| (RO10XB0800R)	Favorable	700	\| Idaho fescue		50		
		\| Normal	500	\|Bluebunch wheatgrass		15		
		\|Unfavorable	300	\|Low sagebrush		15		
				\| Onespike oatgrass		8		
				\|Sandberg bluegrass		5		
294:								
Rubble land.								
Nuss------------	\|SR MOUNTAIN SHALLOW SOUTH			\|Bluebunch wheatgrass		60		
		\|Normal	600	\| Sandberg bluegrass		8		
		\|Unfavorable	400	\| Idaho fescue		5		
				\| Antelope bitterbrush		5		
				\|Mountain big sagebrush		5		
				\|Squaw apple		5		
Ateron----------	SR MOUNTAIN SHALLOW NORTH 12-16PZ (R010XC075OR)	Favorable	1,200	\| Idaho fescue		70		
		\| Normal	900	\|Bluebunch wheatgrass		10		
		\|Unfavorable	600	\|Mountain big sagebrush		8		
				\|Sandberg bluegrass		5		
295:								
Sagehen--------	\| CLAYPAN 10-12PZ (R023xY2140R)	Favorable	900	\| Bluebunch wheatgrass		40		
		\| Normal	700	\|Low sagebrush		20		
		\|Unfavorable	500	\| Sandberg bluegrass		10		
				\|Balsamroot		5		
				\|Lomatium		5		
				\|Lupine		5		
Rock outcrop.								
296:								
Sagehen--------	CLAYPAN 10-12PZ (R023XY2140R)		900	\| Bluebunch wheatgrass		40		
		\|Normal	700	\|Low sagebrush		20		
		\|Unfavorable	500	\| Sandberg bluegrass		10		
				\|Balsamroot		5		
				\| Lomatium		5		
				\|Lupine		5		
Rock outcrop.								
297:								
Sandgap---------	SANDY LOAM 10-12PZ (R023XY2130R)					40		
		\|Normal	1,200	\| Thurber needlegrass		20		
		\|Unfavorable	1,000	\| Basin big sagebrush		10		
				\| Basin wildrye		10		
				\| Indian ricegrass		5		
298:								
Sandgap---------	SODIC DUNES (R024XY0050R)	\|Favorable	700	\| Indian ricegrass		25		
		\|Normal	500	\| Basin big sagebrush		15		
		\|Unfavorable	300	\|Basin wildrye		10		
				\| Black greasewood		10		
				\| Needleandthread		10		
				\|Beardless wildrye		5		

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued


Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued


Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	Dry   Weight		Forest	\|Range
312 :Spangenburg	LLOAMY 8-10PZ (R024XY0160R)		Lb/acre		Pct	Pct
		Favorable	900	\| Indian ricegrass		30
		Normal	700	\|Thurber needlegrass		30
		Unfavorable	400	\|Bluebunch wheatgrass		15
				\| Wyoming big sagebrush		10
				\| Basin big sagebrush		5
				\|Bottlebrush squirreltail		5
313:   Srednic	\|SANDY LOAM 10-12PZ (R023XY2130R)					
		Favorable	1,400	\|Needleandthread		40
		Normal	1,200	\|Thurber needlegrass		20
		Unfavorable	1,000	\|Basin big sagebrush		10
				\| Basin wildrye		10
				\| Indian ricegrass		5
Aval------------	SANDY LOAM 10-12PZ (R023XY2130R)	Favorable	1,400	\| Needleandthread		40
		Normal	1,200	\| Thurber needlegrass		20
		Unfavorable	1,000	\| Basin big sagebrush		10
				\|Basin wildrye		10
				\| Indian ricegrass		5
$314:$Stampede	$\begin{aligned} & \text { \|DROUGHTY LOAM 11-13PZ } \\ & \text { (R023XY316OR) } \end{aligned}$					
		Favorable	1,400	\| Idaho fescue		35
		\|Normal	1,200	\|Thurber needlegrass		25
		Unfavorable	900	\|Bluebunch wheatgrass		20
				\| Basin big sagebrush		10
				\|Sandberg bluegrass		5
315:						
Swaler	LOAMY 10-12PZ (R023XY2120R)	Favorable	1,000	\|Thurber needlegrass		40
		Normal	800	\| Bluebunch wheatgrass		25
		Unfavorable	600	\| Sandberg bluegrass		10
				\|Wyoming big sagebrush		10
				\|Bottlebrush squirreltail		8
				Indian ricegrass		7
				\|Spiny hopsage		5
316 :	\|LOAMY 10-12PZ (R023XY2120R)					
Swaler---------		Favorable	1,000	Thurber needlegrass		40
		Normal	800	\|Bluebunch wheatgrass		25
		\|Unfavorable	600	\| Sandberg bluegrass		10
				\|Wyoming big sagebrush		10
				\|Bottlebrush squirreltail		8
				\| Indian ricegrass		7
				\|Spiny hopsage		5
Swalesilver-----	\|PONDED CLAY (R023XY2000R)	\|Favorable	1,800	\| Sandberg bluegrass		45
		\| Normal	1,500	\|Beardless wildrye		15
		Unfavorable	1,000	\| Silver sagebrush		10
				\|Mat muhly		5
317 :	\|PONDED CLAY (R023XY2000R)					
Swalesilver-----		\|Favorable	1,800	\| Sandberg bluegrass		45
		\|Normal	1,500	\| Beardless wildrye		15
		\|Unfavorable	1,000	\|Silver sagebrush		10
				Mat muhly		5
318:						
Swalesilver-----\|	$\begin{aligned} & \text { \|SHALLOW SWALE 10-14PZ } \\ & \text { (R023XY324OR) } \end{aligned}$		900	\| Sandberg bluegrass		60
		\| Normal	700	\|Low sagebrush		15
		\|Unfavorable	500	\|Beardless wildrye		10
319 :						
Swalesilver-----	\|PONDED CLAY (R023XY2000R)		1,800	\| Sandberg bluegrass		
		\|Normal	1,500	\| Beardless wildrye		15
		\|Unfavorable	1,000	\|Silver sagebrush		10
				\|Mat muhly		5

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	Dry		Forest	Range
			\|Weight			
			\|Lb/acre		Pct	Pct
Teguro----------	LOAMY 12-16PZ (R023XY3180R)	\| Favorable	1,400	\| Idaho fescue		50
		\| Normal	1,000	\| Thurber needlegrass		15
		\|Unfavorable	700	\| Bluebunch wheatgrass		10
				\|Mountain big sagebrush		10
				\|Sandberg bluegrass		5
				\| Basin big sagebrush		5
321:						
Teguro---------	JD SHRUBBY MOUNTAIN CLAYEY	Favorable	2,000	\| Idaho fescue		60
	12-16PZ (R010xB028OR)	Normal	1,500	\| Antelope bitterbrush		10
		Unfavorable	1,000	\|Thurber needlegrass		5
				Bluebunch wheatgrass		5
				\| ${ }^{\text {Pluegrass }}$		5
				\|Mountain big sagebrush		5
322:						
Teguro---------	\|SR MOUNTAIN SHALLOW 12-16PZ	\|Favorable	1,500	\| Idaho fescue		70
	(R010XC0370R)	\| Normal	1,200	\|Bluebunch wheatgrass		15
		\|Unfavorable	1,000	\|Mountain big sagebrush		10
				\|Sandberg bluegrass		5
323 :						
Teguro---------	\| SR MOUNTAIN SHALLOW 12-16PZ	\| Favorable	1,500	\| Idaho fescue		70
	(R010XC0370R)	\| Normal	1,200	\|Bluebunch wheatgrass		15
		\|Unfavorable	1,000	\| Mountain big sagebrush		10
				\|Sandberg bluegrass		5
Anatone, moist--\|	\|SR DRY PINE 14-16PZ	\|Favorable	1,200	\| Idaho fescue		40
	(R010XC0820R)	\| Normal	900	\|Bluebunch wheatgrass		25
		\|Unfavorable	600	\|Sandberg bluegrass		5
				Antelope bitterbrush		5
				\|Mountain big sagebrush		5
				\| Ponderosa pine		5
				\|Western juniper		5
324:						
Teguro---------		\|Favorable	1,500	\|Idaho fescue		
	(R010XC0370R)	\| Normal	$1,200$	\|Bluebunch wheatgrass		15
		\|Unfavorable	1,000	\| Mountain big sagebrush		10
				\|Sandberg bluegrass		5
Ateron----------	\|SR MAHOGANY MOUNTAIN LOAM	\|Favorable	1,500	\| Idaho fescue		25
	14-18PZ (R010XC0800R)	\| Normal	1,200	\| Curl-leaf mountain mahogany		25
		\|Unfavorable	1,000	\|Antelope bitterbrush		15
				\| Bluebunch wheatgrass		15
				\|Mountain big sagebrush		5
				\|Ponderosa pine		5
325:						
Thenarrows------	\|SODIC MEADOW (R024XY002OR)	\| Favorable	1,200	\|Alkali sacaton		25
		\| Normal	1,000	\| Sandberg bluegrass		20
		\|Unfavorable	700	\| Inland saltgrass		20
				\|Alkali cordgrass		10
Duckclub--------	\|SODIC LAKE TERRACE (R024XY114OR)	\|Favorable	1,000	\| Inland saltgrass		60
		\| Normal	800	\|Lemmon's alkaligrass		20
		\|Unfavorable	600	\|Black greasewood		15
326:						
Thenarrows------\|	\| SODIC MEADOW (R024XY002OR)	\| Favorable	1,200	\|Alkali sacaton		25
		\| Normal	1,000	\| Sandberg bluegrass		20
		\|Unfavorable	700	\| Inland saltgrass		20
				\|Alkali cordgrass		10

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		\|Kind of year	Dry		Forest	\|Range	
			Lb/acre		Pct	Pct	
326:							
Duckclub--------	\|SODIC LAKE TERRACE (R024XY1140R)		\|Favorable	1,000	\| Inland saltgrass		60
		\| Normal	800	\|Lemmon's alkaligrass		20	
		\|Unfavorable	600	\|Black greasewood		15	
Dentdraw-------	SODIC MEADOW (R024XY0020R)	\| Favorable	1,200	Alkali sacaton		25	
		\| Normal	1,000	\| Sandberg bluegrass		20	
		\|Unfavorable	700	\|nland saltgrass		20	
				\|Alkali cordgrass		10	
327:							
Thenarrows-----	SODIC MEADOW (R024XY0020R)	\| Favorable	1,200	Alkali sacaton		25	
		\| Normal	1,000	\| Sandberg bluegrass		20	
		\|Unfavorable	700	\| Inland saltgrass		20	
				\|Alkali cordgrass		10	
Duckclub-------	SODIC LAKE TERRACE (R024XY1140R)	\|Favorable	1,000	\| Inland saltgrass		60	
		\| Normal	800	\|Lemmon's alkaligrass		20	
		\|Unfavorable	600	\| Black greasewood		15	
Sandgap--------	\| SODIC DUNES (R024XY0050R)	\|Favorable	700	\| Indian ricegrass		25	
		\| Normal	500	\|Basin big sagebrush		15	
		\|Unfavorable	300	\|Basin wildrye		10	
				\| Black greasewood		10	
				Needleandthread		10	
				\|Beardless wildrye		5	
$328:$							
Ticino---------	\|JD SHRUBBY MOUNTAIN CLAYEY12-16PZ (R010XB0280R)			\| Idaho fescue		60	
		\|Normal	1,500	\| Antelope bitterbrush		10	
		\|Unfavorable	1,000	\|Thurber needlegrass		5	
				\|Bluebunch wheatgrass		5	
				\|Bluegrass		5	
				$\mid$ Mountain big sagebrush		5	
Merlin----------	\|JD MOUNTAIN CLAYPAN $12-16$ PZ(RO10XB0800R)	\|Favorable	700	Idaho fescue		50	
		\|Normal	500	\|Bluebunch wheatgrass		15	
		\|Unfavorable	300	\|Low sagebrush		15	
				Onespike oatgrass		8	
				\| Sandberg bluegrass		5	
329 :							
Ticino---------	JD SHRUBBY MOUNTAIN CLAYEY   12-16PZ (R010XB0280R)	\|Favorable		\| Idaho fescue		60	
		\| Normal	1,500	Antelope bitterbrush		10	
		\|Unfavorable	1,000	\|Thurber needlegrass		5	
				\| Bluebunch wheatgrass		5	
				\|Bluegrass		5	
				$\mid$ Mountain big sagebrush		5	
Observation-----	SR MAHOGANY MOUNTAIN LOAM 14-18PZ (R010XC0800R)	\| Favorable	1,500	\| Idaho fescue		25	
		\| Normal	1,200	\| Curl-leaf mountain mahogany		25	
		\|Unfavorable	1,000	Antelope bitterbrush		15	
				\| Bluebunch wheatgrass		15	
				Mountain big sagebrush		5	
				$\mid$ Ponderosa pine		5	
330:							
Ticino-			1,500	\| Idaho fescue		25	
	\| 14-18PZ (R010xC0800R)	\| Normal	1,200	\| Curl-leaf mountain mahogany		25	
		\|Unfavorable	1,000	\| Antelope bitterbrush		15	
				\|Bluebunch wheatgrass		15	
				\|Mountain big sagebrush		5	
				Ponderosa pine		5	
Rock outcrop.							

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition	
		Kind of year	$\begin{aligned} & \mid \text { Dry } \\ & \text { \|Weight } \end{aligned}$		Forest	\|Range
			\| Lb/acre		PCt	Pct
331:						
	\|DUNES (R024XY1100R)		800	\| Needleandthread		30
		\|Normal	500	\| Indian ricegrass		20
		\|Unfavorable	300	\|Basin big sagebrush		15
				\|Basin wildrye		15
				\|Beardless wildrye		10
332 :						
Toll------------	DUNES (R024XY1100R)	\|Favorable	800	\|Needleandthread		30
		\|Normal	500	\| Indian ricegrass		20
		\|Unfavorable	300	\|Basin big sagebrush		15
				\|Basin wildrye		15
				\|Beardless wildrye		10
Nevador--------- \|	\|SANDY LOAM 8-10PZ (R024XY0180R)	Favorable	800	\| Needleandthread		50
		Normal	600	\| Indian ricegrass		30
		\|Unfavorable	400	\| Basin big sagebrush		10
				\|Thurber needlegrass		5
				\|Basin wildrye		5
333 :						
Torriorthents---\|	$\begin{aligned} & \text { \|SR SHALLOW ESCARPMENT 9-12PZ } \\ & \text { (R010XC0570R) } \end{aligned}$			\|Bluebunch wheatgrass		40
		\|Normal	300	\| Thurber needlegrass		30
		\|Unfavorable	100	\|Wyoming big sagebrush		10
				\| Antelope bitterbrush		8
				\|Squaw apple		8
Gumble----------	\|SR SHALLOW 9-12PZ (R010XC0350R)	\|Favorable		\|Bluebunch wheatgrass		50
		\| Normal	600	\| Thurber needlegrass		30
		\|Unfavorable	300	\|Wyoming big sagebrush		8
334:						
Tumtum---------	SHALLOW LOAM $8-10 \mathrm{PZ}$$\quad($ R024XY017OR)		700	\|Thurber needlegrass		35
		\|Normal	500	\| Indian ricegrass		15
		\|Unfavorable	300			15
				\|Bluebunch wheatgrass		15
				\|Bottlebrush squirreltail		10
				\|Spiny hopsage		10
335:						
Tumtum----------	\|SR SHALLOW 9-12PZ (R010XC0350R)		1,000	\|Bluebunch wheatgrass		50
		\|Normal	600	\|Thurber needlegrass		30
		\|Unfavorable	300	Wyoming big sagebrush		8
336:						
Turpin----------	LOW SODIC TERRACE 6-10PZ (R024XY0130R)	\|Favorable	400	\|Black greasewood		25
		\|Normal	300	\|Bud sagebrush		15
		\|Unfavorable	200	\| Shadscale		15
				\| Spiny hopsage		15
				\| Bottlebrush squirreltail		7
				\|Basin wildrye		5
				\|Beardless wildrye		5
337:						
vanwyper--------	$\begin{aligned} & \text { \| NORTH SLOPES 6-10PZ } \\ & \mid \text { (R024XY033OR) } \end{aligned}$			\|Bluebunch wheatgrass		
		\| Normal	800	\|Thurber needlegrass		30
		\|Unfavorable	500	Wyoming big sagebrush		15
				\| Indian ricegrass		5
				\|Ephedra		5
				\|Spiny hopsage		5
Rock outcrop.						

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued


Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		Kind of year	$\begin{aligned} & \text { Dry } \\ & \text { \|Weight } \end{aligned}$		\|Forest	\|Range	
			\| Lb/acre			Pct	PCt
344:							
Merlin----------	\|JD MOUNTAIN CLAYPAN $12-16 \mathrm{PZ}$\| (RO10XB0800R)		700	\| Idaho fescue		50	
		Normal	500	\|Bluebunch wheatgrass		15	
		Unfavorable	300	\| Low sagebrush		15	
				\|Onespike oatgrass		8	
				\| Sandberg bluegrass		5	
Doyn------------							
	SR MOUNTAIN VERY SHALLOW   $12-16 \mathrm{PZ}$ (R010xC0390R)	Favorable   Normal	600	\|Onespike oatgrass	Stiff sagebrush		30
		Unfavorable	200	\| Idaho fescue		15	
				\| Sandberg bluegrass		15	
				\|Bluebunch wheatgrass		10	
345:							
Vitale---------\|	$\begin{aligned} & \text { \|SR MOUNTAIN CLAYEY 12-16PZ } \\ & \text { (R010XC0320R) } \end{aligned}$	Favorable	2,000	\| Idaho fescue		70	
		Normal	1,500	\|Bluebunch wheatgrass		10	
		\|Unfavorable	1,000	\|Mountain big sagebrush		10	
				\|Thurber needlegrass		5	
Observation-----	SR MAHOGANY MOUNTAIN LOAM 14-18PZ (R010XC0800R)	\|Favorable	1,500	\| Idaho fescue		25	
		\| Normal	1,200	\| Curl-leaf mountain mahogany		25	
		\|Unfavorable	1,000	\| Antelope bitterbrush		15	
				\|Bluebunch wheatgrass		15	
				$\mid$ Mountain big sagebrush		5	
				\| Ponderosa pine		5	
346:							
Vitale	JD SHRUBBY MOUNTAIN SOUTH 12-16PZ (R010XB0460R)	\|Favorable	1,700	\|Bluebunch wheatgrass		40	
		\| Normal	1,300	\| Idaho fescue		15	
		\|Unfavorable	1,000	\|Antelope bitterbrush		15	
				\| Indian ricegrass		10	
				\|Basin wildrye		5	
Rock outcrop.							
347:							
Voltage---------	DRY FLOODPLAIN (R024XY004OR)		4,500	\|Basin wildrye			
		\|Normal	3,000	\|Beardless wildrye		10	
		\|Unfavorable	1,000	\|Basin big sagebrush		5	
		348:					
Voltage--------	DRY FLOODPLAIN (R024XY004OR)	Favorable	4,500	\|Basin wildrye		75	
		\| Normal	3,000	\|Beardless wildrye		10	
		\|Unfavorable	1,000	\| Basin big sagebrush		5	
Crowcamp-------	PONDED CLAY (R023XY2000R)	\|Favorable	1,800	\|Sandberg bluegrass		45	
		\|Normal	1,500	\|Beardless wildrye		15	
		\|Unfavorable	1,000	\|Silver sagebrush		10	
				\|Mat muhly		5	
349:							
Voltage---------\|	DRY FLOODPLAIN (R024XY004OR)	\|Favorable	4,500	\|Basin wildrye		75	
		\| Normal	3,000	\|Beardless wildrye		10	
		\|Unfavorable	1,000	\| Basin big sagebrush		5	
Crowcamp-------	PONDED CLAY (R023XY2000R)	\|Favorable	1,800	\| Sandberg bluegrass		45	
		\| Normal	1,500	\|Beardless wildrye		15	
		\|Unfavorable	1,000	\|Silver sagebrush		10	
				\|Mat muhly		5	
350:							
Voltage---------\|	DRY FLOODPLAIN (R024XY004OR)	\|Favorable	4,500	\| Basin wildrye		75	
		\| Normal	3,000	\|Beardless wildrye		10	
		\|Unfavorable	1,000	\| Basin big sagebrush		5	

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		Kind of year	$\begin{aligned} & \text { Dry } \\ & \text { \|Weight } \end{aligned}$		Forest	Range	
			\| Lb/acre			Pct	Pct
350:							
Widowspring-----	\|LOAMY BOTTOM (R023XY104OR)	Favorable	6,000	\| Basin wildrye		70	
		Normal	4,500	\| Basin big sagebrush		10	
		Unfavorable	2,000	\|Beardless wildrye		5	
351:							
Wagontire-------	\| CLAYPAN 10-12PZ (R023XY214OR)	Favorable	900	\|Bluebunch wheatgrass		40	
		Normal	700	\|Low sagebrush		20	
		Unfavorable	500	\|Sandberg bluegrass		10	
				\|Balsamroot		5	
				\| Lomatium		5	
				\|Lupine		5	
352:							
Wagontire-------	\| CLAYPAN 10-12PZ (R023XY2140R)	Favorable	900	\|Bluebunch wheatgrass		40	
		\| Normal	700	\|Low sagebrush		20	
		Unfavorable	500	\|Sandberg bluegrass		10	
				\|Balsamroot		5	
				\| Lomatium		5	
				\|Lupine		5	
Vil-------------	\|LOAMY 10-12PZ (R023XY2120R)	Favorable	1,000	\|Thurber needlegrass		40	
		\| Normal	800	\| Bluebunch wheatgrass		25	
		\|Unfavorable	600	\| Sandberg bluegrass		10	
				\|Wyoming big sagebrush		10	
				\|Bottlebrush squirreltail		8	
				\| Indian ricegrass		7	
				\| Spiny hopsage		5	
353:							
Waspo	\|SR ADOBELAND 9-12PZ	\|Favorable	1,800	\| Basin wildrye		70	
	\| (R010XC0180R)	\| Normal	1,500	\|Bluebunch wheatgrass		25	
		\|Unfavorable	1,000	\|Basin big sagebrush		5	
Poall-----------	\|SR CLAYEY 9-12PZ (R010XC0210R)	Favorable	1,500	\|Bluebunch wheatgrass		60	
		Normal	1,000	\| Thurber needlegrass		8	
		Unfavorable	600	\| Sandberg bluegrass		5	
				\|Wyoming big sagebrush		5	
				\|Basin big sagebrush		5	
				\| Basin wildrye		5	
354:							
Water.							
355:							
Welch----------	\|SUBALPINE MEADOW (R023XY5060R)		1,600	\|Tufted hairgrass		45	
		\| Normal	1,200	\|Sedge		20	
		\|Unfavorable	800	Alpine timothy		8	
				\|Willow		8	
Welch----------\|	\|WET MEADOW (R023XY4160R)		2,500	\|Tufted hairgrass		60	
		\| Normal	2,000	\|Baltic rush		5	
		\|Unfavorable	1,000	\| Nebraska sedge		5	
				\| Northern mannagrass		5	
				\|Reedgrass		5	
357:							
Welch-----------	\|MOUNTAIN MEADOW (R010XY0020R)	\|Favorable	4,000	\|Tufted hairgrass		60	
		\| Normal	3,000	\|Bluegrass		5	
		\|Unfavorable	2,000	\|Rush		5	
				\|Willow		5	
Roschene--------	\|MOUNTAIN LOAMY BOTTOM	\|Favorable	5,000	\| Basin wildrye		70	
	(R010XY0060R)	\| Normal	4,000	\|Willow		20	
		\|Unfavorable	3,000	Idaho fescue		5	
				\|Bluegrass		5	

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Conmunities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition			
		Kind of year	$\begin{aligned} & \text { Dry } \\ & \text { \|Weight } \end{aligned}$		\|Forest	Range		
			\| Lb/acre		Pct	PCt		
357:								
$\begin{aligned} & \text { Cumulic } \\ & \text { Haploxerolls--- } \end{aligned}$								
	WILLOW-RIPARIAN (BOOTH-YELLOW	Favorable	4,000	\| Sedge		35		
	WILLOW) (R010XY0120R)	\| Normal	3,000	\|Willow		30		
		Unfavorable	2,000	\|Tufted hairgrass		20		
				\|Rush		8		
						5		
358:								
Wenas-----------	\|MEADOW (R010XY0040R)	\|Favorable	5,000	\|Tufted hairgrass		65		
		Normal	4,000	\| Sedge		20		
		Unfavorable	3,000	\|Rush		8		
				\|Bluegrass		5		
Loupence------- \|	LLOAMY BOTTOM (R010XY0050R)	Favorable	7,000	\|Basin wildrye		85		
		Normal	5,000	\|Bluebunch wheatgrass		5		
		Unfavorable	4,000	\|Bluegrass		5		
				\|Willow		5		
Cumulic								
Haploxerolls---	\|WILLOW-RIPARIAN (BOOTH-YELLOW	Favorable	3,000	\| Sedge		35		
	WILLOW) (R010XY0120R)	\|Normal	2,000	\|Willow		30		
		\|Unfavorable	1,000	\|Tufted hairgrass		20		
359:								
Westbutte-------	\|GRAVELLY NORTH SLOPES 12-16PZ	\|Favorable	1,400	\| Idaho fescue		55		
	(R023XY314OR)	\|Normal	1,200	\|Threetip sagebrush		15		
		\|Unfavorable	900	\| Sandberg bluegrass		10		
				\|Skyline bluegrass		10		
				\|Bluebunch wheatgrass		5		
				\|Mountain big sagebrush		5		
360:								
Westbutte-------	\|LOAMY 12-16PZ (R023XY3180R)	\|Favorable	1,400	\| Idaho fescue		50		
		\|Normal	1,000	\|Thurber needlegrass		15		
		\|Unfavorable	700	\| Bluebunch wheatgrass		10		
				\|Mountain big sagebrush		10		
				\|Sandberg bluegrass		5		
				\| Basin big sagebrush		5		
Westbutte-------	\| NORTH SLOPES $12-16 \mathrm{PZ}$	\|Favorable	1,800	\|Idaho fescue		45		
	(R023XY3100R)	\|Normal	1,400	\|Basin wildrye		10		
		\|Unfavorable	1,000	\|Bluebunch wheatgrass		10		
				\|Mountain big sagebrush		10		
				\|Sandberg bluegrass		5		
						5		
				\|Common snowberry		5		
Bocker----------	\|SHALLOW NORTH $12-16 \mathrm{PZ}$	\|Favorable	1,200	\| Idaho fescue		50		
	(R023XY3120R)	\| Normal	900	\|Low sagebrush		20		
		\|Unfavorable	700	\| Bluebunch wheatgrass		10		
				\|Sandberg bluegrass		5		
362 :								
	NORTH SLOPES 12-16PZ (R023XY3100R)	\| Favorable	Normal	1,800 1,400	\| Idaho fescue		45 10	
		\|Unfavorable	1,000	\|Bluebunch wheatgrass		10		
				\|Mountain big sagebrush		10		
				\| Sandberg bluegrass		5		
				\| Antelope bitterbrush		5		
				\| Common snowberry		5		

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition										
		Kind of year	$\begin{aligned} & \text { \| Dry } \\ & \text { \|Weight } \end{aligned}$		\|Forest		Range								
			\| Lb/acre		Pct	Pct									
362 :															
Lambring--------	$\begin{aligned} & - \text { NORTH SLOPES } 12-16 \mathrm{PZ} \\ & \quad(\mathrm{RO} 23 \mathrm{XY} 3100 \mathrm{R}) \end{aligned}$		1,800	\|Idaho fescue		45									
		Normal	1,400	\|Basin wildrye		10									
		\|Unfavorable	1,000	\|Bluebunch wheatgrass		10									
				\|Mountain big sagebrush		10									
				\| Sandberg bluegrass		5									
				Antelope bitterbrush		5									
				\| Common snowberry		5									
Rock outcrop.															
363 :															
Westbutte	SR MOUNTAIN NORTH 12-16PZ (R010XC0660R)	\|Favorable	2,200	\| Idaho fescue		75									
		\| Normal	1,600	\|Bluebunch wheatgrass		8									
		\|Unfavorable	1,000	\|Mountain big sagebrush		5									
	Rock outcrop.														
364:															
Westbutte-------	SR MOUNTAIN SOUTH 12-16PZ (R010XC0470R)	\|Favorable	1,400	\|Bluebunch wheatgrass		50									
		\|Normal	1,000	Idaho fescue		20									
		Unfavorable	700	\|Thurber needlegrass		5									
				\|Antelope bitterbrush		5									
				$\mid$ Mountain big sagebrush		5									
				\|Squaw apple		5									
Rock outcrop.															
365:															
Westbutte-------	\|SR MOUNTAIN SOUTH $12-16 \mathrm{PZ}$$\mid$ (R010XC047OR)	\|Favorable	1,400	\|Bluebunch wheatgrass		50									
			1,000	\|Idaho fescue		20									
		\|Unfavorable	700	\|Thurber needlegrass		5									
				\|Antelope bitterbrush		5									
				\|Mountain big sagebrush		5									
				\|Squaw apple		5									
Lambring--------	\|SR MOUNTAIN NORTH $12-16 \mathrm{PZ}$$\mid \quad(\mathrm{RO} 010 \mathrm{XC} 0660 \mathrm{R})$														
		\|Normal	1,600	\|Bluebunch wheatgrass		8									
		\|Unfavorable	1,000	\|Mountain big sagebrush		5									
		Rock outcrop.													
366:															
Westbutte------	SR MOUNTAIN SOUTH 12-16PZ (R010XC0470R)	\|Favorable	1,400	\|Bluebunch wheatgrass		50									
		\|Normal	1,000	\| Idaho fescue		20									
		\|Unfavorable	700	\| Thurber needlegrass		5									
				\|Antelope bitterbrush		5									
				\|Mountain big sagebrush		5									
				\|Squaw apple		5									
Lambring-------	$\begin{aligned} & \text { \|SR MAHOGANY ROCKLAND } 12+\mathrm{PZ} \\ & \text { (R010XCO59OR) } \end{aligned}$			\|Curl-leaf mountain mahogany											
		\|Normal	900	\|Bluebunch wheatgrass		30									
		\|Unfavorable	600	\| Idaho fescue		15									
				\| Antelope bitterbrush		10									
				\|Thurber needlegrass		5									
				\|Western juniper		5									
	Rock outcrop.														
367 :															
Westbutte------	\|SR MOUNTAIN SOUTH $12-16 \mathrm{PZ}$$\mid$ (RO10XC047OR)	\|Favorable		\|Bluebunch wheatgrass		50									
		\| Normal	1,000	\| Idaho fescue		20									
		\|Unfavorable	700	\|Thurber needlegrass		5									
				\| Antelope bitterbrush		5									
				\|Mountain big sagebrush		5									
				\|Squaw apple		5									

Table 6.--Ecological Sites, Plant Associations, and Characteristic Plant Communities--Continued

Map symbol and soil name	Ecological site or plant association	Total production		Characteristic vegetation	Composition		
		\|Kind of year	Dry		Forest	Range	
			\|Weight				
			\| Lb/acre			Pct	Pct
Lambring	\|JD SHRUBBY MOUNTAIN NORTH	\| Favorable	2,000	\| Idaho fescue		60	
	\| 12-16PZ (R010XB0710R)	\| Normal	1,600	\| Antelope bitterbrush		15	
		\|Unfavorable	1,200	\| Bluebunch wheatgrass		8	
				\|Mountain big sagebrush		5	
				\|Whortleleaf snowberry		2	
Rock outcrop.							
368 :							
Westbutte-----	\|SR MOUNTAIN NORTH 12-16PZ	\| Favorable	2,200	\|Idaho fescue		75	
	(R010XC0660R)	\| Normal	1,600	\| Bluebunch wheatgrass		8	
		\|Unfavorable	1,000	\| Mountain big sagebrush		5	
Observation----	\|SR MOUNTAIN CLAYEY 12-16PZ	\| Favorable	2,000	\|Idaho fescue		70	
	(R010XC0320R)	\|Normal	1,500	\|Bluebunch wheatgrass		10	
		\|Unfavorable	1,000	\| Mountain big sagebrush		10	
				\|Thurber needlegrass		5	
369 :							
Westbutte------	\|NORTH SLOPES 12-16PZ	\| Favorable	1,800	\|Idaho fescue		45	
	(R023XY3100R)	\| Normal	1,400	\| Basin wildrye		10	
		\|Unfavorable	1,000	\| Bluebunch wheatgrass		10	
				\| Mountain big sagebrush		10	
				\|Sandberg bluegrass		5	
				\|Antelope bitterbrush		5	
				\| Common snowberry		5	
Rock outcrop.							
Pernty--------	\| SOUTH SLOPES 12-16PZ	\| Favorable	1,400	\| Bluebunch wheatgrass		40	
	(R023XY3020R)	\| Normal	1,100	\|Mountain big sagebrush		10	
		\|Unfavorable	700	\| Idaho fescue		5	
				\| Sandberg bluegrass		5	
				\|Antelope bitterbrush		5	
				\|Arrowleaf balsamroot		5	
370:							
Widowspring----	\|LOAMY BOTTOM (R023XY1040R)	\|Favorable	6,000	\| Basin wildrye		70	
		\|Normal	4,500	\|Basin big sagebrush		10	
		\|Unfavorable	2,000	\| Beardless wildrye		5	
371:							
Windybutte-----	\|SILT LOAM TERRACE 10-12PZ	\|Favorable	1,200	\|Bluebunch wheatgrass		50	
	\| (R023XY0190R)	\| Normal	1,000	\| Basin wildrye		20	
		\|Unfavorable	800	\| Basin big sagebrush		15	
				\|Thurber needlegrass		10	
				\|Prairie junegrass		5	
372:							
Wolverine-----	\|DUNES (R024XY1100R)	\| Favorable	800	\| Needleandthread		30	
		\| Normal	500	\| Indian ricegrass		20	
		\|Unfavorable	300	\|Basin big sagebrush		15	
				\| Basin wildrye		15	
				\|Beardless wildrye		10	
373:							
Denied access.							

Fable 7a. --Forestland Management (Part 1)
(Only the soils that currently support forestland are listed)

Soil name and map symbol	Management concerns						
	Potential \| erosion hazard $\mid$ (off-road)	Soil rutting hazard	Suitability   for roads and landings (natural surface)	$\mid$ Construction \|limitations	for roads	and landings	Operability of wheeled and tracked equipment
8:							
Anatone, moist	Moderate	\|Slight	$\begin{aligned} & \mid \text { Moderately } \\ & \mid \text { suited } \end{aligned}$	\| Severe	$\begin{aligned} & \mid \text { Moderately } \\ & \mid \text { suited } \end{aligned}$		
Anatone.							
10:							
Anatone-	Severe	\|Moderate	\| Poorly suited	\| Severe	\| Poorly suited		
Egyptcreek-----	Severe	\| Severe	\| Poorly suited	\|Severe	\|Poorly suited		
Rock outcrop.							
11:							
Anatone-------	Severe	\|Moderate	\| Poorly suited	\| Severe	$\begin{aligned} & \mid \text { Moderately } \\ & \mid \text { suited } \end{aligned}$		
Minam.							
Rock outcrop.							
126:							
Gaib-	Slight	\|Moderate	$\begin{aligned} & \text { \|Moderately } \\ & \mid \text { suited } \end{aligned}$	\| Severe	\|Well suited		
127:							
Gaib-	Slight	\|Moderate	$\begin{aligned} & \text { Moderately } \\ & \mid \text { suited } \end{aligned}$	\| Severe	\|Well suited		
Ateron.							
128:							
Gaib-	Severe	\| Severe	\| Poorly suited	\|Severe	\| Poorly suited		
Rock outcrop.							
153:							
Klicker-	Severe	\|Severe	\| Poorly suited	\|Severe	\| Poorly suited		
154:							
Klicker-	Moderate	\|Moderate	$\begin{aligned} & \mid \text { Moderately } \\ & \mid \text { suited } \end{aligned}$	\| Severe	$\begin{array}{\|l} \mid \text { Moderately } \\ \mid \text { suited } \end{array}$		
162 :							
Lambring.							
Egyptcreek-----	Severe	\|Severe	\| Poorly suited	\|Severe	\|Poorly suited		
Rock outcrop.							
215:							
Mound----------	Slight	\|Severe	\| Poorly suited	Moderate	$\begin{array}{\|l} \mid \text { Moderately } \\ \mid \text { suited } \end{array}$		

Table 7a.--Forestland Management (Part 1)--Continued


Fable 7b. --Forestland Management (Part 2)
(Only the soils that currently support forestland are listed)

Soil name and map symbol	Management concerns					
	```Mechanical site preparation (surface)```	```Mechanical site preparation (deep)```	Suitability for hand planting	```Suitability for mechanical planting```	$\begin{array}{l\|} \hline \text { \|Seedling } \mid \\ \mid \text { mortality } \mid \end{array}$	Damage to soil by fire
8:						
Anatone, moist	\| Poorly suited	\| Unsuited	$\begin{aligned} & \mid \text { Moderately } \\ & \mid \text { suited } \end{aligned}$	\| Poorly suited	\| High	Moderate
Anatone.						
10 :						
Anatone-	\|Poorly suited	\|Unsuited	$\begin{aligned} & \mid \text { Moderately } \\ & \mid \text { suited } \end{aligned}$	\|Unsuited	\|High	\|Moderate
Egyptcreek-----	\| Poorly suited	\|Unsuited	$\begin{aligned} & \mid \text { Moderately } \\ & \mid \text { suited } \end{aligned}$	\|Unsuited	High	\| Moderate
Rock outcrop.						
11:						
Anatone-	\| Poorly suited	\|Unsuited	$\begin{aligned} & \mid \text { Moderately } \\ & \mid \text { suited } \end{aligned}$	\|Unsuited	High	Moderate
Minam.						
Rock outcrop.						
126:						
Gaib----------	Suited	\|Unsuited	\|Well suited	$\begin{aligned} & \text { \|Moderately } \\ & \mid \text { suited } \end{aligned}$	\| High	\|Slight
127:						
Gaib----------	\|Suited	\|Unsuited	\|Well suited	$\begin{gathered} \mid \text { Moderately } \\ \mid \text { suited } \end{gathered}$	\|High	\|Slight
Ateron.						
128:						
Gaib--	Unsuited	\|Unsuited	$\begin{aligned} & \text { \|Moderately } \\ & \mid \text { suited } \end{aligned}$	\|Unsuited	\|High	Moderate
Rock outcrop.						
153 :						
Klicker-------	Unsuited	\|Unsuited	$\begin{aligned} & \text { \|Moderately } \\ & \text { \| suited } \end{aligned}$	\|Unsuited	\| Medium	\|Slight
154 :						
Klicker-------	\|Poorly suited	\|Unsuited	\|Poorly suited	\|Unsuited	\|Medium	Moderate
162:						
Lambring.						
Egyptcreek-----	\|Poorly suited	\| Unsuited	$\begin{aligned} & \mid \text { Moderately } \\ & \mid \text { suited } \end{aligned}$	\|Unsuited	\|High	Moderate
Rock outcrop.						
215:						
Mound----------	Poorly suited	\| Poorly suited	\|Poorly suited	Unsuited	Medium	Moderate

Table 8.--Forestland Productivity
(Only the soils that currently support forestland are listed. Absence of an entry indicates that no data were collected)

Soil name and map symbol	Common trees	Potential productivity ${ }^{1}$					
		$\left\|\begin{array}{c} \mid 100 \text {-year } \\ \text { site } \\ \text { index } \end{array}\right\|$	$\left.\begin{array}{\|c\|} \mid \text { Total yield } \\ \mid \text { (Scribner } \\ \text { rule) } \end{array} \right\rvert\,$	CMAI age	Annual growth	CMAI age	
8:			Fbm/acre	Yr	Cu ft/acre	Yr	
Anatone, moist--	Ponderosa pine ${ }^{2}$	62^{3}	26,000	190	48	50	
	Western juniper	--- \|	---	---	---	---	
Anatone.							
10:							
Anatone-------	Ponderosa pine ${ }^{2}$	62^{3}	\| 26,000	190	48	50	
	Western juniper	---	---	---	---	---	
Egyptcreek-----	Ponderosa pine ${ }^{2}$	61^{3}	25,300	190	47	50	
	Western juniper	---	---	---	---	--	
Rock outcrop.					I		
11:							
Anatone--------	Ponderosa pine ${ }^{2}$	62^{3}	26,000	190	48	50	
	Western juniper	---	---	---	---	---	
Minam.							
					\|		
			,		\|		
Rock outcrop.							
126:							
Gaib----------- \|	Ponderosa pine ${ }^{2}$	66^{3}	\| 29,200	190	51	50	
	Western juniper	--	\| ---	---	\|	---	--
127:							
Gaib	Ponderosa pine ${ }^{2}$	66^{3}	\| 29,200	190	\| 51	50	
	Western juniper	--- \|	\| ---	---	\| ---	---	
Ateron.					\|		
128:							
Gaib	Ponderosa pine ${ }^{2}$	66^{3}	\| 29,200	190	\| 51	50	
	Western juniper	--	--	---	\| ---	---	
					\|		
Rock outcrop.					\|		
					\|		
153:					\|		
Klicker--------	Ponderosa pine ${ }^{2}$	65^{3}	\| 28,500	190	\| 50	50	
	Douglas fir	---	--	---	\| ---	---	
			-		\|		
$154 \text { : }$			\|		\|		
Klicker	Ponderosa pine ${ }^{2}$	65^{3}	\| 28,500	190	\|	50	50
	Western juniper	---	---	---	\| ---	---	
					\|		
162:			\|		\| 1		
Lambring.			\|		\|		
			\|		\|		
Egyptcreek-----	Ponderosa pine ${ }^{2}$	61^{3}	\| 25,300	190	\|	47	50
	Western juniper	---	\| ---	---	\| ---	---	
Rock outcrop.					\|		
			\|		\| 1		
			\|		\|		
$215:$ Mound			\|		\| 1		
	Ponderosa pine ${ }^{2}$	59^{3}	\| 25,200	200	\|	45	50
	Western juniper	---	\| ---	---	\| ---	---	

See footnotes at end of table.

Table 8.--Forestland Productivity--Continued

1 All yield data based on a fully stocked, even-aged stand.
2 Recommended trees to manage or plant.
3 Average site index computed from three plots or less.
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table)

Map symbol and soil name	Pct. of \|map \|unit	Camp areas		Picnic areas		Paths and trails		
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
1:								
Actem-----------	85	\|Very limited		Very limited		Somewhat limited		
		Depth to cemented	1.00	Depth to cemented	1.00	Dusty	0.50	
		pan		pan		Content of large	0.03	
		Dusty	10.50	Dusty	10.50	stones		
		Restricted permeability	10.41	Restricted permeability	10.41			
		Slope	0.37	Slope	\| 0.37			
		Content of large stones	0.03	Content of large stones	0.03			
2:								
Actem-----------	85	\|Very limited		Very limited		Somewhat limited		
		Depth to cemented pan	1.00	Depth to cemented pan	1.00	Content of large stones	0.77	
		Content of large stones	0.77	Content of large stones	0.77	Dusty	0.50	
		Dusty	10.50	Dusty	10.50			
		Restricted permeability	10.41	Restricted permeability	10.41			
		Slope	10.04	slope	0.04			
3:								
Actem-----------	45	\|Very limited		Very limited		Somewhat limited		
		Depth to cemented	1.00	Depth to cemented	1.00	Dusty	0.50	
		pan		pan		Content of large stones	10.03	
		Dusty	10.50	Dusty	0.50			
		Restricted permeability	10.41	Restricted permeability	0.41			
		Slope	10.37	Slope	0.37			
		Content of large stones	0.03	Content of large stones	0.03			
Robson----------	40	\|Very limited		Very limited		```Somewhat limited Content of large stones Too stony```		
		Depth to bedrock	1.00	Depth to bedrock	1.00		0.54	
		Restricted permeability	10.96	Restricted permeability	10.96		0.53	
		Content of large stones	0.54	Content of large stones	0.54	Dusty	0.50	
		Too stony	10.53	Too stony	10.53			
		Dusty	10.50	Dusty	10.50			
4:								
Alvodest--------	85	\|Very limited		Very limited		```Very limited Depth to saturated zone Ponding```		
		Depth to saturated zone	1.00	Depth to saturated zone	\| 1.00		11.00	
		Sodium content	1.00	Sodium content	11.00		1.00	
		Salinity	11.00	Salinity	\|1.00			
		Ponding	11.00	Ponding	11.00			
		Restricted permeability	10.96	Restricted permeability	10.96			

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Map symbol and soil name	$\begin{aligned} & \text { \| Pct. } \\ & \mid \text { of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Camp areas		Picnic areas		Paths and trails			
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
20:									
Observation------	25	Somewhat limited		Somewhat limited		Somewhat limited			
		Too stony	10.53	Too stony	0.53	Too stony	\| 0.53		
		Content of large stones	10.42	Content of large stones	0.42	Content of large stones	\| 0.42		
		Restricted	10.41	Restricted	0.41				
		Slope	10.16	Slope	0.16				
21:									
Atlow-----------	85	\|Very limited		\|Very limited		\|Somewhat limited			
		Depth to bedrock	\|1.00	Depth to bedrock	1.00	Too stony	\| 0.53		
		Slope	11.00	Slope	1.00	Dusty	10.50		
		Too stony	10.53	Too stony	0.53	Slope	\|0.18		
		Dusty	10.50	Dusty	0.50	Content of large	\| 0.10		
		Restricted permeability	\| 0.21	Restricted permeability	0.21	stones			
22:									
Atlow-----------	70	\|Very limited		\|Very limited		\|Somewhat limited			
		\| Depth to bedrock	11.00	\| Depth to bedrock	1.00	Too stony	10.53		
		Slope	11.00	Slope	1.00	Dusty	10.50		
		Too stony	10.53	Too stony	0.53	Slope	10.18		
		Dusty	10.50	Dusty	0.50	Content of large	\| 0.10		
		Restricted permeability	10.21	Restricted permeability	0.21	stones			
Rock outcrop-	15	\| Not rated		Not rated		\| Not rated			
23:									
Atlow-----------	70	\|Very limited		\|Very limited		\|Very limited			
		Slope	11.00	Slope	1.00	Slope	\| 1.00		
		Depth to bedrock	\|1.00	Depth to bedrock	1.00	Too stony	10.53		
		Too stony	10.53	Too stony	0.53	Dusty	10.50		
		Dusty	10.50	Dusty	0.50	Content of large	\| 0.10		
		Restricted permeability	10.21	Restricted permeability	0.21	stones			
Rock outcrop--	15	\| Not rated		Not rated		\| Not rated			
24:									
Atlow-----------	55								
		\| Depth to bedrock	\|1.00	Depth to bedrock	1.00	\| Too stony	\| 0.53		
		Slope	11.00	Slope	1.00	Dusty	10.50		
		Too stony	10.53	Too stony	0.53	Slope	\| 0.18		
		Dusty	10.50	Dusty	0.50	Content of large	\| 0.10		
		Restricted permeability	10.21	Restricted permeability	0.21	stones			
Skedaddle-------	30	\|Very limited		\|Very limited		\|Somewhat limited			
		\| Depth to bedrock	\|1.00	Depth to bedrock	1.00	Content of large	0.61		
		Slope	11.00	Slope	1.00	stones			
		Content of large	10.61	Content of large	0.61	Too stony	10.53		
		stones		stones		Slope	\| 0.18		
		Too stony	10.53	Too stony	0.53				
25:									
Ausmus----------	85	\|Very limited		\|Very limited		\|Very limited			
		\| Sodium content	\|1.00	\| Sodium content	\|1.00	Ponding	\| 1.00		
		Ponding	11.00	Ponding	11.00				
		Restricted permeability	10.21	Restricted permeability	0.21				

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Map symbol and soil name	Pct. of map unit	Camp areas		Picnic areas		Paths and trails							
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value						
37:													
Berdugo---------	50	Somewhat limited		Somewhat limited		Somewhat limited							
		Dusty	10.50	Dusty	0.50	Dusty	10.50						
		Restricted	10.41	Restricted	0.41								
		permeability		permeability									
Catlow----------	35	Somewhat limited Restricted		\|Somewhat limited		Not limited							
			10.21	Restricted	0.21								
		permeability		permeability									
		Gravel content	0.18	Gravel content	0.18								
38:													
Bigfrog	45	Very limited		Very limited	1.00	Somewhat limited							
		Depth to cemented	1.00	Depth to cemented pan		Slope Content of large	10.98						
		pan					0.14						
		Slope	11.00	Slope	1.00	stones							
		Content of large stones	\| 0.14	Content of large stones	0.14								
		Gravel content	10.03	Gravel content	0.03								
Brock	40	Very limited \|		Very limited		Somewhat limited							
		Depth to cemented pan	1.00	Depth to cemented pan	1.00	Slope	0.98						
		Slope	11.00	Slope	1.00								
		Gravel content	10.74	Gravel content	0.74								
39 :													
Bocker----------	50	Very limited		Very limited		\|Very limited							
		Depth to bedrock	11.00	Depth to bedrock	1.00	Too stony	11.00						
		Too stony	1.00	Too stony	1.00	Content of large stones	0.42						
		Slope	11.00	Slope	1.00								
		Content of large stones	10.42	Content of large stones	0.42								
		Gravel content	10.02	Gravel content	0.02								
Westbutte-------	35	Very limited		\|Very limited		\|Very limited							
		Too stony	1.00	Too stony	1.00	Too stony	\| 1.00						
		Slope	11.00	Slope	1.00	Content of large stones	0.94						
		Content of large stones	10.94	Content of large stones	0.94								
		40:											
Boravall	55	Very limited		Very limited		\|Very limited							
		Depth to saturated zone	\| 1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00						
		Sodium content	\| 1.00	Sodium content	1.00	Ponding	\| 1.00						
		Salinity	\|1.00	Salinity	1.00								
		Ponding	11.00	Ponding	1.00								
		Restricted permeability	10.96	Restricted permeability	0.96								
Playas-	30	Not rated		Not rated		\| Not rated							
41:													
Borobey-	85	\|Somewhat limited Slope	10.04	\mid Somewhat limited $\left\lvert\, \begin{aligned} & \text { Slope }\end{aligned}\right.$	0.04	\| Not limited							
42:													
Boulder Lake-	85	Very limited		\|Very limited		\|Very limited							
		Depth to saturated zone	\| 1.00	Depth to saturated zone Ponding	11.00	```Depth to saturated zone Ponding Too clayey```	\| 1.00						
		$\begin{aligned} & \text { Ponding } \\ & \text { Too clayey } \end{aligned}$	1.00		1.00		1.00						
			10.50	Too clayey	0.50		0.50						
		Restricted permeability	10.45	Restricted permeability	10.45								

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Map symbol and soil name	$\begin{aligned} & \text { \| Pct. } \\ & \mid \text { of } \\ & \text { \|map } \\ & \mid \text { unit } \end{aligned}$	Camp areas		Picnic areas		Paths and trails			
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
		Depth to saturated zone	\|1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00		
		Sodium content	11.00	Sodium content	1.00	Ponding	1.00		
		Salinity	\| 1.00	Salinity	1.00	Dusty	0.50		
		Ponding	\|1.00	Ponding	1.00				
		Restricted permeability	10.96	Restricted permeability	0.96				
79:									
Dogmountain------	85	Very limited		\|Very limited		\| Somewhat limited			
		Depth to cemented pan	0.99	Depth to cemented pan	0.99	Dusty	10.50		
		Slope	10.63	Slope	0.63				
		Dusty	10.50	Dusty	0.50				
		Gravel content	10.18	Gravel content	0.18				
80 :									
Doyn------------	\| 85	Very limited		\|Very limited		\|Somewhat limited			
		Depth to bedrock	11.00	Depth to bedrock	1.00	Too stony	0.53		
		Too stony	10.53	Too stony	0.53	Content of large	\| 0.42		
		Content of large stones	\| 0.42	Content of large stones	0.42	stones			
		Slope	10.37	Slope	0.37				
81:									
Doyn------------	\| 60	\| Very limited		\|Very limited		\| Somewhat limited			
		Depth to bedrock	11.00	Depth to bedrock	1.00	Too stony	10.53		
		Too stony	10.53	Too stony	0.53	Content of large	10.42		
		Content of large stones	\| 0.42	Content of large stones	0.42	stones			
		Slope	\| 0.37	Slope	0.37				
Merlin----------	25	Very limited		\|Very limited		\|Somewhat limited			
		Depth to bedrock	\|1.00	Depth to bedrock	1.00	Content of large	0.68		
		Content of large stones	\| 0.68	Content of large stones	0.68	stones			
		Restricted permeability	10.45	Restricted permeability	10.45				
		Slope	\| 0.37	Slope	0.37				
82:									
Doyn------------	60	Very limited		\|Very limited		\|Somewhat limited			
		Depth to bedrock	1.00	Depth to bedrock	1.00	Too stony	\| 0.53		
		Slope	\|1.00	Slope	1.00	Content of large	\| 0.42		
		Too stony	10.53	Too stony	10.53	stones			
		Content of large stones	\| 0.42	Content of large stones	0.42	Slope	0.02		
Arcia-----------	25	Very limited		\|Very limited		\|Very limited			
		Too stony	11.00	Too stony	1.00	Too stony	\| 1.00		
		Slope	\|1.00	Slope	\| 1.00	Content of large	\| 0.77		
		Content of large stones	\| 0.77	Content of large stones	0.77	stones Slope	10.02		
		Restricted permeability	10.41	Restricted permeability	0.41				
		Gravel content	10.04	Gravel content	0.04				
83:									
Drewsey--	85	\|Somewhat limited Dusty	10.50	$\begin{aligned} & \text { Somewhat limited } \\ & \text { Dusty } \end{aligned}$	10.50	$\begin{aligned} & \text { Somewhat limited } \\ & \text { Dusty } \end{aligned}$	10.50		

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Map symbol and soil name	\|Pct.	Camp areas		Picnic areas		Paths and trails	
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
91:							
Edemaps---------	85	\|Somewhat limited		Somewhat limited		Not limited	
		Depth to cemented pan	0.84	Depth to cemented pan	0.84		
		Slope	0.84	Slope	10.84		
		Restricted permeability	0.41	Restricted permeability	\| 0.41		
92:							
Edemaps---------	45	\|Somewhat limited		Somewhat limited		Somewhat limited	\|0.01
		Depth to cemented pan	0.84	Depth to cemented pan	0.84	Content of large stones	
		Restricted permeability	0.41	Restricted permeability	10.41		
		Content of large stones	0.01	Content of large stones	0.01		
Carryback------	40	\|Somewhat limited		Somewhat limited		Not limited	
		Restricted permeability	0.41	Restricted permeability	10.41		
93:							
Enko------------	85	\|Somewhat limited		Somewhat limited		Somewhat limited	
		Restricted permeability	0.96	Restricted permeability	10.96	Too sandy	10.79
		Too sandy	10.79	Too sandy	10.79		
94:							
Enko------------	50	\|Somewhat limited		Somewhat limited		Somewhat limited Too sandy	
		Restricted permeability	0.96	Restricted permeability	10.96		10.79
		Too sandy	0.79	Too sandy	10.79		
Catlow----------	35	\|Somewhat limited		Somewhat limited		Somewhat limited Dusty	
		Dusty	0.50	Dusty	10.50		10.50
		Restricted permeability	0.21	Restricted permeability	10.21		
		Gravel content	0.18	Gravel content	10.18		
95:							
Enko------------	50	\| Somewhat limited		Somewhat limited		Somewhat limited	
		Restricted permeability	0.96	Restricted permeability	10.96	Too sandy	10.79
		Too sandy	0.79	Too sandy	10.79		
		Slope	10.37	Slope	10.37		
Catlow----------	35	\|Somewhat limited		Somewhat limited		Somewhat limitedDusty	
		Dusty	0.50	Dusty	10.50		0.50
		Slope	0.37	Slope	\|0.37		
		Restricted permeability	10.21	Restricted permeability	\| 0.21		
		Gravel content	0.18	Gravel content	10.18		
96:							
Enko------------	50					Somewhat limited Too sandy	
		Restricted permeability	0.96	Restricted permeability	10.96		10.79
		Too sandy	0.79	Too sandy	10.79		
Catlow----------	35	\|Somewhat limited		Somewhat limited		Somewhat limited	
		Slope	0.84	Slope	10.84	Too stony	10.53
		Too stony	0.53	Too stony	10.53	Dusty	10.50
		Dusty	10.50	Dusty	10.50	Content of large	10.02
		Restricted permeability	0.21	Restricted permeability	\| 0.21	stones	
		Gravel content	0.03	Gravel content	10.03		

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Paths and trails	
	$\begin{aligned} & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
101:							
Hapgood---------	25	\|Very limited		Very limited		\|Very limited	
		Slope	11.00	Slope	1.00	Slope	1.00
		Content of large stones	10.20	Content of large stones	0.20	Content of large stones	\| 0.20
102:							
Felcher---------	85	\|Very limited		Very limited		\|Very limited	
		Slope	\|1.00	Slope	1.00	Too stony	\| 1.00
		Too stony	\| 1.00	Too stony	1.00	Content of large	1.00
		Content of large stones	\|1.00	Content of large stones	\|1.00	stones Slope	1.00
103:							
Felcher---------	65	\|Very limited		\|Very limited		\|Very limited	
		Slope	\|1.00	Slope	1.00	Slope	1.00
		Content of large stones	\| 0.71	Content of large stones	0.71	Content of large stones	0.71
		Too stony	10.53	Too stony	0.53	Too stony	0.53
Rock outcrop-	20	Not rated		Not rated		\| Not rated	
104:							
Felcher---------	35	\|Very limited		Very limited		\|Very limited	
		Slope	1.00	Slope	1.00	Slope	1.00
		Too stony	11.00	Too stony	1.00	Too stony	1.00
		Content of large stones	\| 1.00	Content of large stones	\|1.00	Content of large stones	1.00
Rock outcrop-	30	\| Not rated		Not rated		\| Not rated	
Brezniak--------	25	\|Very limited		Very limited		\|Very limited	
		Slope	11.00	Slope	1.00	\| Slope	1.00
		Depth to bedrock	1.00	Depth to bedrock	1.00	Content of large	0.02
		Restricted permeability	10.41	Restricted permeability	0.41	stones	
		Content of large stones	0.02	Content of large stones	0.02		
105:							
Felcher---------	35	\|Very limited		Very limited		\|Very limited	
		Slope	11.00	Slope	1.00	Slope	1.00
		Dusty	10.50	Dusty	10.50	Dusty	10.50
		Content of large stones	\| 0.32	Content of large stones	0.32	Content of large stones	0.32
Rock outcrop-	30	\| Not rated		Not rated		\| Not rated	
Westbutte-------	25	\|Very limited		Very limited		\|Very limited	
		Slope	11.00	Slope	1.00	Too stony	\|1.00
		Too stony	11.00	Too stony	1.00	Slope	\|1.00
		Content of large stones	10.94	Content of large stones	10.94	Content of large stones	0.94
106:							
Felcher---------	45	\|Very limited		Very limited		Somewhat limited	
		\| Slope	11.00	\| Slope	1.00	Content of large	0.71
		Content of large stones	\| 0.71	Content of large stones	0.71	stones Too stony	10.53
		Too stony	10.53	Too stony	0.53	Slope	\| 0.18

Table 9.--Recreation--Continued

Map symbol and soil name	\|Pct.	Camp areas		Picnic areas		Paths and trails		
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
		Depth to bedrock	11.00	Depth to bedrock	1.00	Slope	0.18	
		Slope	11.00	Slope	1.00	Content of large	0.01	
		Restricted permeability	10.21	Restricted permeability	0.21	stones		
		Content of large stones	0.01	Content of large stones	0.01			
107:								
Felcher---------	45	\|Very limited		\|Very limited		\|Very limited		
		Slope	\|1.00	Slope	1.00	Slope	1.00	
		Content of large stones	10.71	Content of large stones	0.71	Content of large stones	0.71	
		Too stony	10.53	Too stony	0.53	Too stony	0.53	
Sagehen----------	40	\|Very limited		Very limited		\|Very limited		
		Slope	\|1.00	Slope	1.00	Slope	1.00	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Content of large	0.32	
		Content of large stones	\| 0.32	Content of large stones	0.32	stones		
		Restricted permeability	\| 0.21	Restricted permeability	0.21			
108:								
Felcher---------	40	\|Very limited		Very limited		\|Very limited		
		\| Slope	11.00	Slope	1.00	Slope	11.00	
		Dusty	10.50	Dusty	0.50	Dusty	10.50	
		Content of large stones	\| 0.32	Content of large stones	0.32	Content of large stones	0.32	
Fitzwater--------	30							
		\| slope	\| 1.00	Slope	1.00	Slope	1.00	
		Content of large stones	10.68	Content of large stones	0.68	Content of large stones	0.68	
		Dusty	0.50	Dusty	0.50	Dusty	0.50	
Rock outcrop-	15	Not rated		Not rated		Not rated		
109 :								
Felcher---------	35	\mid Very limited		Very limited		\|Very limited		
		Slope		Slope	1.00	\| Slope		
		Content of large stones	10.71	Content of large stones	0.71	Content of large stones	\| 0.71	
		Too stony	10.53	Too stony	0.53	Too stony	0.53	
Pernty----------	30	\mid Very limited		Very limited		\|Very limited		
		slope		slope	1.00	Slope	1.00	
		Depth to bedrock	1.00	Depth to bedrock	1.00			
Ninemile--------	20	\|Very limited		Very limited		Somewhat limited		
		Depth to bedrock	1.00	Depth to bedrock	1.00		0.10	
		Slope	$\text { \| } 1.00$	Slope	1.00	stones		
		Restricted permeability	10.45	Restricted permeability	0.45			
		Content of large stones	0.10	Content of large stones	0.10			
		Gravel content	10.02	Gravel content	0.02			
110:								
Felcher---------	45	\|Very limited		Very limited		\|Very limited		
		Slope	\|1.00	Slope	\|1.00	Slope	\| 1.00	
		Content of large stones	0.71	Content of large stones	0.71	Content of large stones	\| 0.71	
		Too stony	10.53	Too stony	0.53	Too stony	10.53	

Table 9.--Recreation--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Camp areas		Picnic areas		Paths and trails	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
110:							
Westbutte-------	40	\|Very limited		Very limited		\|Very limited	
		Slope	\|1.00	Slope	\|1.00	Too stony	1.00
		Too stony	11.00	Too stony	11.00	Slope	1.00
		Content of large stones	10.94	Content of large stones	0.94	Content of large stones	0.94
111:							
Final-----------	85	\|Very limited		Very limited		\|Somewhat limited	
		Sodium content	\| 1.00	Sodium content	\|1.00	Dusty	0.50
		Restricted permeability	10.96	Restricted permeability	10.96	Depth to saturated zone	0.11
		Depth to	10.81	Dusty	10.50		
		saturated zone		Depth to	10.48		
		Dusty	10.50	saturated zone			
112:							
Fitzwater-------	45	\|Very limited		Very limited		\|Very limited	
		Slope	11.00	Slope	\| 1.00	Slope	11.00
		Content of large stones	10.77	Content of large stones	\| 0.77	Content of large stones	0.77
		Too stony	10.53	Too stony	10.53	Too stony	0.53
		Dusty	10.50	Dusty	10.50	Dusty	0.50
Hapgood, thick surface	30						
		\|Very limited		Very limited		\|Very limited	
		Slope	\|1.00	Slope	\|1.00	Slope	1.00
		Gravel content	10.36	Gravel content	10.36		
Hapgood, thin surface-----	15						
		\|Very limited		Very limited		\|Very limited	
		Slope	\|1.00	Slope	\|1.00	\| Slope	11.00
		Gravel content	11.00	Gravel content	11.00		
113:							
Fitzwater-------	60	\|Very limited		Very limited		\|Very limited	
		Slope		Slope	\|1.00	Slope	1.00
		Content of large stones	10.68	Content of large stones	10.68	Content of large stones	10.68
		Dusty	0.50	Dusty	10.50	Dusty	0.50
Rock outcrop-	25	Not rated		Not rated		Not rated	
114:							
Flank-----------	50	\|Very limited		Very limited		\|Very limited	
		\| Gravel content	11.00	Gravel content	\| 1.00	Gravel content	\|1.00
		Depth to bedrock	\|1.00	Depth to bedrock	\| 1.00	Too sandy	10.79
		Too sandy	0.79	Too sandy	10.79		
Lava flows-	35	Not rated		Not rated		Not rated	
115 :							
Fourwheel--------	85	\|Very limited		Very limited		\| Somewhat limited	
		Restricted permeability	11.00	Restricted permeability	11.00	Dusty	0.50
		Dusty	10.50	Dusty	0.50		
116:							
Fourwheel--------	85	\|Very limited		Very limited		\|Very limited	
		Slope	11.00	Slope	11.00	Slope	11.00
		Restricted permeability	1.00	Restricted permeability	\|1.00	Content of large stones	10.54
		Content of large stones	10.54	Content of large stones	0.54	Dusty	0.50
		Dusty	10.50	Dusty	10.50		

Table 9.--Recreation--Continued

Map symbol and soil name	Pct. \| of map unit	Camp areas		Picnic areas		Paths and trails	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
117:							
Freznik---------	85	Somewhat limited		Somewhat limited		\|Somewhat limited	
		Too stony	10.53	Too stony	0.53	Too stony	10.53
		Dusty	10.50	Dusty	0.50	Dusty	10.50
		Restricted permeability	10.45	Restricted permeability	0.45	Content of large stones	\| 0.18
		Content of large stones	\| 0.18	Content of large stones	0.18		
		Slope	10.04	Slope	0.04		
118:							
Fury	85	\|Very limited		Very limited		\|Very limited	
		Depth to saturated zone	11.00	Depth to saturated zone	11.00	Depth to saturated zone	\| 1.00
		Ponding	1.00	Ponding	1.00	Ponding	1.00
		Restricted permeability	10.21	Restricted permeability	0.21		
119 :							
Fury------------	85	\|Very limited		Very limited		\|Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00
		Ponding	11.00	Ponding	11.00	Ponding	11.00
		Restricted permeability	10.21	Restricted permeability	10.21		
120:							
Fury	55	\|Very limited		Very limited		Very limited	
		Depth to saturated zone	\|1.00	Depth to saturated zone	11.00	Depth to saturated zone	\| 1.00
		Ponding	\| 1.00	Ponding	\| 1.00	Ponding	1.00
		Restricted permeability	10.21	Restricted permeability	0.21		
Degarmo---------	30	\|Somewhat limited		Somewhat limited		Somewhat limited	
		Restricted permeability	10.96	Restricted permeability	10.96	Depth to saturated zone	10.11
		Depth to saturated zone	10.81	Depth to saturated zone	0.48		
121:							
Fury------------	50	\|Very limited		Very limited		\|Very limited	
		Depth to saturated zone	\|1.00	Depth to saturated zone	1.00	Depth to saturated zone	11.00
		Ponding	\| 1.00	Ponding	1.00	Ponding	1.00
		Restricted permeability	10.21	Restricted permeability	0.21		
Housefield------	35	\|Very limited		Very limited		\|Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Ponding	1.00	Ponding	1.00	Ponding	1.00
122:							
Fury	40	\|Very limited		Very limited		\|Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00
		Ponding	11.00	Ponding	11.00	Ponding	1.00
		Restricted permeability	10.21	Restricted permeability	10.21		
Housefield-	30	\|Very limited		Very limited		Very limited	
		Depth to saturated zone	11.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00
		Ponding	11.00	Ponding	11.00	Ponding	11.00

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Map symbol and soil name	Pct. \| of \|map unit	Camp areas		Picnic areas		Paths and trails		
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
127:								
Gaib------------	\| 55	\|Very limited		\|Very limited		\| Not limited		
		Depth to bedrock	\| 1.00	Depth to bedrock	1.00			
		Slope	10.04	Slope	0.04			
		Gravel content	10.01	Gravel content	0.01			
Ateron----------	30	Very limited		\|Very limited		\| Not limited		
		Depth to bedrock	\|1.00	Depth to bedrock	1.00			
		Gravel content	10.89	Gravel content	0.89			
		Restricted permeability	10.41	Restricted permeability	0.41			
		Slope	0.04	Slope	0.04			
128:								
Gaib------------	65	\|Very limited		\|Very limited		\|Very limited		
		slope	\|1.00	Slope	1.00	Slope	\| 1.00	
		Depth to bedrock	1.00	Depth to bedrock	1.00			
		Gravel content	0.01	Gravel content	0.01			
Rock outcrop-	20	Not rated		Not rated		\| Not rated		
129:								
Gilispie--------	65	Very limited		\|Very limited		\| Not limited		
		Depth to bedrock	11.00	Depth to bedrock	1.00			
		Slope	0.04	Slope	0.04			
Noname----------	20	Very limited		\|Very limited		\|Somewhat limited		
		Depth to bedrock	\| 1.00	Depth to bedrock	1.00	Too stony	10.53	
		Too stony	0.53	Too stony	0.53	Content of large	0.08	
		Restricted permeability	\| 0.21	Restricted permeability	0.21	stones		
		Content of large stones	0.08	Content of large stones	0.08			
		Slope	0.04	Slope	0.04			
130:								
Gochea	85	Not limited		Not limited		\| Not limited		
131:								
Goldrun---------	55	Somewhat limited Too sandy	10.52	Somewhat limited Too sandy	0.52	$\begin{aligned} & \text { Somewhat limited } \\ & \text { Too sandy } \end{aligned}$	10.52	
Alvodest--------	30	Very limited		\|Very limited		\|Very limited		
		Depth to saturated zone	\|1.00	Depth to saturated zone	1.00	Depth to saturated zone	\| 1.00	
		Sodium content	\|1.00	Sodium content	1.00	Ponding	\| 1.00	
		Salinity	\|1.00	Salinity	1.00			
		Ponding	11.00	Ponding	1.00			
		Restricted permeability	10.96	Restricted permeability	0.96			
132:								
Gradon	85	Somewhat limited		Somewhat limited		\| Not limited		
		Depth to cemented pan	0.29	Depth to cemented pan	0.29			
		Gravel content	10.14	Gravel content	0.14			
133:								
Guano-----------	\| 85	Very limited		\|Very limited		\| Not limited		
		Depth to bedrock	\|1.00	Depth to bedrock	1.00			
		Gravel content	10.25	Gravel content	0.25			
		Slope	10.04	Slope	0.04			

Table 9.--Recreation--Continued

Map symbol and soil name	\|Pct. \mid	Camp areas		Picnic areas		Paths and trails	
	$\begin{array}{\|l\|} \mid \text { map } \mid \\ \mid \text { unit } \mid \end{array}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
134:							
Gumble----------	85	\|Very limited		\|Very limited		\|Somewhat limited	
		Depth to bedrock	11.00	Depth to bedrock	$\mid 1.00$	Dusty	0.50
		Gravel content	10.95	Gravel content	10.95		
		Dusty	10.50	Dusty	10.50		
		Slope	10.37	Slope	10.37		
135:							
Gumble----------	85	\|Very limited		\|Very limited		\|Very limited	
		Slope	11.00	Slope	11.00	Slope	11.00
		Depth to bedrock	11.00	Depth to bedrock	\|1.00	Too stony	0.53
		Too stony	10.53	Too stony	$\mid 0.53$	Dusty	0.50
		Dusty	10.50	Dusty	10.50	Content of large	0.26
		Content of large stones	\| 0.26	Content of large stones	0.26	stones	
136:							
Gumble	35	\|Very limited		\|Very limited		\|Somewhat limited	
		Depth to bedrock	\| 1.00	Depth to bedrock	\|1.00	Dusty	0.50
		Gravel content	10.95	Gravel content	10.95		
		Dusty	10.50	Dusty	10.50		
		Slope	\| 0.37	Slope	\|0.37		
Mahoon-----------	30	\|Very limited		\|Very limited		\|Very limited	
		Slope	\|1.00	Slope	\|1.00	Slope	\|1.00
		Gravel content	\|1.00	Gravel content	\|1.00	Dusty	10.50
		Dusty	10.50	Dusty	10.50		
		Restricted permeability	10.41	Restricted permeability	10.41		
Cagle-----------	25						
		Slope	\|1.00	\| Slope	\|1.00	Slope	\|1.00
		Gravel content	10.79	Gravel content	10.79	Dusty	10.50
		Dusty	10.50	Dusty	10.50		
		Restricted permeability	10.41	Restricted permeability	10.41		
137:							
Hackwood--------	85					\|Very limited	
		\| slope	11.00	\| Slope	11.00	Slope	11.00
		Gravel content	10.11	Gravel content	10.11		
138:							
Hackwood--------	50	\|Very limited Slope		\|Very limited Slope		\|Very limited Slope	
		Slope Gravel content	1.00 10.11	Slope Gravel content	$\mid 1.00$	\| Slope	\|1.00
Baconcamp-------	35	\|Very limited		\|Very limited		\|Very limited	
		slope	11.00	slope	\|1.00	Slope	11.00
		Content of large stones	10.08	Content of large stones	10.08	Content of large stones	10.08
139:							
Hapgood---------	85	\|Somewhat limited		\| Somewhat limited		\| Somewhat limited	
		Content of large stones	10.20	Content of large stones	10.20	Content of large stones	0.20
140:							
Hart Camp	85	\|Very limited		\|Very limited		Somewhat limited	
		Depth to bedrock	\|1.00	Depth to bedrock	\|1.00	Dusty	10.50
		Dusty	10.50	Dusty	10.50		
		Slope	10.16	Slope	10.16		

Table 9.--Recreation--Continued

Map symbol and soil name	Pct. \| of map unit	Camp areas		Picnic areas		Paths and trails	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\| Value
141:							
Hart Camp	85	\|Very limited		\|Very limited		\|Somewhat limited	
		Slope	11.00	Slope	11.00	Slope	10.92
		Depth to bedrock	1.00	Depth to bedrock	1.00	Dusty	0.50
		Dusty	10.50	Dusty	0.50		
142:							
Helphenstein-----	50	\|Very limited		\|Very limited		\| Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	1.00
		Sodium content	1.00	Sodium content	11.00	Ponding	1.00
		Ponding	11.00	Ponding	11.00		
		Restricted permeability	10.96	Restricted permeability	0.96		
		Salinity	0.50	Salinity	0.50		
Goldrun	35	\|Somewhat limited		\|Somewhat limited		Somewhat limited	
		Too sandy	10.53	Too sandy	10.53	Too sandy	0.53
		Slope	10.04	Slope	10.04		
143:							
Homefield-------	85	\|Very limited		\|Very limited		\|Very limited	
		Depth to saturated zone	\| 1.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00
		Sodium content	1.00	Sodium content	\| 1.00	Ponding	1.00
		Ponding	11.00	Ponding	11.00		
		Salinity	10.50	Salinity	10.50		
144:							
Housefield------	85	\|Very limited		\|Very limited		\|Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00
		Ponding	11.00		11.00	Ponding	1.00
145:							
Housefield------	45	\|Very limited		\|Very limited		\|Very limited	
		Depth to saturated zone	\| 1.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00
		Ponding	1.00	Ponding	11.00	Ponding	1.00
Doubleo---------	40	\|Very limited		\|Very limited		\|Very limited	
		Depth to saturated zone	11.00	Restricted permeability	1.00	Ponding Depth to	$\begin{aligned} & 1.00 \\ & 10.86 \end{aligned}$
		Restricted	1.00	Ponding	11.00	saturated zone	
		permeability		Depth to	10.94		
		Ponding	11.00	saturated zone			
146:							
Icene-----------	60	\|Very limited		\|Very limited		\|Very limited	
		Sodium content		Sodium content		Ponding	1.00
		Ponding	\| 1.00	Ponding	\| 1.00	Dusty	10.50
		Restricted permeability	10.96	Restricted permeability	10.96		
		Salinity	10.50	Salinity	10.50		
		Dusty	10.50	Dusty	10.50		
Playas-	25	\| Not rated		\| Not rated		\| Not rated	
147:							
Icene	60	\|Very limited		\|Very limited		\| Not limited	
		Sodium content	1.00	Sodium content	\| 1.00		
		Restricted permeability	10.96	Restricted permeability	10.96		
		Salinity	10.50	Salinity	10.50		
		\| Not rated		\| Not rated		\| Not rated	

Table 9.--Recreation--Continued

Map symbol and soil name	$\begin{aligned} & \text { \| Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Camp areas		Picnic areas		Paths and trails	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
148:							
Jesse Camp	85	\|Somewhat limited		\|Somewhat limited		Somewhat limited	
		Dusty	10.50	Dusty	10.50	Dusty	0.50
149:							
Jimgreen--------	90	\|Very limited		\|Very limited		\| Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	\|1.00	Depth to saturated zone	1.00
		Ponding	1.00	Ponding	\|1.00	Ponding	1.00
150:							
Jimgreen--------	50	\|Very limited		\|Very limited		\|Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	\|1.00	Depth to saturated zone	11.00
		Ponding	1.00	Ponding	\| 1.00	Ponding	1.00
Housefield------	35	\|Very limited		\|Very limited		\|Very limited	
		Depth to saturated zone	11.00	Depth to saturated zone	\|1.00	Depth to saturated zone	\|1.00
		Ponding	1.00	Ponding	1.00	Ponding	1.00
151:							
Kegler----------	85	\|Somewhat limited		\|Somewhat limited		\| Not limited	
		Depth to cemented pan	0.03	Depth to cemented pan	\| 0.03		
152:							
Kerrfield-------	85	Somewhat limited		\|Somewhat limited		Somewhat limited	
		Slope	10.63	Slope	10.63	Dusty	0.50
		Dusty	10.50	Dusty	10.50		
153:							
Klicker---------	85	\|Very limited		\|Very limited		\|Very limited	
		Slope	1.00	Slope	\| 1.00	Slope	1.00
		Gravel content	10.72	Gravel content	10.72	Content of large	0.01
		Content of large stones	0.01	Content of large stones	0.01	stones	
154:							
Klicker---------	85	\|Very limited		\|Very limited		\|Very limited	
		Slope	11.00	Slope	\|1.00	Slope	1.00
		Content of large stones	10.84	Content of large stones	0.84	Content of large stones	0.84
155:							
Krackle, north							
slopes	55	\|Very limited		\|Very limited		\|Very limited	
		Slope	11.00	Slope	\|1.00	Slope	\|1.00
		Restricted permeability	10.21	Restricted permeability	$\mid 0.21$		
		Gravel content	10.02	Gravel content	10.02		
Krackle, south							
slopes-------	30	\|Very limited		\|Very limited		\|Very limited	
		Slope	1.00	Slope	\|1.00	Slope	\|1.00
		Restricted permeability	10.21	Restricted permeability	\| 0.21		
		Gravel content	10.02	Gravel content	10.02		
156:							
Krackle---------	40	\|Very limited		\|Very limited		Somewhat limited	
		Slope	1.00	Slope	\|1.00	Slope	10.50
		Gravel content	10.82	Gravel content	10.82		
		Restricted permeability	10.21	Restricted permeability	\| 0.21		

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Paths and trails	
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
177:							
Lonely-	50	Not limited		Not limited		Not limited	
Doyn------------	35	\|Very limited		\|Very limited		Not limited	
		Depth to bedrock	11.00	Depth to bedrock	11.00		
		Slope	10.96	Slope	10.96		
178:							
Lonely----------	50	Very limited		\|Very limited		Somewhat limited	
		Slope	11.00	Slope	\| 1.00	Slope	10.32
		Content of large stones	10.01	Content of large stones	\| 0.01	Content of large stones	\| 0.01
Robson----------	35	Very limited		\|Very limited		Somewhat limited	10.05
		Depth to bedrock	1.00	Depth to bedrock	1.00	Content of large stones	
		Restricted permeability	10.96	\| Restricted permeability	10.96		
		Slope	10.16	Slope	10.16		
		Gravel content	10.08	Gravel content	10.08		
		Content of large stones	10.05	Content of large stones	10.05		
179:							
Longcreek-------	45	Very limited		\|Very limited		Very limited	
		Slope	11.00	Slope	\|1.00	Slope	\|1.00
		Depth to bedrock	\| 1.00	Depth to bedrock	\|1.00	Content of large stones	\| 0.26
		Restricted permeability	10.41	Restricted permeability	10.41		
		Content of large stones	10.26	Content of large stones	\| 0.26		
Cleavage--------	40	\|Very limited		\|Very limited		\|Very limited	
		Slope	\|1.00	\| Slope	\|1.00	Gravel content	\|1.00
		Gravel content	11.00		\|1.00	Slope	\|1.00
		Depth to bedrock	1.00	Depth to bedrock	\| 1.00		
180:							
Longcreek-------	75	\|Very limited		\|Very limited		\|Very limited	
		Slope	11.00	\| Slope	\| 1.00	Slope	\|1.00
		Depth to bedrock	1.00	Depth to bedrock	1.00		10.26
		Restricted permeability	10.41	Restricted permeability	$\mid 0.41$	stones	
		Content of large stones	0.26	Content of large stones	0.26		
Rock outcrop---	10	Not rated		Not rated		Not rated	
181:							
Loupence--------	85	\|Very limited		\| Not limited		Not limited	
		Flooding	11.00				
182 :							
Madeline--------	85	Very limited		\|Very limited		Very limited	
		Slope	1.00	Slope	\| 1.00	Slope	11.00
		Depth to bedrock	1.00	Depth to bedrock	1.00	Too stony	10.53
		Too stony	10.53	Too stony	10.53	Content of large	10.50
		Content of large stones	10.50	Content of large stones	10.50	stones	
		Restricted permeability	10.41	Restricted permeability	10.41		

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Map symbol and soil name	$\begin{array}{\|l\|} \mid \text { Pct. } \\ \text { of } \end{array}$	Camp areas		Picnic areas		Paths and trails			
	$\mid \operatorname{map}$ \|unit	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value		
211:									
Modoc------------	85	Somewhat limited		Somewhat limited		\| Not limited			
		Depth to cemented pan	0.84	Depth to cemented pan	0.84				
		Gravel content	0.08	Gravel content	0.08				
		Slope	0.04	Slope	0.04				
212:									
Morfitt----------	85	Very limited		\|Very limited		\|Very limited			
		Ponding	1.00	Ponding	1.00	\| Ponding	1.00		
		Dusty	0.50	Dusty	0.50	Dusty	0.50		
213 :									
Morganhills------	85	Very limited		\|Very limited		Not limited			
		Depth to bedrock	1.00	Depth to bedrock	1.00				
214:									
Morganhills, more									
than 12 percent									
slopes----------	50	Very limited		\|Very limited		\|Somewhat limited			
		Depth to bedrock	1.00	Depth to bedrock	1.00	Slope	0.98		
		Slope	1.00	Slope	1.00				
Morganhills, less than 12 percent									
slopes----------	40	Very limited		Very limited		\| Not limited			
		Depth to bedrock	1.00	Depth to bedrock	1.00				
215:									
Mound	85	Somewhat limited		Somewhat limited		\|Somewhat limited			
		Restricted	0.41	Restricted	0.41	Content of large	0.05		
		permeability		permeability		stones			
		Slope	0.37	Slope	0.37				
		Content of large	0.05	Content of large	0.05				
		stones		stones					
216:									
Nevador	85	Very limited		\|Very limited		\| Not limited			
		Gravel content	1.00	\| Gravel content	1.00				
		Restricted permeability	0.21	Restricted permeability	0.21				
217:									
Ninemile---------	85	Very limited		\|Very limited		\|Not limited			
		Depth to bedrock	1.00	Depth to bedrock	1.00				
		Restricted	0.45		0.45				
		permeability		permeability					
		Gravel content	0.01	Gravel content	0.01				
218: \|									
Ninemile	85	Very limited		Very limited		Somewhat limited			
		Depth to bedrock	1.00	Depth to bedrock	1.00	Content of large	0.10		
		Slope	1.00	Slope	1.00	stones			
		Restricted	0.45	Restricted	0.45	Slope	0.02		
		permeability		permeability					
		Content of large stones	0.10	Content of large stones	0.10				
		Gravel content	0.02	Gravel content	0.02				

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Map symbol and soil name	\|Pct. \mid	Camp areas		Picnic areas		Paths and trails		
	\mid map \mid	Rating class and	\|Value	Rating class and	\|Value	Rating class and	\|Value	
	\|unit		limiting features		limiting features		limiting features	
231:								
Ninemile, extremely								
stony-------------\|	20	\|Very limited		\|Very limited		\|Very limited		
		Depth to bedrock	\|1.00	Depth to bedrock	\| 1.00	Too stony	1.00	
		Too stony	11.00	Too stony	11.00	Content of large	0.88	
		Content of large	10.88	Content of large	0.88	stones		
		stones		stones				
		Restricted	10.45	Restricted	10.45			
		permeability		permeability				
232:								
Ninemile------------ \|	70	\|Very limited		\|Very limited		\| Somewhat limited		
		Depth to bedrock	\| 1.00	Depth to bedrock	\| 1.00	Content of large	0.10	
		Slope	10.84	Slope	10.84	stones		
		Restricted permeability	10.45	Restricted permeability	0.45			
		Content of large stones	0.10	Content of large stones	0.10			
		Gravel content	10.02	Gravel content	0.02			
Felcher------------- \|	20	\|Very limited		\|Very limited		\|Very limited		
		Slope	\| 1.00	Slope	1.00	Slope	1.00	
		Content of large stones	0.10	Content of large stones	0.10	Content of large stones	0.10	
233:								
Noname--------------	45	\|Very limited		\|Very limited		Not limited		
		Depth to bedrock	\|1.00	Depth to bedrock	\| 1.00			
		Restricted	\| 0.21	Restricted	0.21			
		permeability		permeability				
Dickle-------------	40			\|Very limited		\| Somewhat limited		
		Depth to bedrock	\| 1.00	Depth to bedrock	\| 1.00	Content of large	0.20	
		Restricted permeability	\| 0.21	Restricted permeability	\| 0.21	stones		
		Content of large stones	0.20	Content of large stones	0.20			
234:								
Noname-------------	40					\|Very limited		
		Slope	11.00	Slope	11.00	Slope	1.00	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Content of large	0.08	
		Restricted	\| 0.21	Restricted	0.21	stones		
		permeability		permeability				
		Content of large	0.08	Content of large	0.08			
		stones		stones				
Duff----------------	30	\|Very limited		\|Very limited		\|Very limited		
		Slope	11.00	Slope	11.00	Slope	1.00	
		Content of large stones	10.08	Content of large stones	\| 0.08	Content of large stones	0.08	
Rock outcrop--------	20	Not rated		Not rated		Not rated		
235:								
Norad	85	\|Somewhat limited		Somewhat limited		\|Somewhat limited		
		Dusty	10.50	Dusty	10.50	Dusty	0.50	
		Restricted permeability	\| 0.41	Restricted permeability	\| 0.41			
236:								
Norad--------------	45	\|Somewhat limited		\|Somewhat limited		\|Somewhat limited		
		Dusty	10.50	Dusty	10.50	Dusty	0.50	
		Restricted	10.41	Restricted	10.41			
		permeability		permeability				

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Map symbol and soil name	Pct. of	Camp areas		Picnic areas		Paths and trails	
	map unit	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
242:							
Merlin----------	15	\|Very limited		Very limited		\| Somewhat limited	
		Depth to bedrock	11.00	Depth to bedrock	11.00	Content of large	0.77
		Content of large	0.77	Content of large	0.77	stones	
		stones		stones		Too stony	0.53
		Too stony	0.53	Too stony	0.53		
		Restricted	$\mid 0.45$	Restricted	0.45		
		permeability		permeability			
		Slope	0.37	Slope	0.37		
243:							
Observation------	50	\|Somewhat limited		Somewhat limited		\| Somewhat limited	
		Gravel content	0.52	\| Gravel content	0.52	Content of large	0.01
		Restricted permeability	0.41	Restricted permeability	\| 0.41	stones	
		Slope	0.37	Slope	0.37		
		Content of large stones	0.01	Content of large stones	0.01		
Teguro----------	35	\|Very limited		Very limited		\| Somewhat limited	
		Depth to bedrock	11.00	Depth to bedrock	11.00	Content of large	0.42
		Content of large	0.42	Content of large	0.42	stones	
		stones		stones			
		Slope	0.37	Slope	0.37		
244:							
Observation------	50	\|Very limited		Very limited		\|Very limited	
		slope	11.00	Slope	\| 1.00	Slope	1.00
		Too stony	0.53	Too stony	0.53	Too stony	0.53
		Content of large stones	0.42	Content of large stones	0.42	Content of large stones	0.42
		Restricted	0.41	Restricted	0.41		
		permeability		permeability			
Lambring	25	\|Very limited		Very limited		\|Very limited	
		Slope	11.00	Slope	11.00	Slope	1.00
		Too stony	0.53	Too stony	0.53	Too stony	0.53
		Content of large stones	0.42	Content of large stones	\| 0.42	Content of large stones	0.42
Rock outcrop	15	Not rated		Not rated		Not rated	
245:							
Olac	55	\| Very limited		Very limited		\| Somewhat limited	
		Depth to bedrock	11.00	Depth to bedrock	11.00	Content of large	0.05
		Content of large stones	0.05	Content of large stones	0.05	stones	
		Gravel content	0.04	Gravel content	0.04		
Atlow	30	\|Very limited		Very limited		\| Somewhat limited	
		Depth to bedrock	11.00	Depth to bedrock	\| 1.00	Too stony	0.53
		Too stony	0.53	Too stony	0.53	Dusty	0.50
		Dusty	0.50	Dusty	0.50	Content of large	0.10
		Restricted	0.21	Restricted	0.21	stones	
		permeability		permeability			
		Content of large stones	0.10	Content of large stones	0.10		

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Map symbol and soil name	\|Pct.	Camp areas		Picnic areas		Paths and trails	
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
283:							
Droval----------	35	Very limited		\|Very limited		\|Very limited	
		Depth to saturated zone	\| 1.00	Depth to saturated zone	11.00	Depth to saturated zone	11.00
		Sodium content	11.00	Sodium content	1.00	Ponding	11.00
		Salinity	\|1.00	Salinity	1.00	Dusty	10.50
		Ponding	11.00	Ponding	1.00		
		Restricted permeability	10.96	Restricted permeability	0.96		
284:							
Risley----------	45	Somewhat limited		\| Somewhat limited		\| Somewhat limited	
		Dusty	10.50	Dusty	0.50	Dusty	10.50
		Restricted permeability	10.41	Restricted permeability	0.41		
		Slope	10.37	Slope	0.37		
		Gravel content	\| 0.25	Gravel content	0.25		
Gumble	40	\| Very limited		\|Very limited		\| Somewhat limited	
		Depth to bedrock	\|1.00	Depth to bedrock	1.00	Dusty	10.50
		Gravel content	10.95	Gravel content	0.95		
		Dusty	10.50	Dusty	0.50		
		Slope	10.37	Slope	0.37		
285:							
Risley----------	40	Somewhat limited		\|Somewhat limited		\| Not limited	
		Slope	10.96	Slope	0.96		
		Restricted permeability	10.41	Restricted permeability	0.41		
Gumble----------	25	Very limited		\|Very limited		\| Somewhat limited	
		Depth to bedrock	\| 1.00	Depth to bedrock	1.00	Dusty	10.50
		slope	10.96	Slope	0.96	Content of large	10.05
		Dusty	10.50	Dusty	0.50	stones	
		Content of large stones	10.05	Content of large stones	0.05		
		Gravel content	10.04	Gravel content	0.04		
Torriorthents-	20	Not rated		Not rated		\| Not rated	
286:							
Risley----------	60						
		Slope	10.84	Slope	0.84	Too stony	10.53
		Too stony	10.53	Too stony	0.53	Dusty	10.50
		Dusty	10.50	Dusty	0.50	Content of large	10.20
		Restricted permeability	10.41	Restricted permeability	0.41	stones	
		Content of large stones	0.20	Content of large stones	0.20		
Rock outcrop-	25	Not rated		Not rated		\| Not rated	
287:							
Robson----------	45	Very limited		\|Very limited		\| Not limited	
		Depth to bedrock	\|1.00	Depth to bedrock	1.00		
		Restricted permeability	10.96	Restricted permeability	0.96		
		Slope	10.04	Slope	0.04		
Anawalt---------	\| 40	\|Very limited		\|Very limited		\|Somewhat limited	
		Depth to bedrock	11.00	\| Depth to bedrock	1.00	Dusty	10.50
		Restricted permeability	10.96	Restricted permeability	0.96		
		Dusty	10.50	Dusty	0.50		
		Gravel content	10.08	Gravel content	0.08		
		Slope	10.04	Slope	0.04		

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Map symbol and soil name	Pct.	Camp areas		Picnic areas		Paths and trails		
	\|map	Rating class and	\|Value	Rating class and	\|Value	Rating class and	\|Value	
	\|unit		limiting features		limiting features		limiting features	
294:								
Rubble lan	35	\| Not rated		Not rated		\| Not rated		
Nuss	30	\|Very limited		Very limited		\|Very limited		
		Slope	1.00	Slope	1.00	Slope	1.00	
		Depth to bedrock	11.00	Depth to bedrock	1.00	Content of large	0.02	
		Content of large stones	\| 0.02	Content of large stones	0.02	stones		
Ateron	20	\|Very limited		Very limited		\|Very limited		
		Slope	11.00	Slope	1.00	Too stony	11.00	
		Depth to bedrock	1.00	Depth to bedrock	1.00	Content of large	\|1.00	
		Too stony	11.00	Too stony	1.00	stones		
		Content of large stones	\| 1.00	Content of large stones	1.00	Slope	\| 1.00	
		Restricted	0.41	Restricted	0.41			
		permeability		permeability				
295:								
Sagehen---------	75	\|Very limited		Very limited		\|Somewhat limited		
		\| Depth to bedrock	1.00	Depth to bedrock	1.00	Slope	0.18	
		Slope	11.00	Slope	1.00	Content of large	0.01	
		Restricted	\| 0.21	Restricted	0.21	stones		
		permeability		permeability				
		Content of large	0.01	Content of large	0.01			
		stones		stones				
Rock outcrop	10	\| Not rated		Not rated		\| Not rated		
296:								
Sagehen	75	\|Very limited		\|Very limited		\|Very limited		
		Slope	11.00	Slope	1.00	Slope	1.00	
		Depth to bedrock	\| 1.00	Depth to bedrock	1.00	Content of large	0.01	
		Restricted permeability	0.21	Restricted permeability	0.21	stones		
		Content of large stones	0.01	Content of large stones	0.01			
Rock outcrop	10	\| Not rated		Not rated		\| Not rated		
297:								
Sandgap	85					\|Very limited		
		\| Too sandy	11.00	Too sandy	11.00	\| Too sandy	11.00	
298:								
Sandgap	85	\|Very limited		Very limited		\|Very limited		
		Too sandy	11.00	Too sandy	11.00	Too sandy	11.00	
$299 \text { : }$								
Seharney--------	85			\|Very limited		\|Somewhat limited		
		$\|$Depth to cemented pan	1.00	Depth to cemented pan	1.00	Dusty	0.50	
		Dusty	0.50	Dusty	0.50			
300:								
Skedaddle-------	45	\| Very limited		Very limited		\|Somewhat limited		
		Depth to bedrock	\|1.00	Depth to bedrock	1.00	Slope	0.18	
		Slope	11.00	Slope	1.00	Content of large	\| 0.14	
		Content of large	\| 0.14	Content of large	0.14	stones		
		stones		stones				

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Map symbol and soil name	\|Pct.	Camp areas		Picnic areas		Paths and trails		
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
306:								
Skunkfarm---------- \|	\| 65	\|Very limited		\|Very limited		\|Very limited		
		Ponding	\|1.00	Ponding	1.00	Ponding	11.00	
		Depth to saturated zone	10.99	Depth to saturated zone	0.78	Depth to saturated zone	0.50	
		Restricted permeability	0.21	Restricted permeability	0.21			
Cumulic Haploxerolls	20	$\begin{aligned} & \text { \|Very limited } \\ & \mid \quad \text { Ponding } \end{aligned}$	\|1.00	\|Very limited	11.00	Very limited	1.00	
307:	45							
Skunkfarm----------\|		\|Very limited		\|Very limited		\|Very limited		
		Ponding	11.00	Ponding	1.00	Ponding	11.00	
		Depth to saturated zone	10.99	Depth to saturated zone	0.78	Depth to saturated zone	10.50	
		Restricted permeability	10.21	Restricted permeability	0.21			
Doubleo------------ \|	40	Very limited		Very limited	11.00		11.00	
		Depth to saturated zone	\|1.00	Restricted permeability		\| Very limited		
		Restricted	\| 1.00	Ponding	1.00	saturated zone		
		permeability		Depth to	0.94			
		Ponding	\|1.00	saturated zone				
308:	35			\|Very limited		\|Very limited		
Skunkfarm----------		\|Very limited						
		Ponding	11.00	Ponding	1.00	Ponding	11.00	
		Depth to saturated zone	10.99	Depth to saturated zone	0.78	Depth to saturated zone	10.50	
		Restricted permeability	\| 0.21	Restricted permeability	0.21			
Mcbain-------------\|	30	\| Very limited		\|Very limited		\|Somewhat limited	0.50	
		Sodium content	11.00	Sodium content	1.00	Dusty		
		Salinity	11.00	Salinity	1.00			
		Dusty	10.50	Dusty	0.50			
		Restricted permeability	\| 0.21	Restricted permeability	0.21			
Doubleo------------	20	\|Very limited Depth to saturated zone Restricted permeability Ponding		\|Very limited		\|Very limited		
			\| 1.00	Restricted permeability	1.00	\| Ponding Depth to	$\begin{aligned} & \mid 1.00 \\ & \mid 0.86 \end{aligned}$	
			\| 1.00	Ponding	1.00	saturated zone		
				Depth to	0.94			
			\|1.00	saturated zone				
309 :								
Skunkfarm---------- \|	60	\|Very limited		\|Very limited		\|Very limited		
		Ponding	\|1.00	Ponding	1.00	Ponding	11.00	
		Depth to saturated zone	10.99	Depth to saturated zone	0.78	Depth to saturated zone	10.50	
		Restricted permeability	10.21	Restricted permeability	0.21			
Skidoosprings-------	\| 25	\|Very limited Depth to saturated zone Sodium content Ponding Salinity		\|Very limited		\| Very limited		
			\|1.00	Depth to saturated zone	1.00	Depth to saturated zone	11.00	
			\|1.00	Sodium content	\|1.00	Ponding	11.00	
			11.00	Ponding	1.00			
			10.50	Salinity	0.50			

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Camp areas		Picnic areas		Paths and trails			
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
325:									
Thenarrows------	50	\|Very limited		Very limited		\|Very limited			
		Depth to saturated zone	11.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00		
		Sodium content	1.00	Sodium content	1.00	Ponding	1.00		
		Ponding	11.00	Ponding	1.00				
Duckclub--------	40	\|Very limited		Very limited		\|Somewhat limited			
		Sodium content	1.00	Sodium content	1.00	Too sandy	\| 0.27		
		Too sandy	10.27	Too sandy	0.27				
		Restricted permeability	10.21	Restricted permeability	0.21				
		Salinity	10.13	Salinity	0.13				
326:									
Thenarrows------	50	\| Very limited		Very limited		\|Very limited			
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00		
		Sodium content	11.00	Sodium content	1.00	Ponding	11.00		
		Ponding	11.00	Ponding	1.00				
Duckclub--------	20	\|Very limited		Very limited		\|Somewhat limited			
		Sodium content	11.00	Sodium content	1.00	Too sandy	10.27		
		Too sandy	10.27	Too sandy	0.27				
		Restricted permeability	10.21	Restricted permeability	0.21				
		Salinity	10.13	Salinity	0.13				
Dentdraw--------	20	\|Very limited		Very limited		\|Very limited			
		Depth to saturated zone	11.00	Depth to saturated zone	1.00	Depth to saturated zone	11.00		
		Sodium content	11.00	Sodium content	1.00	Ponding	11.00		
		Ponding	11.00	Ponding	1.00				
		Restricted permeability	10.21	Restricted permeability	0.21				
327:									
Thenarrows------	35	\|Very limited		Very limited		\|Very limited			
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00		
		Sodium content	1.00	Sodium content	1.00	Ponding	1.00		
		Ponding	11.00	Ponding	1.00				
Duckclub--------	35	\|Very limited		Very limited		\|Somewhat limited			
		Sodium content	1.00	Sodium content	1.00	Too sandy	10.27		
		Too sandy	10.27	Too sandy	0.27				
		Restricted permeability	10.21	Restricted permeability	0.21				
		Salinity	0.13	Salinity	0.13				
Sandgap---------	15	\|Very limited		\|Very limited		\|Very limited			
		Too sandy	1.00	Too sandy	1.00	Too sandy	1.00		
328:									
Ticino----------	45	\|Somewhat limited Content of large stones	10.03	Somewhat limited Content of large stones	0.03	Somewhat limited Content of large stones	10.03		
Merlin----------	40	\|Very limited		Very limited		Somewhat limited			
		Depth to bedrock	1.00	Depth to bedrock	\| 1.00	Content of large	0.05		
		Restricted permeability	10.45	Restricted permeability	0.45	stones			
		Content of large stones	10.05	Content of large stones	0.05				

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Table 9.--Recreation--Continued

Map symbol and soil name	Pct. of map unit	Camp areas		Picnic areas		Paths and trails	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
		Slope	1.00	Slope	\| 1.00	Slope	1.00
		Content of large stones	10.26	Content of large stones	0.26	Content of large stones	0.26
Rock outcrop-	20	Not rated		Not rated		Not rated	
363:							
Westbutte-------	75	Very limited		Very limited		\|Very limited	
		Slope	11.00	Slope	11.00	Slope	1.00
		Too stony	10.53	Too stony	0.53	Too stony	0.53
		Content of large stones	10.42	Content of large stones	0.42	Content of large stones	0.42
Rock outcrop--	15	Not rated		Not rated		Not rated	
364:							
Westbutte-------	65	Very limited		Very limited		\|Very limited	
		Slope	11.00	Slope	\|1.00	Slope	1.00
		Too stony	10.53	Too stony	0.53	Too stony	0.53
		Content of large stones	10.42	Content of large stones	0.42	Content of large stones	0.42
Rock outcrop-	20	Not rated		Not rated		Not rated	
365:							
Westbutte-------	40	Very limited		Very limited		\|Very limited	
		Slope	11.00	Slope	11.00	Slope	1.00
		Content of large stones	10.26	Content of large stones	0.26	Content of large stones	0.26
Lambring--------	35	Very limited		Very limited		\|Very limited	
		Slope	11.00	Slope	\|1.00	Slope	1.00
		Too stony	10.53	Too stony	0.53	Too stony	0.53
		Content of large stones	\| 0.42	Content of large stones	0.42	Content of large stones	0.42
Rock outcrop-	15	Not rated		Not rated		Not rated	
366:							
Westbutte-------	40	Very limited		Very limited		\|Very limited	
		Slope	11.00	Slope	1.00	Slope	1.00
		Too stony	10.53	Too stony	10.53	Too stony	0.53
		Content of large stones	10.26	Content of large stones	\| 0.26	Content of large stones	0.26
Lambring--------	30	Very limited		Very limited		\|Very limited	
		Slope	1.00	Slope	1.00	Slope	1.00
		Too stony	10.53	Too stony	10.53	Too stony	0.53
		Content of large stones	10.42	Content of large stones	0.42	Content of large stones	0.42
Rock outcrop---	15	Not rated		Not rated		Not rated	
367 :							
Westbutte-------	40	Very limited		Very limited		\|Very limited	
		Slope	1.00	Slope	\|1.00	Slope	\|1.00
		Too stony	10.53	Too stony	10.53	Too stony	10.53
		Content of large stones	10.42	Content of large stones	0.42	Content of large stones	0.42

Table 9.--Recreation--Continued

Map symbol and soil name	Pct. of	Camp areas		Picnic areas		Paths and trails	
	map unit	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
367:							
Lambring--------	30	\|Very limited		\| Very limited		\| Very limited	
		Slope	\| 1.00	Slope	\| 1.00	Slope	1.00
		Too stony	10.53	Too stony	0.53	Too stony	0.53
		Content of large stones	0.42	Content of large stones	0.42	Content of large stones	0.42
Rock outcrop-----	15	\| Not rated		\| Not rated		Not rated	
368:							
Westbutte--------	50	\|Very limited		\|Very limited		\|Very limited	
		Slope	\| 1.00	Slope	1.00	Slope	1.00
		Too stony	\| 0.53	Too stony	0.53	Too stony	0.53
		Content of large stones	0.42	Content of large stones	0.42	Content of large stones	0.42
Observation-----	40	\|Somewhat limited		\|Somewhat limited		\|Somewhat limited	
		Slope	\| 0.84	Slope	0.84	Too stony	0.53
		Too stony	\| 0.53	Too stony	0.53	Content of large	0.42
		Content of large stones	0.42	Content of large stones	0.42	stones	
		Restricted	\| 0.41	Restricted	0.41		
		permeability		permeability			
369 :							
Westbutte-------	35	\|Very limited		\|Very limited		\|Very limited	
		Slope	\|1.00	Slope	1.00	Slope	1.00
		Too stony	10.53	Too stony	0.53	Too stony	0.53
		Content of large stones	\| 0.42	Content of large stones	0.42	Content of large stones	0.42
Rock outcrop-----	30	\| Not rated		\| Not rated		Not rated	
	25	\|Very limited		\| Very limited		\|Very limited	
Pernty----------		\| Slope	\| 1.00	Slope	$\mid 1.00$	Slope	\| 1.00
		\| Depth to bedrock	\|1.00	Depth to bedrock	\|1.00		
		Gravel content	\| 0.25	Gravel content	0.25		
370 :							
Widowspring--	85	\| Not limited		\|Not limited		\| Not limited	
			\|				
371:							
Windybutte------372 :	85	\| Not limited	\|	\|Not limited		\| Not limited	
			\|				
			\|				
Wolverine	85			\|Very limited			
		\| Too sandy	\| 1.00	\| Too sandy	\| 1.00	Too sandy	\| 1.00
		Slope	\| 0.04	Slope	10.04	Water erosion	\| 1.00
373 :							
Denied access	100	\| Not rated	\|	\| Not rated		Not rated	

Fable 10.--Building Site Development
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table)

Table 10.--Building Site Development--Continued

Table 10.--Building Site Development--Continued

Table 10.--Building Site Development--Continued

Table 10.--Building Site Development--Continued

Table 10.--Building Site Development--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \text { \|unit } \end{aligned}$	Dwellings with basements		Local roads and street		Shallow excavations		
		Rating class and limiting features	Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
		Depth to hard	1.00	Depth to hard	\|1.00	Depth to hard	1.00	
		Slope	1.00	Slope	1.00	Slope	1.00	
		Shrink-swell	0.50	Shrink-swell	0.50	Content of large	0.18	
		Content of large	0.18	Frost action	0.50	stones		
		stones		Content of large stones	\| 0.18	Cutbanks cave	0.10	
Rock outcrop-	15	Not rated		Not rated		Not rated		
23:								
Atlow-----------	70	Very limited \|		Very limited		Very limited		
				D Depth to hard	11.00	Depth to hard	1.00	
		Depth to hard	1.00	bedrock		bedrock		
		bedrock		Slope	1.00	Slope	1.00	
		Shrink-swell	0.50	Shrink-swell	10.50	Content of large	0.18	
		Content of large	0.18	Frost action	10.50	stones		
		stones		Content of large stones	\| 0.18	Cutbanks cave	0.10	
Rock outcrop-	15	\| Not rated		\| Not rated		\| Not rated		
24:								
Atlow-----------	55	Very limited		\|Very limited		Very limited		
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	
		Slope	1.00	Slope	1.00	Slope	1.00	
		Shrink-swell	0.50	Shrink-swell	10.50	Content of large	0.18	
		Content of large	0.18	Frost action	0.50	stones		
		stones		Content of large stones	\| 0.18	Cutbanks cave	0.10	
Skedaddle-------	30	Very limited Depth to hard 1.00		\|Very limited		Very limited		
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	
		Slope	1.00	Slope	1.00	Slope	1.00	
		Content of large stones	0.96	Content of large stones	10.96	Content of large stones	0.96	
		Shrink-swell	0.50	Shrink-swell	0.50	Cutbanks cave	0.10	
				Frost action	0.50			
25:								
Ausmus -	85	Very limited		Very limited		Very limited		
		Ponding	1.00	\| Ponding	1.00	Ponding	1.00	
		Depth to saturated zone	10.89	Frost action	0.50	Depth to saturated zone	0.89	
						Cutbanks cave	0.10	
26:								
Ausmus-	85	Somewhat limited		Somewhat limited		Somewhat limited		
		\| Depth to saturated zone	10.89	Frost action	10.50	Depth to saturated zone	0.89	
						Cutbanks cave	0.10	
27:								
Baconcamp-------	85	Very limited Slope Depth to hard bedrock		Very limited		Very limited		
			11.00	Slope	1.00	Depth to hard	1.00	
			\| 1.00	Frost action	10.50	bedrock		
				Depth to hard	10.10	Slope	1.00	
				bedrock		Cutbanks cave	11.00	

Table 10.--Building Site Development--Continued

Table 10.--Building Site Development--Continued

Table 10.--Building Site Development--Continued

Map symbol and soil name	Pct. \| of map unit	Dwellings with basements		Local roads and street		Shallow excavations	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
37:							
Berdugo-	50	Not limited		Somewhat limited Frost action	0.50	Very limited Cutbanks cave	1.00
Catlow-	35	Not limited		Not limited		Very limited Cutbanks cave	1.00
38:							
Bigfrog---------	45			\|Very limited		Very limited	
		Depth to thin cemented pan	1.00	Depth to thin cemented pan	1.00	Depth to thin cemented pan	\| 1.00
		Slope	1.00	Slope	1.00	Cutbanks cave	1.00
		Shrink-swell	0.50	Shrink-swell	10.50	Slope	1.00
				Frost action	0.50		
Brock-----------	40	Very limited		Very limited		Very limited	
		Depth to thin cemented pan	1.00	Depth to thin cemented pan	1.00	Depth to thin cemented pan	\|1.00
		Slope	1.00	Slope	1.00	Cutbanks cave	\| 1.00
		Shrink-swell	0.50	Shrink-swell	10.50	Slope	11.00
				Frost action	0.50		
39:							
Bocker--	50	Very limited		\|Very limited		Very limited	
		Depth to hard bedrock	11.00	Depth to hard bedrock	\| 1.00	Depth to hard bedrock	\|1.00
		Slope	11.00	Slope	1.00	Slope	1.00
		Content of large stones	10.93	Content of large stones	0.93	Content of large stones	0.93
				Frost action	0.50	Cutbanks cave	0.10
Westbutte-	35	Very limited		\|Very limited		Very limited	
		Depth to hard bedrock	11.00	Content of large stones	1.00	Depth to hard bedrock	\|1.00
		Content of large	1.00	Slope	1.00	Content of large	\|1.00
		stones		Depth to hard	10.90	stones	
		Slope	11.00	bedrock		Slope	11.00
				Frost action	0.50	Cutbanks cave	0.10
40:							
Boravall------	55	Very limited		\|Very limited		Very limited	
		Depth to saturated zone	11.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	\| 1.00
		Shrink-swell	1.00	Frost action	1.00	Ponding	\| 1.00
		Ponding	11.00	Low strength	1.00	Cutbanks cave	10.10
				Shrink-swell	1.00	Too clayey	10.03
				Ponding	\|1.00		
Playas	30	Very limited		\|Very limited		Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Shrink-swell	1.00	Frost action	1.00	Ponding	\| 1.00
		Ponding	1.00	Shrink-swell	1.00	Too clayey	10.50
				Ponding	1.00		
41:							
Borobey---------	85	\mid Somewhat limited$\mid \quad$ Slope		Somewhat limited		Very limited	
			0.04	Frost action	0.50	Cutbanks cave	1.00
				Slope	0.04	Slope	10.04

Table 10.--Building Site Development--Continued

| Map symbol and soil name | Pct.
 of \|map |unit | Dwellings with basements | | Local roads and street | | Shallow excavations | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | map unit | Rating class and limiting features | \|Value| | Rating class and limiting features | \|Value | Rating class and limiting features | \|Value |
| 42: | | | | | | | |
| Boulder Lake----- | 85 | \|Very limited | | \| Very limited | | \|Very limited | |
| | | Depth to saturated zone | \| 1.00 | Depth to saturated zone | \| 1.00 | Depth to saturated zone | \| 1.00 |
| | | Shrink-swell | \| 1.00 | Low strength | \| 1.00 | Cutbanks cave | 1.00 |
| | | Ponding | \|1.00 | Shrink-swell | \|1.00 | Ponding | 1.00 |
| | | | | Ponding | 1.00 | Too clayey | 0.50 |
| | | | | Frost action | 10.50 | | |
| | | | | | | | |
| 43: | | | | | | | |
| Boulder Lake----- | 65 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to saturated zone | 11.00 | Depth to saturated zone | 1.00 | Depth to saturated zone | 1.00 |
| | | Shrink-swell | 11.00 | Low strength | \|1.00 | Cutbanks cave | 1.00 |
| | | Ponding | \| 1.00 | Shrink-swell | \| 1.00 | Ponding | 1.00 |
| | | | | Ponding | \| 1.00 | Too clayey | 0.50 |
| | | | | Frost action | 10.50 | | |
| | | | | | | | |
| Merlin---------- | 20 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Shrink-swell | 11.00 | Depth to hard | 1.00 | Depth to hard | 1.00 |
| | | Depth to hard | \| 1.00 | bedrock | | bedrock | |
| | | bedrock | | Low strength | 11.00 | Cutbanks cave | 0.10 |
| | | | | Shrink-swell | \| 1.00 | | |
| | | | | Frost action | 0.50 | | |
| | | | | | | | |
| 44: | | | | | | | |
| Boulder Lake----- | 45 | \|Very limited | | \| Very limited | | \|Very limited | |
| | | Depth to | \| 1.00 | Depth to | 1.00 | Depth to | 1.00 |
| | | saturated zone | | saturated zone | | saturated zone | |
| | | Shrink-swell | \| 1.00 | Low strength | \| 1.00 | Cutbanks cave | 1.00 |
| | | Ponding | \|1.00 | Shrink-swell | \|1.00 | Ponding | 1.00 |
| | | | | Ponding | \| 1.00 | Too clayey | 0.50 |
| | | | | Frost action | 0.50 | | |
| | | | | | | | |
| Spangenburg----- | 40 | \| Not limited | | \| Very limited | | \|Somewhat limited | |
| | | | | \| Low strength | \| 1.00 | Cutbanks cave | 0.10 |
| | | | | Shrink-swell | 10.50 | | |
| | | | | Frost action | 10.50 | | |
| | | | | | | | |
| 45: | | | | | | | |
| Brabble--------- | 50 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to hard | 1.00 | \| Slope | \| 1.00 | Depth to hard | \| 1.00 |
| | | bedrock | | Shrink-swell | 10.50 | bedrock | |
| | | Slope | 1.00 | Frost action | 0.50 | Slope | 1.00 |
| | | Shrink-swell | 0.50 | Depth to hard | 0.01 | Depth to thin | 10.20 |
| | | Depth to thin | 0.20 | bedrock | | cemented pan | |
| | | cemented pan | | | | Cutbanks cave | 0.10 |
| | | | | | | | |
| Calderwood------ | 35 | \|Very limited | | \|Very limited | | \|Very limited | |
| | | Depth to hard bedrock | 1.00 | Depth to hard bedrock | \| 1.00 | Depth to hard bedrock | \| 1.00 |
| | | Slope | 1.00 | Slope | \| 1.00 | Slope | \| 1.00 |
| | | Shrink-swell | 0.50 | Shrink-swell | 10.50 | Content of large | 0.13 |
| | | Content of large | 0.13 | Frost action | 10.50 | stones | |
| | | stones | | Content of large stones | \| 0.13 | Cutbanks cave | 0.10 |
| | | | | | | | |

Table 10.--Building Site Development--Continued

Table 10.--Building Site Development--Continued

Table 10.--Building Site Development--Continued

Table 10.--Building Site Development--Continued

Map symbol and soil name	Pct. of map unit	Dwellings with basements		Local roads and street		Shallow excavations						
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value	Rating class and limiting features	Value				
59:												
Carryback, north slopes	25	\|Very limited		\|Very limited		\mid Very limited						
		Slope	11.00	Slope	1.00	Depth to hard	1.00					
		Shrink-swell	\|1.00	Low strength	1.00	bedrock						
		Depth to hard	11.00	Shrink-swell	1.00	Slope	1.00					
		bedrock		Depth to hard	0.90	Too clayey	0.50					
				bedrock		Cutbanks cave	0.10					
				Frost action	0.50							
60:												
Carryback, south slopes	45	\|Very limited		\|Very limited		\|Very limited						
		Slope	11.00	Slope	11.00	Depth to hard	1.00					
		Shrink-swell	11.00	Low strength	11.00	bedrock						
		Depth to hard	11.00	Shrink-swell	11.00	Slope	1.00					
		bedrock		Depth to hard	0.90	Too clayey	0.50					
				bedrock		Cutbanks cave	0.10					
				Frost action	0.50							
Carryback, north slopes	40											
		\|Very limited		\|Very limited		\|Very limited						
		\| Slope	11.00	\| Slope	11.00	Depth to hard	1.00					
		Shrink-swell	\|1.00	Low strength	11.00	bedrock						
		Depth to hard	\|1.00	Shrink-swell	11.00	Slope	1.00					
		bedrock		Depth to hard	0.90	Too clayey	0.50					
				bedrock		Cutbanks cave	0.10					
				Frost action	0.50							
61: \|												
Carryback-------		55	\|Very limited		\|Very limited		\|Very limited					
	Shrink-swell		\|1.00	Low strength	1.00	Depth to hard	1.00					
	Depth to hard		11.00	Shrink-swell	1.00	bedrock						
	bedrock			Depth to hard	10.90	Too clayey	0.50					
	Content of large		10.06	bedrock		Cutbanks cave	0.10					
	stones			Frost action	0.50	Content of large	0.06					
	Slope		10.04	Content of large stones	0.06	$\begin{aligned} & \text { stones } \\ & \text { Slope } \end{aligned}$	0.04					
Pearlwise-------	30											
		Depth to hard bedrock	11.00	Depth to hard bedrock	0.97	Depth to hard bedrock	1.00					
		Slope	10.04	Frost action	0.50	Cutbanks cave	0.10					
				Slope	0.04	Slope	0.04					
62 :												
Carryback-------	45	\|Very limited		\|Very limited		\|Very limited						
		\| Slope	11.00	\| Slope	1.00	\| Depth to hard	1.00					
		Shrink-swell	11.00	Low strength	\|1.00	bedrock						
		Depth to hard	11.00	Shrink-swell	11.00	Slope	1.00					
		bedrock		Depth to hard	10.90	Too clayey	0.50					
		Content of large	0.06	bedrock		Cutbanks cave	0.10					
		stones		Frost action	0.50	Content of large stones	0.06					
Pearlwise-------	30											
		Very limited Slope	11.00	Very limited Slope	11.00	Very limited Depth to hard	1.00					
		Depth to hard bedrock	11.00	Depth to hard bedrock	10.97	bedrock Slope	1.00					
				Frost action	0.50	Cutbanks cave	0.10					
Rock outcrop-----	15	Not rated		\| Not rated		\| Not rated						

Table 10.--Building Site Development--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { Pof } \\ & \mid \text { of } \\ & \text { \|unit } \end{aligned}$	Dwellings with basements		Local roads and street		Shallow excavations					
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value			
63:											
Carryback-------	50	Very limited		\|Very limited		Very limited	1.00				
		Shrink-swell	\|1.00	Low strength	1.00	Depth to hard					
		Depth to hard bedrock	11.00	Shrink-swell	1.00	bedrock					
				Slope	1.00	Slope	1.00				
		Slope	11.00	Depth to hard bedrock	0.90	Too clayey	0.50				
						Cutbanks cave	0.10				
				Frost action	0.50						
Dickle----------	35	Very limited		\|Very limited		\|Very limited					
		Depth to hard bedrock	\| 1.00	Depth to hard bedrock	1.00	Depth to hard bedrock	1.00				
		Slope	11.00	Slope	1.00	Slope	1.00				
		Shrink-swell	10.50	Low strength	1.00	Cutbanks cave	0.10				
				Shrink-swell	0.50						
				Frost action	0.50						
64 :											
Carvix-	85	Not limited		\| Not limited		Somewhat limited					
						Cutbanks cave	0.10				
65:											
Clamp	40	Very limited		\|Very limited	11.00	\|Very limited					
		Slope		Depth to hard bedrock		Depth to hard bedrock	\|1.00				
		Depth to hardbedrock	1.00								
				Slope	1.00	Slope	1.00				
		Content of large stones	0.80	Content of large stones	0.80	Content of large stones	0.80				
		Shrink-swell	0.50	Shrink-swell	0.50	Cutbanks cave	0.10				
				Frost action	0.50						
Baconcamp-------	30	Very limited		\|Very limited		Very limited					
		Slope	\|1.00	Slope	1.00	Depth to hard	1.00				
		Depth to hard	\| 1.00	Frost action Depth to hard bedrock	0.50	bedrock					
		bedrock			0.10	Slope	1.00				
						Cutbanks cave	1.00				
Hackwood--------	15	$\begin{aligned} & \mid \text { Very limited } \\ & \mid \text { Slope } \end{aligned}$		\|Very limited		\|Very limited					
			1.00	Slope	1.00	Slope	1.00				
				Frost action	0.50	Cutbanks cave	1.00				
66:											
Coztur----------	85	Very limited		\|Very limited	1.00	\|Very limited					
		Depth to hard bedrock	11.00	Depth to hard bedrock		Depth to hard bedrock	\| 1.00				
		Shrink-swell	10.50	Shrink-swell	0.50	Cutbanks cave	0.10				
		Slope	0.04	Frost action	10.50	Slope	10.04				
				Slope	10.04						
67 :											
Crowcamp--------	85	\mid Very limited Ponding \mid 1.00		\|Very limited		\|Very limited					
				Low strength	1.00	\| Cutbanks cave	\| 1.00				
		Ponding Depth to saturated zone	10.95	Shrink-swell Ponding Frost action	1.00	Ponding	11.00				
					\| 1.00	Depth to	10.95				
					10.50	saturated zone					
						Too clayey	0.28				

Table 10.--Building Site Development--Continued

Table 10.--Building Site Development--Continued

Map symbol and soil name	Pct. of map unit	Dwellings with basements		Local roads and street		Shallow excavations			
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		
		Depth to hard	1.00	Depth to hard	1.00	Depth to hard	11.00		
		bedrock		bedrock		bedrock			
		Shrink-swell	10.50	Low strength	11.00	Cutbanks cave	10.10		
				Shrink-swell	10.50				
				Frost action	10.50				
75:									
Dixon-----------	85	\|Somewhat limited		\|Somewhat limited		\|Very limited	11.00		
		Shrink-swell	10.50	Shrink-swell	10.50	Cutbanks cave			
				Frost action	10.50				
76:									
Dixon-----------	85	Somewhat limited		\|Somewhat limited		Very limited	\| 1.00		
		Shrink-swell	10.50	Shrink-swell	10.50	Cutbanks cave			
				Frost action	10.50				
77:									
Dixon-----------	85	Somewhat limited		\|Somewhat limited		\|Very limited			
		Shrink-swell	10.50	Shrink-swell	10.50	Cutbanks cave	11.00		
		Slope	10.04	Frost action	10.50	Slope	10.04		
				Slope	10.04				
78:									
Dixon-----------	50	Somewhat limited Shrink-swell		\|Somewhat limited		Very limited			
			10.50	Shrink-swell	10.50	Cutbanks cave	1.00		
				Frost action	10.50				
Droval----------	40	\|Very limited		\mid Very limited		\|Very limited			
		Depth to saturated zone	11.00	Depth to saturated zone	1.00	Depth to saturated zone	11.00		
		Shrink-swell	11.00	Frost action	1.00	Ponding	11.00		
		Ponding	11.00	Low strength	1.00	Too clayey	10.88		
				Shrink-swell	1.00	Cutbanks cave	0.10		
				Ponding	1.00				
79 :									
Dogmountain------	85	Very limited	10.99	Somewhat limited	\|0.63	\|Very limited	\| 1.00		
						Cutbanks cave			
		Depth to thin cemented pan		Frost action	10.50	Depth to thin cemented pan	0.99		
		Slope	10.63			Slope	0.63		
80:									
Doyn	85	\|Very limited		Very limited				Very limited	
		Depth to hard bedrock	11.00	Depth to hard bedrock	11.00	Depth to hard bedrock	\| 1.00		
		Slope	10.37	Slope	0.37	Slope	10.37		
						Cutbanks cave	0.10		
81:									
Doyn------	60	\|Very limited Depth to hard bedrock Slope		\|Very limited Depth to hard bedrock Slope		Very limited Depth to hard bedrock			
			1.00		11.00		11.00		
			10.37		\| 0.37	Slope	10.37		
						Cutbanks cave	10.10		

Table 10.--Building Site Development--Continued

Table 10.--Building Site Development--Continued

Map symbol and soil name	Pct. of map \|unit	Dwellings with basements		Local roads and street		Shallow excavations								
		Rating class and limiting features	\|Value		Rating class and limiting features	Value	Rating class and limiting features	\|Value						
		Depth to hard	10.93	Frost action	0.50	Cutbanks cave	1.00							
		bedrock				Depth to hard	10.93							
						bedrock								
88:														
Duff-------------	45	Somewhat limited Depth to hard 0.93		Somewhat limited		\|Very limited								
				Slope	0.84	Cutbanks cave	1.00							
		bedrock		Frost action	10.50	Depth to hard	0.93							
		Slope	10.84											
						Slope	0.84							
Clamp-----------	40	Very limited		Very limited		Very limited								
		Depth to hard bedrock	\|1.00	Depth to hard bedrock	1.00	Depth to hard bedrock	1.00							
		Slope	10.84	Slope	0.84	Slope	0.84							
		Shrink-swell	10.50	Shrink-swell	0.50	Content of large	10.40							
		Content of large	0.40	Frost action	0.50	stones								
		stones		Content of large	0.40	Cutbanks cave	0.10							
				stones										
89 :														
Duff------------	45	Very limited Slope 1.00		Very limited		Very limited								
				Slope	1.00	\| Slope	\|1.00							
		Depth to hardbedrock	10.93	Frost action	10.50	Cutbanks cave	\|1.00							
						Depth to hard bedrock	0.93							
Clamp-----------	40	Very limited		Very limited		\|Very limited								
		slope	11.00	Depth to hardbedrock	11.00	Depth to hard bedrock	1.00							
		Depth to hard bedrock	\|1.00											
				Slope	11.00	Slope	1.00							
		Shrink-swell	10.50	Shrink-swell	10.50	Content of large stones Cutbanks cave	10.40							
		Content of large stones	10.40	Frost action	10.50									
				Content of large stones	10.40		0.10							
90:														
Duff	60	Somewhat limited Depth to hard 0.93		Somewhat limited	10.50	\|Very limited								
				Frost action			1.00							
		bedrock				Depth to hard bedrock	10.93							
Hackwood---------	25	$\begin{aligned} & \mid \text { Very limited } \\ & \mid \quad \text { Slope } \end{aligned}$		\|Very limited\| Slope		\|Very limited								
			11.00		11.00	Cutbanks cave	1.00							
				Frost action	10.50	Slope	1.00							
	85	Very limited Shrink-swell $\mid 1.00$		Shrink-swell	11.00	Depth to hard bedrock	1.00							
		Depth to hard bedrock	1.00	Low strength Slope	11.00									
					10.84	Depth to thin cemented pan Slope Cutbanks cave	0.84							
		Depth to thin cemented pan Slope	10.84	Frost action Depth to hard bedrock	0.50									
					0.46		10.84							
			10.84				10.10							

Table 10.--Building Site Development--Continued

Table 10.--Building Site Development--Continued

Map symbol and soil name	Pct. of map unit	Dwellings with basements		Local roads and street		Shallow excavations		
	unit	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	Value
Fury------------	35	Very limited \|		Very limited	1.00	\|Very limited	1.00	
		Depth to	11.00	Depth to		Depth to		
		saturated zone		saturated zone		saturated zone		
		Ponding	11.00	Frost action	11.00	Ponding	1.00	
		Shrink-swell	10.50	Ponding	11.00	Cutbanks cave	0.10	
				Low strength	11.00			
				Shrink-swell	10.50			
Skidoosprings----	25	Very limited		Very limited		\|Very limited		
		Depth to saturated zone	11.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00	
		Ponding	11.00	Frost action	11.00	Ponding	1.00	
				Ponding	11.00	Cutbanks cave	0.10	
Opie------------	20	\|Very limited		\|Very limited		\|Very limited		
		Depth to saturated zone	\| 1.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00	
		Ponding	\|1.00	Frost action	\|1.00	Cutbanks cave	1.00	
				Ponding	11.00	Ponding	1.00	
125:								
Fury------------	45	\|Very limited		\|Very limited		\|Very limited		
		Depth to saturated zone	11.00	Depth to saturated zone	1.00	Depth to saturated zone	1.00	
		Ponding	\| 1.00	Frost action	\|1.00	Ponding	1.00	
		Shrink-swell	10.50	Ponding	11.00	Cutbanks cave	0.10	
				Low strength	\|1.00			
				Shrink-swell	10.50			
Widowspring------	40	Somewhat limited Depth to saturated zone		Very limited		Somewhat limited		
			\| 0.61	Frost action	\|1.00	Depth to	0.61	
				Low strength	11.00	saturated zone		
							0.10	
126:								
Gaib------------	85	\|Very limited		\|Very limited		Very limited	1.00	
		Depth to hard bedrock	\|1.00	Depth to hard bedrock	1.00	Depth to hard bedrock		
		Shrink-swell	10.50	Shrink-swell	10.50	Slope	0.37	
		Slope	10.37	Frost action	10.50	Cutbanks cave	0.10	
				Slope	10.37			
127 :								
Gaib	55	Very limited Depth to hard		Very limited		Very limited	1.00	
		Depth to hard bedrock	\| 1.00	Depth to hard bedrock	\| 1.00	Depth to hard bedrock		
		Shrink-swell	0.50	Shrink-swell	10.50	Cutbanks cave	0.10	
		Slope	10.04	Frost action	10.50	Slope	10.04	
				Slope	10.04			
Ateron	30	\|Very limited		Very limited		Very limited		
		Shrink-swell	11.00	Depth to hard	11.00	Depth to hard	1.00	
		Depth to hard	11.00	bedrock		bedrock		
		bedrock		Shrink-swell	11.00	Content of large	1.00	
		Content of large stones	11.00	Low strength	11.00	stones		
				Content of large stones Frost action	1.00	Cutbanks cave	0.10	
		Slope	10.04			Slope	0.04	
					10.50			

Table 10.--Building Site Development--Continued

Table 10.--Building Site Development--Continued

Map symbol and soil name	Pct. of map \|unit	Dwellings with basements		Local roads and street		Shallow excavations	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
						135:	
Gumble----------	85	Very limited \|		Very limited		Very limited	
		Slope	11.00	Slope	1.00	Depth to soft	1.00
		Shrink-swell	11.00	Depth to soft	1.00	bedrock	
		Depth to soft	\| 1.00	bedrock		Slope	1.00
		bedrock		Shrink-swell	1.00	Cutbanks cave	0.10
				Low strength	11.00		
136:							
Gumble	35	Very limited		Very limited		Very limited	
		Shrink-swell	11.00	Depth to soft	11.00	Depth to soft	1.00
		Depth to soft	11.00	bedrock		bedrock	
		bedrock		Shrink-swell	11.00	Slope	0.37
		Slope	10.37	Low strength	11.00	Cutbanks cave	0.10
				Slope	0.37		
Mahoon----------	30	Very limited		Very limited		Very limited	
		Slope	11.00	Slope	\|1.00	Slope	1.00
		Shrink-swell	\|1.00	Shrink-swell	11.00	Cutbanks cave	1.00
		Depth to soft bedrock	10.84	Low strength	\|1.00	Depth to soft bedrock	0.84
						Too clayey	0.50
Cagle-----------	25	Very limited		Very limited		Very limited	
		\| Slope	11.00	\| Slope	\|1.00	Slope	1.00
		Shrink-swell	\|1.00	Shrink-swell	1.00	Cutbanks cave	0.10
		Depth to soft bedrock	10.06	Low strength	1.00	Depth to soft bedrock	0.06
						Too clayey	0.03
137:							
Hackwood--------	85	\|Very limited		Very limited		\|Very limited	
		slope	1.00	Slope	1.00	Slope	1.00
				Frost action	0.50	Cutbanks cave	1.00
138:							
Hackwood--------	50	\|Very limited\| Slope		Very limited		\|Very limited	
			11.00	Slope	1.00	Slope	1.00
				Frost action	0.50	Cutbanks cave	1.00
Baconcamp-------	35	\|Very limited		Very limited		Very limited	
		Slope	11.00	\| Slope	1.00	Depth to hard	1.00
		Depth to hard	\|1.00	Frost action	0.50	bedrock	
		bedrock		Depth to hard	0.10	Slope	1.00
				bedrock		Cutbanks cave	1.00
139:							
Hapgood---------	85	Somewhat limited		Somewhat limited		Somewhat limited	
		Content of large stones	10.95	Content of large stones	0.95	Content of large stones	10.95
		Depth to hard bedrock	10.93	Frost action	0.50	Depth to hard bedrock Cutbanks cave	10.93
							0.10
140:							
Hart Camp-------	85	Very limited		Somewhat limited		Very limited	
		```Depth to soft bedrock Content of large stones Slope```	11.00	Depth to soft bedrock	1.00	Depth to soft bedrock	1.00
			0.20	Frost action Content of large stones	$\begin{aligned} & 0.50 \\ & 0.20 \end{aligned}$	Content of large stones	0.20
			10.16			Slope	0.16
				Slope	0.16	Cutbanks cave	0.10

Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued

Map symbol and soil name	Pct.   of   map   \|unit	Dwellings with basements		Local roads and street		Shallow excavations	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
166:							
Lava flows-	85	\| Not rated		\| Not rated		\| Not rated	
167 :							
Lava flows-	85	\| Not rated		\| Not rated		\| Not rated	
Flank-	30	Very limited Depth to hard bedrock	1.00	\|Very limited		\|Very limited	
				Depth to hard bedrock	\|1.00	Depth to hard bedrock	1.00
						Cutbanks cave	0.10
168:							
Lawen	85	Not limited		Somewhat limited		\|Somewhat limited	
				Frost action	10.50	Cutbanks cave	0.10
169 :							
Leathers--------	85	Not limited		\|Somewhat limited Frost action	\| 0.50	\|Very limited	1.00
170:							
Leathers--------	85	\|Not limited		Somewhat limited		\|Very limited	11.00
				Frost action	10.50	Cutbanks cave	
171:							
Leemorris-------	50	Very limited		\| Very limited		\|Very limited	
		Depth to hard	11.00	Frost action	\|1.00	Depth to hard	1.00
		bedrock		Shrink-swell	10.50	bedrock	
		Shrink-swell	10.50	Depth to hard	0.46	Cutbanks cave	11.00
		Slope	10.04	bedrock		Too clayey	0.50
				Slope	0.04	Slope	10.04
Buckwilder------	35	Very limited		\|Very limited		\|Very limited	
		Shrink-swell	11.00	Frost action	\|1.00	Depth to hard	11.00
		Depth to hard	\| 1.00	Low strength	\| 1.00	bedrock	
		bedrock		Shrink-swell	11.00	Too clayey	11.00
		Slope	10.04	Depth to hard	10.71	Cutbanks cave	10.10
				bedrock		Slope	10.04
				Slope	0.04		
172:							
Leemorris-------	50	Very limited		\|Very limited		\|Very limited	
		Slope	11.00	Slope	1.00	Depth to hard	11.00
		Depth to hard	11.00	Frost action	11.00	bedrock	
		bedrock		Shrink-swell	0.50	Slope	11.00
		Shrink-swell	10.50	Depth to hard	10.46	Cutbanks cave	11.00
				bedrock		Too clayey	10.50
Buckwilder------	35	Very limited		Very limited		\| Very limited	
		Slope	11.00	Slope	11.00	Depth to hard	11.00
		Shrink-swell	\| 1.00	Frost action	\| 1.00	bedrock	
		Depth to hard	11.00	Low strength	11.00	Slope	11.00
		bedrock		Shrink-swell	\|1.00	Too clayey	11.00
				Depth to hard bedrock	10.71	Cutbanks cave	10.10
173:							
Legler----------	85	$\begin{aligned} & \text { \|Very limited } \\ & \text { Flooding } \\ & \text { Shrink-swell } \end{aligned}$		\| Somewhat limited		Somewhat limited Cutbanks cave	
			11.00	Low strength	10.78		0.10
			10.50	Shrink-swell	10.50		
				Frost action	0.50		
				Flooding	10.40		

Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Map symbol and soil name} \& \multirow[t]{2}{*}{$$
\left.\begin{array}{|l|}
\mid \text { Pct. } \\
\mid \text { of } \\
\mid \text { of } \\
\mid \text { unit }
\end{array} \right\rvert\,
$$} \& \multicolumn{2}{|l|}{Dwellings with basements} \& \multicolumn{2}{|l|}{Local roads and street} \& \multicolumn{2}{|l|}{Shallow excavations} <br>
\hline \& \& Rating class and limiting features \& |Value| \& Rating class and limiting features \& |Value \& Rating class and limiting features \& Value <br>
\hline \multicolumn{8}{|l|}{188:} <br>
\hline Mahoon---------- \& 65 \& |Very limited Shrink-swell Slope Depth to soft bedrock \& 11.00
11.00
10.84 \& |Very limited
Shrink-swell
Low strength
Slope \& 11.00
11.00
1.00 \& |Very limited Cutbanks cave Slope Depth to soft bedrock Too clayey \& 1.00
1.00
0.84

0.50 <br>

\hline \multirow[t]{5}{*}{Cagle-----------} \& 20 \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| Very limited |  |
| :--- | :--- |
| Slope | $\mid$ |}} \& Very limited \& \& \multicolumn{2}{|l|}{Very limited} <br>

\hline \& \& \& \& Slope \& 1.00 \& Slope \& 1.00 <br>
\hline \& \& Shrink-swell \& 11.00 \& Shrink-swell \& 1.00 \& Cutbanks cave \& 0.10 <br>
\hline \& \& Depth to soft bedrock \& 10.06 \& Low strength \& 1.00 \& Depth to soft bedrock \& 0.06 <br>
\hline \& \& \& \& \& \& Too clayey \& 0.03 <br>
\hline \multicolumn{8}{|l|}{189 :} <br>

\hline \multirow[t]{6}{*}{Mahoon----------} \& \multirow[t]{6}{*}{50} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| Very limited |  |
| :--- | :--- |
| Shrink-swell | $\mid$ |
| l |  |}} \& Very limited \& \& \multicolumn{2}{|l|}{Very limited} <br>

\hline \& \& \& \& Shrink-swell \& 1.00 \& Cutbanks cave \& 1.00 <br>
\hline \& \& Depth to soft \& 10.84 \& Low strength \& 11.00 \& Depth to soft \& 0.84 <br>
\hline \& \& bedrock \& \& Slope \& 10.37 \& bedrock \& <br>
\hline \& \& Slope \& 10.37 \& \& \& Too clayey \& 0.50 <br>
\hline \& \& \& \& \& \& Slope \& 0.37 <br>
\hline \multirow[t]{6}{*}{Risley----------} \& \multirow[t]{6}{*}{35} \& Very limited \& \& Very limited \& \& Very limited \& <br>
\hline \& \& Shrink-swell \& 11.00 \& | Shrink-swell \& 1.00 \& Cutbanks cave \& 1.00 <br>
\hline \& \& Slope \& 10.37 \& Low strength \& 11.00 \& Slope \& 0.37 <br>
\hline \& \& Depth to soft \& 10.01 \& Slope \& 0.37 \& Too clayey \& 0.12 <br>
\hline \& \& bedrock \& \& \& \& Depth to soft \& 0.01 <br>
\hline \& \& \& \& \& \& \& <br>
\hline \multicolumn{8}{|l|}{190:} <br>
\hline \multirow[t]{6}{*}{Mahoon} \& \& Very limited \& \& Very limited \& \& Very limited \& <br>
\hline \& \multirow{5}{*}{50} \& Slope \& 11.00 \& Slope \& 1.00 \& | Slope \& 1.00 <br>
\hline \& \& Shrink-swell \& |1.00 \& Shrink-swell \& |1.00 \& Cutbanks cave \& 1.00 <br>
\hline \& \& \multirow[t]{2}{*}{Depth to soft bedrock} \& 10.84 \& \multirow[t]{2}{*}{Low strength} \& 11.00 \& Depth to soft bedrock \& 0.84 <br>
\hline \& \& \& \& \& \& Too clayey \& 0.50 <br>
\hline \& \& \& \& \& \& \& <br>
\hline \multirow[t]{8}{*}{Cotant----------} \& \multirow[t]{8}{*}{35} \& Very limited \& \& Very limited \& \& Very limited \& <br>
\hline \& \& slope \& |1.00 \& Slope \& |1.00 \& Depth to soft \& 1.00 <br>
\hline \& \& Shrink-swell \& |1.00 \& Depth to soft \& 11.00 \& bedrock \& <br>
\hline \& \& Depth to soft \& 11.00 \& bedrock \& \& Slope \& 1.00 <br>
\hline \& \& bedrock \& \& Low strength \& 11.00 \& Cutbanks cave \& 0.10 <br>
\hline \& \& \& \& Shrink-swell \& 11.00 \& \& <br>
\hline \& \& \& \& Frost action \& 10.50 \& \& <br>
\hline \& \& \& \& \& \& \& <br>
\hline \multicolumn{8}{|l|}{191:} <br>
\hline \multirow[t]{4}{*}{Mcbain} \& \multirow[t]{4}{*}{45} \& \multicolumn{2}{|l|}{Somewhat limited} \& \multirow[t]{2}{*}{| Somewhat limited} \& \& Somewhat limited \& <br>

\hline \& \& Depth to saturated zone \& 10.73 \& \& $$
0.50
$$ \& Depth to saturated zone \& 0.73 <br>

\hline \& \& saturated zone Shrink-swell \& 10.50 \& Frost action \& 0.50 \& saturated zone Cutbanks cave \& 0.10 <br>
\hline \& \& \& \& \& \& \& <br>

\hline \multirow[t]{5}{*}{Ausmus----------} \& \multirow[t]{4}{*}{40} \& \multirow[t]{3}{*}{| Very limited |
| :--- |
| Ponding |
| Depth to |
| saturated zone |} \& \& Very limited \& \& Very limited \& <br>

\hline \& \& \& |1.00 \& | Ponding \& 11.00 \& | Ponding \& 1.00 <br>
\hline \& \& \& 10.89 \& Frost action \& 0.50 \& Depth to saturated zone \& 0.89 <br>
\hline \& \& \& \& \& \& Cutbanks cave \& 0.10 <br>
\hline \& \& \& \& \& \& \& <br>
\hline \multicolumn{8}{|l|}{192 :} <br>
\hline McConnel- \& \multirow[t]{3}{*}{85} \& \multirow[t]{3}{*}{Not limited} \& \& \multirow[t]{3}{*}{Not limited} \& \& \multirow[t]{3}{*}{|Very limited ${ }^{\text {| Cutbanks cave }}$} \& <br>
\hline \& \& \& \& \& \& \& |1.00 <br>
\hline \& \& \& \& \& \& \& <br>
\hline
\end{tabular}

Table 10.--Building Site Development--Continued

Map symbol and soil name	$\begin{gathered} \mid \text { Pct. } \\ \left\lvert\, \begin{array}{c} \text { of } \\ \mid \text { map } \end{array}\right. \\ \mid \text { unit } \end{gathered}$	Dwellings with basements		Local roads and street		Shallow excavations		
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
193:								
Merlin------------- \|	85	Very limited		Very limited		Very limited	1.00	
		Shrink-swell	11.00	Depth to hard	11.00	Depth to hard		
		Depth to hard	\|1.00	bedrock		bedrock		
		bedrock		Low strength	1.00	Cutbanks cave	\| 0.10	
		Slope	10.04	Shrink-swell	1.00	Slope	\| 0.04	
		Content of large	10.01	Frost action	10.50	Content of large	0.01	
		stones		Slope	0.04	stones		
194:								
Merlin, very stony--	50	Very limited		\|Very limited		Very limited		
		Shrink-swell	11.00	Depth to hard	1.00	Depth to hard	11.00	
		Depth to hard	\| 1.00	bedrock		bedrock		
		bedrock		Low strength	1.00	Slope	\|0.37	
		Slope	0.37	Shrink-swell	1.00	Cutbanks cave	\| 0.10	
		Content of large	0.01	Frost action	10.50	Content of large	10.01	
		stones		Slope	10.37	stones		
Merlin, very cobbly	35	Very limited		\|Very limited		Very limited		
		Shrink-swell	11.00	Depth to hard	1.00	Depth to hard	11.00	
		Depth to hard	11.00	bedrock		bedrock		
		bedrock		Low strength	1.00	Slope	10.37	
		Slope	10.37	Shrink-swell	1.00	Cutbanks cave	10.10	
		Content of large	0.01	Frost action	10.50	Content of large	0.01	
		stones		Slope	10.37	stones		
195:								
Merlin-------------\|	60	Very limited		\|Very limited		Very limited		
		Shrink-swell	11.00	Depth to hard	1.00	Depth to hard	11.00	
		Depth to hard bedrock	11.00			bedrock		
				Low strength	1.00	Slope	\| 0.37	
		Content of large stones	10.37	Shrink-swell	1.00	Cutbanks cave	10.10	
			0.01	Frost action	10.50	Content of large	10.01	
				Slope	10.37	stones		
Ateron------------- \|	25	Very limited		\|Very limited		Very limited		
		Shrink-swell	\|1.00	Depth to hard	\| 1.00	Depth to hard	\|1.00	
		Depth to hard	\| 1.00	bedrock		bedrock		
		bedrock		Shrink-swell	1.00	Content of large	\|1.00	
		Content of large	11.00	Low strength	1.00	stones		
		stones		Content of large	1.00	Slope	\|0.37	
		Slope	0.37	stones		Cutbanks cave	\| 0.10	
				Frost action	10.50			
196:								
Merlin------------- \|	40	\|Very limited		\|Very limited		Very limited		
		Shrink-swell	11.00	Depth to hard	1.00	Depth to hard	\|1.00	
		Depth to hard	11.00	bedrock		bedrock		
		bedrock		Low strength	1.00	Slope	\| 0.37	
		Slope	10.37	Shrink-swell	1.00	Cutbanks cave	\| 0.10	
		Content of large	10.01	Frost action	10.50	Content of large	10.01	
		stones		Slope	0.37	stones		
Ateron-------------	35	Very limited		\|Very limited		Very limited		
		Shrink-swell   Depth to hard bedrock   Content of large stones Slope	11.00	Depth to hard bedrock Shrink-swell	1.00	Depth to hard bedrock	\|1.00	
			11.00					
					1.00	Content of large stones	\| 1.00	
			1.00	Content of large stones	\| 1.00	$\begin{aligned} & \text { stones } \\ & \text { Slope } \end{aligned}$	0.37	
			10.37	Low strength	1.00	Cutbanks cave	\| 0.10	
				Frost action	10.50			

Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued

Map symbol and soil name	$\begin{aligned} & \text { \| Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \text { \|unit } \end{aligned}$	Dwellings with basements		Local roads and street		Shallow excavations		
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
222 :								
Edemaps---------	35	Very limited		\|Very limited		Very limited		
		Shrink-swell	\|1.00	Shrink-swell	\|1.00	Depth to hard	\|1.00	
		Depth to hardbedrock	1.00	Low strength	11.00	bedrock		
				Frost action	0.50	Depth to thin	10.84	
		Depth to thin cemented pan	0.84	Depth to hard bedrock	10.46	cemented pan		
				bedrock		Cutbanks cave	10.10	
223:								
Ninemile	45	Very limited		\|Very limited		Very limited		
		Shrink-swell	11.00	Depth to hard	11.00	Depth to hard	11.00	
		Depth to hard bedrock	11.00	bedrock		bedrock		
				Low strength	11.00	Cutbanks cave	10.10	
		Slope	0.04	Shrink-swell	11.00	Slope	0.04	
				Frost action	10.50			
				Slope	10.04			
Madeline--------	40	Very limited		\|Very limited		Very limited		
		Shrink-swell	11.00	Depth to hard	\|1.00	Depth to hard	\|1.00	
		Depth to hard bedrock	11.00	bedrock		bedrock		
				Shrink-swell	\|1.00	Cutbanks cave	10.10	
		Slope	0.04	Low strength	11.00	Slope	0.04	
				Frost action	10.50			
				Slope	10.04			
224:								
Ninemile--------	60	\|Very limited    Slope $\mid$    1.00		Very limited		Very limited		
				Depth to hard	11.00	Depth to hard	\| 1.00	
		Shrink-swell	1.00	bedrock		bedrock		
		Depth to hard bedrock	1.00	Slope	11.00	Slope	11.00	
				Low strength	\|1.00	Cutbanks cave	0.10	
				Shrink-swell	\|1.00			
				Frost action	10.50			
Pearlwise-------	30							
		Very limited		Slope	1.00	Depth to hard	\|1.00	
		Depth to hard bedrock	1.00	Depth to hard bedrock	\|0.97	bedrock	\|	
						Slope	11.00	
				Frost action	0.50	Cutbanks cave	10.10	
225:								
Ninemile-	55	\|Very limited		\|Very limited		Very limited		
			11.00		1.00	Depth to hard	1.00	
		Depth to hard bedrock	1.00	bedrock		bedrock		
				Low strength	11.00	Cutbanks cave	10.10	
				Shrink-swell	\|1.00			
				Frost action	10.50			
Reluctan								
	30	\|Very limited Depth to hard bedrock Shrink-swell		\|Somewhat limited		Very limited		
			\| 1.00	Depth to hard bedrock	10.79	Depth to hard bedrock	\|1.00	
			0.50	Shrink-swell	10.50	Cutbanks cave	10.10	
				Frost action	10.50			
226:								
Ninemile-	50	Very limited \|		\|Very limited		Very limited		
				Depth to hard	11.00	Depth to hard bedrock	1.00	
		Depth to hard bedrock	1.00	bedrock   Low strength				
					11.00	Slope	11.00	
		Slope	11.00	Shrink-swell	11.00	Cutbanks cave	10.10	
				Slope	11.00			
				Frost action	10.50			

Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued

Map symbol and soil name	Pct. of map unit	Dwellings with basements		Local roads and street		Shallow excavations	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
239:							
Nuss------------	55	Very limitedSlope		\|Very limited	11.00	\|Very limited	
			11.00	Depth to hard		Depth to hard	1.00
		Depth to hard bedrock	1.00	bedrock		bedrock	
				Slope	\| 1.00	Slope	1.00
				Frost action	10.50	Cutbanks cave	0.10
Rock outcrop--	30	\| Not rated		Not rated		\| Not rated	
240:							
Observation------	85	Very limited		\|Very limited		Very limited	
		Shrink-swell	11.00	Shrink-swell	11.00	Depth to hard	1.00
		Depth to hard	\| 1.00	Low strength	\|1.00	bedrock	
		bedrock		Depth to hard	10.95	Slope	0.37
		Slope	10.37	bedrock		Cutbanks cave	0.10
				Frost action	10.50	Too clayey	0.03
				Slope	\| 0.37		
241:							
Observation-----	65	Very limited		\|Very limited		Very limited	
		Shrink-swell	11.00	Shrink-swell	11.00	Depth to hard	1.00
		Depth to hard	\|1.00	Low strength	\|1.00	bedrock	
		bedrock		Depth to hard	10.95	Slope	0.84
		Slope	10.84	bedrock		Cutbanks cave	0.10
				Slope	10.84	Too clayey	0.03
				Frost action	10.50		
Rock outcrop-	20	Not rated		Not rated		Not rated	
242:							
Observation-----	45	Very limited		\|Very limited		Very limited	
		Shrink-swell	\|1.00	Shrink-swell	\|1.00	Depth to hard	1.00
		Depth to hard	11.00	Low strength	1.00	bedrock	
		bedrock		Depth to hard	0.95	Slope	0.37
		Slope	10.37	bedrock		Cutbanks cave	0.10
				Frost action	10.50	Too clayey	0.03
				Slope	0.37		
Royst-----------	30	Very limited		\|Very limited		Very limited	
		Shrink-swell	11.00	Shrink-swell	1.00	Depth to hard	1.00
		Depth to hard bedrock	11.00	Content of large stones	1.00	bedrock   Content of large	1.00
		Content of large	\| 1.00	Low strength	1.00	stones	
		stones		Depth to hard	0.95	Depth to soft	0.97
		Depth to soft	10.97	bedrock		bedrock	
		bedrock		Frost action	0.50	Slope	0.37
		Slope	10.37			Cutbanks cave	0.10
Merlin----------	15	Very limited		Very limited		Very limited	
		Shrink-swell	1.00	Depth to hard	1.00	D Depth to hard	1.00
		Depth to hard	1.00	bedrock		bedrock	
		bedrock		Low strength	11.00	Slope	0.37
		Slope	\| 0.37	Shrink-swell	\|1.00	Cutbanks cave	0.10
		Content of large	0.01	Frost action	10.50	Content of large	0.01
		stones		Slope	\| 0.37	stones	

Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued

Map symbol and soil name	$\begin{aligned} & \text { Pct. } \\ & \mid \text { of } \\ & \text { ofap } \end{aligned}$	Dwellings with basements		Local roads and street		Shallow excavations	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
247:							
Oreneva-	85	Very limited Depth to hard bedrock	1.00	\|Very limited Depth to hard bedrock Frost action	10.99 0.50	Very limited Depth to hard bedrock Cutbanks cave	$\mid 1.00$
248:							
Outerkirk-	85	\|Not limited		\|Somewhat limited   Frost action	0.50	\|Very limited Cutbanks cave	11.00
249:							
Outerkirk-	85	$\begin{aligned} & \text { Somewhat limited } \\ & \text { Shrink-swell } \end{aligned}$	10.50	\|Somewhat limited Frost action	0.50	Very limited Cutbanks cave	11.00
250:							
Outerkirk-	55	\| Not limited		$\begin{aligned} & \text { Somewhat limited } \\ & \text { Frost action } \end{aligned}$	10.50	Very limited Cutbanks cave	\|1.00
Defenbaugh-----	30	\| Not limited		Somewhat limited		Somewhat limited	
				Shrink-swell	10.50	Cutbanks cave	10.10
				Frost action	10.50		
251:							
Ozamis----------	85	Very limited		Very limited		Very limited	
		\| Depth to saturated zone	1.00	Depth to saturated zone	\| 1.00	Depth to saturated zone	\| 1.00
		Ponding	1.00	Frost action	1.00	Ponding	11.00
		Shrink-swell	10.50	Low strength	1.00	Cutbanks cave	0.10
				Ponding	1.00		
				Shrink-swell	0.50		
252:							
Pearlwise-------	85	\|Very limited		\|Very limited		Very limited	
		\| Slope	1.00	Slope	1.00	Depth to hard	11.00
		Depth to hard bedrock	1.00	Depth to hard bedrock	0.97	bedrock   Slope	\| 1.00
				Frost action	0.50	Cutbanks cave	10.10
253:							
Pernty----------	85	Very limited		Very limited		Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to hard bedrock	\| 1.00
		Shrink-swell	10.50	Shrink-swell	0.50	Cutbanks cave	0.10
		Content of large	10.08	Frost action	10.50	Content of large	0.08
		stones		Content of large	0.08	stones	
		Slope	0.04	stones		Slope	10.04
				Slope	0.04		
254:							
Pernty----------	\| 85	Very limited		\|Very limited		Very limited	
		Slope	1.00	Depth to hard	11.00	Depth to hard	\| 1.00
		Depth to hard bedrock   Shrink-swell   Content of large stones	1.00	bedrock   Slope	1.00	bedrock   slope	1.00
			0.50	Shrink-swell	0.50	Cutbanks cave	10.10
			10.08	Frost action	10.50	Content of large	0.08
				Content of large	0.08	stones	
				stones			

Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of of } \\ & \mid \text { map } \\ & \text { \|unit } \end{aligned}$	Dwellings with basements		Local roads and street		Shallow excavations		
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value	Rating class and limiting features	Value
298:								
Sandgap--	85	\|Not limited		\| Not limited		\|Very limited Cutbanks cave	1.00	
299 :								
Seharney--------	85	Very limited		Somewhat limited		Very limited		
		Depth to hard bedrock	1.00	Depth to thin	1.00	Depth to hard	1.00	
		Depth to thin cemented pan	1.00	Depth to hard bedrock	10.90	Depth to thin cemented pan	1.00	
		Content of large	0.05	Frost action	10.50	Cutbanks cave	0.10	
		stones		Content of large stones	10.05	Content of large stones	0.05	
$300:$								
Skedaddle-------	45	Very limited		Very limited		Very limited		
		Depth to hard bedrock	1.00	Depth to hard bedrock	\|1.00	Depth to hard bedrock	1.00	
		Slope	11.00	Slope	11.00	Slope	1.00	
		Content of large stones	10.81	Content of large stones	10.81	Content of large stones	0.81	
		Shrink-swell	0.50	Shrink-swell	0.50	Cutbanks cave	0.10	
				Frost action	0.50			
Atlow-----------	30	Very limited		Very limited		Very limited		
		Depth to hard bedrock	11.00	Depth to hard bedrock	\|1.00	Depth to hard bedrock	1.00	
		Slope	1.00	Slope	1.00	Slope	1.00	
		Shrink-swell	0.50	Shrink-swell	0.50	Content of large	0.18	
		Content of large	\| 0.18	Frost action	10.50	stones		
		stones		Content of large stones	\| 0.18	Cutbanks cave	0.10	
Rock outcrop	15	\| Not rated		\| Not rated		Not rated		
301:								
Skedaddle-------	45	Very limited		Very limited		Very limited		
		Slope	1.00	Depth to hard	11.00	Depth to hard	1.00	
		Depth to hard	1.00	bedrock		bedrock		
		bedrock		Slope	11.00	Slope	1.00	
		Content of large stones	\| 0.81	Content of large stones	10.81	Content of large stones	0.81	
		Shrink-swell	10.50	Shrink-swell	10.50	Cutbanks cave	0.10	
				Frost action	10.50			
Atlow	30	Very limited				Very limited		
		Slope	11.00	Very limited Depth to hard	11.00	Depth to hard	1.00	
		Depth to hard bedrock	11.00	bedrock		bedrock		
				Slope	11.00	Slope	1.00	
		Shrink-swell	10.50	Shrink-swell	0.50	Content of large	0.18	
		Content of large stones	\| 0.18	Frost action	10.50	stones		
				Content of large stones	10.18	Cutbanks cave	0.10	
Rock outcrop----	15	Not rated		Not rated		Not rated		

Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued

Map symbol and soil name	Pct. of map unit	Dwellings with basements		Local roads and street		Shallow excavations				
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value	Rating class and limiting features	Value		
307:										
Skunkfarm-	45	\|Very limited   $\mid$ Depth to   saturated zone   Ponding	1.00   1.00	\|Very limited Frost action Ponding Depth to saturated zone	$\begin{aligned} & \mid 1.00 \\ & \mid 1.00 \\ & \mid 0.78 \end{aligned}$	\|Very limited   Depth to   saturated zone   Ponding   Cutbanks cave	1.00 1.00 0.10			
Doubleo---------	40	Very limited   Depth to   saturated zone   Ponding	11.00	\|Very limited		Very limited	1.00			
				Frost action	11.00	Depth to				
				Ponding	11.00	saturated zone				
			11.00	Depth to	10.94	Ponding	1.00			
				saturated zone		Too clayey	0.50			
						Cutbanks cave	0.10			
308:										
Skunkfarm-------			35	\|Very limited			Very limited		Very limited	
	Depth to	\|1.00		Frost action	11.00	Depth to	1.00			
	saturated zone			Ponding	11.00	saturated zone				
	Ponding	11.00		Depth to saturated zone	0.78	Ponding	1.00			
						Cutbanks cave	0.10			
Mcbain----------	30	Somewhat limited		Somewhat limited		\| Somewhat limited				
		Depth to	0.73	Shrink-swell	10.50		0.73			
		saturated zone		Frost action	10.50	saturated zone Cutbanks cave				
		Shrink-swell	0.50				0.10			
Doubleo---------	20	Very limited		\|Very limited		Very limited				
		Depth to	11.00	Frost action	\|1.00	Depth to	1.00			
		saturated zone		Ponding	11.00	saturated zone				
		Ponding	1.00	Depth to	10.94	Ponding	1.00			
				saturated zone		Too clayey	0.50			
						Cutbanks cave	0.10			
309:										
Skunkfarm-------			1.00			Very limited				
	60	Depth to saturated zone Ponding		Frost action	11.00	Depth to saturated zone	1.00			
				Ponding	\|1.00					
			11.00	Depth to saturated zone	10.78	Ponding	1.00			
		Ponding				Cutbanks cave	0.10			
		$\mid$ Very limited		\|Very limited		Very limited				
Skidoosprings----	25	Depth to saturated zone	1.00	Depth to saturated zone	11.00	Depth to saturated zone	1.00			
		\| Ponding	1.00	Frost action	11.00	Ponding	1.00			
				Ponding	11.00	Cutbanks cave	0.10			
310:										
Spangenburg------	85	Not limited		Very limited		Somewhat limited				
				Low strength	11.00	Cutbanks cave	10.10			
				Shrink-swell	10.50					
				Frost action	10.50					
311:										
Spangenburg------	85	\| Not limited		Very limited		Somewhat limited				
				Low strength	11.00	Cutbanks cave	10.10			
				Shrink-swell	10.50					
				Frost action	10.50					
312 :										
Spangenburg-----	85	\| Not limited		Very limited		Somewhat limited				
				Low strength	11.00	Cutbanks cave	0.10			
				Shrink-swell	10.50					
				Frost action	10.50					

Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued

Map symbol and soil name	Pct.   \| of   map   unit	Dwellings with basements		Local roads and street		Shallow excavations	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
320:							
Teguro----------	85			\|Very limited		\|Very limited	1.00
		Depth to hard bedrock	11.00	Depth to hard bedrock	1.00	Depth to hard bedrock	
		Slope	10.84	Slope	0.84	Slope	0.84
		Shrink-swell	10.50	Shrink-swell	$0.50$	Cutbanks cave	0.10
				Frost action	$0.50$		
321:							
Teguro	90	Very limited		\|Very limited		\|Very limited	
		Depth to hard bedrock	11.00	Depth to hard bedrock	1.00	Depth to hard bedrock	1.00
		Shrink-swell	10.50	Shrink-swell	0.50	Slope	0.37
		Slope	10.37	Frost action	0.50	Cutbanks cave	0.10
		Content of large	10.06	Slope	0.37	Content of large	0.06
		stones		Content of large	0.06	stones	
				stones			
322 :							
Teguro----------	85	Very limited		\|Very limited		Very limited	
		Depth to hard bedrock	11.00	Depth to hard bedrock	1.00	Depth to hard bedrock	1.00
		Shrink-swell	10.50	Shrink-swell	0.50	Slope	0.37
		Slope	10.37	Frost action	0.50	Cutbanks cave	0.10
		Content of large	10.03	Slope	0.37	Content of large	0.03
		stones		Content of large	0.03	stones	
				stones			
323:							
Teguro----------	45	Very limited		\| Very limited		\|Very limited	
		Depth to hard bedrock	11.00	Depth to hard bedrock	1.00	Depth to hard bedrock	1.00
		Shrink-swell	10.50	Shrink-swell	0.50	Slope	\| 0.37
		Slope	10.37	Frost action	0.50	Cutbanks cave	0.10
				Slope	0.37		
Anatone, moist--	40	\|Very limited		Very limited			
						\|Very limited	
		Depth to hard bedrock	11.00	Depth to hard bedrock	1.00	Depth to hard bedrock	11.00
		Slope	10.37	Frost action	0.50	Slope	10.37
		Content of large	0.01	Slope	0.37	Cutbanks cave	\| 0.10
		stones		Content of large stones	0.01	Content of large stones	10.01
324:							
Teguro	55	Very limited		\| Very limited		\|Very limited	
		Depth to hard bedrock	1.00	Depth to hard bedrock	1.00	Depth to hard bedrock	1.00
		Shrink-swell	10.50	Shrink-swell	0.50	Slope	10.37
		Slope	10.37	Frost action	0.50	Cutbanks cave	10.10
		Content of large	10.06	Slope	0.37	Content of large	10.06
		stones		Content of large stones	0.06	stones	
Ateron----------	30	$\|$Very limited   Shrink-swell   Depth to hard   bedrock   Content of large   stones   Slope		\|Very limited		Very limited	
			11.00	D Depth to hard	1.00	Depth to hard	11.00
			11.00	bedrock		bedrock	
				Shrink-swell	1.00	Content of large	\| 1.00
			\| 1.00	Content of large stones	1.00	$\begin{aligned} & \text { stones } \\ & \text { Slope } \end{aligned}$	\|0.37
			10.37	Low strength	1.00	Cutbanks cave	10.10
				Frost action	0.50		

Table 10.--Building Site Development--Continued

Map symbol and soil name	Pct.   \| of   map   unit	Dwellings with basements		Local roads and street		Shallow excavations		
		Rating class and limiting features	\|Value		Rating class and limiting features	Value	Rating class and limiting features	\|Value
325:								
Thenarrows--	50	\|Very limited Depth to saturated zone Ponding	1.00   1.00	\|Very limited Depth to saturated zone Frost action Ponding	1.00 1.00 1.00	\|Very limited   Depth to   saturated zone   Cutbanks cave   Ponding	$\mid 1.00$	
Duckclub---	40	\|Somewhat limited Depth to saturated zone	0.95	$\begin{aligned} & \text { Somewhat limited } \\ & \text { Frost action } \end{aligned}$	0.50	$\mid$ Very limited   Cutbanks cave   Depth to   saturated zone	$\begin{aligned} & \mid 1.00 \\ & \mid 0.95 \end{aligned}$	
326:								
Thenarrows------	50	\|Very limited   $\mid$ Depth to   saturated zone   Ponding	11.00	\|Very limited   Depth to saturated zone   Frost action Ponding	1.00 1.00 1.00	\|Very limited   Depth to saturated zone Cutbanks cave Ponding	$\begin{array}{\|l} \mid 1.00 \\ \mid 1.00 \\ \mid 1.00 \end{array}$	
Duckclub--------	20	$\begin{aligned} & \text { \|Somewhat limited } \\ & \text { Depth to } \\ & \text { saturated zone } \end{aligned}$	0.95	\|Somewhat limited   Frost action	0.50	Very limited Cutbanks cave Depth to saturated zone	$\begin{aligned} & \mid 1.00 \\ & \mid 0.95 \end{aligned}$	
Dentdraw--------	20	\|Very limited		\|Very limited		\|Very limited		
		Depth to saturated zone	\|1.00	Depth to saturated zone	1.00	Depth to saturated zone	\|1.00	
		Ponding	\| 1.00	Frost action	1.00	Cutbanks cave	1.00	
				Ponding	1.00	Ponding	11.00	
327 :								
Thenarrows------	35	\|Very limited		\|Very limited		\|Very limited		
		Depth to saturated zone	11.00	Depth to saturated zone	1.00	Depth to saturated zone	\|1.00	
		Ponding	11.00	Frost action	1.00	Cutbanks cave	11.00	
				Ponding	1.00	Ponding	11.00	
Duckclub--------	35	\|Somewhat limited		\|Somewhat limited		\|Very limited		
		Depth to	0.95	Frost action	0.50	Cutbanks cave	\|1.00	
		saturated zone				\| Depth to saturated zone	10.95	
Sandgap-	15	\| Not limited		\|Not limited		\|Very limited		
						\| Cutbanks cave	11.00	
328:								
Ticino----------	45	\|Very limited		\|Somewhat limited		\|Very limited		
		\| Depth to hard bedrock	\|1.00	Depth to hard bedrock	0.54	\| Depth to hard bedrock	\|1.00	
		Depth to soft	10.79	Shrink-swell	0.50	Depth to soft	10.79	
		bedrock		Frost action	0.50	bedrock		
		Shrink-swell	10.50			Cutbanks cave	10.10	
Merlin----------	\| 40	\|Very limited		\|Very limited		\|Very limited		
		Shrink-swell Depth to hard	$\begin{aligned} & \mid 1.00 \\ & 1.00 \end{aligned}$	Depth to hard bedrock	1.00	Depth to hard bedrock	\|1.00	
		bedrock		Low strength	\|1.00	Cutbanks cave	10.10	
				Shrink-swell	1.00			
				Frost action	0.50			

Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued

Map symbol and soil name	Pct.   of   map   unit	Dwellings with basements		Local roads and street		Shallow excavations				
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value			
		Shrink-swell	\|1.00	Shrink-swell	1.00	Depth to hard	1.00			
		Depth to hard	\|1.00	Low strength	1.00	bedrock				
		bedrock		Depth to hard	0.95	Slope	0.37			
		Slope	10.37	bedrock		Cutbanks cave	0.10			
				Frost action	0.50	Too clayey	0.03			
				Slope	0.37					
346:										
Vitale----------	65	\|Very limited		\|Very limited		\|Very limited				
		Slope	11.00	Slope	11.00	Depth to hard bedrock	1.00			
		Depth to hard bedrock	11.00	Depth to hard bedrock	10.79					
		Shrink-swell	10.50	Shrink-swell	0.50	Content of large stones	0.25			
		Content of large	\| 0.25	Frost action	0.50					
		stones		Content of large stones	0.25	Cutbanks cave	0.10			
Rock outcrop-	20	\| Not rated		\| Not rated		\| Not rated				
347: \|										
Voltage	85	\| Not limited		$\begin{aligned} & \text { Somewhat limited } \\ & \mid \quad \text { Frost action } \end{aligned}$	0.50	Somewhat limited Cutbanks cave	0.10			
348:										
Voltage-	60		\| Not limited		\|Somewhat limited   Frost action	0.50	Somewhat limited Cutbanks cave			
							0.10			
Crowcamp--------	25	\|Very limited		Very limited		\|Very limited	1.00			
		Ponding	11.00	Low strength	1.00	Cutbanks cave				
		Depth tosaturated zone	10.95	Shrink-swell	\|1.00	Ponding	1.0010.95			
				Ponding	11.00	Depth to saturated zone				
				Frost action	10.50		0.95			
						Too clayey	0.28			
349 :										
Voltage-	45	Not limited		$\begin{aligned} & \text { \|Somewhat limited } \\ & \mid \text { Frost action } \end{aligned}$		Somewhat limited Cutbanks cave				
					10.50		0.10			
Crowcamp--------	40	$\begin{array}{\|l} \text { Somewhat limited } \\ \text { Depth to } \\ \text { saturated zone } \end{array}$	10.95	$\mid$ Very limited   Low strength   Shrink-swell   Frost action		\|Very limited Cutbanks cave	1.00			
					\|1.00		11.00			
					\|1.00		10.95			
					10.50	saturated zone				
						Too clayey	0.28			
350:										
Voltage--	65	\| Not limited		Somewhat limited Frost action		Somewhat limitedCutbanks cave				
					0.50		10.10			
Widowspring-----	20	\| Somewhat limitedDepth tosaturated zone	10.61	Very limited		\|Somewhat limited				
				Frost action Low strength	1.00	Depth to saturated zone Cutbanks cave	0.61			
					1.00					
							0.10			
351:										
Wagontire-------	85	Very limited		Very limited		Very limited				
		Depth to thick cemented pan Shrink-swell Slope	11.00	Depth to thick cemented pan	1.00	Depth to thick cemented pan Cutbanks cave Slope	$\begin{array}{\|l} \mid 1.00 \\ \mid 1.00 \\ \mid 0.37 \end{array}$			
			10.50	Low strength	11.00					
			10.37	Shrink-swell	10.50					
				Frost action	10.50					
				Slope	10.37					

Table 10.--Building Site Development--Continued

Map symbol and soil name	Pct.   \| of   map   \|unit	Dwellings with basements		Local roads and street		Shallow excavations	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
352:							
Wagontire-------	55	Very limited Depth to thick cemented pan Shrink-swell Slope	1.00   10.50   10.37	\|Very limited Depth to thick cemented pan Low strength Shrink-swell Frost action Slope	11.00 $\mid 1.00$ 10.50 10.50 10.37	\|Very limited Depth to thick cemented pan Cutbanks cave Slope	$\mid 1.00$
Vil	30	Very limited		\|Very limited		\|Very limited	
		Depth to thick cemented pan	11.00	Depth to thick cemented pan	1.00	Depth to thick cemented pan	1.00
		Shrink-swell	10.50	Low strength	0.78	Cutbanks cave	1.00
		Slope	10.37	Shrink-swell	0.50	slope	0.37
				Frost action	0.50		
				Slope	0.37		
353:							
Waspo-----------	45	Very limited		\|Very limited		\|Very limited	
		Shrink-swell	11.00	Low strength	1.00	Too clayey	1.00
		Depth to soft bedrock	10.84	Shrink-swell	1.00	Cutbanks cave	1.00
				Frost action	0.50	Depth to soft bedrock	0.84
Poall-----------	40	Somewhat limited Shrink-swell		\| Somewhat limited		\|Somewhat limited	
			10.50	Low strength	0.78	Cutbanks cave	0.10
				Shrink-swell	0.50		
354:							
Water-----------355:	100	Not rated		\| Not rated		\| Not rated	
	355:						
Welch-----------	85	Very limited \|		\|Very limited		\|Very limited	1.00
		Depth to	11.00	Depth to	1.00	Depth to	
		Ponding	1.00	Frost action	1.00	Ponding	1.00
		Shrink-swell	10.50	Ponding	1.00	Cutbanks cave	0.10
				Shrink-swell	0.50		
				Low strength	0.22		
356:							
Welch-----------	85	Very limited		\|Very limited		\|Very limited	
		Depth to saturated zone	11.00	Depth to saturated zone	1.00	Depth to saturated zone	11.00
		Ponding	11.00	Frost action	1.00	Ponding	1.00
		Shrink-swell	10.50	Ponding	1.00	Cutbanks cave	0.10
				Shrink-swell	0.50		
				Low strength	0.22		
357:							
Welch	40	Very limited		\|Very limited		\|Very limited	
		Flooding	11.00	Depth to	11.00	Depth to	11.00
		Depth to	11.00	saturated zone		saturated zone	
		saturated zone		Frost action	\|1.00	Flooding	10.80
		Shrink-swell	10.50	Flooding	1.00	Cutbanks cave	0.10
Roschene-	25	\|Very limited		\| Very limited		\| Somewhat limited	
		Flooding	11.00	Flooding	1.00	Depth to	10.61
		Depth to	10.61	Shrink-swell	0.50	saturated zone	
		saturated zone		Frost action	0.50	Flooding	10.60
		Shrink-swell	10.50	Low strength	10.22	Cutbanks cave	10.10

Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued


Table 10.--Building Site Development--Continued

Map symbol and soil name		Dwellings with basements		Local roads and street		Shallow excavations		
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	Value
							366:	
Westbutte-------	40	Very limited		Very limited		Very limited	1.00	
				Slope	1.00	Depth to hard		
		Depth to hard bedrock	11.00	Content of large stones	0.96	$\begin{aligned} & \text { bedrock } \\ & \text { Slope } \end{aligned}$	.	
		Content of large stones	10.96	Depth to hard bedrock	0.90	Content of large stones	0.96	
				Frost action	0.50	Cutbanks cave	10.10	
Lambring--------	30	Very limited		Very limited		Very limited		
		Slope	\| 1.00	Slope	1.00	Slope	1.00	
		Content of large stones	0.25	Frost action Content of large stones	0.50	Cutbanks cave	1.00	
					0.25	Content of large stones	0.25	
Rock outcrop-------- \|	15	Not rated		Not rated		Not rated		
367 :								
Westbutte-------	40	Very limited		Very limited		Very limited		
		Slope	11.00	Slope	\|1.00	$\begin{aligned} & \text { bedrock } \\ & \text { Slope } \end{aligned}$	\| 1.00	
		Depth to hard bedrock	1.00	Content of large stones	1.00		\|1.00	
		Content of large stones	11.00	Depth to hard bedrock Frost action	0.90	Content of large stones	1.00	
					0.50	Cutbanks cave	0.10	
Lambring--------	30	Very limited   Slope$\| 1.00$		\|Very limited		\|Very limited		
				Slope	1.00	Slope	1.00	
		Content of large stones	0.25	Frost action Content of large stones	$\begin{aligned} & 0.50 \\ & 0.25 \end{aligned}$	Cutbanks cave Content of large stones	1.00	
							0.25	
Rock outcrop--------	15	Not rated		Not rated		Not rated		
368:								
Westbutte-------	50	Very limited		Very limited		\|Very limited		
		Slope 1.00   Depth to hard 1.00		Slope   Content of large stones	1.00	Depth to hard bedrock	11.00	
				1.00	1.00			
		Content of large stones	\|1.00		Depth to hard bedrock Frost action	0.90	Content of large stones	1.00
				0.50		Cutbanks cave	0.10	
Observation-----	40	Very limited				\|Very limited		
		Shrink-swell	11.00	Very limited    Shrink-swell 1.00		Depth to hard	11.00	
		Depth to hard	\|1.00	Low strength \|1.00		bedrock		
		bedrock		Depth to hard bedrock	0.95	Slope	10.84	
		Slope	\| 0.84			Cutbanks cave	0.10	
		Content of large stones	0.01	Frost action	0.84	Too clayey	0.03	
					0.50	Content of large stones	0.01	
369 :								
Westbutte-------	35	Very limited		Very limited		$\mid$ Very limited		
		Slope	11.00	Slope	1.00	Depth to hard	1.00	
		Depth to hard bedrock	11.00	Content of large stones	1.00	$\begin{aligned} & \text { bedrock } \\ & \text { Slope } \end{aligned}$	1.00	
		Content of large stones	\|1.00	Depth to hard bedrock Frost action	0.90	Content of large stones Cutbanks cave	1.00	
					0.50		0.10	
Rock outcrop-	30	Not rated		Not rated		Not rated		
						Not rated		

Table 10.--Building Site Development--Continued


Fable 11.--Sanitary Facilities
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table)


Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued


Map symbol and soil name	$\begin{array}{\|} \mid \text { Pct. } \\ \mid \text { of } \\ \mid \text { map } \\ \mid \text { unit } \mid \end{array}$	Septic tank absorption fields		Trench sanitary landfill	
	unit	Rating class and limiting features	\|Value	Rating class and limiting features	Value
$30:$					
Clamp	25	\|Very limited		\|Very limited	
		Depth to bedrock	1.00	Slope	1.00
		Slope	1.00	Depth to bedrock	1.00
		Content of large stones	0.93	Content of large stones	0.93
				Too clayey	0.50
Rock outcrop-----	20	\| Not rated		\| Not rated	
31:					
Baconcamp-------	70	\|Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Restricted	0.46	Slope	0.04
		permeability			
		Slope	0.04		
Rock outcrop	15	\| Not rated		\| Not rated	
32:					
Baconcamp	70	\|Very limited		\|Very limited	
		Depth to bedrock	1.00	\| Slope	1.00
		Slope	$1.00$	Depth to bedrock	$1.00$
		Restricted	0.46		
		permeability			
Rock outcrop-----33 :	15	\| Not rated		\| Not rated	
	$33:$				
Baconcamp--------	40	\|Very limited		\|Very limited	
		Depth to bedrock	1.00	Slope	1.00
		Slope	$1.00$	Depth to bedrock	1.00
		Restricted	0.46		
		permeability			
Rock outcrop-----Hackwood--------	30	\| Not rated		\| Not rated	
	15	\|Very limited		\|Very limited	
Hackwood--------		\| Slope	\| 1.00	\| Slope	\| 1.00
		Restricted	0.46		
		permeability			
34:					
Baconcamp-------	40	\|Very limited		\|Very limited	
		\| Depth to bedrock	\| 1.00	Slope	1.00
		Slope	$1.00$	Depth to bedrock	1.00
		Restricted	0.46		
		permeability			
Hapgood	35	\|Very limited		\|Very limited	
		Slope	11.00	\| Slope	1.00
		Depth to bedrock	10.98	\| Depth to bedrock	\| 1.00
		Content of large	0.59	Seepage	1.00
		stones		Content of large	0.65
				stones	
Rock outcrop	15	Not rated		\| Not rated	


Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Septic tank absorption fields		Trench sanitary landfill		
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	
35:						
Baconcamp-------	40	\|Very limited		Very limited		
		Depth to bedrock	1.00	Slope	1.00	
		Slope	1.00	Depth to bedrock	1.00	
		Restricted	10.46			
Krackle---------	30	\|Very limited		Very limited		
		Depth to bedrock	1.00	Slope	1.00	
		Slope	11.00	Depth to bedrock	1.00	
		Restricted permeability	\|1.00	Content of large stones	1.00	
		Content of large stones	1.00	Too clayey	0.50	
Rock outcrop-------- \|	15	\| Not rated		Not rated		
36:						
Berdugo---------	85	\|Very limited ${ }^{\text {Filtering }}$ \|l				
		Filtering capacity	1.00	Too sandy	11.00	
		Restricted permeability	10.46			
37:						
Berdugo---------	50	\|Very limited		Very limited		
		Filtering capacity	\|1.00	Too sandy	1.00	
		Restricted permeability	10.46			
Catlow	35	\|Very limited		Very limited	1.00	
		Filtering capacity	11.00	Too sandy		
		Restricted	1.00			
		permeability				
38:						
Bigfrog	45	\|Very limited		Very limited		
		Depth to cemented	1.00	Slope	11.00	
		pan		Depth to thin	10.50	
		Slope	11.00	cemented pan		
Brock-	40	\|Very limited			Very limited	
		Depth to cemented	1.00	Slope	11.00	
		pan		Depth to thin	10.50	
		Slope	11.00	cemented pan		
39 :						
Bocker----------	50	\|Very limited		Very limited		
		Depth to bedrock	1.00	Depth to bedrock	\|1.00	
		Slope	11.00	Slope	\|1.00	
		Content of large stones	10.93	Content of large stones	0.93	
Westbutte-------	35	\|Very limited		Very limited		
		Depth to bedrock	1.00	Depth to bedrock	\| 1.00	
		Content of large stones	1.00	Content of large stones	\| 1.00	
		Slope	1.00	Slope	11.00	
		Restricted	10.46			
		permeability				

Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Septic tank absorption fields		Trench sanitary landfill	
	map unit	Rating class and limiting features	Value	Rating class and limiting features	\|Value
45:					
Calderwood------	35	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Slope	1.00	Slope	\| 1.00
		Content of large stones	0.13	Content of large stones	\| 0.13
46 :					
Brace	40	Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Depth to cemented\| pan	1.00	Depth to thin cemented pan	0.50
		Slope	0.37	Slope	0.37
Coztur	30	\|Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	11.00
		Slope	0.37	Slope	0.37
		Content of large stones	0.01	Content of large stones	0.01
Rock outcrop-----	15	\| Not rated		\| Not rated	
47:					
Brace	45	\|Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Depth to cemented pan	1.00	Depth to thin cemented pan	0.50
		Slope	0.37	slope	0.37
Vergas	40	\|Very limited		\|Very limited	
		Filtering capacity	1.00	Too sandy	11.00
48 :					
Bruncan, thick					
surface-----	50	\|Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Depth to cemented pan	1.00	Depth to thin cemented pan	0.50
Bruncan, thin					
surface-----	35	\| Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Depth to cemented pan	1.00	Depth to thin cemented pan	10.50
49 :					
Brunzell--------	90	\|Very limited		Very limited	
		Filtering	1.00	Seepage	11.00
		capacity		Too sandy	0.50
		Restricted	1.00	Content of large	0.01
		permeability		stones	
50:					
Bucklake-	85	\|Very limited		\| Very limited	
		Depth to bedrock	1.00	Slope	\| 1.00
		Slope	1.00	Depth to bedrock	\| 1.00
		Restricted	1.00		
		permeability			

Table 11.--Sanitary Facilities--Continued



Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued

Map symbol and soil name	Pct. of map unit	Septic tank absorption fields		Trench sanitary   landfill	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value
67:					
Crowcamp--------	85	Very limited		\|Very limited	
		Restricted permeability	1.00	Depth to saturated zone	1.00
		Depth to saturated zone	1.00	Ponding	1.00
		Ponding	1.00		
68:					
Crowcamp--------	50	Very limited		\| Very limited	
		Restricted permeability	1.00	Depth to saturated zone	1.00
		Depth to saturated zone	1.00	Ponding	1.00
		Ponding	1.00		
Ausmus----------	20	Very limited		\| Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00
		Ponding	1.00	Salinity	1.00
		Restricted permeability	0.46	Ponding	1.00
Poujade---------	15	Very limited		\|Very limited	1.00
		Depth to saturated zone	1.00	Depth to saturated zone	
		Restricted permeability	1.00		
69:					
Davey-	85	\|Very limited Filtering capacity	1.00	Somewhat limited Too sandy	0.50
70 :					
Davey-	45	$\begin{array}{\|c} \mid \text { Very limited } \\ \text { Filtering } \\ \text { capacity } \end{array}$	1.00	Somewhat limited Too sandy	10.50
Oreanna---------	40	$\begin{aligned} & \mid \text { Very limited } \\ & \left\lvert\, \begin{array}{c} \text { Filtering } \\ \text { capacity } \end{array}\right. \end{aligned}$		Somewhat limited	0.50
			1.00	Too sandy	
71:					
Defenbaugh-	85	\|Very limited		Not limited	
		Restricted permeability	1.00		
72:					
Deppy---	85	\|Very limited Depth to cemented pan		Somewhat limited Depth to thin cemented pan	
			1.00		10.50
		Slope	10.16	Slope	0.16
73:					
Deppy-----------	45	Very limited		\|Somewhat limited	
		Depth to cemented pan	1.00	Depth to thin cemented pan	10.50
		Slope	10.16	Slope	0.16
Tumtum	40	```Very limited Depth to cemented pan Slope```		\| Somewhat limited	
			1.00	Depth to thin cemented pan	0.50
			10.16	Slope	10.16

Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued


Map symbol and soil name	$\begin{aligned} & \text { \| Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Septic tank absorption fields		Trench sanitary landfill		
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
Enko------------	50	\|Very limited		Somewhat limited		
		Restricted   permeability	1.00	Slope	10.37	
		Slope	0.37			
Catlow----------	35	\|Very limited		\|Very limited		
		Filtering	1.00	Too sandy	11.00	
		capacity		Slope	10.37	
		Restricted permeability	1.00			
		Slope	0.37			
96:						
Enko------------	50	\|Very limited		\| Not limited		
		Restricted permeability	1.00			
Catlow----------	35	\|Very limited		\|Very limited		
		Filtering	1.00	Too sandy	11.00	
		capacity		Content of large	0.98	
		Restricted permeability	1.00	stones Slope	10.84	
		Content of large stones	0.90			
		Slope	0.84			
97:						
Erakatak--------	85	\|Very limited		\|Very limited		
		Depth to bedrock	1.00	Slope	1.00	
		Slope	1.00	Depth to bedrock	\| 1.00	
		Restricted	1.00	Too clayey	11.00	
		permeability		Content of large	10.48	
		Content of large stones	0.48	stones		
98:						
Erakatak--------	40	\|Very limited		\|Very limited		
		Depth to bedrock	1.00	Slope	11.00	
		Slope	1.00	Depth to bedrock	\|1.00	
		Restricted	1.00	Too clayey	11.00	
		permeability		Content of large	10.02	
		Content of large stones	0.02	stones		
Lambring--------	35	\|Very limited		Very limited		
		\| Slope	1.00	\| Slope	\|1.00	
		Restricted permeability	0.46	Content of large stones	\| 0.17	
		Content of large stones	0.01			
Rock outcrop---	10	\| Not rated		\| Not rated		
99 :						
Erakatak--------	35	\|Very limited		\|Very limited		
		Depth to bedrock	1.00	Slope	\| 1.00	
		Slope	1.00	Depth to bedrock	\|1.00	
			1.00	Too clayey	11.00	
		permeability		Content of large	10.02	
		Content of large stones	0.02	stones		

Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued

Map symbol and soil name	Pct.   \| of   \|map   \|unit	Septic tank absorption fields		Trench sanitary landfill	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
148:					
Jesse Camp-	85	\|Very limited		\| Not limited	
		Restricted permeability	1.00		
149:					
Jimgreen--	90	\|Very limited		\|Very limited	
		Depth to	1.00	Depth to	1.00
		saturated zone		saturated zone	
		Ponding	11.00	Content of	11.00
		Restricted permeability	10.46	organic matter Ponding	
		permeability		Ponding	1.00
150:					
Jimgreen--------	50	Very limited		\|Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	11.00
		Ponding	1.00	Content of	1.00
		Restricted permeability	10.46	organic matter Ponding	11.00
Housefield------	35	\|Very limited		\|Very limited	
		Restricted permeability	1.00	Depth to saturated zone	1.00
		Depth to saturated zone	1.00	Content of organic matter	1.00
		Ponding	1.00	Ponding	1.00
151:					
Kegler----------	85	\|Very limited		\|Somewhat limited	
		Depth to cemented pan	1.00	Depth to thin cemented pan	10.50
		Restricted	0.46		
		permeability			
152:					
Kerrfield-------	85	Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Filtering capacity	\| 1.00	Slope	10.63
		Slope	10.63		
153 :					
Klicker---------	85	\|Very limited		\|Very limited	
		Depth to bedrock	1.00	Slope	11.00
		Slope	1.00	Depth to bedrock	1.00
		Restricted permeability	\| 1.00	Content of large stones	\| 0.97
		Content of large stones	0.97	Too clayey	10.50
154:					
Klicker---------	85	Very limited		\|Very limited	
		Depth to bedrock	1.00	Slope	1.00
		Slope	1.00	Depth to bedrock	\| 1.00
		Restricted permeability	1.00	Content of large stones	\| 1.00
		Content of large stones	1.00	Too clayey	10.50

Table 11.--Sanitary Facilities--Continued



Map symbol and soil name	$\left.\begin{array}{\|l\|} \text { \| Pct. } \\ \mid \text { of } \\ \mid \text { of } \\ \mid \text { und } \end{array} \right\rvert\,$	Septic tank absorption fields		Trench sanitary landfill			
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value	
163 :							
Lambring, thin							
surface---------	30	\|Very limited		Very limited			
		\| Slope	1.00	\| slope	11.00		
		\| $\begin{gathered}\text { Restricted } \\ \text { permeability }\end{gathered}$	0.46	Content of large stones	0.17		
		Content of large stones	0.01				
Rock outcrop--	15	\| Not rated		Not rated			
164:							
Lambring--------	50	\|Very limited		\|Very limited			
		\| Slope	1.00	\| Slope	1.00		
		Content of large stones	0.47	Content of large stones	0.62		
		Restricted permeability	0.46				
Rubble land-	35	\| Not rated		Not rated			
165:							
Langslet--------	85	\|Very limited		\|Very limited			
		Restricted permeability	1.00	Depth to saturated zone	1.00		
		Depth to saturated zone	1.00				
		166 :					
Lava flows--	85	\| Not rated		Not rated			
167 :							
Lava flows	55	\| Not rated		Not rated			
Flank-----------	30	\|Very limited		\|Very limited			
		Depth to bedrock	1.00	Depth to bedrock	1.00		
168:							
Lawen	85			\| Not limited			
		Restricted permeability	1.00				
169:							
Leathers--------	85						
		Filtering capacity	1.00	Too sandy	10.50		
		Restricted	1.00				
		permeability					
170:							
Leathers--------	85	\|Very limited		\|Somewhat limited			
		Filtering capacity	1.00	Too sandy	10.50		
		Restricted permeability	1.00				
171:							
Leemorris-------	50	\|Very limited		Very limited			
		Restricted permeability	1.00	Depth to bedrock Too clayey	$\begin{aligned} & \mid 1.00 \\ & \mid 0.50 \end{aligned}$		
		Depth to bedrock	1.00	Slope	10.04		
		Slope	0.04				
					\|		

Table 11.--Sanitary Facilities--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \left\lvert\, \begin{array}{c} \text { of } \\ \mid \text { map } \end{array}\right. \\ & \text { \|unit } \end{aligned}$	Septic tank absorption fields		Trench sanitary landfill	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
171:					
Buckwilder------	35	\|Very limited		\|Very limited	
		Restricted	11.00	Depth to bedrock	1.00
		permeability		Too clayey	1.00
		Depth to bedrock	11.00	Slope	10.04
		Slope	10.04		
172:					
Leemorris-------	50	\|Very limited		\|Very limited	
		Restricted	11.00	Slope	1.00
		permeability		Depth to bedrock	1.00
		Depth to bedrock	\|1.00	Too clayey	0.50
		Slope	1.00		
Buckwilder------	35	\|Very limited		\|Very limited	
		Restricted	\| 1.00	Slope	1.00
		permeability		Depth to bedrock	1.00
		Depth to bedrock	1.00	Too clayey	1.00
		Slope	11.00		
173:					
Legler----------	85	\|Very limited		\|Somewhat limited	
		Restricted	11.00	Flooding	10.40
		permeability			
		Flooding	10.40		
174:					
Locane----------	85	Very limited		\|Very limited	
		Depth to bedrock	\| 1.00	Depth to bedrock	1.00
		Slope	11.00	Slope	1.00
		Content of large stones	0.09	Content of large stones	0.09
175:					
Lolak	85	\|Very limited		Very limited	
		Restricted permeability	11.00	Depth to saturated zone	1.00
		Depth to	11.00	Sodium content	1.00
		saturated zone		Ponding	1.00
		Ponding	11.00		
176:					
Lolak	50	\|Very limited		Very limited	
		Restricted permeability	11.00	Depth to saturated zone	1.00
		Depth to	11.00	Sodium content	1.00
		saturated zone		Ponding	1.00
		Ponding	11.00		
Ausmus----------	35	\|Very limited		\|Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	1.00
		\| Ponding	11.00	Salinity	1.00
		Restricted permeability	10.46	Ponding	1.00
177:					
Lonely----------	50	Very limited   Depth to bedrock   Restricted permeability		Very limited	
			\| 1.00	Depth to bedrock	1.00
			11.00		

Table 11.--Sanitary Facilities--Continued

Map symbol and soil name	Pct.   of map unit	Septic tank absorption fields		Trench sanitary landfill	
	map unit	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
177:					
Doyn-------------	35	Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Slope	0.96	Slope	10.96
178:					
Lonely	50	\|Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Restricted	1.00	Slope	1.00
		permeability			
		Slope	1.00		
Robson	35	\|Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Slope	0.16	Slope	0.16
		Content of large	0.07	Content of large	0.07
		stones		stones	
179:					
Longcreek-------	45	\|Very limited		\|Very limited	
		Depth to bedrock	1.00	Slope	1.00
		Slope	1.00	Depth to bedrock	11.00
		Content of large	0.37	Too clayey	11.00
		stones		Content of large stones	0.37
Cleavage	40	\|Very limited		Very limited	
		Depth to bedrock	1.00	Slope	1.00
		Slope	1.00	Depth to bedrock	1.00
				Too clayey	0.50
180:					
Longcreek	75	\|Very limited		\|Very limited	
		Depth to bedrock	1.00	Slope	1.00
		Slope	$1.00$	Depth to bedrock	$1.00$
		Content of large stones	0.37	Too clayey	$1.00$
				Content of large stones	0.37
Rock outcrop-----181:	10	\| Not rated		Not rated	
	181:				
Loupence	85	\|Very limited		Very limited	
		Flooding	11.00	Flooding	1.00
		Depth to saturated zone	0.94	```Depth to saturated zone Seepage```	1.00
		Restricted permeability	0.46	Seepage	1.00
182:					
Madeline	85	\|Very limited		Very limited	
		Depth to bedrock	1.00	Slope	1.00
		Slope	1.00	Depth to bedrock	1.00
				Too clayey	10.50
183:					
Madeline-	85	\|Very limited		Very limited	
		Depth to bedrock	\| 1.00	Slope	1.00
		Slope	1.00	Depth to bedrock	1.00
				Too clayey	0.50

Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued

Map symbol and soil name	Pct.   of   map   unit	Septic tank absorption fields		Trench sanitary   landfill	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
195:					
Merlin----------	60	Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Slope	10.37	Too clayey	1.00
		Content of large	0.01	Slope	0.37
		stones		Content of large stones	0.01
Ateron----------	25	Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Content of large	11.00	Too clayey	1.00
		stones		Content of large	1.00
		Slope	10.37	stones   Slope	0.37
196:					
Merlin	40	\|Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Slope	10.37	Too clayey	1.00
		Content of large	0.01	Slope	0.37
		stones		Content of large stones	0.01
Ateron----------	35	Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Content of large	1.00	Too clayey	1.00
		stones		Content of large	1.00
		Slope	10.37	stones	
				Slope	0.37
Rubble land-	15	Not rated		Not rated	
197 :					
Merlin	35	Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Slope	10.37	Too clayey	1.00
		Content of large	0.01	Slope	0.37
		stones		Content of large stones	0.01
Ateron	30	Very limited		Very limited	
		Depth to bedrock	11.00	Depth to bedrock	\|1.00
		Content of large	1.00	Too clayey	11.00
		stones slope	0.37	Content of large stones	\|1.00
				Slope	10.37
Ticino----------	25	Very limited		Very limited	
		Depth to bedrock	11.00	Depth to bedrock	\|1.00
		Restricted permeability	10.46	Slope	10.37
		Slope	10.37		
198:					
Merlin----------	35	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Slope	10.37	Too clayey	11.00
		Content of large	10.01	Slope	0.37
		stones		Content of large stones	0.01

Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued

Map symbol and soil name	Pct. of map unit	Septic tank absorption fields		Trench sanitary landfill	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Slope	0.16	Too clayey	1.00
				Slope	0.16
220:					
Ninemile	55	\|Very limited Depth to bedrock		\| Very limited	
			1.00	Depth to bedrock Too clayey	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$
Carvix----------	30	Somewhat limited Restricted permeability		\| Not limited	
			0.46		
221:					
Ninemile--------	60	Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Slope	0.37	Too clayey	11.00
				Slope	0.37
Doy	25	Very limited Depth to bedrock Slope		\|Very limited	
			1.00	Depth to bedrock	1.00
			0.37	Slope	0.37
222:					
Ninemile--------	50	\|Very limited Depth to bedrock		\|Very limited	
			1.00	Depth to bedrock	1.00
				Too clayey	1.00
Edemaps---------	35	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Depth to cemented	1.00	Too clayey	1.00
		pan		Depth to thin	10.50
		Restricted permeability	1.00	cemented pan	
223:					
Ninemile--------	45	Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Slope	0.04	Too clayey	1.00
				Slope	0.04
Madeline--------	40	Very limited		\|Very limited	
			1.00	Depth to bedrock	1.00
		Slope	0.04	Too clayey	0.50
				Slope	\| 0.04
224:					
Ninemile--------	60	\|Very limited Depth to bedrock Slope		\|Very limited	
			1.00	Slope	1.00
			1.00	Depth to bedrock	1.00
				Too clayey	11.00
Pearlwise-------	30	Very limited		\|Very limited	
		Depth to bedrock	1.00	Slope	1.00
		Slope	1.00	Depth to bedrock	\|1.00
				Too clayey	10.50
225:					
Ninemile--------	55	\|Very limited Depth to bedrock		\|Very limited	
			1.00	Depth to bedrock	1.00
				Too clayey	11.00

Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued

Map symbol and soil name	$\begin{aligned} & \text { \| Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \text { \|unit } \end{aligned}$	Septic tank absorption fields		Trench sanitary landfill	
		Rating class and limiting features	Value	Rating class and limiting features	\|Value
242 :					
Merlin----------	15	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Slope	0.37	Too clayey	1.00
		Content of large	0.01	Slope	\| 0.37
		stones		Content of large	0.01
				stones	
243 :					
Observation	50	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Slope	0.37	Too clayey	10.50
				Slope	\| 0.37
Teguro----------	35	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Slope	0.37	Too clayey	10.50
		Content of large	0.06	Slope	\| 0.37
		stones		Content of large stones	0.06
244:					
Observation------	50	Very limited		\|Very limited	
		Depth to bedrock	1.00	Slope	1.00
		Slope	1.00	Depth to bedrock	1.00
		Content of large	0.01	Too clayey	0.50
		stones		Content of large stones	0.01
Lambring--------	25	Very limited		\|Very limited	
		Slope	1.00	Slope	1.00
		Restricted permeability	0.46	Content of large stones	0.46
		Content of large stones	0.25		
Rock outcrop-------- \|	15	Not rated		Not rated	
245:					
Olac------------	55	Very limited		\|Very limited ${ }^{\text {\| }}$ Depth to bedrock	
		Depth to bedrock	1.00		1.00
		Content of large stones	0.91	Content of large stones	0.92
Atlow-----------	30	Very limited		Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00
		Content of large stones	\| 0.18	Content of large stones	\| 0.18
246:					
Opie------------	85	Very limited		\|Very limited	
		Depth to saturated zone	11.00	Depth to	11.00
		Restricted permeability	1.00	Salinity	1.00
				Ponding	1.00
		Ponding	11.00		
247:					
Oreneva---------	85	Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	1.00

Table 11.--Sanitary Facilities--Continued


Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { of } \\ & \mid \text { unit } \end{aligned}$	Septic tank absorption fields		Trench sanitary landfill	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
257: \|					
Pernty----------	40	\|Very limited		\|Very limited	
		Depth to bedrock	\|1.00	Depth to bedrock	1.00
		Slope	\|1.00	Slope	\|1.00
		Content of large stones	0.08	Content of large stones	10.08
Westbutte--------	25	\|Very limited		\|Very limited	
		Depth to bedrock	\|1.00	Depth to bedrock	1.00
		Content of large stones	\| 1.00	Content of large stones	\| 1.00
		Slope	11.00	Slope	11.00
		Restricted permeability	0.46		
Ninemile--------	20	\| Very limited		\|Very limited	
		Depth to bedrock	\|1.00	Depth to bedrock	\| 1.00
		Slope	1.00	Too clayey	11.00
				Slope	11.00
258:					
Pits--------------- \|	100	\| Not rated		\| Not rated	
259 :					
Playas----------	95	\|Very limited		Not rated	
		Restricted	1.00		
		permeability			
		Depth to saturated zone	1.00		
		Ponding	1.00		
260:					
Playas----------	60	\|Very limited		\| Not rated	
		Restricted permeability	1.00		
		Depth to saturated zone	1.00		
		Ponding	1.00		
Thenarrows------	25	\|Very limited		\|Very limited	
		Depth to saturated zone	1.00	Depth to saturated zone	11.00
		Filtering	1.00	Seepage	1.00
		capacity		Sodium content	11.00
		Ponding	1.00	Ponding	11.00
261:					
Poall	85	\|Very limited		\|Somewhat limited	
		Restricted   permeability	1.00	Slope	\| 0.37
		slope	0.37		
262:					
Poall	50	\|Very limited		\| Not limited	
		\| $\begin{gathered}\text { Restricted } \\ \text { permeability }\end{gathered}$	11.00		
Gumble----------	35	\|Very limited		\|Very limited	
		Depth to bedrock	1.00	Depth to bedrock	\| 1.00
		Slope	11.00	Slope	11.00

Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued

Map symbol and soil name	Pct.   of map unit	Septic tank absorption fields		Trench sanitary landfill		
	unit	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
289:						
Robson----------	55	\|Very limited		\|Very limited		
		Depth to bedrock	11.00	Depth to bedrock	1.00	
		Slope	10.96	Slope	0.96	
		Content of large stones	10.07	Content of large stones	0.07	
Felcher----------	30	\|Very limited		\|Very limited		
		Depth to bedrock	\| 1.00	Slope	1.00	
		Slope	\| 1.00	Depth to bedrock	1.00	
		Content of large stones	0.57	Content of large stones	0.57	
290 :						
Roca------------	85	\|Very limited		\|Very limited		
		Depth to bedrock	\| 1.00	Slope	1.00	
		Slope	\| 1.00	Depth to bedrock	1.00	
		Content of large stones	0.04	Content of large stones	0.04	
291:						
Rock outcrop-	60	Not rated		Not rated		
Rubble land-	30	Not rated		Not rated		
292:						
Rock outcrop-	50	Not rated		Not rated		
Baconcamp--------	35	\|Very limited		\|Very limited		
		Depth to bedrock	\| 1.00	Slope	1.00	
		Slope	$1.00$	Depth to bedrock	1.00	
		Restricted	10.46			
		permeability				
293:						
Royst-----------	65	\|Very limited		\|Very limited		
		Depth to bedrock	\| 1.00	Depth to bedrock	1.00	
		Content of large stones	\| 1.00	Content of large stones	1.00	
		Slope	10.37	Too clayey	$10.50$	
				Slope	$0.37$	
Merlin-----------	20	\|Very limited		\|Very limited		
		Depth to bedrock	\| 1.00	Depth to bedrock	\| 1.00	
		Slope	\| 0.37	Too clayey	11.00	
		Content of large	0.01	Slope	10.37	
		stones		Content of large stones	0.01	
294:						
Rubble land----	35	Not rated		Not rated		
Nuss	30	\|Very limited		\|Very limited		
		Depth to bedrock	\|1.00	Slope	11.00	
		Slope	\| 1.00	\| Depth to bedrock	\| 1.00	
Ateron-	20	\|Very limited		\|Very limited		
		Depth to bedrock	\| 1.00	Slope	11.00	
		Slope	11.00	Depth to bedrock	$\mid 1.00$	
		Content of large	\|1.00	Too clayey	1.00	
		stones		Content of large	1.00	
				stones		

Table 11.--Sanitary Facilities--Continued


Map symbol and soil name	Pct. of map unit	Septic tank absorption fields		Trench sanitary landfill		
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	
349 :						
Voltage-	45	\|Somewhat limited Restricted permeability	10.46	\| Not limited		
Crowcamp--------	40	\|Very limited		\|Very limited		
		Restricted permeability	\| 1.00	Depth to saturated zone	11.00	
		Depth to saturated zone	1.00			
350:						
Voltage-	65	Somewhat limited Restricted permeability	10.46	\| Not limited		
Widowspring-	20	\|Very limited		\|Very limited		
		Depth to saturated zone Restricted permeability	$\|$1.00   0.72	Depth to saturated zone	11.00	
351:						
Wagontire-------	85	\|Very limited		\|Very limited		
		Depth to cemented pan	1.00	Depth to thick cemented pan	11.00	
		Slope	10.37	Seepage	11.00	
				Too clayey	10.50	
				Slope	10.37	
352:						
Wagontire-------	55	\|Very limited		\|Very limited		
		Depth to cemented pan	1.00	Depth to thick cemented pan	\|1.00	
		Slope	10.37	Seepage	11.00	
				Too clayey	10.50	
				Slope	10.37	
Vil-------------	30	Very limited		Very limited		
		Depth to cemented pan	1.00	Depth to thick cemented pan	11.00	
		Slope	0.37	Seepage	11.00	
				Too clayey	10.50	
				Slope	10.37	
353:						
Waspo	45	\|Very limited		\|Very limited		
		Restricted permeability	\| 1.00	Depth to bedrock	\| 1.00	
		Depth to bedrock	1.00			
Poall-----------	40	\|Very limited		\| Not limited		
		Restricted permeability	\| 1.00			
354:						
Water-	100	\| Not rated		\| Not rated		

Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued


Table 11.--Sanitary Facilities--Continued


| Map symbol and soil name | \|Pct. <br> of map \|unit| | Septic tank absorption fields |  | Trench sanitary landfill |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Rating class and limiting features | \|Value| | Rating class and limiting features | Value |
|  |  |  |  |  |  |
| Westbutte------- | 50 | \|Very limited |  | \|Very limited |  |
|  |  | Depth to bedrock | \| 1.00 | Slope | 1.00 |
|  |  | Slope | 11.00 | Depth to bedrock | 1.00 |
|  |  | Content of large stones | \| 1.00 | Content of large stones | 1.00 |
|  |  | Restricted | 10.46 |  |  |
|  |  | permeability |  |  |  |
|  |  |  |  |  |  |
| Observation------ | 40 | \|Very limited |  | \|Very limited |  |
|  |  | Depth to bedrock | 11.00 | Depth to bedrock | 1.00 |
|  |  | Slope | 0.84 | Slope | 0.84 |
|  |  | Content of large | 0.01 | Too clayey | 0.50 |
|  |  | stones |  | Content of large | $0.01$ |
|  |  |  |  | stones |  |
|  |  |  |  |  |  |
| 369 : |  |  |  |  |  |
| Westbutte------- | 35 | \|Very limited |  | \|Very limited |  |
|  |  | Depth to bedrock | \|1.00 | Slope | 1.00 |
|  |  | Slope | $1.00$ | Depth to bedrock | 1.00 |
|  |  | Content of large stones | $1.00$ | Content of large stones | 1.00 |
|  |  | Restricted | 10.46 |  |  |
|  |  | permeability |  |  |  |
|  |  |  |  |  |  |
| Rock outcrop----- | 30 | \| Not rated |  | \| Not rated |  |
|  |  |  |  |  |  |
| Pernty | 25 | \|Very limited |  | \|Very limited |  |
|  |  | Depth to bedrock | \|1.00 | Slope | 1.00 |
|  |  | Slope | \| 1.00 | Depth to bedrock | 1.00 |
|  |  | Content of large stones | \| 0.08 | Content of large stones | 0.08 |
|  |  |  |  |  |  |
| 370: |  |  |  |  |  |
| Widowspring------ | 85 | \|Very limited |  | \|Very limited |  |
|  |  | Depth to saturated zone | \| 1.00 | Depth to saturated zone | 1.00 |
|  |  | Restricted permeability | 10.72 |  |  |
|  |  |  |  |  |  |
| 371: |  |  |  |  |  |
| Windybutte------ | 85 | \|Very limited |  | \| Not limited |  |
|  |  | Restricted | 11.00 |  |  |
|  |  | permeability |  |  |  |
|  |  |  |  |  |  |
| 372: |  |  |  |  |  |
| Wolverine-------- | 85 | \|Very limited |  |  |  |
|  |  | Filtering | 11.00 | Too sandy | 1.00 |
|  |  | capacity |  | Slope | 0.04 |
|  |  | Slope | 0.04 |  |  |
|  |  |  |  |  |  |
| 373 : |  |  |  |  |  |
| Denied access---- | 100 | \| Not rated |  | Not rated |  |
|  |  |  |  |  |  |

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.00 to 0.99 . The closer the value is to 0 , the greater the potential limitation. Values of 0 are absolute limitations based on the soil property criteria used to develop the interpretation. Values closer to 1.0 have less of a limitation. Limiting features with values of 1.00 have absolutely no limitation. Fine-earth fraction and rock fragment content are given on a weight basis. A brief summary of rating criteria and abbreviations is given at the end of this report. The symbol < means less than; > means more than)


Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
5:	50	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Wetness at depth of <1 foot\|	0.00
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	SAR >13	10.00
						EC $>8 \mathrm{dS} / \mathrm{m}$	10.00
		layer				Clay >40 percent	10.00
Playas------------	35	Not rated		Not rated		Not rated	
Alyan-----------	85	Poor source		Poor source		Fair source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Depth to bedrock 20 to 40 inches	10.22
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00		
						Slope 8 to 12 percent	10.96
7:							
Anatone--------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Depth to bedrock <20 inches	10.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00	Rock fragment content	10.00
8:							
Anatone, moist--	50	Poor source		Poor source		Poor source	
		Thickest layer not a source	0.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00
			0.00	Thickest layer not a source	0.00	Rock fragment content   Slope >15 percent	$\begin{aligned} & 0.00 \\ & \mid 0.00 \end{aligned}$
		layer					
		Bottom layer not a source					
Anatone---------	35	Poor source		Poor source		Poor source	
		Thickest layer not a source because of fines or thin layer	0.00	Bottom layer not a source Thickest layer not a source	0.000.00	Depth to bedrock <20 inches	0.00
						Slope >15 percent	10.00
						Rock fragment content	10.72
		Bottom layer not a source	10.00				
9 :							
Anatone------	45	Poor source		Poor source		Poor source	
		Thickest layer not a source	10.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00
		because of fines or thin layer		Thickest layer not a source	0.00	Rock fragment content   Slope 8 to 12 percent	$\begin{aligned} & \mid 0.00 \\ & \mid 0.63 \end{aligned}$
		Bottom layer not a source	10.00				
Teguro---------	25	Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer		Poor source		Poor source	
			10.00	Bottom layer not a source Thickest layer not a source	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Depth to bedrock <20 inches Rock fragment content	0.00
			0.00				10.00
						Slope 8 to 12 percent	10.63

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Clay >40 percent	10.00
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40 inches	10.16
		layer				Rock fragment content	10.50
						Slope 8 to 12 percent	10.63
10:							
Anatone, moist--	45	\| Poor source		\| Poor source		Poor source	
		Thickest layer not a source	0.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
		because of fines or thin		Thickest layer not a source	0.00	Rock fragment content	10.00
		layer				Depth to bedrock <20 inches\|	0.00
		Bottom layer not a source	0.00				
Egyptcreek-----	30	\| Poor source		\| Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Rock fragment content	10.00
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	10.22
Rock outcrop--	15	\| Not rated		\| Not rated		\| Not rated	
11:							
Anatone, moist--	50	\|Fair source		\| Poor source		Poor source	
		Thickest layer not a source	0.00	Bottom layer not a source	0.00	Depth to bedrock <20 inches	0.00
		because of fines or thin		Thickest layer not a source	0.00	Rock fragment content	10.00
		layer				Slope >15 percent	10.00
		Bottom layer possible source	0.34				
Minam-----------	20	\| Poor source		\| Poor source		$\mid$ Fair source	
		Bottom layer not a source	0.00	Thickest layer not a source	0.00	Hard to reclaim	10.68
		Thickest layer not a source because of fines or thin layer	0.00	Bottom layer possible source\|	0.04	Rock fragment content	10.72
Rock outcrop--	15	\| Not rated		\| Not rated		\| Not rated	
12:							
Anatone---------	35	\| Poor source		\|Poor source		Poor source    Slope >15 percent $\mid$	
		Bottom layer not a source	0.00	\| Bottom layer not a source	0.00		
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00
		because of fines or thin layer				Rock fragment content	10.00

Table 12.--Construction Materials--Continued

Map symbol and soil name	$\begin{aligned} & \text { \|Pct. } \\ & \mid \text { of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
12:							
Teguro----------	30	Poor source		Poor source		Poor source	
		Bottom layer not a sourceThickest layer not a source	10.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00
			10.00	Thickest layer not a source	10.00	Rock fragment content	10.00
		layer				Slope 8 to 12 percent	10.63
Rock outcrop-----	20	Not rated		Not rated		Not rated	
13:							
Anatone--------	40	Fair source		Poor source		Poor source	
		Thickest layer not a source because of fines or thin layer	10.00	Bottom layer not a source Thickest layer not a source	10.00	Slope >15 percent	10.00
					0.00	Depth to bedrock <20 inches	0.00
						Rock fragments content	10.00
		Bottom layer possible source	0.34				
Westbutte-------	35	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Rock fragment content	10.00
						Depth to bedrock 20 to 40 inches	0.22
Rock outcrop-------	15	Not rated		Not rated		Not rated	
14:							
Anawalt---------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Rock fragment content	0.88
15:							
Anawalt-	50	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Slope >15 percent   Rock fragment content	10.00
							10.88
Lonely---------	35	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	0.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40 inches   Rock fragment content   Clay 27 to 40 percent	$\begin{aligned} & 0.22 \\ & \mid 0.50 \\ & 10.98 \end{aligned}$

Table 12.--Construction Materials--Continued


Table 12.--Construction Materials--Continued

Map symbol and soil name	$\begin{aligned} & \text { \|Pct. } \\ & \mid \text { of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
20:							
Observation----	25	Poor source		\| Poor source		Poor source	
		Bottom layer not a source Thickest layer not a source	0.00	Bottom layer not a source	10.00	Clay >40 percent	10.00
			0.00	Thickest layer not a source	10.00	Depth to bedrock 20 to 40	10.16
		because of fines or thin layer				Rock fragment content	0.50
						Slope 8 to 12 percent	0.84
21:							
Atlow----------	85	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Rock fragment content	10.00
		Thickest layer not a sourcebecause of fines or thin	0.00	Thickest layer not a source	10.00	Depth to bedrock <20 inches	0.00
						Slope >15 percent	10.00
		layer				Clay 27 to 40 percent	10.98
22:							
Atlow----------	70	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Rock fragment content	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Depth to bedrock <20 inchesSlope >15 percent	0.00
		because of fines or thin					10.00
		layer				Clay 27 to 40 percent	0.98
Rock outcrop------ \|	15	Not rated		Not rated		Not rated	
23:							
Atlow----------	70	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
			0.00	Thickest layer not a source	0.00	Rock fragment content	10.00
						Depth to bedrock <20 inches	0.00
		because of fines or thin layer				Clay 27 to 40 percent	0.98
Rock outcrop-------	15	Not rated		Not rated		\| Not rated	
24:							
Atlow-----------	55	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Rock fragment content	10.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches   Slope $>15$ percent	0.00
							10.00
						Clay 27 to 40 percent	10.98
Skedaddle-------	30	Bottom layer not a source	10.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source because of fines of thin layer	0.00	Thickest layer not a source	0.00	Rock fragment content   Slope >15 percent	10.00
							10.00

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct. $\mid$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	SAR >13	10.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	EC $>8 \mathrm{dS} / \mathrm{m}$	10.00
26:							
Ausmus----------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	\| SAR >13	10.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	EC $>8 \mathrm{dS} / \mathrm{m}$	10.00
27:							
Baconcamp------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Rock fragment content	10.00
						Depth to bedrock 20 to 40 inches	10.78
28:							
Baconcamp-------	45	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Rock fragment content	10.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Slope 12 to 15 percent	10.16
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	10.78
Clamp----------	40	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Rock fragment content	$10.00$
		because of fines or thin				Slope 12 to 15 percent	0.16
		layer				Clay 27 to 40 percent	10.98
29:							
Baconcamp------	45	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Rock fragment content	10.00
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	10.78
Clamp----------	40	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Depth to bedrock $<20$ inches	0.00
		because of fines or thin				Rock fragment content	10.00
		layer				Clay 27 to 40 percent	10.98

Table 12.--Construction Materials--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \text { omap } \\ & \text { \|unit } \end{aligned}$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
30:							
Baconcamp------	45	Poor source		\| Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source because of fines or thin	10.00	Thickest layer not a source	10.00	Rock fragment content	10.00
		layer				Depth to bedrock 20 to 40 inches	10.78
Clamp----------	25	Poor source		\|Poor source		\| Poor source	
		Bottom layer not a source Thickest layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
			10.00	Thickest layer not a source	0.00	Depth to bedrock <20 inchesRock fragment content	0.00
		because of fines or thinlayer					10.00
						Clay 27 to 40 percent	10.98
Rock outcrop-------	20	Not rated		Not rated		\| Not rated	
31:							
Baconcamp------	70	Poor source		\| Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Rock fragment content	10.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	10.00	Depth to bedrock 20 to 40 inches   Slope 8 to 12 percent	0.78 0.96
Rock outcrop-------	15	Not rated		Not rated		\| Not rated	
32:							
Baconcamp------	70	Poor source		Poor source		Poor source	
		Bottom layer not a source Thickest layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
			10.00	Thickest layer not a source	10.00	Rock fragment content	10.00
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	0.78
Rock outcrop-------	15	Not rated		Not rated		\| Not rated	
33:							
Baconcamp------	40	\|Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	Rock fragment content Depth to bedrock 20 to 40 inches	0.000.78
Rock outcrop------- \|	30	Not rated		Not rated		\| Not rated	
Hackwood--------	15	Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer		Poor source		\| Poor source	
			10.00	Bottom layer not a source Thickest layer not a source	10.00	Slope >15 percent	10.00
			10.00		10.00	Rock fragment content Hard to reclaim	$\begin{aligned} & 10.00 \\ & 10.08 \end{aligned}$

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil		
	$\begin{aligned} & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	
34: \|								
Baconcamp------	40	Poor source		\| Poor source		Poor source		
		Bottom layer not a source Thickest layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	10.00	
			0.00	Thickest layer not a source	10.00	Rock fragment content	10.00	
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	10.78	
Hapgood---------	35	Poor source		Poor source		Poor source		
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	10.00	
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Rock fragment content	10.00	
		because of fines or thin layer				Hard to reclaim	0.02	
Rock outcrop-----	15	Not rated		Not rated		Not rated		
35:								
Baconcamp------	40	Poor source		Poor source		Poor source		
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	10.00	
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Rock fragment content	10.00	
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	10.78	
Krackle---------	30	\| Poor source		Poor source		Poor source		
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	10.00	
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Rock fragment content	0.02	
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	0.52	
Rock outcrop------- \|	15	Not rated		Not rated		Not rated		
36:								
Berdugo--------		Poor source		Poor source		Poor source		
	85	Thickest layer not a source because of fines or thin layer	0.00	Bottom layer not a source Thickest layer not a source	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	Rock fragment content Hard to reclaim	10.00	
						Hard to reclaim	10.02	
		Bottom layer not a source	0.00					
37:								
Berdugo---------	50	Poor source		Poor source		Poor source		
		Thickest layer not a source because of fines or thin layer	10.00	Bottom layer not a source Thickest layer not a source	10.00	Rock fragment content Hard to reclaim	10.00	
					0.00	Hard to reclaim	10.02	
		Bottom layer not a source	10.00					
Catlow----------	35	Poor source   Thickest layer not a source because of fines or thin layer		\|Fair source		Poor source		
			0.00	Thickest layer possible source	10.00	Hard to reclaim Rock fragment content	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	
				Bottom layer possible source	\| 0.64	Rock fragment content	$0.00$	
		Bottom layer not a source	0.00					

Table 12.--Construction Materials--Continued


Table 12.--Construction Materials--Continued

$\begin{gathered} \text { Map symbol } \\ \text { and soil name } \end{gathered}$	$\begin{aligned} & \text { \| Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil						
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value					
					42:							
Boulder Lake----	85	Poor source		Poor source		Poor source						
		Bottom layer not a source Thickest layer not a source	0.00	Bottom layer not a source	10.00	Clay >40 percent	10.00					
			0.00	Thickest layer not a source	0.00	Wetness at depth of <1 foot	0.00					
		because of fines or thin										
43:												
Boulder Lake----	65	Poor source   Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	10.00					
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Wetness at depth of <1 foot	0.00					
		because of fines or thin layer										
Merlin---------	20	Poor source		Poor source		Poor source						
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Rock fragment content	0.00					
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00					
44:												
Boulder Lake---	45	Poor source		Poor source		Poor source						
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	0.00					
		Thickest layer not a source because of fines or thin layer	.	Thickest layer not a source	0.00	Wetness at depth of <1 foot	0.00					
Spangenburg----	40					Good source						
		Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer	10.00	Poor source   Bottom layer not a source   Thickest layer not a source	$\begin{aligned} & \mid 0.00 \\ & 10.00 \end{aligned}$	Clay 27 to 40 percent	0.88					
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source								
45:												
Brabble------	50	Poor source		Poor source		Poor source						
		Bottom layer not a source Thickest layer not a source because of fines or thin layer		Bottom layer not a source Thickest layer not a source	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Slope $>15$ percent   Rock fragment content   Depth to pan 20 to 40 inches   Depth to bedrock 20 to 40 inches	10.00					
			10.00				10.12					
							10.80					
							10.94					
Calderwood-	35	\|Poor source		\|Poor source		Poor source						
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Rock fragment content	10.00					
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00					
		because of fines or thin layer				Slope >15 percent	10.00					

Table 12.--Construction Materials--Continued

Map symbol and soil name	\| Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
46:							
Brace-----------	40	Poor source		Poor source		\|Fair source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope 8 to 12 percent Depth to pan 20 to 40	10.63
		Thickest layer not a source because of fines or thin	10.00	Thickest layer not a source	0.00	Depth to pan 20 to 40 inches	10.71
		because of fines or thin layer				Rock fragment content	0.72
						Depth to bedrock 20 to 40 inches	10.82
Coztur----------	30	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source	10.00	Thickest layer not a source	10.00	Rock fragment content	10.50
		because of fines or thin layer				Slope 8 to 12 percent	0.63
Rock outcrop	15	Not rated		Not rated		Not rated	
47:							
Bra	45	Poor source		Poor source		\|Fair source	
		Thickest layer not a source	10.00	Bottom layer not a source	10.00	Slope 8 to 12 percent	10.63
			0.00	Thickest layer not a source	0.00	Depth to pan 20 to 40 inches	10.71
		because of fines or thin layer				Rock fragment content	10.72
						Depth to bedrock 20 to 40 inches	10.82
Vergas----------	40	Poor source		Fair source		Poor source	
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Sand fractions >85 percent	10.00
		because of fines or thin		Bottom layer possible source\|	0.53	Hard to reclaim	10.00
		layer				Rock fragment content	10.00
		Bottom layer not a source	10.00				
48:							
Bruncan, thick surface------							
	50	\| Poor source ${ }^{\text {Bottom layer not a source }}$		Poor source		\| Poor source	
			10.00	Bottom layer not a source Thickest layer not a source	10.00	Depth to pan <20 inches	10.00
		Thickest layer not a source	10.00		10.00	Depth to bedrock <20 inches Rock fragment content	0.00
		because of fines or thin layer					10.28
Bruncan, thin surface-----	35						
		Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	10.00	Depth to pan <20 inches Depth to bedrock <20 inches Rock fragment content	10.00
		Thickest layer not a source because of fines or thin layer	10.00		10.00		0.00
							10.28

Table 12.--Construction Materials--Continued


Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct. $\mid$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
McConnel--------	20	Poor source	10.00	Fair source	10.03	\| Poor source	
		Thickest layer not a source		Thickest layer possible		Hard to reclaim	0.00
		because of fines or thinlayer		source		Rock fragment content	0.00
				Bottom layer possible source	0.08	Sand fractions 75 to 85	10.25
		Bottom layer not a source	0.00				
						Slope 8 to 12 percent	0.84
54:							
Carryback------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Clay >40 percent	10.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40 inches	10.22
						Slope 8 to 12 percent	0.63
		layer				Rock fragment content	10.95
55:							
Carryback------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Clay >40 percent	10.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Slope 12 to 15 percent	10.16
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	10.22
						Rock fragment content	0.72
56:							
Carryback------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Clay >40 percent	10.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40	10.22
		because of fines or thin layer				inches   Slope 8 to 12 percent	10.63
						Rock fragment content	0.72
57 :							
Carryback------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	0.00	Clay >40 percent	10.00
		Thickest layer not a source because of fines or thin	0.00		0.00	Depth to bedrock 20 to 40 inches	10.22
		layer				Slope 12 to 15 percent	10.37
						Rock fragment content	10.72
58:							
Carryback, thin surface-							
	50	\| Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer		Poor source   Bottom layer not a source Thickest layer not a source		Poor source	
			10.00		0.00	Clay >40 percent	10.00
			$\mid$		$\text { \| } 0.00$	Depth to bedrock 20 to 40 inches   Slope 8 to 12 percent   Rock fragment content	10.22
							10.63
							10.72

Table 12.--Construction Materials--Continued


Table 12.--Construction Materials--Continued

Map symbol and soil name	Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil		
	$\begin{aligned} & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
60:								
Carryback, north slopes	40	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	0.00	
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Clay >40 percent	0.00	
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	0.22	
						Rock fragment content	0.72	
61:								
Carryback-------	55	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	0.00	
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40 inches	0.22	
						Rock fragment content	0.72	
		layer				Slope 8 to 12 percent	0.96	
Pearlwise-	30	Poor source		Poor source		Fair source		
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	\| Depth to bedrock 20 to 40	0.12	
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	inches		
		because of fines or thin				Rock fragment content	0.88	
		layer				Slope 8 to 12 percent	0.96	
62 :								
Carryback-------	45	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	\| Slope >15 percent	0.00	
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Clay $>40$ percent   Depth to bedrock 20 to 40 inches	0.00	
							0.22	
						Rock fragment content	0.72	
Pearlwise	30	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	0.00	
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	10.00	Depth to bedrock 20 to 40 inches	0.12	
		layer				Rock fragment content	0.88	
Rock outcrop-----	15	Not rated		Not rated		Not rated		
63:								
Carryback--------	50	Poor source		Poor source		Poor source		
		Bottom layer not a source Thickest layer not a source because of fines or thin layer	10.00	Bottom layer not a source Thickest layer not a source	10.00	\| Clay >40 percent	0.00	
			0.00		0.00	Slope >15 percent	0.00	
						Depth to bedrock 20 to 40 inches	0.22	
						Rock fragment content	0.72	

Table 12.--Construction Materials--Continued


Table 12.--Construction Materials--Continued

Map symbol and soil name	Pct.   \| of   \|map   \|unit	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	Value
68:							
Crowcamp-	50	\| Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer	$\begin{aligned} & 10.00 \\ & \mid 0.00 \end{aligned}$	\| Poor source Bottom layer not a source Thickest layer not a source	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	\| Poor source Clay >40 percent Hard to reclaim	$\begin{aligned} & \mid 0.00 \\ & \mid 0.02 \end{aligned}$
Ausmus-	20	\| Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer	$\begin{aligned} & \mid 0.00 \\ & \mid 0.00 \end{aligned}$	\| Poor source Bottom layer not a source Thickest layer not a source	$\begin{aligned} & \mid 0.00 \\ & 10.00 \end{aligned}$	$\begin{array}{\|c} \mid \text { Poor source } \\ \left\lvert\, \begin{array}{c} \text { SAR }>13 \end{array}\right. \\ E C>8 \mathrm{dS} / \mathrm{m} \end{array}$	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$
Poujade-	15	\| Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer	$\begin{aligned} & \mid 0.00 \\ & \mid 0.00 \end{aligned}$	\| Poor source   Bottom layer not a source Thickest layer not a source	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	$\begin{aligned} & \mid \text { Poor source } \\ & \text { SAR >13 } \\ & \text { EC } 4 \text { to } 8 \mathrm{dS} / \mathrm{m} \end{aligned}$	$\begin{aligned} & \mid 0.00 \\ & \mid 0.50 \end{aligned}$
69:							
		Bottom layer not a source Thickest layer not a source because of fines or thin layer	$\begin{aligned} & \mid 0.00 \\ & 10.00 \end{aligned}$	Thickest layer possible source   Bottom layer possible source	10.03	Sand fractions 75 to 85 percent Rock fragment content	0.02 0.28
70:							
		Bottom layer not a source Thickest layer not a source because of fines or thin layer	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	Thickest layer possible source   Bottom layer possible source	$1 \begin{aligned} & 0.03 \\ & 0.10\end{aligned}$	Sand fractions 75 to 85 percent   Rock fragment content	10.02
Oreanna-	40	\|Fair source		\|Fair source		\| Poor source	
		Bottom layer not a source Thickest layer possible source	$\begin{aligned} & \mid 0.00 \\ & \mid 0.25 \end{aligned}$	Bottom layer possible source Thickest layer possible source	$\mid 0.07$	Rock fragment content Sand fractions 75 to 85 percent	$\begin{aligned} & \mid 0.00 \\ & \mid 0.01 \end{aligned}$
71:							
Defenbaugh----	85	\| Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer	$\begin{aligned} & \mid 0.00 \\ & 10.00 \end{aligned}$	\| Poor source   Bottom layer not a source Thickest layer not a source	$\left\lvert\, \begin{aligned} & 0.00 \\ & 10.00 \end{aligned}\right.$	\| Good source	

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \mid \text { map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Depth to pan <20 inches	10.00
		because of fines or thin		Bottom layer possible source\|	0.03	Slope 8 to 12 percent	10.84
		layer				SAR 4 to 13	10.90
		Bottom layer not a source	10.00			Clay 27 to 40 percent	10.98
73:							
Deppy-----------	45	\|Poor source		Poor source		Poor source	
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Depth to pan <20 inches	10.00
		because of fines or thin		Bottom layer possible source\|	0.03	Slope 8 to 12 percent	10.84
		layer				SAR 4 to 13	0.90
		Bottom layer not a source	10.00			Clay 27 to 40 percent	10.98
Tumtum---------	40	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Thickest layer not a source	0.00	Depth to pan <20 inches	10.00
		Thickest layer not a source	10.00	Bottom layer possible source\|	0.03	Slope 8 to 12 percent	10.84
		because of fines or thin layer				Clay 27 to 40 percent	10.98
74:							
Dickle---------	85	\| Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Rock fragment content	10.95
		because of fines or thin layer				Clay 27 to 40 percent	10.98
75:							
Dixon--	85	\|Fair source		Poor source		Poor source	
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Hard to reclaim	10.00
		because of fines or thin layer		Bottom layer possible source	0.03	Rock fragment content	10.12
		Bottom layer possible source	0.25				
76:							
Dixon-----------	\| 85	\|Fair source		Poor source		Poor source	
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Hard to reclaim	10.00
		because of fines or thin		Bottom layer possible source\|	0.03	Rock fragment content	10.12
		layer				SAR 4 to 13	10.60
		Bottom layer possible source	0.25				
77:							
Dixon-----------	85	\|Fair source		Poor source		Poor source	
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Hard to reclaim	10.00
		because of fines or thin		Bottom layer possible source\|	0.03	Rock fragment content	10.12
		layer				EC 4 to $8 \mathrm{dS} / \mathrm{m}$	10.88
		Bottom layer possible source	0.25			Slope 8 to 12 percent	10.96

Table 12.--Construction Materials--Continued


Table 12.--Construction Materials--Continued

Map symbol and soil name	\| Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil			
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		
82 :									
Arcia-	25	Poor source		Poor source		\| Poor source			
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Clay >40 percent	10.00		
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Slope >15 percent	10.00		
		because of fines or thin				Rock fragment content	\|0.12		
						Depth to bedrock 20 to 40 inches	\| 0.16		
83:									
Drewsey--------	\| 85	\| Poor source		\| Poor source		Good source			
		Bottom layer not a source	0.00	Thickest layer not a source	10.00				
		Thickest layer not a source because of fines or thin layer	0.00	Bottom layer possible source	0.01				
84:									
Drewsey--------	\| 85	\| Poor source		\| Poor source		Fair source			
		Bottom layer not a source	10.00	Thickest layer not a source	10.00	Slope 8 to 12 percent	0.63		
		Thickest layer not a source because of fines or thin layer	0.00	Bottom layer possible source	0.01				
85:									
Drewsey-------	35					\|Fair source	0.63		
		\| Bottom layer not a source	10.00	Thickest layer not a source	10.00	Slope 8 to 12 percent			
		Thickest layer not a source because of fines or thin layer	0.00	Bottom layer possible source	0.01				
Torriorthents---	30	\| Poor source		\| Poor source		Poor source			
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00		
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	Slope >15 percent	10.00		
Gumble----------	\| 25	\| Poor source		\| Poor source		\|Poor source			
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00		
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Clay >40 percent	10.00		
		because of fines or thin				Rock fragment content	10.28		
		layer				Slope 8 to 12 percent	10.63		
86:									
Droval----------	85	\| Poor source		\| Poor source		Poor sourceClay $>40$ percent			
		Bottom layer not a source	0.00	Bottom layer not a source	0.00		10.00		
		Thickest layer not a source	0.00	\| Thickest layer not a source	0.00	Wetness at depth of <1 foot	0.00		
		because of fines or thin				SAR >13	10.00		
		layer				EC $>8 \mathrm{dS} / \mathrm{m}$	10.00		

Table 12.--Construction Materials--Continued

Map symbol and soil name	$\mid$ Pct.$\mid$ of\|map\|unit	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
87:	85	Poor source		\| Poor source		Fair source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Hard to reclaim	10.32
		because of fines or thin layer	0.00	Thickest layer not a source	10.00	Rock fragment content	10.97
88:							
Duff	45	Poor source		\| Poor source		Fair source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope 12 to 15 percent	10.16
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Hard to reclaim	10.32
		because of fines or thin layer				Rock fragment content	10.97
Clamp	40	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Rock fragment content	10.00
		because of fines or thin				Slope 12 to 15 percent	10.16
		layer				Clay 27 to 40 percent	10.98
89:							
Duff-----------	45	Poor source		\| Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Hard to reclaim	10.32
		because of fines or thin layer				Rock fragment content	0.97
Clamp----------	40	Poor source		\| Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Depth to bedrock <20 inches	0.00
		because of fines or thin				Rock fragment content	10.00
		layer				Clay 27 to 40 percent	10.98
90:							
Duff-----------	60	Poor source		\| Poor source		Fair source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Hard to reclaim	0.32
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Rock fragment content	0.97
Hackwood--------	25	Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer		Poor source		Poor source	
			10.00	Bottom layer not a source	10.00	Rock fragment content	10.00
			10.00	Thickest layer not a source	10.00	Slope >15 percent	10.00
						Hard to reclaim	10.08

Table 12.--Construction Materials--Continued

Map symbol and soil name	$\begin{aligned} & \text { \| Pct. } \\ & \text { \| of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
Edemaps--------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Clay >40 percent	0.00
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Depth to pan 20 to 40 inches	10.16
		because of fines or thin layer				Slope 12 to 15 percent	10.16
		layer				Rock fragment content	0.50
						Depth to bedrock 20 to 40 inches	0.52
92:							
Edemaps--------	45	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Clay >40 percent	0.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	Depth to pan 20 to 40 inches	10.16
						Rock fragment content	0.50
						Depth to bedrock 20 to 40 inches	0.52
Carryback------	40	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Clay >40 percent	0.00
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40 inches	0.22
		layer				Rock fragment content	0.72
$93:$							
Enko------------	85	Poor source		Fair source		Good source	
		Bottom layer not a source Thickest layer not a source	$\begin{aligned} & \mid 0.00 \\ & \mid 0.00 \end{aligned}$	Thickest layer possible source	10.03		
		because of fines or thin layer		Bottom layer possible source\|	0.10		
94:							
Enko------------		Poor source		$\mid$ Fair source		Good source	
	50	Bottom layer not a source	10.00	Thickest layer possible	0.03		
		Thickest layer not a source because of fines or thin	10.00	source			
				Bottom layer possible source	0.10		
Catlow---------	35	Poor source   Thickest layer not a source because of fines or thin layer   Bottom layer not a source		\|Fair source   Thickest layer possible   source   Bottom layer possible source	10.00	Poor source	
			0.00			\| Hard to reclaim	10.00
						Rock fragment content	
					0.64		$10.00$
			0.00				

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil		
	$\begin{aligned} & \text { \|map } \\ & \mid \text { unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
95:								
Enko------------	50	\| Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer	10.00 10.00	\|Fair source   Thickest layer possible   source   Bottom layer possible source	10.03	Fair source Slope 8 to 12 percent	10.63	
Catlow---------	35	Poor source		Fair source		Poor source		
		Thickest layer not a source because of fines or thin	10.00	Thickest layer possible source	10.00	Hard to reclaim   Rock fragment content	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	
		layer   Bottom layer not a source	10.00	Bottom layer possible source	0.64	Slope 8 to 12 percent	0.63	
96:								
Enko-----------	50	Poor source		Fair source		Good source		
		Bottom layer not a source Thickest layer not a source	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	Thickest layer possible source	10.03			
		because of fines or thin layer		Bottom layer possible source\|	0.10			
Catlow---------	35	Poor source		Poor source		\| Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Hard to reclaim	0.00	
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Rock fragment content	0.00	
		because of fines or thin layer				Slope 12 to 15 percent	0.16	
97:								
Erakatak--------	85	Poor source		Poor source		Poor source		
		Thickest layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	0.00	
		because of fines or thin		Thickest layer not a source	10.00	Clay >40 percent	0.00	
		layer				Rock fragment content	0.00	
		Bottom layer not a source	10.00			Depth to bedrock 20 to 40 inches	0.28	
98:								
Erakatak-------	40	Poor source		Poor source		Poor source		
		Thickest layer not a source	10.00	Bottom layer not a source Thickest layer not a source	10.00	Slope >15 percent	0.00	
		because of fines or thin			10.00	Clay >40 percent	0.00	
		layer				Rock fragment content	0.00	
		Bottom layer not a source	10.00			Depth to bedrock 20 to 40 inches	0.28	

Table 12.--Construction Materials--Continued


Table 12.--Construction Materials--Continued

Map symbol and soil name	Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \mid \text { map } \\ & \mid \text { unit } \mid \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
101:							
Ninemile-------	30	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	10.00
		Thickest layer not a source	10.00	Thickest layer not a source	10.00	Depth to bedrock <20 inches	0.00
						Slope >15 percent	10.00
		layer				Rock fragment content	10.50
Hapgood---------	25	Poor source		\| Poor source		\| Poor source	
		Bottom layer not a source Thickest layer not a source because of fines or thin	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
			10.00	Thickest layer not a source	0.00	Rock fragment content	10.00
		because of fines or thin layer				Hard to reclaim	10.02
		layer					
102:							
Felcher---------	85	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source because of fines or thin	10.00	Thickest layer not a source	0.00	Rock fragment content	10.00
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	10.12
103:							
Felcher--------	65	Poor source		\| Poor source		\| Poor source	
		Bottom layer not a source Thickest layer not a source	10.00	Bottom layer not a source	10.00	\| Slope >15 percent	10.00
			10.00	Thickest layer not a source	0.00	Rock fragment content	10.00 10.12
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	0.12
Rock outcrop------- \|	20	Not rated		Not rated		\| Not rated	
104:							
Felcher--------	35	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a sourceThickest layer not a source	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Slope >15 percent	10.00
		Thickest layer not a source	10.00			Rock fragment content	10.00
		because of fines or thinlayer		Thickest layer not a source		Depth to bedrock 20 to 40 inches	10.12
Rock outcrop-------	30	Not rated		Not rated		Not rated	
Brezniak--------	25	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source because of fines or thin layer	0.00		10.00	Depth to bedrock <20 inches Clay >40 percent	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$

Table 12.--Construction Materials--Continued

Map symbol and soil name	$\mid$ Pct.$\mid$ of\|map$\mid$ unit	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil		
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value	Rating class and limiting features	\|value
105:								
Felcher--------	35	Poor source		\| Poor source		Poor source		
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Slope >15 percent	0.00	
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Rock fragment content	10.00	
		because of fines or thinlayer				Depth to bedrock 20 to 40 inches	0.12	
Rock outcrop-----	30	Not rated		Not rated		Not rated		
Westbutte-------	25	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	0.00	
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Rock fragment content	10.00	
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	10.22	
106:								
Felcher--------	45	Poor source		Poor source		Poor source		
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Rock fragment content	0.00	
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Slope >15 percent	10.00	
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	\| 0.12	
Sagehen--------	40	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00	
		Thickest layer not a source	0.00		0.00	Slope >15 percent	0.00	
						Rock fragment content	0.50	
		because of fines or thin layer				Clay 27 to 40 percent	10.98	
107:								
Felcher	45	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	0.00	
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Rock fragment content Depth to bedrock 20 to 40 inches	10.00	
							\| 0.12	
Sagehen---------	40	\|Poor source ${ }^{\text {Bottom layer not a source }}$		Poor source		Poor source		
			10.00	Bottom layer not a source	0.00	Slope >15 percent	0.00	
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00	
		because of fines or thin				Rock fragment content	0.12	
		layer				Clay 27 to 40 percent	10.98	
108:								
Felcher--------	40	Poor source		Poor source		Poor source		
		Bottom layer not a source Thickest layer not a source because of fines or thin layer	10.00	Bottom layer not a source Thickest layer not a source	$\left\lvert\, \begin{aligned} & 0.00 \\ & 10.00 \end{aligned}\right.$	Slope >15 percent   Rock fragment content   Depth to bedrock 20 to 40 inches	$\begin{aligned} & \mid 0.00 \\ & \mid 0.00 \\ & \mid 0.12 \end{aligned}$	
			0.00					

Table 12.--Construction Materials--Continued


Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	map unit	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
111:Final	85	Poor source		\| Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	SAR >13	10.00
			0.00	Thickest layer not a source	0.00	EC $>8 \mathrm{ds} / \mathrm{m}$	10.00
		because of fines or thin layer				Wetness at depth of 1 to 3 feet	10.29
						Clay 27 to 40 percent	10.76
112 :							
Fitzwater------	45	Poor source		\| Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Hard to reclaim	10.00
		because of fines or thin layer				Rock fragment content	10.00
Hapgood, thick surface							
	30	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Rock fragment content	10.00
		because of fines or thin layer				Hard to reclaim	10.02
Hapgood, thin surface-----							
	15	Poor source		\| Poor source		\|Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source Thickest layer not a source	0.00	Slope >15 percent	10.00
		Thickest layer not a source because of fines or thin layer	0.00		0.00	Rock fragment content	10.00
						Hard to reclaim	10.02
$113:$							
Fitzwater------	60	\|Poor source		\| Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00	Hard to reclaim   Rock fragment content	10.00
							0.00
Rock outcrop-------	25	Not rated		\| Not rated		\| Not rated	
114 :							
Flank----------	50	\|Fair source		\|Poor source		Poor source	
		Thickest layer not a source	0.00	\| Thickest layer not a source	0.00	Rock fragment content	0.000.00
		because of fines or thin layer		Bottom layer possible source	0.02	Depth to bedrock <20 inches	
		Bottom layer possible source	0.19				
Lava flows-------	35	\| Not rated		\| Not rated		\| Not rated	

Table 12.--Construction Materials--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { Pof } \\ & \text { omap } \\ & \text { \|unit } \end{aligned}$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
Fourwheel-------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	10.00
		Thickest layer not a source because of fines or thin	10.00	Thickest layer not a source	10.00	Depth to bedrock 20 to 40 inches	10.12
		layer				Rock fragment content	10.88
116 :							
Fourwheel	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a sourceThickest layer not a source	$\left\lvert\, \begin{aligned} & 0.00 \\ & 10.00 \end{aligned}\right.$	Slope >15 percent	10.00
		Thickest layer not a source	10.00			Clay >40 percent	10.00
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	10.12
						Rock fragment content	10.88
117 :							
Freznik--------	85	Poor source		Poor source		Fair source	
		Bottom layer not a source	10.00	\| Bottom layer not a source	10.00	Clay 27 to 40 percent	10.12
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40 inches	10.78
						Slope 8 to 12 percent	10.96
						Rock fragment content	10.97
118 :							
Fury-----------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Wetness at depth of <1 foot\|	0.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	10.00	SAR 4 to 13	10.60
119:							
Fury------------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Wetness at depth of <1 foot\|	0.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	10.00	SAR 4 to 13	0.60
120:							
Fury-	55	\| Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Wetness at depth of <1 foot	0.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	10.00	SAR 4 to 13	0.60

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|value
120:Degarmo	30	Poor source		Poor source		Poor source	
		Bottom layer not a source Thickest layer not a source	10.00	Thickest layer not a source	10.00	Hard to reclaim	0.00
			0.00	Bottom layer possible source\|	0.03	Clay >40 percent	0.00
		because of fines or thin layer				Wetness at depth of 1 to 3 feet	10.29
121:							
Fury------------	50	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00		0.00	Wetness at depth of <1 foot	0.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00	SAR 4 to 13	10.60
Housefield-----	35	Poor source		Poor source		Poor source	0.00
		Bottom layer not a source	0.00	Bottom layer not a source Thickest layer not a source	0.00	Wetness at depth of <1 foot	
		Thickest layer not a source because of fines or thin layer	0.00		10.00		
122:							
Fury-	40	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Wetness at depth of <1 foot	0.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00	SAR 4 to 13 \|0.	10.60
Housefield-----	30	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Wetness at depth of <1 foot	0.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00		
Skidoosprings--	15	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Thickest layer not a source Bottom layer possible source	0.000.06	Wetness at depth of <1 foot\|0.0.	0.00
		Thickest layer not a source because of fines or thin layer	0.00			SAR >13	10.00
						EC 4 to $8 \mathrm{dS} / \mathrm{m}$	10.50
123:							
Fury	55	Poor source		Poor source		Poor source	
				Bottom layer not a source	10.00	Wetness at depth of <1 foot	10.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	SAR 4 to 13	0.60

Table 12.--Construction Materials--Continued

Map symbol and soil name	Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \mid \text { unit } \mid \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Wetness at depth of <1 foot	0.00
		Thickest layer not a source	10.00	Thickest layer not a source	10.00	EC $>8 \mathrm{dS} / \mathrm{m}$	10.00
		because of fines or thin				SAR 4 to 13	10.60
		layer				Hard to reclaim	10.68
124:							
Fury-----------	35	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Wetness at depth of <1 foot\|	0.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	SAR 4 to 13	10.60
Skidoosprings---	25	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Thickest layer not a source	0.00	Wetness at depth of <1 foot\|	0.00
		Thickest layer not a source	0.00	Bottom layer possible source\|	0.06	SAR >13	10.00
		because of fines or thin layer				EC 4 to $8 \mathrm{dS} / \mathrm{m}$	10.50
Opie-----------	20	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Wetness at depth of <1 foot\|	0.00
		Thickest layer not a source	10.00	Thickest layer not a source	10.00	EC $>8 \mathrm{dS} / \mathrm{m}$	10.00
		because of fines or thin				SAR 4 to 13	10.60
		layer				Hard to reclaim	10.68
125:							
Fury-	45	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Wetness at depth of <1 foot	0.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	SAR 4 to 13	10.60
Widowspring-----	40	Poor source		Poor source		Good source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00		
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	10.00		
126:							
Gaib-----------	85	Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer		Poor source		Poor source	
			10.00	Bottom layer not a source	10.00	\| Depth to bedrock <20 inches	0.00
			10.00	Thickest layer not a source	10.00	Rock fragment content	10.00
						Slope 8 to 12 percent	10.63

Table 12.--Construction Materials--Continued


Table 12.--Construction Materials--Continued


Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil					
	map unit	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value				
$\begin{aligned} & \text { 136: } \\ & \text { Cagle } \end{aligned}$	25	Poor source		Poor source		Poor source					
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Slope >15 percent	10.00				
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	0.00	Clay >40 percent	10.00				
						Rock fragment content	0.12				
		layer				Depth to bedrock 20 to 40 inches	10.82				
137:											
Hackwood-------	85	Poor source		Poor source		Poor source					
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Slope >15 percent	10.00				
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Rock fragment content	10.00				
		because of fines or thin layer				Hard to reclaim	10.08				
138:											
Hackwood-------	50	Poor source		Poor source		Poor source					
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Slope >15 percent	10.00				
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	10.00	Rock fragment content Hard to reclaim	10.00				
						Hard to reclaim	10.08				
Baconcamp------	35	\| Poor source		Poor source		\| Poor source					
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	10.00				
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Rock fragment content	10.00				
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	10.78				
139:											
Hapgood--------	85	Poor source		Poor source		Poor source					
		Bottom layer not a source Thickest layer not a source because of fines or thin layer	10.00	Bottom layer not a source	10.00	Rock fragment content	10.00				
			10.00	Thickest layer not a source	10.00	Hard to reclaim	10.02				
140:											
Hart Camp------	85	Poor source		\| Poor source		\| Poor source					
		Bottom layer not a source Thickest layer not a source	10.00	Bottom layer not a sourceThickest layer not a source	0.00	\| Rock fragment content	10.00				
			10.00		10.00	Depth to bedrock <20 inches Slope 8 to 12 percent	0.00				
		Thickest layer not a source because of fines or thin layer		Thickest layer not a source			10.84				
141:											
Hart Camp------	85	\| Poor source		Poor source		\| Poor source					
		Bottom layer not a source Thickest layer not a source because of fines or thin layer	0.00	Bottom layer not a source Thickest layer not a source	$\begin{aligned} & 0.00 \\ & \mid 0.00 \end{aligned}$	Slope >15 percent   Rock fragment content   Depth to bedrock <20 inches	10.00				
			0.00				10.00				
							0.00				

Table 12.--Construction Materials--Continued

Map symbol and soil name	$\begin{aligned} & \text { \| Pct. } \\ & \mid \text { of } \\ & \text { omap } \\ & \text { \|unit } \end{aligned}$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|value
142:							
Helphenstein-	50	\| Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	\| Poor source Bottom layer not a source Thickest layer not a source	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Poor source   Wetness at depth of <1 foot SAR >13   EC 4 to $8 \mathrm{dS} / \mathrm{m}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.88 \end{aligned}$
Goldrun-	35	\| Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer	10.00 10.00	\| Poor source   Bottom layer not a source Thickest layer possible source	$\begin{array}{r} 0.00 \\ 0.03 \end{array}$	\|Fair source   Sand fractions 75 to 85 percent   Slope 8 to 12 percent	0.20 0.96
$143:$							
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Wetness at depth of <1 foot\|	0.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	SAR 4 to 13   EC 4 to $8 \mathrm{dS} / \mathrm{m}$	$\begin{aligned} & 0.22 \\ & 0.88 \end{aligned}$
144:							
Housefield-	85	$\mid$ Poor source		\| Poor source		Poor source	
		Bottom layer not a source Thickest layer not a source because of fines or thin layer	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	Bottom layer not a source Thickest layer not a source	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Wetness at depth of <1 foot	0.00
145:							
Housefield-	45	\| Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer	$\begin{aligned} & 0.00 \\ & 10.00 \end{aligned}$	\| Poor source Bottom layer not a source Thickest layer not a source	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Poor source   Wetness at depth of <1 foot	0.00
Doubleo-	40	\| Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer	10.00	\|Poor source   Bottom layer not a source Thickest layer possible source	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Poor source   Wetness at depth of 1 to 3 feet	0.04
146:							
		Bottom layer not a source Thickest layer not a source because of fines or thin layer	10.00 0.00	Bottom layer not a source Thickest layer not a source	0.00 0.00	$\begin{aligned} & \text { SAR }>13 \\ & \mathrm{EC}>8 \mathrm{dS} / \mathrm{m} \end{aligned}$	$\begin{aligned} & \mid 0.00 \\ & \mid 0.00 \end{aligned}$
Playas--------	25	\| Not rated		\| Not rated		Not rated	

Table 12.--Construction Materials--Continued

Map symbol and soil name	Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	map   unit	Rating class and limiting features	\|value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
147:							
Icene--------	60	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	SAR >13	10.00
		Thickest layer not a source because of fines or thin	10.00	Thickest layer not a source	10.00	EC $>8 \mathrm{dS} / \mathrm{m}$	10.00
Playas-	25	Not rated		Not rated		Not rated	
148 :							
Jesse Camp	85	Poor source		Poor source		Good source	
		Bottom layer not a source	10.00	Thickest layer not a source Bottom layer possible source	0.00	EC 4 to $8 \mathrm{dS} / \mathrm{m}$	0.88
		Thickest layer not a source because of fines or thin layer	10.00	Bottom layer possible source	0.04		
149:							
Jimgreen-------	90	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	10.00	Wetness at depth of <1 foot	0.00
		Thickest layer not a source because of fines or thin layer	10.00		0.00	Organic matter content >30 percent	0.00
150:							
Jimgreen	50	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Wetness at depth of <1 foot	0.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Organic matter content >30 percent	10.00
Housefield-----	35	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Wetness at depth of <1 foot	0.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	10.00		
151:							
Kegler-	85	Poor source		Poor source		Good source	
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	10.00	Depth to pan 20 to 40 inches	10.97
		Thickest layer not a source because of fines or thin layer	10.00		0.00		

Table 12.--Construction Materials--Continued


Table 12.--Construction Materials--Continued


Table 12.--Construction Materials--Continued

Map symbol and soil name	$\begin{array}{\|l\|} \mid \text { Pct. } \\ \mid \text { of } \\ \mid \text { map } \\ \mid \text { unit } \end{array}$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil		
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	
159:								
Hackwood-------	20	Poor source		Poor source		\| Poor source		
		Bottom layer not a sourceThickest layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00	
			10.00	Thickest layer not a source	10.00	Rock fragment content	10.00	
		because of fines or thin				Hard to reclaim	10.08	
160:								
Ladycomb-------	85	Poor source		Poor source		Poor source		
		Bottom layer not a source Thickest layer not a source	10.00	Bottom layer not a source	10.00	Depth to bedrock $<20$ inches	0.00	
			10.00	Thickest layer not a source	0.00	Slope >15 percent	10.00	
		because of fines or thin layer				Rock fragment content	10.72	
161:								
Lambranch------	85	Poor source		Poor source		Poor source		
		Bottom layer not a source Thickest layer not a source	10.00	Bottom layer not a source	10.00	Rock fragment content	10.00	
		because of fines or thin		Thickest layer not a source	0.00	Hard to reclaim	0.00	
162:								
Lambring--------	40	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00	
		Thickest layer not a source	10.00	Thickest layer not a source	10.00	Rock fragment content	10.00	
		because of fines or thin layer				Hard to reclaim	10.00	
Egyptcreek-----	30	$\left.\begin{aligned} & \text { Poor source } \\ & \text { Bottom layer not a source }\end{aligned} \right\rvert\, 0.00$		\| Poor source		\| Poor source		
				Bottom layer not a source	10.00	Slope >15 percent	10.00	
		Thickest layer not a source because of fines or thin layer	10.00		Thickest layer not a source	0.00	Rock fragment content Depth to bedrock 20 to 40 inches	10.00
				10.22				
Rock outcrop-------	15	Not rated		\| Not rated		\| Not rated		
163 :								
Lambring, thick surface-								
	40	Poor source		Poor source		\| Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00	
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	10.00	Rock fragment content	10.00	
						Hard to reclaim	10.00	

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{array}{\|l\|} \mid \text { map } \\ \mid \text { unit } \end{array}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
163 :							
Lambring, thin surface-	30	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Rock fragment content Hard to reclaim	10.00
		because of fines or thin layer					10.00
Rock outcrop-------	15	Not rated		Not rated		Not rated	
164:							
Lambring-------	50	\|Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
		Thickest layer not a source because of fines or thin	10.00	Thickest layer not a source	10.00	Rock fragment content Hard to reclaim	10.00
						Hard to reclaim	10.00
Rubble land-	35	Not rated		\| Not rated		\| Not rated	
165 :							
Langslet--------	85	Poor source		\|Poor source		Poor source	
		Bottom layer not a source	10.00	\| Bottom layer not a source	0.00	Clay >40 percent	10.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Wetness at depth of 1 to 3 feet	10.89
166:							
Lava flows-	85	Not rated		\| Not rated		Not rated	
167:							
Lava flows---------\|	55	Not rated		Not rated		Not rated	
Flank----------	30	\|Fair source		\| Poor source		Poor source	
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Rock fragment content	10.00
		because of fines or thin layer		Bottom layer possible source\|	0.02	Depth to bedrock <20 inches	0.00
		Bottom layer possible source	0.19				
168:							
Lawen-----------	85	\| Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer		\|Poor source   Bottom layer possible source Thickest layer possible source		Good source Sand fractions <75 percent or null	
			10.00		0.01		1.00
			10.00		0.01		

Table 12.--Construction Materials--Continued

Map symbol and soil name	$\begin{aligned} & \text { \|Pct. } \\ & \mid \text { of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil							
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value						
169 :													
Leathers-------	85	Poor source		\| Good source		Poor source							
		Bottom layer not a sourceThickest layer not a source	10.00	Thickest layer possible	10.07	SAR >13	10.00						
			0.00	source		EC $>8 \mathrm{dS} / \mathrm{m}$	10.00						
		because of fines or thin		Bottom layer possible source	0.82								
170:													
Leathers-------	85	Poor source		Good source		Poor source							
		Bottom layer not a source	0.00	Thickest layer possiblesource	10.07	SAR >13	10.00						
		Thickest layer not a source	0.00			EC $>8 \mathrm{dS} / \mathrm{m}$	0.00						
		because of fines or thin layer		Bottom layer possible source	0.82								
171:													
Leemorris-------	50	Poor source		Poor source		Poor source							
		Thickest layer not a source	0.00	Bottom layer not a source	10.00	Rock fragment content	10.00						
			0.00	Thickest layer not a source	10.00	Clay 27 to 40 percent	10.50						
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	10.52						
						Slope 8 to 12 percent	10.96						
Buckwilder------	35	Poor source		Poor source		Poor source							
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	10.00						
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	10.00	Depth to bedrock 20 to 40 inches	10.38						
		layer				Rock fragment content	10.88						
						Slope 8 to 12 percent	10.96						
172:													
Leemorris------	50	Poor source		Poor source	10.00	Poor source							
		Bottom layer not a source	10.00	Bottom layer not a source		Slope >15 percent	0.00						
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	Rock fragment content	10.00						
						Clay 27 to 40 percent	10.50						
						Depth to bedrock 20 to 40 inches	0.52						
Buckwilder------	35	Poor source		Poor source		Poor source							
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	10.00	Slope >15 percent	0.00						
		Thickest layer not a source because of fines or thin layer	0.00		10.00	Clay >40 percent	10.00						
						Depth to bedrock 20 to 40 inches	10.38						
						Rock fragment content	0.88						

Table 12.--Construction Materials--Continued


Table 12.--Construction Materials--Continued

Map symbol and soil name	Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \mid \text { unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
178:							
Lonely---------	50	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40 inches	10.22
		layer				Rock fragment content	10.50
						Clay 27 to 40 percent	10.98
Robson----------	35	Poor source		Poor source	10.00	Poor source	
		Thickest layer not a source because of fines or thin layer	0.00	Bottom layer not a source		Clay >40 percent	10.00
				Thickest layer not a source	10.00	Rock fragment content	10.00
						Depth to bedrock <20 inches	0.00
		Bottom layer not a source	0.00			Slope 8 to 12 percent	10.84
179:							
Longcreek------	45	Poor source		Poor source		\| Poor source	
		Thickest layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
			0.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00
		because of fines or thin				Clay >40 percent	10.00
		layer				Rock fragment content	10.00
Cleavage	40	Poor source		Poor source		Poor source	
		Thickest layer not a source	0.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
		because of fines or thin		Thickest layer not a source	0.00	Rock fragment content	10.00
		layer				Depth to bedrock <20 inches\|	0.00
		Bottom layer not a source	0.00				
180:							
Longcreek------	75	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Depth to bedrock <20 inches	10.00
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	0.00		0.00
						Clay >40 percent	10.00
		layer				Rock fragment content	10.00
Rock outcrop--	10	Not rated		Not rated		Not rated	
181:							
Loupence-	85	Poor source		Poor source	10.00	Good source	
		Bottom layer not a source	10.00				
		Thickest layer not a source because of fines or thin layer	0.00	Bottom layer possible source	0.04		

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \mid \text { unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
182:							
Madeline-------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	0.00
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Depth to bedrock <20 inches	0.00
		because of fines or thinlayer				Clay >40 percent	10.00
						Rock fragment content	10.68
183 :							
Madeline--------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source Thickest layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
			0.00	Thickest layer not a source	10.00	Depth to bedrock <20 inches	0.00
		because of fines or thinlayer				Clay >40 percent	0.00
						Rock fragment content	10.68
184:							
Madeline-------	45	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Depth to bedrock <20 inches	0.00
		because of fines or thinlayer				Clay >40 percent	10.00
						Rock fragment content	10.68
Ninemile	40	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Clay >40 percent	0.00
		because of fines or thin				Depth to bedrock <20 inches	0.00
		layer				Rock fragment content	10.50
185:							
Madeline--------	65	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00
		because of fines or thin				Clay >40 percent	10.00
		layer				Rock fragment content	10.68
Rock outcrop-	20	\| Not rated		\| Not rated		Not rated	
$186:$							
Mahoon----------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source Thickest layer not a source because of fines or thin layer	0.00	Bottom layer not a source Thickest layer not a source	$\begin{array}{r} 0.00 \\ 10.00 \end{array}$	Clay >40 percent	10.00
			0.00			Rock fragment content	10.28
						Depth to bedrock 20 to 40 inches	10.28
						Slope 8 to 12 percent	10.63

Table 12.--Construction Materials--Continued

Map symbol and soil name	Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \mid \text { unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
187:							
Mahoon----------	40	Poor source		Poor source		Poor source	
		Bottom layer not a sourceThickest layer not a source	0.00	Bottom layer not a source	10.00	Clay >40 percent	10.00
			0.00	Thickest layer not a source	0.00	Rock fragment content	10.28
		layer				Depth to bedrock 20 to 40 inches	10.28
						Slope 8 to 12 percent	10.63
Brezniak--------	25	Poor source		Poor source		Poor source	
		Bottom layer not a source Thickest layer not a source	0.00	Bottom layer not a source	0.00	Depth to bedrock <20 inches	0.00
			0.00	Thickest layer not a source	0.00	Clay >40 percent	10.00
		because of fines or thin				Slope 8 to 12 percent	10.63
Longcreek	20	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a sourceThickest layer not a source	0.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source because of fines or thin layer	0.00		0.00	Clay >40 percent	10.00
						Rock fragment content	10.00
						Slope 8 to 12 percent	10.63
188:							
Mahoon----------	65	Poor source		Poor source		Poor source	
		Bottom layer not a source   Thickest layer not a source	0.00	Bottom layer not a source	0.00	Clay >40 percent	10.00
			0.00	Thickest layer not a source	0.00	Slope >15 percent	10.00
		because of fines or thinlayer				Rock fragment content	10.28
		layer				Depth to bedrock 20 to 40 inches	10.28
Cagle----------	20	Poor sourceBottom layer not a source		Poor source		Poor source	
				Bottom layer not a source	0.00	Slope >15 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Clay >40 percent	0.00
		because of fines or thin				Rock fragment content	0.12
		layer				Depth to bedrock 20 to 40	10.82
						inches	
189 :							
Mahoon	50	Poor source   Bottom layer not a source Thickest layer not a source because of fines or thin layer		Poor source   Bottom layer not a source		Poor source	
			0.00		10.0010.00	Clay >40 percent	10.00
			0.00	Bottom layer not a source Thickest layer not a source		Rock fragment content   Depth to bedrock 20 to 40 inches   Slope 8 to 12 percent	10.28
							10.28
							10.63

Table 12.--Construction Materials--Continued

Map symbol and soil name	Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil		
	$\begin{aligned} & \text { \|map } \\ & \mid \text { unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
189 :								
Risley----------	35	Poor source		Poor source		Poor source		
		Bottom layer not a source   Thickest layer not a source	0.00	Bottom layer not a source	0.00	Clay >40 percent	10.00	
			0.00	Thickest layer not a source	0.00	Slope 8 to 12 percent	10.63	
		because of fines or thin				Rock fragment content	10.88	
		layer				Depth to bedrock 20 to 40 inches	10.98	
190:								
Mahoon----------	50	Poor source		Poor source		\| Poor source		
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Slope >15 percent	10.00	
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Clay >40 percent	10.00	
						Rock fragment content	10.28	
						Depth to bedrock 20 to 40 inches	10.28	
Cotant---------	35	Poor source		Poor source		Poor source		
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Slope >15 percent	10.00	
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Clay >40 percent	10.00	
		because of fines or thin				Depth to bedrock <20 inches	0.00	
		layer				Rock fragment content	10.97	
191:								
Mcbain----------	45	Poor source		Poor source		Poor source		
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	SAR >13	10.00	
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	EC 4 to $8 \mathrm{dS} / \mathrm{m}$	10.50	
		because of fines or thin layer				Calcium carbonates 15 to 40 percent	0.80	
Ausmus----------	40	Poor source		\|Poor source		Poor source		
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	SAR >13	10.00	
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00	EC $>8 \mathrm{dS} / \mathrm{m}$	10.00	
192 :								
McConnel-------	85	\|Poor source		Fair source	0.03	Poor source		
		```Thickest layer not a source because of fines or thin layer Bottom layer not a source```	10.00	Thickest layer possible source   Bottom layer possible source		Hard to reclaim   Rock fragment content	10.00	
							10.00	
					0.08	Sand fractions 75 to 85 percent	10.25	
			0.00					

Table 12.--Construction Materials--Continued

Table 12.--Construction Materials--Continued

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct. \mid	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
Observation-	35	\| Poor source		Poor source		\| Poor source	
		Bottom layer not a source Thickest layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	0.00
			10.00	Thickest layer not a source	10.00	Depth to bedrock 20 to 40 inches	10.16
		because of fines or thin layer				Rock fragment content	10.50
						Slope 8 to 12 percent	0.63
200:							
Merlin----------	60	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	0.00
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	0.00	Rock fragment content	10.00
		because of fines or thin layer				Depth to bedrock <20 inches	0.00
Observation-----	30	Poor source		Poor source		Poor source	
		Thickest layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	0.00
				Thickest layer not a source	10.00	Clay >40 percent	10.00
		because of fines or thinlayer				Depth to bedrock 20 to 40 inches	10.16
						Rock fragment content	0.50
201:							
Merlin----------	70	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	\| Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Rock fragment content Slope 8 to 12 percent	10.02
		because of fines or thin layer				Slope 8 to 12 percent	0.96
Rubble land-------	15	Not rated		Not rated		Not rated	
202:							
Merlin----------	55	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	0.000.00	Depth to bedrock <20 inches Slope 8 to 12 percent	0.00
		Thickest layer not a source	10.00				0.00
		because of fines or thin layer				Slope 8 to 12 percent	10.96
Teguro---------	30	Poor source		Poor source		Poor source	0.00
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	Depth to bedrock <20 inches Rock fragment content Slope 8 to 12 percent	
		Thickest layer not a source because of fines or thin layer	10.00				10.00
							10.96

Table 12.--Construction Materials--Continued

Table 12.--Construction Materials--Continued

Map symbol and soil name	Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil						
	map unit	Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value					
207:												
Middlebox--------	85	Poor source		Poor source		Poor source						
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Rock fragment content	0.00					
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Slope 12 to 15 percent	0.16					
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	0.78					
208:												
Middlebox, north												
slopes----------	60	Poor source		Poor source		Poor source						
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	0.00					
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	10.00	Rock fragment content Depth to bedrock 20 to 40 inches	0.00					
							0.78					
Middlebox, south slopes	30	Poor source		Poor source		Poor source						
		Bottom layer not a source	0.00	Bottom layer not a source Thickest layer not a source	10.00	Slope >15 percent	10.00					
		Thickest layer not a source because of fines or thin layer	0.00		10.00	Rock fragment content	0.00					
						Depth to bedrock 20 to 40 inches	0.78					
209:												
Minam	85	Poor source		Poor source		Fair source						
		Bottom layer not a source	0.00	Thickest layer not a source	10.00	Hard to reclaim	0.68					
		Thickest layer not a source because of fines or thin layer	0.00	Bottom layer possible source\|	0.04	Rock fragment content	0.72					
210:												
Minam------------	60	Poor source		Poor source		Fair source						
		Bottom layer not a source	0.00	Thickest layer not a source Bottom layer possible source	10.00	Hard to reclaim	0.68					
		Thickest layer not a source because of fines or thin layer	0.00	Bottom layer possible source	0.04	Rock fragment content	0.72					
Welch-----------	25	Poor source		Poor source		Poor source						
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Wetness at depth of <1 foot	0.00					
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Rock fragment content \|0,	0.97					
		because of fines or thin layer										
211:												
Modoc-	85	Fair source Thickest layer not a source because of fines or thin layer Bottom layer possible source		Poor source		Fair source						
			0.00	Thickest layer not a source Bottom layer possible source\|		Depth to pan 20 to 40 inches Slope 8 to 12 percent	0.16					
							0.96					
			0.38			Rock fragment content	10.97					

Table 12.--Construction Materials--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { Pof } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil						
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value					
212:Morfitt-------------	85			Poor source								
		\| Poor source				Good source						
Morfitt-----------		Bottom layer not a source	10.00	Bottom layer not a source	10.00							
		Thickest layer not a source	10.00	Thickest layer not a source	10.00							
		because of fines or thin										
		layer										
213:												
Morganhills--------	85	Poor source		Poor source		Poor source	0.00					
		Bottom layer not a source	10.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches						
		Thickest layer not a source	10.00	Bottom layer possible source	0.04	Rock fragment content	10.72					
		because of fines or thin layer										
214:												
Morganhills, more												
than 12 percent slopes												
	50	Poor source		Poor source		Poor source	0.00					
		\| Bottom layer not a source	10.00	Thickest layer not a source Bottom layer possible source								
		Thickest layer not a source	10.00		10.04	Slope >15 percent Rock fragment content	10.00					
		because of fines or thin layer					10.72					
Morganhills, less than 12 percent	40											
slopes-		\|Poor source		Poor source	$\begin{array}{\|l} \mid 0.00 \\ \mid 0.04 \end{array}$	Poor source	0.00					
		Bottom layer not a source	10.00	Thickest layer not a source Bottom layer possible source		Depth to bedrock <20 inches Rock fragment content						
		Thickest layer not a source because of fines or thin layer	10.00		10.04	Rock fragment content	0.72					
215:	85	Poor source		Poor source		Poor source						
Mound--------------							0.00					
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	10.00	Clay >40 percent						
		Thickest layer not a source	10.00		0.00	Rock fragment content Hard to reclaim	10.00					
		because of fines or thin					10.24					
		layer				Slope 8 to 12 percent	10.63					
216:												
Nevador-----------	85	\| Poor source		Poor source	0.02	Good source						
		Bottom layer not a source	10.00	Thickest layer possible source		Hard to reclaimRock fragment content						
		Thickest layer not a source	10.00				$\begin{aligned} & 0.82 \\ & 0.97 \end{aligned}$					
		because of fines or thin layer		Bottom layer possible source	0.03	Rock fragment content						

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct. \mid	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \mid \text { map } \\ & \mid \text { unit } \mid \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
217:							
Ninemile	85	\| Poor source		\| Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	0.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00
		because of fines or thin layer				Rock fragment content	0.50
218:							
Ninemile------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Clay >40 percent	0.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00
		because of fines or thin				Slope >15 percent	0.00
		layer				Rock fragment content	0.50
219:							
Ninemile--------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Clay >40 percent	0.00
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Depth to bedrock <20 inches	0.00
		because of fines or thin				Rock fragment content	0.50
		layer				Slope 8 to 12 percent	0.84
220:							
Ninemile--------	55	Poor source		\| Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	0.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00
		because of fines or thin layer				Rock fragment content	0.50
Carvix---------	30	\| Poor source		\| Poor source		Good source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00		
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	10.00		
221:							
Ninemile--------	60	\| Poor source		\| Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	0.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00
		because of fines or thin				Rock fragment content	0.50
		layer				Slope 8 to 12 percent	0.63
Doyn-----------	25	\| Poor source		Poor source		Poor source	
		\| Bottom layer not a source	10.00	\| Bottom layer not a source	10.00	\| Depth to bedrock <20 inches	0.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Slope 8 to 12 percent	0.63
		because of fines or thin layer				Rock fragment content	0.72

Table 12.--Construction Materials--Continued

Table 12.--Construction Materials--Continued

Map symbol and soil name	$\begin{aligned} & \text { \|Pct. } \\ & \text { \| of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
Reluctan-----	30	Poor source		Poor source		Fair source	0.32
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Depth to bedrock 20 to 40	
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	inches	
		because of fines or thin layer				Rock fragment content	0.72
226:							
Ninemile-------	50	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	10.00
		Thickest layer not a source	10.00	Thickest layer not a source	10.00	Depth to bedrock <20 inches	0.00
		because of fines or thin				Slope >15 percent Rock fragment content	10.00
		layer					10.50
Reluctan--------	20	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40 inches	0.32
						Rock fragment content	0.72
Rubble land--------	15	Not rated		Not rated		Not rated	
227:							
Ninemile-------	70	Poor source		\| Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Clay >40 percent	0.00
		because of fines or thinlayer				Depth to bedrock <20 inches	0.00
						Rock fragment content	0.50
Rock outcrop-------	15	Not rated		Not rated		Not rated	
228:							
Ninemile-------	65	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	10.00
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches Slope 12 to 15 percent	0.00
							10.16
		layer				Rock fragment content	0.50
Rubble land------- \|	20	Not rated		Not rated		Not rated	
229 :							
Ninemile--------	60	Poor source		Poor source		Poor source	
		Bottom layer not a source Thickest layer not a source because of fines or thin layer	10.00	Bottom layer not a source Thickest layer not a source	10.00	Clay >40 percent Depth to bedrock <20 inches Rock fragment content Slope 8 to 12 percent	10.00
			0.00		10.00		$\begin{aligned} & \mid 0.00 \\ & \mid 0.50 \\ & \mid 0.96 \end{aligned}$

Table 12.--Construction Materials--Continued

Table 12.--Construction Materials--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { Pof } \\ & \text { omap } \\ & \text { \|unit } \end{aligned}$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
232:							
Ninemile--------	70	Poor source		Poor source		Poor source	
		Bottom layer not a sourceThickest layer not a source	0.00	Bottom layer not a source	10.00	Clay >40 percent	10.00
			0.00	Thickest layer not a source	10.00	Depth to bedrock <20 inches	0.00
		because of fines or thin				Slope 12 to 15 percent	10.16
		layer				Rock fragment content	10.50
Felcher---------	20	Poor source		Poor source		\| Poor source	
		Thickest layer not a source because of fines or thin	0.00	Bottom layer not a sourceThickest layer not a source	10.00	Slope >15 percent	10.00
			0.00		10.00	Rock fragment content	10.00
		layer				Depth to bedrock 20 to 40 inches	10.12
233:							
Noname	45	Poor source		Poor source		Poor source	
		Bottom layer not a source Thickest layer not a source	10.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00	Rock fragment content	10.72
Dickle----------	40	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	10.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source	0.00		10.00	Rock fragment content	10.95
		because of fines or thin layer				Clay 27 to 40 percent	10.98
234:							
Noname	40	Poor source		Poor source		Poor source	
		Bottom layer not a sourceThickest layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
			0.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches Rock fragment content	0.00
		because of fines or thin layer					10.72
Duff-----------	30	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Hard to reclaim	10.32
		because of fines or thin layer				Rock fragment content	10.97
Rock outcrop-------	20	Not rated		Not rated		Not rated	
235:							
Norad-	85	Poor source		Poor source		Fair source	
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	10.00	Clay 27 to 40 percent	10.32
		Thickest layer not a source because of fines or thin layer	10.00		10.00		

Table 12.--Construction Materials--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil		
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	
236:								
Norad--	45	\| Poor source Bottom layer not a source Thickest layer not a source because of fines or thin layer	$\left\lvert\, \begin{aligned} & 0.00 \\ & 10.00 \end{aligned}\right.$	\| Poor source Bottom layer not a source Thickest layer not a source	$\left\lvert\, \begin{aligned} & 0.00 \\ & 10.00 \end{aligned}\right.$	\|Fair source Clay 27 to 40 percent	10.32	
Spangenburg--	40	\| Poor source Bottom layer not a source Thickest layer not a source because of fines or thin layer	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	\| Poor source Bottom layer not a source Thickest layer not a source	$\left\lvert\, \begin{aligned} & 0.00 \\ & 10.00 \end{aligned}\right.$	Good source Clay 27 to 40 percent	10.88	
237:								
Nuss	85	\| Poor source		\| Poor source		\| Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	0.00	
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches Rock fragment content	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	
238:								
Nuss-----------	60	\| Poor source		\| Poor source		\| Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	10.00	
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches Rock fragment content	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	
Merlin---------	25	\| Poor source		\| Poor source		\| Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	10.00	
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00	Rock fragment content Depth to bedrock <20 inches	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	
239:								
Nuss-----------	55	\| Poor source		\| Poor source		\| Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00	
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches Rock fragment content	$\begin{aligned} & \mid 0.00 \\ & 10.00 \end{aligned}$	
Rock outcrop---	30	\| Not rated		\| Not rated		\|Not rated		

Table 12.--Construction Materials--Continued

Map symbol and soil name	Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil					
	$\text { \|map } \mid \text { \|unit\| }$	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value			
240:											
Observation-----	85	Poor source		Poor source		Poor source					
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	0.00				
		Thickest layer not a source because of fines or thin	10.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40	10.16				
		layer				Rock fragment content	0.50				
						Slope 8 to 12 percent	0.63				
241:											
Observation---	65	Poor source		Poor source		Poor source					
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Clay >40 percent	0.00				
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40 inches	10.16				
		layer				Slope 12 to 15 percent	0.16				
						Rock fragment content	0.50				
Rock outcrop------	20	Not rated		Not rated		Not rated					
242 :											
Observation----	45	Poor source		Poor source		Poor source					
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	10.00				
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40 inches	10.16				
						Rock fragment content	10.50				
						Slope 8 to 12 percent	0.63				
Royst----------	30	Poor source		Poor source		Poor source					
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	0.00				
		Thickest layer not a source because of fines or thin	10.00	Thickest layer not a source	10.00	Depth to bedrock 20 to 40 inches	10.12				
		layer				Rock fragment content	10.12				
						Slope 8 to 12 percent	10.63				
Merlin---------	15	Poor source		Poor source		Poor source					
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00				
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Rock fragment content	10.02				
		because of fines or thin layer				Slope 8 to 12 percent	10.63				
243:											
Observation-	50	Poor source		Poor source		Poor source					
		Bottom layer not a source Thickest layer not a source because of fines or thin layer	10.00	Bottom layer not a source	10.00	Clay >40 percent	10.00				
			0.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40 inches	10.16				
						Rock fragment content Slope 8 to 12 percent	10.50				
							10.63				

Table 12.--Construction Materials--Continued

Map symbol and soil name	Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
243:							
Teguro----------	35	Poor source		\|Poor source		Poor source	
		Bottom layer not a sourceThickest layer not a source	0.00	Bottom layer not a source	0.00	Depth to bedrock <20 inches	0.00
			0.00	Thickest layer not a source	0.00	Rock fragment content	10.00
		because of fines or thin				Slope 8 to 12 percent	10.63
		layer					
244 :							
Observation----	50	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Clay >40 percent	10.00
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	10.16
						Rock fragment content	10.50
Lambring--------	25	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	0.00	Rock fragment content	10.00
						Hard to reclaim	10.00
Rock outcrop-----	15	Not rated		Not rated		Not rated	
245:							
Ola	55	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Rock fragment content	10.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00
Atlow-----------	30	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Rock fragment content	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00
		because of fines or thin layer				Clay 27 to 40 percent	10.98
246:							
Opie-	85	Poor source		Poor source		Poor source	
		Bottom layer not a source Thickest layer not a source because of fines or thin layer	10.00	Bottom layer not a source Thickest layer not a source	10.00	Wetness at depth of <1 foot EC $>8 \mathrm{dS} / \mathrm{m}$ SAR 4 to 13 Hard to reclaim	0.00
			0.00		0.00		10.00
							10.60
							10.68

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
247:							
Oreneva---------	85	Poor source		Poor source		Poor source	
		Thickest layer not a source	10.00	Bottom layer not a source Thickest layer not a source	10.00	Rock fragment content	0.00
		because of fines or thin layer		Thickest layer not a source	10.00	Depth to bedrock 20 to 40 inches	0.06
		Bottom layer not a source	10.00				
248:							
Outerkirk------	85	Poor source		Fair source		Good source	
		Bottom layer not a source	10.00	Thickest layer possiblesource	10.04	Rock fragment content	0.88
		Thickest layer not a source	10.00			SAR 4 to 13	0.98
		because of fines or thin		Bottom layer possible source	0.10		
249 :							
Outerkirk-------	85	Poor source		Poor source		Good source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Rock fragment content	0.88
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer possible source	10.04		
250:							
Outerkirk-------	55	Poor source		Fair sourceThickest layer possible		Good source	
		Bottom layer not a source Thickest layer not a source	10.00		10.04	Rock fragment content SAR 4 to 13	$\begin{array}{\|l} \mid 0.88 \\ \mid 0.98 \end{array}$
			0.00	source			
		because of fines or thin layer		Bottom layer possible source	0.10		
Defenbaugh-----	30	Poor source		Poor source		Good source	
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	10.000.00	cood source	
		Thickest layer not a source because of fines or thin layer	10.00				
251:							
Ozamis	85	Poor source		Poor source	10.00	Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source		Wetness at depth of <1 foot	
		Thickest layer not a source because of fines or thin layer	10.00		10.00		0.00
252:							
Pearlwise-------	85	Poor source Bottom layer not a source Thickest layer not a source because of fines or thin layer		Poor source		Poor source	
			10.00	Bottom layer not a source	10.00	Slope >15 percent	0.00
			0.00	Thickest layer not a source	10.00	Depth to bedrock 20 to 40 inches Rock fragment content	0.12
							0.88

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
253:							
Pernty---------	85	Poor source		Poor source		\| Poor source	
		Bottom layer not a source Thickest layer not a source	0.00	Bottom layer not a source	0.00	Rock fragment content	10.00
			0.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00
		because of fines or thin layer				Slope 8 to 12 percent	10.96
254:							
Pernty---------	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Rock fragment content	10.00
		because of fines or thin layer				Depth to bedrock <20 inches	0.00
255:							
Pernty---------	85	Poor source		\| Poor source		Poor source	
		Bottom layer not a source Thickest layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
			0.00	Thickest layer not a source	0.00	Rock fragment content	10.00
		because of fines or thin layer				Depth to bedrock <20 inches	0.00
256:							
Pernty---------	60	Poor source		Poor source		\mid Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	Rock fragment content Depth to bedrock <20 inches	10.00
						Depth to bedrock <20 inches	0.00
Rock outcrop-------	25	Not rated		Not rated		Not rated	
257:							
Pernty---------	40	Poor source		\| Poor source		\| Poor source	
		Bottom layer not a source Thickest layer not a source	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	Bottom layer not a source Thickest layer not a source	0.00	Rock fragment content	0.00
					0.00	Depth to bedrock <20 inches	0.00
		because of fines or thin layer				Slope >15 percent	10.00
Westbutte-------	25	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Rock fragment content	10.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	10.00	Slope >15 percent Depth to bedrock 20 to 40 inches	$\begin{aligned} & \mid 0.00 \\ & \mid 0.22 \end{aligned}$
Ninemile-------	20	Poor source		\| Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00
		because of fines or thin				Slope >15 percent	10.00
		layer				Rock fragment content	10.50

Table 12.--Construction Materials--Continued

Map symbol and soil name	Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Rating class and limiting features	Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
258:							
Pits-	100	Not rated		Not rated		Not rated	
Playas---	95	Not rated		Not rated		\| Not rated	
260:							
Playas--	60	Not rated		Not rated		\| Not rated	
Thenarrows-----	25	Poor source		Fair source		Poor source	0.00
		Bottom layer not a source	0.00	Thickest layer possiblesource	10.02	Wetness at depth of <1 foot\|	
		Thickest layer not a source	0.00			SAR >13	10.00
		because of fines or thin		Bottom layer possible source	0.10		
		layer					
261:							
Poall-----------	85	Poor source		Poor source		Fair source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Clay 27 to 40 percent	0.12
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	Slope 8 to 12 percent Rock fragment content	0.63
							10.88
262 :							
Poall----------	50	Poor source		Poor source		Fair source	
		Bottom layer not a source	0.00	Bottom layer not a source Thickest layer not a source	10.00	Clay 27 to 40 percent Rock fragment content	0.12
		Thickest layer not a source because of fines or thin layer	0.00		10.00		10.88
Gumble----------	35	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source Thickest layer not a source	10.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source because of fines or thin layer	0.00		0.00	Clay >40 percent Slope >15 percent	10.000.00
						Rock fragment content	10.28
263 :							
Pomerening-----	85	Poor source Bottom layer not a source Thickest layer not a source because of fines or thin layer		Fair sourceBottom layer possible source		\| Poor source	
			10.00		0.13	Rock fragment content	0.00
			10.00	Thickest layer possible source	0.13	Sand fractions 75 to 85 percent Hard to reclaim Slope 8 to 12 percent	10.03
							0.32
							0.63

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
264:							
Pomerening-----	40	Poor source		Fair source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer possible source	0.13	Rock fragment content	10.00
		because of fines or thin	0.00	Thickest layer possible source	0.13	Sand fractions 75 to 85 percent	10.03
		layer				Hard to reclaim	10.32
						Slope 8 to 12 percent	10.63
Flank-----------	25	Fair source		\|Poor source		Poor source	
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	0.00	Rock fragment content	10.00
				Bottom layer possible source\|0	0.02	Depth to bedrock <20 inchesSlope 8 to 12 percent	0.00
		layer					0.63
		Bottom layer possible source	0.19				
Lava flows---------	20	Not rated		Not rated		Not rated	
265:							
Porterfield----	85	Poor source		Poor source		Poor source	
		Bottom layer not a source 0.00		Bottom layer not a source	0.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source because of fines or thin	10.00	Thickest layer not a source	0.00	Rock fragment content Slope 8 to 12 percent	10.12
		because of fines or thin layer				Slope 8 to 12 percent	10.63
266:							
Porterfield-----	85	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00
		because of fines or thin layer				Rock fragment content	10.12
267:							
Porterfield-----	50	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00
		because of fines or thin layer				Rock fragment content	10.12
Tincan---------	20	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	10.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Depth to bedrock <20 inches	0.00
		because of fines or thin layer				Rock fragment content	10.00
Rock outcrop---	15	Not rated		\| Not rated		\| Not rated	

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct. \mid	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil			
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	SAR >13	0.00		
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	10.00	EC 4 to $8 \mathrm{dS} / \mathrm{m}$	0.50		
269:									
Poujade--------	85	Poor source		Poor source		\| Poor source			
		Bottom layer not a source Thickest layer not a source	10.00	Bottom layer not a source	10.00	SAR >13	0.00		
		because of fines or thin layer		Thickest layer not a source	10.00	EC 4 to $8 \mathrm{dS} / \mathrm{m}$	10.50		
270:									
Poujade--------	50	Poor source		Poor source		Poor source			
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	SAR >13	0.00		
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	EC 4 to $8 \mathrm{dS} / \mathrm{m}$	0.50		
Ausmus---------	35	Poor source		Poor source		Poor source			
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	10.00	SAR >13 $\mathrm{EC}>8 \mathrm{dS} / \mathrm{m}$	10.00		
		Thickest layer not a source because of fines or thin layer	10.00		10.00	EC $>8 \mathrm{dS} / \mathrm{m}$	0.00		
271:									
Raz	85	Poor source		Poor source		Poor source			
		Bottom layer not a source	0.00	Bottom layer not a source Thickest layer not a source	$\begin{aligned} & 0.00 \\ & 10.00 \end{aligned}$	Depth to pan <20 inches Depth to bedrock 20 to 40 inches	10.00		
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source			0.16		
						Rock fragment content	10.28		
272:									
Raz	50	Poor source		Poor source		Poor source			
		Bottom layer not a source Thickest layer not a source because of fines or thin layer		Bottom layer not a source Thickest layer not a source	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	Depth to pan <20 inches Depth to bedrock 20 to 40 inches	10.00		
			10.00				0.16		
						Rock fragment content	10.28		
						Slope 8 to 12 percent	0.63		
Brace----------	35	Poor source		Poor source		Fair source			
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope 8 to 12 percent	10.63		
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	Depth to pan 20 to 40 inches Rock fragment content Depth to bedrock 20 to 40 inches	10.71		
							0.72		
							0.82		

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct. \mid	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil		
	$\begin{aligned} & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
Raz---	50	Poor source		Poor source		\| Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Depth to pan <20 inches	10.00	
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40 inches	10.16	
		because of fines or thin layer				Rock fragment content	10.28	
		layer				Slope 8 to 12 percent	10.63	
Brace	35	Poor source		Poor source		Fair source		
		Bottom layer not a source	10.00	\| Bottom layer not a source	10.00	Slope 8 to 12 percent	10.63	
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	10.00	Depth to pan 20 to 40 inches	10.71	
						Rock fragment content	10.72	
						Depth to bedrock 20 to 40 inches	10.82	
274:								
Reallis---------	85	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Thickest layer possible	0.03	Rock fragment content	10.03	
		Thickest layer not a source	10.00	source		Hard to reclaim	10.98	
		because of fines or thin layer		Bottom layer possible source	0.05			
275:								
Reallis---------	85	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Thickest layer possible source	0.03	Rock fragment content	10.03	
		Thickest layer not a source	10.00			Hard to reclaim	10.98	
		because of fines or thin layer		Bottom layer possible source	0.05			
276:								
Reese----------	85	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	10.00	Wetness at depth of <1 foot\|	0.00	
		Thickest layer not a source	0.00		0.00	SAR >13	10.00	
		because of fines or thin				EC $>8 \mathrm{dS} / \mathrm{m}$	10.00	
		layer				Calcium carbonates 15 to 40 percent	0.80	
277:								
Reluctan-	85	Poor source		Poor sourceBottom layer not a source		Fair source		
		Bottom layer not a source	10.00		10.00	Depth to bedrock 20 to 40	10.32	
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	inches Slope 8 to 12 percent Rock fragment content		
		because of fines or thin					10.63	
		layer					10.72	

Table 12.--Construction Materials--Continued

Table 12.--Construction Materials--Continued

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \mid \text { unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	10.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Slope 12 to 15 percent	0.16
		because of fines or thin				Rock fragment content	0.88
		layer				Depth to bedrock 20 to 40 inches	10.98
Rock outcrop-	25	\| Not rated		\| Not rated		\| Not rated	
287:							
Robson---------	45	Poor source Thickest layer not a source		\| Poor source		Poor source	
			10.00	Bottom layer not a source	10.00	Clay >40 percent	10.00
		because of fines or thin		Thickest layer not a source	10.00	Rock fragment content	10.00
		layer				Depth to bedrock <20 inches	0.00
		Bottom layer not a source	10.00			Slope 8 to 12 percent	10.96
Anawalt---------	40	Poor source		\| Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source	10.00	Thickest layer not a source	10.00	Rock fragment content	10.88
		because of fines or thin layer				Slope 8 to 12 percent	10.96
288:							
Robson---------	45	\| Poor source		Poor source		Poor source	
		Thickest layer not a source	0.00	Bottom layer not a source	10.00	Clay >40 percent	10.00
		because of fines or thin		Thickest layer not a source	10.00	Rock fragment content	10.00
		layer				Depth to bedrock <20 inches	0.00
		Bottom layer not a source	10.00			Slope >15 percent	10.00
Fourwheel-------	40	Poor source		\| Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	10.00
		Thickest layer not a source because of fines or thin	10.00	Thickest layer not a source	10.00	Depth to bedrock 20 to 40 inches	10.12
		layer				Rock fragment content	10.88
289:							
Robson----------	55	Poor source		\| Poor source		\| Poor source	
		Thickest layer not a source	10.00	Bottom layer not a source	10.00	Clay >40 percent	0.00
		because of fines or thin		Thickest layer not a source	0.00	Rock fragment content	10.00
		layer				Depth to bedrock <20 inches	0.00
		Bottom layer not a source	10.00			Slope 12 to 15 percent	10.04
Felcher---------	30	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source	10.00	Thickest layer not a source	0.00	Rock fragment content	10.00
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	0.12

Table 12.--Construction Materials--Continued

Map symbol and soil name	Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil					
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|value	Rating class and limiting features	\|value				
290:											
Roca-----------	85	Poor source		Poor source		Poor source					
		Bottom layer not a source Thickest layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	0.00				
			0.00	Thickest layer not a source	0.00	Rock fragment content	0.00				
		because of fines or thin				Clay >40 percent	0.00				
		layer				Depth to bedrock 20 to 40 inches	0.12				
291:											
Rock outcrop-------	60	Not rated		Not rated		Not rated					
Rubble land--------	30	Not rated		Not rated		Not rated					
292:											
Rock outcrop-------	50	Not rated		Not rated		Not rated					
Baconcamp------	35	Poor source		Poor source		\|Poor source					
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	0.00				
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Rock fragment content	10.00				
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	10.78				
293:											
Royst----------	65	Poor source		Poor source		Poor source					
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Clay >40 percent	0.00				
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40 inches	0.12				
		layer				Rock fragment content	0.12				
						Slope 8 to 12 percent	0.63				
Merlin---------	20	Poor source		Poor source		Poor source					
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Rock fragment content	0.00				
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Depth to bedrock <20 inches	0.00				
		because of fines or thin layer				Slope 8 to 12 percent	10.63				
294:											
Rubble land---	35	Not rated		Not rated		Not rated					
Nuss------------	30	Poor source Bottom layer not a source Thickest layer not a source because of fines or thin layer		Poor source Bottom layer not a source Thickest layer not a source		Poor source					
			0.00		10.00	Slope >15 percent	0.00				
			0.00		10.00	Depth to bedrock <20 inches	0.00				
						Rock fragment content	10.00				

Table 12.--Construction Materials--Continued

Map symbol and soil name	Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\text { \|map } \mid \text { \|unit\| }$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
294 :							
Ateron----------	20	Poor source		Poor source		Poor source	
		Thickest layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	0.00
			0.00	Thickest layer not a source	10.00	Depth to bedrock <20 inches	0.00
		because of fines or thin				Rock fragment content	0.00
		layer				Clay 27 to 40 percent	0.98
Sagehen--------	75	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source	0.00	Thickest layer not a source	10.00	Slope >15 percent	0.00
		because of fines or thin				Rock fragment content	0.50
		layer				Clay 27 to 40 percent	0.98
Rock ou	10			Not rated			
296:							
Sagehen--------	75	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Slope >15 percent	0.00
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	10.00	Depth to bedrock <20 inches	0.00
						Rock fragment content	0.50
		layer				Clay 27 to 40 percent	0.98
Rock outcrop-------	10	Not rated		Not rated		Not rated	
297 :							
Sandgap--------		Poor source		Poor source		Fair source	
	85	Bottom layer not a source	10.00	Bottom layer possible source	0.03	Sand fractions 75 to 85 percent	10.47
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer possible source	0.07		
298:							
Sandgap-	85	Poor source		Poor source		Fair source	
		Bottom layer not a source	10.00	Bottom layer possible source	0.03	Sand fractions 75 to 85 percent	10.47
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer possible source	10.07		
299 :							
Seharney--------	85	Poor source		Poor source		Poor source	
			0.00	Bottom layer not a source	10.00	Depth to pan <20 inches	0.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	Rock fragment content Depth to bedrock 20 to 40 inches	0.00
							0.22

Table 12.--Construction Materials--Continued

Table 12.--Construction Materials--Continued

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil			
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
308:Skunkfarm	35	Poor source		Poor source		Fair source	10.12		
		Bottom layer not a source	10.00	Thickest layer not a source	0.00	Wetness at depth of 1 to 3 feet			
		Thickest layer not a source because of fines or thin layer	0.00	Bottom layer possible source\|	0.02		0.98		
Mcbain----------	30	Poor source		Poor source		Poor source			
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	SAR >13	10.00		
		Thickest layer not a source	10.00	Thickest layer not a source	10.00	EC 4 to $8 \mathrm{dS} / \mathrm{m}$	10.50		
		because of fines or thin layer				Calcium carbonates 15 to 40 percent	0.80		
Doubleo---------	20	Poor source		Poor source		Poor source			
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Wetness at depth of 1 to 3 feet			
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer possible source	10.00		0.04		
309 :									
Skunkfarm-	60	Poor source		Poor source		Fair source			
		Bottom layer not a source	10.00	Thickest layer not a source Bottom layer possible source	10.00	Wetness at depth of 1 to 3 feet Clay 27 to 40 percent	0.12		
		Thickest layer not a source because of fines or thin layer	0.00		0.02		0.98		
Skidoosprings--	25	Poor source		Poor source		Poor source			
		Bottom layer not a source	10.00	Thickest layer not a source Bottom layer possible source	10.00	Wetness at depth of <1 foot\|			
		Thickest layer not a source because of fines or thin layer	10.00		0.06	SAR >13	0.00 0.00		
						EC 4 to $8 \mathrm{dS} / \mathrm{m}$	0.50		
310:									
Spangenburg-	85	Poor source		Poor source		Good source			
		Bottom layer not a source	10.00	Thickest layer not a source	10.00	Clay 27 to 40 percent	0.88		
		Thickest layer not a source because of fines or thin layer	10.00		0.00				
311:									
Spangenburg-	85	Poor source Bottom layer not a source Thickest layer not a source because of fines or thin layer		Poor source		Good sourceClay 27 to 40 percent			
			0.00	Bottom layer not a source Thickest layer not a source	$\begin{array}{\|l} 0.00 \\ 10.00 \end{array}$		0.88		
			0.00			Clay 27 to 40 percent			

Table 12.--Construction Materials--Continued

Map symbol and soil name	$\left.\begin{array}{\|c\|} \mid \text { Pct. } \\ \left\|\begin{array}{c} \text { of } \end{array}\right\| \\ \mid \text { map } \\ \text { \|unit } \end{array} \right\rvert\,$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
312 :							
Spangenburg--	85	Poor source Bottom layer not a source Thickest layer not a source because of fines or thin layer	$\begin{aligned} & \mid 0.00 \\ & \mid 0.00 \end{aligned}$	\| Poor source Bottom layer not a source Thickest layer not a source	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	\| Good source Clay 27 to 40 percent	10.88
313 :							
Srednic--------	60	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Rock fragment content	10.00
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	Depth to pan 20 to 40 inches Depth to bedrock 20 to 40 inches Slope 8 to 12 percent	0.16 0.52 0.63
Aval-----------	30	\| Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer possible source\|	0.05	Depth to bedrock <20 inches	0.00
		Thickest layer not a source	10.00	Thickest layer possible	10.05	Rock fragment content	10.00
		because of fines or thin layer		source		Slope 8 to 12 percent	10.63
314:							
Stampede-------	85	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	\| Thickest layer not a source	10.00	Clay >40 percent	10.00
		Thickest layer not a source because of fines or thin	10.00	Bottom layer possible source\|	0.03	Depth to pan 20 to 40 inches	10.05
		layer				Rock fragment content	10.97
315:							
Swaler----------	85	\| Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	10.00	Clay >40 percent	0.00
		Thickest layer not a source because of fines or thin layer	10.00		10.00		
316:							
Swaler----------	70	Poor source		\| Poor source		Poor source Clay >40 percent	
		Bottom layer not a source	10.00	\| Bottom layer not a source	10.00		10.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	10.00		
Swalesilver----	20	\mid Poor source		\| Poor source		Poor sourceClay >40 percent	
		Bottom layer not a source	10.00	\| Bottom layer not a source	10.00		10.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	10.00	Wetness at depth of <1 foot	0.00

Table 12.--Construction Materials--Continued

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct. \mid	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
Anatone, moist--	40	Poor source Thickest layer not a source		\| Poor source		\| Poor source	
			10.00	Bottom layer not a source	10.00	Rock fragment content	10.00
		because of fines or thin layer		Thickest layer not a source	10.00	Depth to bedrock <20 inches	0.00
						Slope 8 to 12 percent	10.63
		Bottom layer not a source	10.00				
324:							
Teguro---------	55	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source because of fines or thin	0.00	Thickest layer not a source	10.00	Rock fragment content	10.00
		layer				Slope 8 to 12 percent	10.63
Ateron	30	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Rock fragment content	10.00
		because of fines or thin				Slope 8 to 12 percent	10.63
		layer				Clay 27 to 40 percent	10.98
325:							
Thenarrows-----	50	Poor source		Fair source		Poor source	
		Bottom layer not a source	0.00	Thickest layer possible source	0.02	Wetness at depth of <1 foot SAR >13	0.00
		Thickest layer not a source	0.00				
		because of fines or thin layer		Bottom layer possible source\|	0.10		
Duckclub--------	40	Poor source		Poor source		Poor source	0.00
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer possible source	10.00	SAR >13	
		Thickest layer not a source because of fines or thin	10.00		10.02	Sand fractions 75 to 85 percent EC 4 to $8 \mathrm{dS} / \mathrm{m}$	0.51
		layer					0.88
326:							
Thenarrows-	50	Poor source		Fair source	\| 0.02	Poor source	
		Bottom layer not a source	10.00	Thickest layer possible source		Wetness at depth of <1 foot	0.00
		Thickest layer not a source	0.00			SAR >13	10.00
		because of fines or thin layer		Bottom layer possible source	0.10		
Duckclub-------	20	Poor source		Poor source		Poor source	
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	SAR >13	10.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer possible source	10.02	Sand fractions 75 to 85 percent	0.51
						EC 4 to $8 \mathrm{dS} / \mathrm{m}$	10.88

Table 12.--Construction Materials--Continued

Map symbol and soil name	\mid Pct.\mid of\|map\mid unit	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil		
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
326:								
Dentdraw-	20	Poor source Bottom layer not a source Thickest layer not a source because of fines or thin layer	10.00	Poor source Thickest layer possible source Bottom layer possible source	10.03	Poor source Wetness at depth of <1 foot SAR 4 to 13	$\begin{array}{\|l} 10.00 \\ 10.22 \end{array}$	
327:								
Thenarrows	35	Bottom layer not a source	10.00	Thickest layer possible	10.02	Wetness at depth of <1 foot\|	0.00	
		Thickest layer not a source because of fines or thin layer	10.00	source Bottom layer possible source	0.10	SAR >13	10.00	
Duckclub-------	35	\| Poor source		\| Poor source		Poor source		
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	SAR >13	0.00	
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer possible source	10.02	Sand fractions 75 to 85 percent EC 4 to $8 \mathrm{dS} / \mathrm{m}$	0.51 0.88	
Sandgap--------	15	\| Poor source		\| Poor source		Fair source		
		Bottom layer not a source	10.00	Bottom layer possible source	0.03	Sand fractions 75 to 85	0.47	
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer possible source	10.07	percent		
328:								
Ticino---------	45	Poor source		Poor source		Poor source		
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Rock fragment content	0.03	
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	Depth to bedrock 20 to 40 inches	0.32	
Merlin---------	40	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Depth to bedrock <20 inches	0.00	
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	Rock fragment content	0.12	
329 :								
Ticino---------	60	\| Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Rock fragment content	0.03	
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	Depth to bedrock 20 to 40 inches Slope 8 to 12 percent	0.32 0.63	

Table 12.--Construction Materials--Continued

Table 12.--Construction Materials--Continued

Table 12.--Construction Materials--Continued

Map symbol and soil name	$\begin{aligned} & \text { \|Pct. } \\ & \mid \text { of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil			
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		
339:									
Vil------------	85	Poor source		Poor source		Poor source			
		Bottom layer not a sourceThickest layer not a source	0.00	Thickest layer not a source	0.00	Depth to pan <20 inches	10.00		
			0.00	Bottom layer possible source	0.04	Slope 8 to 12 percent	10.63		
		because of fines or thin							
340:									
Vining	85	Poor source		Poor source		Fair source			
		Bottom layer not a source	0.00	Bottom layer possible source	0.03	Depth to bedrock 20 to 40 inches	10.48		
		Thickest layer not a source	0.00	Thickest layer possiblesource	10.03				
		because of fines or thin				Slope 8 to 12 percent	10.63		
		layer				Rock fragment content	10.97		
341:									
Vining	55	Poor source		Poor source		Poor source			
		Bottom layer not a source Thickest layer not a source because of fines or thin	10.00	Bottom layer possible source	0.03	Slope >15 percent	10.00		
			0.00	Thickest layer possible source	10.03	Depth to bedrock 20 to 40 inches	10.48		
		layer				Rock fragment content	10.97		
Tuffo----------	30	Poor source		Poor source		Poor source			
		Bottom layer not a source	10.00	Thickest layer not a source Bottom layer possible source	10.00	Depth to bedrock <20 inches	0.00		
		Thickest layer not a source because of fines or thin layer	10.00		0.00	Slope >15 percent	10.00		
342 :									
Vitale---------	85	Poor source		Poor source		Poor source			
		Bottom layer not a source	0.00	Bottom layer not a source	10.00	Rock fragment content	10.00		
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00	Slope 12 to 15 percent	10.16 10.32		
						Depth to bedrock 20 to 40 inches	10.32		
343:									
Vitale---------	50	Poor source		Poor source		Poor source			
		Bottom layer not a source Thickest layer not a source because of fines or thin layer	10.00	Bottom layer not a source Thickest layer not a source	10.00	Rock fragment content	10.00		
			0.00		0.00	Depth to bedrock 20 to 40 layer Slope 8 to 12 percent	10.32		
							10.63		

Table 12.--Construction Materials--Continued

Table 12.--Construction Materials--Continued

Map symbol and soil name	$\begin{aligned} & \text { \|Pct. } \\ & \mid \text { of } \\ & \text { \|map } \\ & \text { \|unit } \end{aligned}$	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil					
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value				
347:											
Voltage---------	85	Poor source		Poor source		Fair source					
		Bottom layer not a sourceThickest layer not a source	0.00	Bottom layer not a source	10.00	EC 4 to $8 \mathrm{dS} / \mathrm{m}$	10.50				
			0.00	Thickest layer not a source	10.00	SAR 4 to 13	10.60				
		because of fines or thin layer				Calcium carbonates 15 to 40 percent	0.80				
348:											
Voltag	60	Poor source		Poor source		Fair source					
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	EC 4 to $8 \mathrm{dS} / \mathrm{m}$	10.50				
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	SAR 4 to 13	10.60				
		because of fines or thin layer				Calcium carbonates 15 to 40 percent	0.80				
Crowcamp--------	25	Poor source		Poor source		Poor source					
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Clay >40 percent	10.00				
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	0.00	Hard to reclaim	10.02				
349:											
Voltage--------	45	Poor source		Poor source		\|Fair source					
		Bottom layer not a source Thickest layer not a source	10.00	Bottom layer not a source	0.00	EC 4 to $8 \mathrm{dS} / \mathrm{m}$	10.50				
			0.00	Thickest layer not a source	10.00	SAR 4 to 13	10.60				
		because of fines or thin layer				Calcium carbonates 15 to 40 percent	10.80				
Crowcamp-	40	Poor source		Poor source		Poor source					
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Clay >40 percent	10.00				
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00	Hard to reclaim	10.02				
350:											
Voltage--------	65	Poor source		Poor source		\mid Fair source					
		Bottom layer not a source Thickest layer not a source because of fines or thin layer	10.00	Bottom layer not a source Thickest layer not a source	0.00	EC 4 to $8 \mathrm{dS} / \mathrm{m}$	10.50				
			0.00			SAR 4 to 13	10.60				
						Calcium carbonates 15 to 40 percent	0.80				
Widowspring-----	20	Poor source		Poor source		\| Good source					
		Bottom layer not a source	10.00	Bottom layer not a source	10.00						
		Thickest layer not a source because of fines or thin layer	0.00	Thickest layer not a source	10.00						

Table 12.--Construction Materials--Continued

Map symbol and soil name	Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil		
	$\begin{aligned} & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
351:								
Wagontire-------	85			Poor source		Poor source		
		Thickest layer not a source	10.00	Bottom layer not a source	0.00	Depth to pan <20 inches	10.00	
		because of fines or thin		Thickest layer not a source	0.00	Rock fragment content	0.00	
		layer				Clay >40 percent	0.00	
		Bottom layer not a source	10.00			Slope 8 to 12 percent	0.63	
352:								
Wagontire------	55	Poor source		Poor source		Poor source		
		Thickest layer not a source	10.00	Bottom layer not a source	0.00	Depth to pan <20 inches	10.00	
		because of fines or thin		Thickest layer not a source	0.00	Rock fragment content	0.00	
		layer				Clay >40 percent	0.00	
		Bottom layer not a source	10.00			Slope 8 to 12 percent	0.63	
Vil------------	30	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Thickest layer not a source	0.00	Depth to pan <20 inches	0.00	
		Thickest layer not a source because of fines or thin layer	0.00	Bottom layer possible source\|	0.04	Slope 8 to 12 percent	0.63	
353 :								
Waspo-----------	45	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Clay >40 percent	0.00	
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Depth to bedrock 20 to 40 inches	10.28	
Poall-----------	40	Poor source		Poor source		Fair source		
		Bottom layer not a source	0.00	Bottom layer not a source	0.00	Clay 27 to 40 percent	10.12	
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Rock fragment content	0.88	
354 :								
Water---	100	Not rated		Not rated		Not rated		
355:								
Welch-----------	85	Poor source		Poor source		Poor source		
		Bottom layer not a source Thickest layer not a source because of fines or thin layer	10.00	Bottom layer not a source Thickest layer not a source	0.00	Wetness at depth of <1 foot Rock fragment content	0.00	
			0.00		0.00		10.97	

Table 12.--Construction Materials--Continued

Table 12.--Construction Materials--Continued

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct. \mid	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil		
	$\begin{aligned} & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	
Rock outcrop-	15	\| Not rated		Not rated		Not rated		
Westbutte-	65	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	10.00	
		Thickest layer not a source $\mid 0.00$		Thickest layer not a source	0.00	Rock fragment content	10.00	
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	10.22	
Rock outcrop-------	20	Not rated		Not rated		Not rated		
365 :								
Westbutte------	40	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	10.00	
		Thickest layer not a source	0.00	Thickest layer not a source	0.00	Rock fragment content	10.00	
		because of fines or thin layer				Depth to bedrock 20 to 40 inches	10.22	
Lambring-------	35	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source	0.00	Slope >15 percent	10.00	
			0.00	Thickest layer not a source	10.00	Rock fragment content	10.00	
		because of fines or thin layer				Hard to reclaim		
Rock outcrop-------	15	Not rated		Not rated		Not rated		
366:								
Westbutte------	40	$\left\lvert\, \begin{aligned} & \text { Poor source } \\ & \text { Bottom layer not a source }\end{aligned}\right.$				\| Poor source		
				Oor source ${ }_{\text {Bottom layer not a source }}$	0.00	Slope >15 percent	10.00	
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Rock fragment content Depth to bedrock 20 to 40 inches	$\begin{aligned} & \mid 0.00 \\ & \mid 0.22 \end{aligned}$	
Lambring-------	30	Poor source Bottom layer not a source Thickest layer not a source because of fines or thin layer		Poor sourceBottom layer not a source		\| Poor source		
			0.00		10.00	Slope >15 percent	10.00	
			0.00	Thickest layer not a source	0.00	Rock fragment content	10.00	
						Hard to reclaim	10.00	
Rock outcrop-------	15	Not rated		Not rated		\| Not rated		
367: Westbutte								
	40	Poor source		Poor source		Poor source		
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	0.00	Slope >15 percent Rock fragment content Depth to bedrock 20 to 40 inches	10.00	
		Thickest layer not a source	0.00		0.00		10.00	
		because of fines or thin layer					10.22	

Table 12.--Construction Materials--Continued

Map symbol and soil name	\|Pct.	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
	$\begin{aligned} & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value	Rating class and limiting features	\|Value
367:Lambring	30	Poor source		Poor source		Poor source	
		Bottom layer not a source Thickest layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
			10.00	Thickest layer not a source	10.00	Rock fragment content	10.00
		because of fines or thin				Hard to reclaim	10.00
Rock outcrop------	15	Not rated		Not rated		Not rated	
Westbutte------	50	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a sourceThickest layer not a source	10.00	\| Slope >15 percent	0.00
		Thickest layer not a source because of fines or thin layer	10.00		10.00	Rock fragment content	10.00
						Depth to bedrock 20 to 40 inches	10.22
Observation-	40	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source Thickest layer not a source	10.00	Clay >40 percent	10.00
		Thickest layer not a source because of fines or thin layer	10.00		10.00	Depth to bedrock 20 to 40 inches	10.16
						Slope 12 to 15 percent	0.16
						Rock fragment content	10.50
369 :							
Westbutte------	35	Poor source		Poor source		Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00	Rock fragment content	10.00
						Depth to bedrock 20 to 40 inches	0.22
Rock outcrop	30	Not rated		Not rated		Not rated	
Pernty---------	25	Poor source		Poor source		\| Poor source	
		Bottom layer not a source	10.00	Bottom layer not a source	10.00	Slope >15 percent	10.00
		Thickest layer not a source	10.00	Thickest layer not a source	10.00	Rock fragment content	10.00
		because of fines or thin layer				Depth to bedrock <20 inches	0.00
370:							
Widowspring---	85	\mid Poor source Bottom layer not a source 0.00		Poor source		\|Good source	
				Bottom layer not a source	10.00		
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00		

Table 12.--Construction Materials--Continued

$\begin{aligned} & \text { Map symbol } \\ & \text { and soil name } \end{aligned}$	\mid Pct.\mid of\|map\|unit	Potential as source of gravel		Potential as source of sand		Potential as source of topsoil	
		Rating class and limiting features	\|Value	Rating class and limiting features	Value	Rating class and limiting features	\|Value
371:							
Windybutte-	85	\| Poor source		\|Poor source		Good source	
		Bottom layer not a source	10.00	Bottom layer not a source	0.00		
		Thickest layer not a source because of fines or thin layer	10.00	Thickest layer not a source	0.00		
372:							
Wolverine------	85	\| Poor source		\| Good source		Poor source	
		Bottom layer not a source	10.00	Thickest layer possible	0.70	Sand fractions >85 percent	0.00
		Thickest layer not a source	10.00	source		Slope 8 to 12 percent	10.96
		because of fines or thin layer		Bottom layer possible source\|	0.75		
373:							
Denied access-	\|100	Not rated		Not rated		Not rated	

The potential as a source of gravel evaluates the content of coarse fragments more than 0.2 inch in diameter in the bottom layer or in the thickest layer of the soil. The potential as a source of sand evaluates the amount of sand and fine gravel in the thickest layer or in the bottom layer of the soil. The organic soil layers that have a Unified engineering class for peat (PT) are also evaluated. The potential as a source of topsoil evaluates certain soil properties at various depths, including calcium carbonates percent clay, soil bulk density, percent sand, soil wetness, content of coarse fragments 0.2 to 3 inches in diameter, content of fragments more than 3 inches in diameter, organic matter content (OM), sodium content expressed as the sodium adsorption ratio (SAR), salinity expressed as mmhos/cm of electrical conductivity (EC), depth to bedrock, slope, and soil pH.
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00 . The larger the value, the greater the limitation. See text for further explanation of ratings in this table)

Table 13.--Water Management--Continued

Table 13.--Water Management--Continued

Map symbol and soil name	$\left.\begin{array}{\|l\|} \mid \text { Pct. } \\ \left\|\begin{array}{c} \text { of } \end{array}\right\| \\ \mid \text { map } \end{array} \right\rvert\,$	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds					
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		
40:											
Boravall--------	55	\|Somewhat limited	Seepage	10.04	\|Very limited	\|1.00	Somewhat limited	0.96			
				saturated zone		Cutbanks cave	0.10				
				Salinity	\| 1.00						
				Piping	11.00						
				Ponding	11.00						
Playas	30	Not limited		Very limited		\|Very limited					
				Depth to	11.00	Slow refill	1.00				
				saturated zone		Salty water	1.00				
				Salinity	11.00	Cutbanks cave	0.10				
				Hard to pack	11.00						
				Ponding	11.00						
41:											
Borobey------------ \|	85	Very limited		Somewhat limited		\|Very limited					
		Seepage	11.00	Seepage	10.10	Depth to water	1.00				
42 :											
Boulder Lake-----	85	Not limited		Very limited		Very limited					
				Depth to	11.00	Slow refill	1.00				
				saturated zone			0.10				
				Ponding	11.00						
43:											
Boulder Lake	65	Not limited		Very limited		Very limited					
				Depth to	11.00	Slow refill	1.00				
				saturated zone		Cutbanks cave	0.10				
				Ponding	11.00						
Merlin----------	20	Very limited	\|1.00	Very limited	1.00	Very limited					
		Depth to bedrock		\| Thin layer		Depth to water	1.00				
44 :											
Boulder Lake	45	Not limited		\|Very limited							
				Depth to saturated zone Ponding	11.00	Very limited Slow refill 1.00					
						Cutbanks cave	10.10				
					11.00						
Spangenburg--------	40	Somewhat limited Seepage	0.72	Somewhat limited Piping	0.49	Very limited Depth to water	1.00				
45:											
Brabble---------	50	Somewhat limited		Somewhat limited		\|Very limited					
				\| Piping	10.88	Depth to water	11.00				
		pan		Thin layer	10.77		1.00				
		Seepage	10.72								
		Depth to bedrock	10.56								
		Slope	10.03								
Calderwood-------	35	Very limited		Very limited		Very limited					
		Depth to bedrock	\|1.00	Thin layer	\|1.00	Depth to water	11.00				
		Slope	10.03	Content of large stones	10.13						
46:											
Brace-----------	40	Very limited		Somewhat limited		Very limited					
		Seepage	\|1.00	Thin layer	10.81	Depth to water	11.00				
		Depth to cemented pan	0.81								
		Depth to bedrock	\| 0.66								
		Slope	10.01								

Table 13.--Water Management--Continued

Table 13.--Water Management--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { map } \\ & \mid \text { unit } \end{aligned}$	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed		
		Rating class and	\|Value	Rating class and	\|Value	Rating class and	\|Value	
		limiting features		limiting features		limiting features		
99:								
Erakatak--------	35	\|Somewhat limited			Somewhat limited		Very limited	\|1.00
				Thin layer	0.96	Depth to water		
		Slope	0.88	Content of large	0.02		硅	
		Seepage	0.02	stones				
Merlin----------	30	Very limited		Very limited		Very limited		
		Depth to bedrock	1.00	Thin layer Content of large	1.00	Depth to water	11.00	
		Slope	0.12		0.01			
				stones				
Westbutte-------	25	Somewhat limited		Very limited		\|Very limited		
		Depth to bedrock	0.98	Content of large stones	\|1.00	Depth to water	11.00	
		Slope	0.88					
		Seepage	0.72	Thin layer	10.98			
100:								
Erakatak--------	65	\| Somewhat limited		Somewhat limited		\|Very limited		
		Depth to bedrock	0.96	Thin layer	10.96	Depth to water	1.00	
		Slope	0.88	Content of large stones	0.19			
		Seepage	0.02					
Rock outcrop 101:	20	\| Not rated		Not rated		Not rated		
	101:							
Erakatak--------	35	Somewhat limited		Somewhat limited Thin layer		\|Very limited		
		Depth to bedrock	0.96		0.96	Depth to water	1.00	
		Slope	0.64	Content of large stones	0.19			
		Seepage	0.02					
Ninemile--------	30	\|Very limited Depth to bedrock		Very limited		Very limited		
			1.00	Thin layer	11.00	Depth to water	1.00	
		Slope	0.08	Hard to pack	10.20			
Hapgood---------	25	Very limited \|		Somewhat limited	10.95	Very limited		
				\| Content of large		Depth to water	1.00	
		Slope	0.64	stones	\|			
		Depth to bedrock	0.33	Thin layer	10.34			
102:								
Felcher---------	85	Somewhat limited		\|Very limited	1.00	Very limited		
		Depth to bedrock		Content of large stones		Depth to water	1.00	
		\| Slope	10.50					
		Seepage	0.04	Thin layer	0.99			
103:								
Felcher---------	65	\|Very limited ${ }^{\text {Slope }}$ \| 1.00		Very limitedThin layer	10.99	Very limited		
				Depth to water		1.00		
		Depth to bedrock	0.99		Content of large stones		0.85	
		Seepage	0.04					
Rock outcrop-----104:	20	Not rated		Not rated		Not rated		
	104:							
Felcher---------	35	Somewhat limited Slope Depth to bedrock Seepage		Very limited Content of large stones Thin layer	1.00	Very limited Depth to water		
			0.99				1.00	
			0.04		10.99			
Rock outcrop--	30	Not rated		Not rated		Not rated		
Brezniak--------	\| 25		$\begin{aligned} & \text { \|Very limited } \\ & \text { Depth to bedrock } \\ & \text { Slope } \end{aligned}$		Very limited Thin layer Piping	$\left\lvert\, \begin{aligned} & 1.00 \\ & \mid 0.12 \\ & \mid \end{aligned}\right.$	\|Very limited Depth to water	
			1.00				1.00	
			0.99					

Table 13.--Water Management--Continued

Table 13.--Water Management--Continued

Table 13.--Water Management--Continued

Table 13.--Water Management--Continued

Map symbol and soil name	Pct. of map \|unit	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds			
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
122:									
Skidoosprings----	15	\|Very limited Seepage	11.00	\|Very limited Depth to	1.00	Somewhat limited			
		Depth to cemented pan	0.42	saturated zone Piping	1.00	Salty water	0.06		
				Ponding	11.00				
				Thin layer	10.42				
				Seepage	10.06				
123:									
Fury-	55	Somewhat limited		Very limited		Somewhat limited			
		Seepage	0.72	Depth to saturated zone	\|1.00	Slow refill	0.28		
						Cutbanks cave	10.10		
				Piping	11.00				
				Ponding	11.00				
Opie	30	Somewhat limitedSeepage	10.72	Very limited	11.00				
				Depth to saturated zone		Very limited Cutbanks cave	1.00		
		Seepage				Salty water	\|1.00		
				Salinity	11.00	Slow refill	10.28		
				Piping	11.00				
				Ponding	11.00				
124:									
Fury	35	Somewhat limited Seepage		Very limited	1.00	Somewhat limited			
		Seepage	10.72	Depth to saturated zone		Cutbanks cave	0.10		
				Piping	1.00				
				Ponding	11.00				
Skidoosprings----	25	Very limited	11.00	Very limited	11.00	\| Somewhat limited			
		Seepage		Depth to saturated zone			0.10		
		Depth to cemented pan	0.42			Salty water	0.06		
				Piping	11.00				
				Ponding	11.00				
				Thin layer	10.42				
				Seepage	10.06				
Opie------------	20	Somewhat limited Seepage	10.72	Very limited	1.00	\|Very limited			
				Depth to		Cutbanks cave	1.00		
				saturated zone		Salty water	\|1.00		
				Salinity	\| 1.00	Slow refill	10.28		
				Piping	\| 1.00				
				Ponding	11.00				
125:									
Fury------------	45	Somewhat limited Seepage	10.72	Very limitedDepth to	1.00	Somewhat limitedSlow refill			
							10.28		
				saturated zone		Cutbanks cave	10.10		
				Piping	\| 1.00				
				Ponding	11.00				
Widowspring------	40	Somewhat limited Seepage	0.72	\|Somewhat limited	0.78	Somewhat limited			
				Piping		Depth to water	0.81		
						Slow refill	10.28		
						Cutbanks cave	10.10		
126:									
Gaib	85	Very limited Depth to bedrock Slope	$\left\lvert\, \begin{aligned} & 1.00 \\ & \mid 0.01 \end{aligned}\right.$	Very limited Thin layer	1.00	\|Very limited Depth to water			
							1.00		

Table 13.--Water Management--Continued

Table 13.--Water Management--Continued

Map symbol and soil name	Pct. of map \|unit	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed	
		Rating class and	\|Value	Rating class and	\|Value	Rating class and	\|Value
		limiting features		limiting features		limiting features	
214:							
than 12 percent							
slopes----------	50	Somewhat limited		\|Very limited		\|Very limited	11.00
		Depth to bedrock	10.58	Thin layer	1.00	Depth to water	
		Slope	0.24	Seepage	\| 0.04		
than 12 percent							
slopes----------	40	Somewhat limited Depth to bedrock		\|Very limited		Very limited	
			0.58	Thin layer	\| 1.00	Depth to water	\| 1.00
				Seepage	10.04		
215:							
Mound-------------	85	Somewhat limited		\|Very limited		Very limited	
		Depth to bedrockSlope	0.04	Content of large	1.00	Depth to water	11.00
			0.01	stones			
				Thin layer	0.04		
216:							
Nevador	85	Very limited		Somewhat limited		\|Very limited	
		Seepage	\|1.00	Seepage	0.03	Depth to water	\|1.00
217:							
Ninemile	85	Very limited Depth to bedrock		\|Very limited		Very limited	
			1.00	Thin layer	11.00	Depth to water	1.00
				Hard to pack	10.20		
218:							
Ninemile-	85	Very limited		\|Very limited		Very limited	
		Depth to bedrock	\|1.00	Thin layer	11.00	Depth to water	1.00
		Slope	0.04	Hard to pack	10.29		
219:							
Ninemile-	85	Very limited Depth to bedrock		\|Very limited		Very limited	
			1.00	Thin layer	11.00	Depth to water	1.00
				Hard to pack	10.29		
220:							
Ninemile----------	55	Very limited Depth to bedrock		\|Very limited		Very limited	
			1.00	Thin layer	11.00	Depth to water	1.00
				Hard to pack	10.20		
Carvix------------	30	Somewhat limited				Very limited	
		Seepage	10.72	Piping	1.00	Depth to water	\|1.00
221:							
Ninemile---------	\| 60	Very limited		Very limited \|		\|Very limited	
		Depth to bedrock	\| 1.00	Thin layer	\| 1.00	Depth to water	
		Slope	0.01	Hard to pack	10.29		
	25			Very limited			
Doyn		Very limited Depth to bedrock	\|1.00	Thin layer	11.00	Depth to water	1.00
		\| Slope	10.01	Piping	\| 1.00		
222:							
Ninemile---------	50	Very limited Depth to bedrock		\|Very limited		Very limited	
			1.00	\| Thin layer	\| 1.00	Depth to water	1.00
				Hard to pack	10.20		
Edemaps----------	35	Somewhat limited Depth to cemented pan Depth to bedrock Seepage		Somewhat limited Thin layer Piping		Very limited Depth to water	
			0.96		10.96		1.00
					\| 0.16		
			10.86				
			10.04				

Table 13.--Water Management--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { of } \\ & \mid \text { unit } \end{aligned}$	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds		
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
223:								
Ninemile-	45	\|Very limited Depth to bedrock	1.00	\|Very limited Thin layer Hard to pack	$\begin{aligned} & \mid 1.00 \\ & 10.29 \end{aligned}$	\|Very limited Depth to water	11.00	
Madeline-	40	Very limited Depth to bedrock	1.00	\|Very limited Thin layer Piping	$\begin{array}{\|l} \mid 1.00 \\ \mid 0.01 \end{array}$	\|Very limited Depth to water	11.00	
224:								
Ninemile--------	60	\|Very limited		\|Very limited		\|Very limited		
		Depth to bedrock	1.00	Thin layer	1.00	Depth to water	\|1.00	
		Slope	0.41	Hard to pack	10.29			
Pearlwise-------	30	Somewhat limited		\|Very limited		\|Very limited		
		Depth to bedrock	0.99	Thin layer	10.99	Depth to water	11.00	
		Seepage	0.72	Piping	10.99			
		Slope	0.41					
225:								
Ninemile--------	55	Very limited		\|Very limited		\|Very limited		
		Depth to bedrock	1.00	Thin layer	1.00	Depth to water	11.00	
				Hard to pack	10.20			
Reluctan--------	30	Somewhat limited		\|Very limited		\|Very limited		
		Depth to bedrock	0.95	Piping	10.99	Depth to water	11.00	
		Seepage	0.04	Thin layer	10.95			
226:								
Ninemile-------	50	\|Very limited		\|Very limited		\|Very limited		
		Depth to bedrock	1.00	Thin layer	1.00	Depth to water	11.00	
		Slope	0.04	Hard to pack	10.20			
Reluctan--------	20	Somewhat limited		Very limited		\|Very limited		
		Depth to bedrock	0.95	Piping	10.99	Depth to water	11.00	
		Slope	0.04	Thin layer	10.95			
		Seepage	0.04					
Rubble land	15	Not rated		Not rated		Not rated		
227:								
Ninemile--------	70	Very limited		Very limited		\|Very limited		
		Depth to bedrock	1.00	Thin layer	1.00	Depth to water	11.00	
		Slope	1.00	Hard to pack	10.20			
Rock outcrop-	15	Not rated		\| Not rated		\|Not rated		
228:								
Ninemile--------	65	Very limited		\|Very limited				
		Depth to bedrock	1.00	Thin layer	1.00	Depth to water	\| 1.00	
		Slope	0.01	Hard to pack	10.20			
Rubble land----	20	Not rated		\|Not rated		\| Not rated		
229 :								
Ninemile--------	60	Very limited		\|Very limited		\|Very limited		
		Depth to bedrock	1.00	Thin layer	1.00	Depth to water	\| 1.00	
				Hard to pack	0.20			
Westbutte-------	30	Somewhat limited Depth to bedrock Seepage	$\begin{aligned} & \mid 0.98 \\ & \mid 0.72 \end{aligned}$	\|Very limited Content of large stones	1.00	\|Very limited Depth to water	11.00	
				Thin layer	10.98			

Table 13.--Water Management--Continued

Table 13.--Water Management--Continued

Map symbol and soil name	Pct. of map unit	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds			
		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
Norad-	85	\|Not limited		$\left\lvert\, \begin{aligned} & \text { Somewhat limited } \\ & \mid \quad \text { Piping }\end{aligned}\right.$	0.48	\|Very limited Depth to water Slow refill	$\begin{array}{\|l} \mid 1.00 \\ 1.00 \end{array}$		
236:									
Norad-----------	45	Not limited		Somewhat limited		Very limited			
				Piping	10.48	Depth to water Slow refill	$\begin{aligned} & \mid 1.00 \\ & 1.00 \end{aligned}$		
Spangenburg-----	40	Somewhat limited		\|Very limited		Very limited			
		Seepage	10.72	Ponding	1.00	Depth to water	11.00		
				Piping	10.49				
237:									
Nuss------------	85	Very limited		Very limited		Very limited	1.00		
		Depth to bedrock	11.00	Thin layer	1.00	Depth to water			
		Slope	10.50	Piping	1.00				
238:									
Nuss------------	60	Very limited		\|Very limited		Very limited			
		Depth to bedrock	11.00	Thin layer	1.00	Depth to water	1.00		
		Slope	10.50	Piping	1.00				
Merlin----------	25	Very limited Depth to bedrock Slope		\|Very limited		Very limited			
			11.00		1.00	Depth to water	1.00		
			10.50	Content of large stones	0.01				
239 :									
Nuss------------	55	\|Very limited Depth to bedrock Slope		Very limited		Very limited			
			\|1.00	\| Thin layer	1.00	Depth to water	1.00		
			10.50	Piping	1.00				
Rock outcrop-	30	Not rated		Not rated		Not rated			
240:									
Observation------	85	Somewhat limited		Somewhat limited		Very limited			
		Depth to bedrock	10.99	Thin layer	10.99	Depth to water	1.00		
		Slope	10.01						
241:									
Observation------	65	Somewhat limited Depth to bedrock Slope		Somewhat limited Thin layer		\|Very limited Depth to water			
			10.99		10.99		1.00		
			10.01						
Rock outcrop---	20	Not rated		Not rated		\| Not rated			
242:									
Observation----	45	Somewhat limited Depth to bedrock Slope		\|Somewhat limited		Very limited			
			10.99		0.99	Depth to water	1.00		
			10.01						
Royst-----------	30	Somewhat limited Depth to bedrock Slope		\|Very limited		Very limited			
			$\begin{aligned} & \mid 0.99 \\ & 10.01 \end{aligned}$	Content of large stones	1.00	\| Depth to water	1.00		
				Thin layer	10.99				
				Piping	0.35				
Merlin----------	15	\|Very limited Depth to bedrock Slope		Very limited		$\begin{aligned} & \text { Very limited } \\ & \text { Depth to water } \end{aligned}$			
			11.00	Thin layer	1.00		1.00		
			10.01	Content of large stones	\| 0.01				

Table 13.--Water Management--Continued

Table 13.--Water Management--Continued

Table 13.--Water Management--Continued

Table 13.--Water Management--Continued

Map symbol and soil name	$\begin{aligned} & \text { \| Pct. } \\ & \mid \text { of } \\ & \text { \|map } \\ & \text { \| unit } \end{aligned}$	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds		
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
267:								
Porterfield-----	50	Somewhat limited Slope	10.88 10.69	$\begin{aligned} & \mid \text { Very limited } \\ & \text { Thin layer } \\ & \text { Piping } \end{aligned}$	1.00 1.00	Depth to water	1.00	
Tincan----------	20	Somewhat limited Slope	10.88	$\begin{aligned} & \text { Very limited } \\ & \text { Thin layer } \\ & \text { Piping } \end{aligned}$	1.00 1.00	Depth to water	\|1.00	
Rock outcrop-------	15	Not rated		Not rated		Not rated		
268:								
Poujade---------	85	Somewhat limited Seepage		\mid Very limited		\|Somewhat limited		
			10.72	Piping	\| 1.00	Depth to water	0.38	
				Depth to	10.24	Slow refill	10.28	
				saturated zone		Cutbanks cave	10.10	
						Salty water	10.06	
269 :								
Poujade-	85	Somewhat limited		\|Very limited		Somewhat limited		
		\| Seepage	10.72	Piping	11.00	Depth to water	0.38	
				Depth to	\| 0.24	Slow refill	10.28	
				saturated zone		Cutbanks cave	10.10	
						Salty water	10.06	
270:								
Poujade-	50	\|Somewhat limited		\|Very limited		\|Somewhat limited		
		Seepage	10.72	Piping	\|1.00	Depth to water	0.38	
				Depth to	\| 0.24	Slow refill	0.28	
				saturated zone		Cutbanks cave	0.10	
						Salty water	0.06	
Ausmus	35	\|Somewhat limited Seepage	0.72	\|Very limited Salinity		\|Very limited Salty water		
			10.72	Piping	1.00	Depth to water	10.40	
				Ponding	11.00	Slow refill	0.28	
				Depth to saturated zone	10.22	Cutbanks cave	\| 0.10	
271:								
Raz	85	\|Very limited		\|Very limited		\|Very limited		
		Depth to cemented	1.00	Thin layer	11.00	Depth to water	11.00	
		pan		Piping	11.00			
		Depth to bedrock	10.99					
272 .								
Raz	50	\|Very limited		\|Very limited		\|Very limited		
		Depth to cemented	1.00	Thin layer	11.00	Depth to water	11.00	
		pan		Piping	1.00			
		Depth to bedrock	10.99					
		Slope	10.01					
Brace-	35	\|Very limited		\|Very limited		\|Very limited		
		Seepage	11.00	Piping	11.00	Depth to water	\| 1.00	
		Depth to cemented pan	0.81	Thin layer	10.81			
		Depth to bedrock	0.66					
		Slope	10.01					
273:								
Raz	50	\|Very limited		\|Very limited		\|Very limited		
		Depth to cemented	1.00	Thin layer	11.00	Depth to water	\| 1.00	
		pan		Piping	\|1.00			
		Depth to bedrock	0.99					
		Slope	10.01					

Table 13.--Water Management--Continued

Table 13.--Water Management--Continued

Map symbol and soil name	$\left.\begin{aligned} & \mid \text { Pct. } \\ & \mid \text { of } \\ & \mid \text { of } \\ & \mid \text { unit } \end{aligned} \right\rvert\,$	Pond reservoir areas		Embankments, dikes, and levees		Aquifer-fed excavated ponds		
		Rating class and limiting features	\|Value	Rating class and limiting features	\|Value		Rating class and limiting features	\|Value
308:								
Mcbain----------	30	Somewhat limited Seepage	0.72	\|Very limited		Somewhat limited		
				Salinity	11.00	Depth to water	10.68	
				Piping	11.00	Slow refill	10.28	
				Depth to	10.02	Cutbanks cave	10.10	
				saturated zone		Salty water	10.06	
Doubleo---------	20	\|Very limited Seepage	11.00	\|Very limited		Somewhat limited	0.10	
				Depth to	1.00	Cutbanks cave		
				saturated zone				
				Ponding	\| 1.00			
				Piping	10.89			
				Seepage	10.01			
309:								
Skunkfarm-------	60	Very limited Seepage	11.00	\|Very limited		Somewhat limited	0.10	
				Depth to saturated zone	\| 1.00	Cutbanks cave		
				Piping	\| 1.00			
				Ponding	\| 1.00			
				Seepage	10.02			
Skidoosprings----	25			\|Very limited		\|Somewhat limited		
		Seepage	1.00	\| Depth to	\| 1.00	Cutbanks cave	10.10	
		Depth to cemented	0.42	saturated zone		Salty water	10.06	
		pan		Piping	11.00			
				Ponding	11.00			
				Thin layer	10.42			
				Seepage	10.06			
310:								
Spangenburg-----	85	Somewhat limited	10.72	\|Somewhat limited		\|Very limited	1.00	
		Seepage		Piping	10.45	Depth to water		
311:	85	Somewhat limited	0.72	Somewhat limited				
Spangenburg-----						\|Very limited		
		Seepage		Piping	10.86	Depth to water	\|1.00	
312:	85	\mid Somewhat limitedSeepage	0.72	Somewhat limited		Very limited	1.00	
Spangenburg					0.86			
				Piping		Depth to water		
313:			1.00			\|Very limited		
Srednic---------		\|Very limited		\|Somewhat limited	0.96		\| 1.00	
	60	Seepage		Thin layer		Depth to water		
		Depth to cemented	0.96					
		Depth to bedrock	0.86					
		Slope	10.01					
Aval------------	30	Very limited Depth to bedrock Slope						
			1.00	\| Thin layer	\|1.00	Depth to water	\| 1.00	
			0.01	Seepage	10.05			
314:	85			\|Somewhat limited			\|1.00	
Stampede--------		\|Very limited				Very limited		
		\| Seepage	11.00	Thin layer	10.99	Depth to water		
		Depth to cemented pan	0.99	Piping	\| 0.31			
				Seepage	10.03			
315:	85	\| Not limited						
Swaler----------				\| Not limited		\|Very limited		
						\| Depth to water	\| 1.00	

Table 13.--Water Management--Continued

Table 13.--Water Management--Continued

(Absence of an entry indicates that data were not estimated)

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \text { \|Liquid } \\ & \mid \text { limit } \end{aligned}$	```Plas- \|ticity	index```	
				\|		>10	3-10							
			Unified	AASHTO	\|inches	\|inches	4	10	40	200				
	In				Pct	Pct					Pct			
52:														
Calderwood------	0-3	\|Very gravelly	\|GC-GM, GM	A-1, A-2	0-5	5-10	35-50	\|30-45	\|25-40	20-35	25-35	5-10		
		loam												
	3-12	\|Very cobbly	\|GC, GC-GM	$\|\mathrm{A}-2, \mathrm{~A}-4, \mathrm{~A}-6\|$	0	15-30	55-70	50-65	40-65	30-50	25-40	5-15		
		loam, very												
		\| cobbly clay												
		loam												
	12-18	\| Very stony	\| CL, GC-GM,	A-4, A-6	\| 25-40	15-25	65-90	\|60-85	\| 55-80	40-65	25-40	5-15		
		\| loam, very	SC-SM											
		stony clay												
		loam, very												
		cobbly clay												
		loam												
	18-28	\| Unweathered			-	---	---	---	---	---	---	--		
		\| bedrock												
53:														
Calderwood------	0-3	\|Cobbly loam	\| CL-ML, ML,	A-4	0-5	\|15-25	75-95	70-90	60-80	45-65	25-35	5-10		
			\| SC-SM, SM											
	3-12	\|Very cobbly	\|GC, GC-GM	$\|\mathrm{A}-2, \mathrm{~A}-4, \mathrm{~A}-6\|$	0	15-30	55-70	50-65	\|40-65	30-50	25-40	5-15		
		\| loam, very												
		\| cobbly clay												
		loam												
	12-18	\|Very stony	\| CL, GC-GM,	A-4, A-6	25-40	15-25	65-90	\|60-85	\| 55-80	40-65	25-40	5-15		
		loam, very	SC-SM											
		stony clay												
		loam, very												
		cobbly clay												
		loam												
	18-28	\| Unweathered			---	---	---	---	---	---	---	-		
		bedrock												
McConnel--------	0-3	\|Very gravelly	\|GM, SM	A-1, A-2	0	0-5	55-85	35-50	\|20-40	15-25	15-20	NP-5		
		sandy loam												
	3-11	\| Gravelly sandy	\|SM	$\|\mathrm{A}-1, \mathrm{~A}-2, \mathrm{~A}-4\|$	0	0-5	70-85	50-75	\|30-60	20-50	15-20	\|NP-5		
		\| loam, gravelly												
		\| loam												
	11-62	\| Extremely	\|GM, GP-GM,	A-1	0-15	\|15-25	45-65	25-50	\|15-30	5-15	0-14	NP		
		\| gravelly loamy		SM, SP-SM										
		sand, very												
		\| cobbly loamy												
		\| sand,												
		extremely												
		cobbly loamy												
		sand												
54:														
Carryback------	0-7	\|Silty clay loam		\| CL, ML	A-6	0	0-15	\| 80-100		75-95	\|70-90	65-85	\|35-40	\|10-15
	7-24	\| Clay, silty	\| CH, CL	A-7	0	0-15	\| 85-100		\|75-100	70-100	65-95	45-60	\|20-35	
		\| clay												
	24-34	\| Unweathered			--	-	---	---	---	---	---	---		
		\| bedrock												
55:														
Carryback------	0-7	\| Cobbly clay	\| ML	A-6	0	15-30	75-95	170-90	\| 65-90	50-70	\|35-40	\| 10-15		
		\| loam												
	7-24	\| Clay, silty	\| CH, CL	A-7	0	0-15	\| 80-100		\| 65-100	\|60-100		55-95	45-60	\|20-35
		clay, gravelly												
		silty clay \|												
	24-34	\|Unweathered			---	---	---	---	---	---	---	---		
		bedrock												

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \text { \| Liquid } \\ & \text { \| limit } \end{aligned}$	```Plas- ticity index```		
				\|	>10	3-10								
			Unified	AASHTO	\|inches	\|inches	4	10	40	200				
				1										
	In			\|	Pct	Pct					Pct			
	In			\|	Pct						Pct			
				\|										
Deppy-----------	0-6	\|Very gravelly	GC-GM, GM,	\|A-2, A-4	0-5	5-20	\|45-70	\|35-60	30-55	25-40	25-35	5-10		
		loam	SC-SM, SM											
	6-15	\| Clay loam	\| CL, ML	A-6	0	0	\| 90-100		\| 85-100	75-100	60-80	35-40	10-15	
	$15-21$	\| Cemented			---	---	---	---	---	---	---	---		
	21-60	Gravelly sandy	\|GM, GP-GM,	\|A-1	0	0	\|40-65	\|30-60	15-40	10-25	0-14	NP		
		\| loam, very	SM, SP-SM											
		\| gravelly sandy												
		loam												
				\|										
73 :														
Deppy-----------	0-6	Very cobbly	\|GC-GM, GM,	A-2, A-4	0-10	40-60	65-85	45-75	40-65	30-50	25-35	5-10		
		loam	SC-SM, SM											
	6-15	Clay loam	\| CL, ML	A-6	0	0	\|90-100		\|85-100		75-100	60-80	35-40	10-15
	15-21	\| Cemented		\mid	---	---	---	---	---	---	---	---		
	21-60	\| Gravelly sandy	\|GM, GP-GM,	\|A-1	0	0	\|40-65	\|30-60	15-40	10-25	0-14	NP		
		loam, very	SM, SP-SM											
		gravelly sandy												
		loam												
Tumtum----------	0-2	\| Cobbly loam	\|ML, SM	\|A-4	0	\|15-40	\|75-95	\|70-90	60-85	45-65	25-35	5-10		
	2-12	Clay loam	\| CL, ML	\|A-6	0	0	\| 90-100		\| 85-100	75-100	60-90	35-40	10-15	
	12-25	\| Indurated			---	---	---	---	---	---	---	---		
	25-60	\| Gravelly sandy	\|GM, SM	\|A-1	0	0-10	\| 50-65	\|45-60	25-40	15-25	0-14	NP		
		loam, very												
		gravelly sandy												
		loam												
$74 \text { : }$														
Dickle---------\|	0-3	\|Very cobbly	\| CL	\|A-6	0-15	\|25-40	\|70-90	\|65-80	60-80	50-65	30-40	10-15		
		\| clay loam												
	3-14	\|Clay loam,	\| CL	\|A-6	0	0-15	\|90-100		\| 80-100		80-100	65-80	30-40	10-15
		\| cobbly clay												
		\| loam												
	14-24				---	---	---	---	---	---	--	---		
		\| bedrock												
				\|										
75:														
Dixon-----------	0-2	Gravelly fine	\| SM	\|A-2	0	0	\|70-80	\|60-75	55-70	30-35	25-30	NP-5		
		sandy loam												
	2-35	Clay loam,	\|GM, ML, SM	$\|\mathrm{A}-2, \mathrm{~A}-4, \mathrm{~A}-6\|$	0	0	\| 65-95	\|60-90	50-90	25-70	30-40	5-15		
		\| sandy clay												
		$\mid \text { loam, gravelly } \mid$												
		sandy clay												
		loam												
	35-46	\|Very gravelly	\|GP-GM	\|A-1	0	0	25-50	\|20-45	10-30	5-10	0-14	NP		
		loamy sand,												
		\| extremely												
		\| gravelly loamy			\|									
		sand												
	46-60	\| Very gravelly	\|GM, GP-GM	\|A-1	0	0	\|25-55	20-50	10-35	5-20	15-20	\|NP-5		
		\| sandy loam,												
		\| very gravelly												
		loamy sand,		\|										
		extremely		1										
		gravelly loamy		\|										
				\|										

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \mid \text { Liquid } \mid \\ & \mid \text { limit } \mid \end{aligned}$	$\begin{aligned} & \text { Plas- } \\ & \mid \text { ticity } \\ & \mid \text { index } \end{aligned}$	
					>10	3-10							
			Unified	AASHTO	inches	inches	4	10	40	200			
	In				Pct	Pct					Pct		
Dixon---------	0-2	\|Gravelly fine	\| SM	\|A-2	0	0	\|70-80	60-75	55-70	30-35	25-30	NP-5	
		\| sandy loam	\mid										
	2-35	\|Clay loam,	ML, SM, GM	$\|\mathrm{A}-2, \mathrm{~A}-4, \mathrm{~A}-6\|$	0	0	\|65-95	60-90	50-90	\| 25-70	30-40	5-15	
		sandy clay											
		loam, gravelly											
		sandy clay		\|									
		loam											
	35-46	\|Very gravelly	\|GP-GM	\|A-1	0	0	\|25-50	20-45	10-30	5-10	0-14	NP	
		\| loamy sand,											
		\| extremely											
		\| gravelly loamy											
		\| sand											
	46-60	\|Very gravelly	\|GM, GP-GM	\|A-1	0	0	\|25-55	20-50	10-35	5-20	15-20	\|NP-5	
		$\left\lvert\, \begin{aligned} & \text { sandy loam, } \\ & \text { very gravelly } \end{aligned}\right.$											
		\| loamy sand,											
		\| extremely											
		\| gravelly loamy											
		\| sand											
77:													
Dixon---------	0-2	\| Gravelly sandy	\|GM, SM	\|A-2	0	0	\|60-70	55-65	45-55	20-35	30-40	5-15	
		\| clay loam											
	2-35	$\mid \text { Clay loam, }$	\|GM, ML, SM	$\|\mathrm{A}-2, \mathrm{~A}-4, \mathrm{~A}-6\|$	0	0	\|65-95	60-90	50-90	25-70	30-40	5-15	
		\| loam, gravelly											
		sandy clay											
		\| loam											
	35-46	\| Very gravelly	\|GP-GM	\|A-1	0	0	\|25-50	20-45	10-30	5-10	0-14	NP	
		\| loamy sand,											
		\| extremely											
		\| gravelly loamy											
		\| sand											
	46-60	\|Very gravelly	\|GM, GP-GM	\|A-1	0	0	\|25-55	20-50	10-35	5-20	15-20	NP-5	
		\| sandy loam,											
		\| very gravelly											
		\| extremely											
		\| gravelly loamy											
		sand \|											
78:													
Dixon----------	0-2		\|GM, SM	\|A-2	0	0	\|60-70	55-65	45-55	20-35	30-40	5-15	
		clay loam											
	2-35	$\mid \text { Clay loam, }$	\|GM, ML, SM	$\|\mathrm{A}-4, \mathrm{~A}-6, \mathrm{~A}-2\|$	0	0	\|65-95	60-90	50-90	\|25-70	30-40	5-15	
		$\left\lvert\, \begin{aligned} & \text { loam, gravelly } \\ & \text { sandy clay } \end{aligned}\right.$											
		loam \|	\|	\|									
	35-46	\| Very gravelly	\|GP-GM	\|A-1	0	0	\|25-50	20-45	10-30	5-10	0-14	NP	
		\| loamy sand,											
		\| extremely											
		\| gravelly loamy											
		sand \|											
	46-60	\|Very gravelly	\|GM, GP-GM	\|A-1	0	0	\|25-55	20-50	10-35	5-20	15-20	\|NP-5	
		\| sandy loam,											
		\| very gravelly											
		loamy sand,											
		extremely											
		\| gravelly loamy											
		sand \|											

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \mid \text { Liquid } \mid \\ & \mid \text { limit } \end{aligned}$	Plasticity	
				\|	>10	3-10							
			Unified	AASHTO	inches	\|inches	4	10	40	200		\|index	
	In			\|	Pct	Pct					Pct		
				1									
110:													
Westbutte-------	0-12	Extremely stony	GC-GM, GM,	\|A-2, A-4	30-55	\|15-30	\|60-75	\| 45-60	40-55	30-40	25-35	5-10	
		loam	SC-SM, SM										
	12-24	\| Very cobbly	\| CL-ML, ML,	\|A-4	5-35	15-45	70-85	60-85	55-80	35-65	25-35	5-10	
		loam, very	SC, SC-SM,										
		cobbly clay	SM										
		loam, very		\|									
		stony clay		\|									
		loam											
	24-34	\| Unweathered		\|	\| ---	---	---	---	---	---	---	--	
		bedrock		\|									
111:													
Final----------\|	0-3	\|Silt loam	CL-ML	\|A-4	0	0	100	100	90-100	70-90	20-30	5-10	
	3-12	$\begin{aligned} & \text { Clay, silty } \\ & \text { clay } \end{aligned}$	CH, CL	\|A-7	0	0	100	100	\| 90-100	75-95	45-60	20-35	
	12-24	\| Clay, silty	\| CH, CL	\|A-7	0	0	100	100	90-100	75-95	45-55	20-30	
		clay											
	24-42	$\begin{aligned} & \text { Clay loam, } \\ & \text { silty clay } \end{aligned}$	\| CL	\|A-6, A-7	0	0	100	100	90-100	70-90	30-45	10-20	
		loam											
	42-60	\| Clay loam,	CL	\|A-6, A-7	0	0	100	100	\| 90-100	70-90	30-45	10-20	
		\| silty clay											
		loam											
112:													
Fitzwater------\|	0-9	\|Very stony loam		GC-GM, GM,	\|A-2, A-4	\| 25-45	\|15-30	60-80	50-75	45-65	30-50	25-35	5-10
			SC-SM, SM										
	9-16	\|Very gravelly	\|GC-GM, GM,	\|A-2, A-4	0-15	\|25-35	35-70	20-55	15-50	10-40	25-35	5-10	
		loam,	SC-SM, SM										
		extremely											
		gravelly loam											
	16-30	\|Extremely	\|GC-GM, GM,	\|A-2, A-4	5-25	\| 35-55	35-70	25-65	20-55	15-45	25-35	5-10	
		cobbly loam,	SC-SM, SM										
		\| very cobbly											
		loam											
	30-58	\|Extremely stony \mid	GC-GM, GM,	A-2, A-4	\|25-55	\|25-55	45-75	\| 30-65	15-55	15-45	25-35	5-10	
		sandy loam, extremely	SC-SM, SM										
		\| cobbly sandy			\|								
		\| loam,		\|	\|								
		extremely			\|								
		cobbly loam		\|									
	58-68	\| Unweathered		\|	-	---	---	---	---	---	---	---	
		\| bedrock		\|	\|								
				\|									
Hapgood, thick surface--------				\|									
	0-10	\| Gravelly sandy	SM	\|A-1	0-5	5-10	\|65-75	\|55-65	35-40	20-25	20-25	NP-5	
		loam											
	10-23	\|Very stony	\|GC-GM, GM,	\|A-2, A-4	5-45	\|15-30	60-80	\|45-70	\|40-65	30-50	25-35	5-10	
		$\left\lvert\, \begin{aligned} & \text { loam, very } \\ & \text { gravelly loam } \end{aligned}\right.$	SC-SM, SM		1								
	23-43	\| Very stony	\|GC-GM, GM,	\|A-2, A-4	5-45	\|15-30	60-80	\|45-70	\|40-65	30-50	25-35	5-10	
		\| loam, very	SC-SM, SM										
		\| gravelly loam,											
		very gravelly		\|	\|								
		clay loam		\|									
	43-53	\| Unweathered		1	---	---	---	---	---	---	---	---	
		bedrock		I	1								

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid limit	$\begin{aligned} & \text { Plas- } \\ & \mid \text { ticity } \end{aligned}$								
					>10	3-10														
			Unified	AASHTO	\|inches	\|inches	4	10	40	200		\|index								
	In				Pct	Pct					Pct									
136:																				
Gumble---------	0-3	\|Very gravelly	GC-GM, GM,	A-2, A-4	0-5	5-20	50-75	35-55	\|30-50	25-45	25-35	5-10								
		silt loam	SC-SM, SM																	
	3-8	\|Loam	\| CL, CL-ML, ML		A-4	0	0-5	80-90	75-85	\| 60-80	50-70	25-35	5-10							
	8-14	\| Clay loam,	CH, CL	A-7	0	0-5	75-95	60-95	\| 60-95	50-90	40-55	15-30								
		\| clay, gravelly																		
		clay \|																		
	14-16	\|Silty clay	CL, ML	A-6, A-7	0	0-5	\| 95-100		\| 90-100		\| 90-100	70-90	\|35-45	10-20						
		loam, clay																		
		loam																		
	16-26	Weathered			---	---	---	---	---	---	---	---								
		bedrock																		
Mahoon--------	0-3	\|Very gravelly	GC-GM, GM,	A-1, A-2, A-4\|	0	5-20	50-75	30-55	25-50	20-40	25-35	5-10								
		\| loam	SC-SM, SM																	
	3-9	\| Gravelly clay,	CL, SC	A-7	0	0-15	80-95	60-75	\|55-70	45-65	40-50	15-25								
		\| gravelly clay																		
		\| loam																		
	9-18	\|Gravelly clay,	CH, CL	A-7	0	0-15	75-100\|	60-95	\| 55-90	50-85	45-65	20-40								
	18-25	\|Gravelly clay,	CH, CL	A-7	0	0-15	\|75-100		60-95	\| 55-90	50-85	45-65	\| 20-40							
		\| clay																		
	25-35	\|Weathered			---	---	---	---	---	--	---	---								
		bedrock																		
Cagle----------	0-4	\|Very gravelly	\|GC-GM, GM,	A-2, A-4	0-10	\|10-20	55-70	35-60	\| 30-55	25-45	25-35	5-10								
		loam	SC-SM, SM																	
	4-12	\| Clay, gravelly	\| $\mathrm{CH}, \mathrm{CL}, \mathrm{SC}$	A-7	0	0-10	75-95	60-90	\|55-85	40-75	40-55	15-30								
		clay, gravelly\|																		
		clay loam \|																		
	12-24	\|Clay, gravelly	CH, CL, SC	A-7	0	0-10	75-95	\|60-90	\| 55-85	40-75	40-55	15-30								
		\| clay, gravelly																		
		clay loam \|																		
	24-36	\| Clay loam,	\| CL, ML, SC	A-6, A-7	0	0-10	75-95	60-90	\|55-85	40-70	35-45	10-20								
		gravelly clay																		
		\| loam																		
	36-46	\|Weathered			---	---	---	---	---	---	--	-								
		bedrock																		
137:																				
Hackwood------	0-11	\|Gravelly loam	SC-SM, SM	A-4	0	0-10	70-85	60-75	\| 50-65	35-50	25-35	5-10								
	11-23	$\begin{aligned} & \mid \text { Loam, gravelly } \\ & \text { loam } \end{aligned}$	$\begin{aligned} & \mid \mathrm{CL}-\mathrm{ML}, \mathrm{ML}, \\ & \mathrm{SC}-\mathrm{SM}, \mathrm{SM} \end{aligned}$	A-4	0	0-5	70-100\|	60-95	60-85	35-70	25-35	5-10								
	23-48	$\begin{aligned} & \text { \|Gravelly loam, } \\ & \text { \| gravelly clay } \end{aligned}$	$\begin{aligned} & \mid \text { CL-ML, ML, } \\ & \text { SC-SM, SM } \end{aligned}$	A-4	0	0-5	65-90	50-75	40-70	35-55	25-35	5-10								
		loam																		
	48-60	\|Gravelly loam,	GC-GM, GM,	A-2, A-4	0	0-5	55-85	40-70	\|35-65	25-50	25-35	5-10								
		\| very gravelly	SC-SM, SM																	
		l loam, very																		
		gravelly clay																		
		loam																		
138:																				
Hackwood------	0-11	\|Gravelly loam	SC-SM, SM	A-4	0	0-10	70-85	60-75	\| 50-65	35-50	25-35	5-10								
	11-23	\|Loam, gravelly	\| CL-ML, ML,	A-4	0	0-5	70-100\|	60-95	\| 60-85	35-70	25-35	5-10								
		loam	SC-SM, SM																	
	23-48	\|Gravelly loam,	CLL-ML, ML,	A-4	0	0-5	65-90	50-75	40-70	35-55	25-35	5-10								
		\| gravelly clay	SC-SM, SM																	
		loam																		
	48-60	\|Gravelly loam,	GC-GM, GM,	A-2, A-4	0	0-5	55-85	40-70	\|35-65	25-50	25-35	5-10								
		\| very gravelly		SC-SM, SM																
		loam, very																		
		gravelly clay																		
		loam																		

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid \|limit	$\begin{aligned} & \text { \| Plas- } \\ & \mid \text { ticity } \end{aligned}$	
					>10	3-10							
			Unified	AASHTO	\|inches	\|inches	4	10	40	200		index	
	In				Pct	Pct					Pct		
138:													
Baconcamp-------	0-4	\|Very cobbly	\| CL-ML, ML,	\|A-4	0-10	\|25-35	70-90	55-80	\| 50-75	40-60	\|25-35	5-10	
		loam	SC-SM, SM										
	4-20	\|Gravelly loam,	\|GC-GM, GM,	\|A-2, A-4	0-5	0-10	50-80	40-75	\| 35-65	25-50	\|25-35	5-10	
		$\begin{array}{\|l} \text { very gravelly } \\ \text { loam } \end{array}$	SC-SM, SM										
	20-35	\|Very gravelly	\|GM, ML, SC-	\|A-2, A-4	0-10	5-35	50-85	\|35-80	\|30-75	25-65	\|25-35	5-10	
		loam, very gravelly clay	\| SM, SM										
		gravelly clay loam, very											
		cobbly loam											
	35-45	Unweathered			---	---	---	---	---	---	---	---	
		bedrock											
139 :													
Hapgood---------	0-10	\|Very cobbly	\|GC-GM, GM,	\|A-4	5-10	\|20-45	60-80	50-70	\|40-65	35-50	\|25-35	5-10	
		loam	SC-SM, SM										
	10-23	\|Very stony	\|GC-GM, GM,	\|A-2, A-4	5-45	\|15-30	60-80	45-70	\|40-65	30-50	\|25-35	5-10	
		\| loam, very	SC-SM, SM										
	23-43	\|Very stony	SC-SM, SM,	A-2, A-4	5-45	15-30	60-80	45-70	40-65	30-50	25-35	5-10	
		\| loam, very	GC-GM, GM										
		gravelly loam, \|											
		very gravelly											
		clay loam											
	43-53	Unweathered			---	---	---	---	---	---	---	---	
		bedrock											
140:													
Hart Camp------	0-3	\| Cobbly loam	\| CL-ML, ML	\|A-4	0	\|15-30	80-95	70-90	\| 60-85	50-70	\|25-35	5-10	
	3-9	\|Cobbly loam,	\| CL, ML	\|A-4, A-6	0	\|25-45	80-95	75-90	\| 65-90	50-70	\|30-40	5-15	
		\| cobbly clay											
		loam											
	9-19	$\begin{aligned} & \text { \| Cobbly loam, } \\ & \mid \text { cobbly clay } \end{aligned}$	\| CL, ML	\|A-4, A-6	0	\|25-45	80-95	75-90	\| 65-90	50-70	\| 30-40	5-15	
		\| loam											
	19-29	Weathered			---	---	---	---	---	---	---	---	
		bedrock											
141:													
Hart Camp------	0-3	\| Cobbly loam	\| CL-ML, ML	\|A-4	0	\|15-30	80-95	70-90	\|60-85	50-70	\|25-35	5-10	
	3-9	\|Cobbly loam,	\| CL, ML	\|A-4, A-6	0	\|25-45	80-95	75-90	\| 65-90	50-70	\|30-40	5-15	
		\| cobbly clay											
		loam											
	9-19	Cobbly loam,	\| CL, ML	\|A-4, A-6	0	\|25-45	80-95	75-90	\| 65-90	50-70	\| 30-40	5-15	
		\| cobbly clay											
	19-29	Weathered bedrock			---	---	---	---	---	---	---	---	
142:													
Helphenstein----	0-3	\|Fine sandy loam		ML, SM	\|A-4	0	0	100	100	\|70-85	40-55	\|20-30	NP-5
	3-9	Loam	\| ML	\|A-4	0	0	100	100	\| 85-95	60-75	\|20-30	NP-5	
	9-26	Loam, silt loam\|	ML	\|A-4	0	0	100	100	\| 85-95	60-80	\| 30-35	5-10	
	26-62	Fine sandy	\| CL-ML, ML	\|A-4	0	0	100	100	\|75-95	50-75	\|25-35	5-10	
		loam, very											
		fine sandy											
		loam, loam											
Goldrun--------	0-24	Loamy fine sand	SM	\|A-2	0	0	100	100	\|65-80	20-35	0-14	NP	
	24-56	\|Loamy sand,	\| SM	\|A-2	0	0	100	100	\| 50-80	15-35	0-14	NP	
		loamy fine											
		sand, fine											
		sand											
	56-62	Sandy clay loam\|	CL-ML, ML,	\|A-4	0	0	100	100	\| 80-90	\|35-55	\|25-35	5-10	
			SC-SM, SM										

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid \|limit	$\begin{aligned} & \text { \| Plas- } \\ & \text { \|ticity } \\ & \mid \text { index } \end{aligned}$	
				\|	>10	3-10							
			Unified	AASHTO	inches	\|inches	4	10	40	200			
				1									
153:Klicker--------	In				Pct	Pct					Pct		
		\|			\|								
	0-3	\|Very gravelly	\|GC-GM, GM,	\|A-2, A-4	5-10	15-20	50-80	\| 30-60	\| 30-55	\|25-45	\|25-35	5-10	
Klicker--------		\| loam	SC-SM, SM										
	3-13	\| Very cobbly	\| CL-ML, ML,	\|A-4	5-15	35-45	75-90	\|55-85	55-80	\|40-65	\|25-35	5-10	
		\| loam	SC-SM, SM										
	13-24	\|Very cobbly	\|ML, SM	\|A-2, A-6	5-15	35-45	65-90	\|40-85	40-80	\| 30-65	\|35-40	10-15	
		clay loam,											
		extremely											
		cobbly clay											
		loam											
	24-34	\| Unweathered			--	-	--	---	---	---	---	---	
		bedrock											
154:													
Klicker-------- \|	0-3	$\begin{aligned} & \text { \|Extremely } \\ & \text { cobbly loam } \end{aligned}$	$\begin{aligned} & \text { \|GC-GM, GM, } \\ & \text { SC-SM, SM } \end{aligned}$	\|A-2, A-4	20-25	35-40	65-80	\|40-50	40-50	\| 30-40	\|25-35	5-10	
	3-13	\| Very cobbly	\| CL-ML, ML,	\|A-4	5-15	35-45	75-90	\|55-85	55-80	\|40-65	25-35	5-10	
		\| loam	\| SC-SM, SM										
	13-24	\|Very cobbly	\|ML, SM	\|A-2, A-6	5-15	35-45	65-90	\|40-85	40-80	\| 30-65	\|35-40	10-15	
		\| clay loam,											
		\| extremely											
		\| cobbly clay											
		loam											
	24-34	\|Unweathered			---	---	---	---	---	---	---	---	
		bedrock											
155:													
Krackle, north slopes \qquad													
	0-4	\|Gravelly loam	\| CL-ML, SC-SM	\|A-4	0-5	0-10	70-85	\| 60-80	50-70	\| 35-60	\|25-30	5-10	
	4-15	\|Very stony clay		\| CL	\|A-6	15-40	25-45	80-95	70-90	65-85	\| 50-70	\| 30-40	10-15
		\| cobbly clay											
		loam, very											
		cobbly loam											
	15-30	\|Very stony clay		\| CL	\|A-6	25-45	15-30	80-95	\|70-90	65-85	\| 50-70	\|30-40	10-15
		loam, very											
		\| cobbly loam											
	30-40	\| Unweathered			---	-	---	-	---	---	---	---	
		\| bedrock											
Krackle, south													
slopes--------	0-4	\|Gravelly loam	\|CL-ML, SC-SM	\|A-4	0-5	0-10	70-85	\|60-80	50-70	\| 35-60	\|25-30	5-10	
	4-15	\|Very stony clay		CL	\|A-6	15-40	25-45	80-95	\|70-90	65-85	\| 50-70	\|30-40	10-15
		$\left\lvert\, \begin{aligned} & \text { loam, very } \\ & \text { cobbly clay } \end{aligned}\right.$											
		loam, very											
		\| cobbly loam											
	15-30	\|Very stony clay		\|CL	\|A-6	25-45	\|15-30	80-95	\|70-90	65-85	\| 50-70	\| 30-40	10-15
		$\left\lvert\, \begin{aligned} & \text { loam, very } \\ & \text { cobbly loam }\end{aligned}\right.$											
		\| cobbly loam											
	30-40	\| Unweathered			---	---	---	---	---	---	--	---	
		\| bedrock											
156:													
Krackle---------	0-4	\|Very gravelly	\|GC-GM, SC-SM	\|A-2, A-4	0-10	5-15	50-75	\|40-60	35-55	\|25-40	25-30	5-10	
		\| loam											
	4-15	\|Very stony clay		\| CL	\|A-6	15-40	\| 25-45	80-95	\|70-90	65-85	\| 50-70	\|30-40	10-15
		\| loam, very											
		\| cobbly clay											
		loam, very											
		cobbly loam											
	15-30	\|Very stony clay		\| CL	\|A-6	\| $25-45$	\| 15-30	80-95	\|70-90	65-85	\| 50-70	\|30-40	10-15
		$\left\lvert\, \begin{aligned} & \text { loam, very } \\ & \text { cobbly loam } \end{aligned}\right.$											
	30-40			\|	---	---	---	---	--	---	---	---	
		bedrock											

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \mid \text { Liquid } \mid \\ & \mid \text { limit } \end{aligned}$	$\begin{aligned} & \mid \text { Plas- } \\ & \mid \text { ticity } \\ & \mid \text { index } \end{aligned}$	
					>10								
			Unified	AASHTO	inches	\|inches		4	10	40	200		
	In				Pct	Pct					Pct		
Baconcamp------	0-4	\|Very gravelly	\|GC-GM, GM,	A-2, A-4	0-10	5-15	\|60-70	45-55	40-50	\|30-40	25-35	5-10	
		\| loam	SC-SM, SM										
	4-20	\|Gravelly loam,	\|GC-GM, GM,	A-2, A-4	0-5	0-10	\|50-80	40-75	35-65	25-50	25-35	5-10	
		very gravelly	\| SC-SM, SM										
		loam											
	20-35	Very gravelly	\| GM, ML,	A-2, A-4	0-10	5-35	\| 50-85	35-80	30-75	25-65	25-35	5-10	
		loam, very	\| SC-SM, SM										
		\| gravelly clay											
		loam, very											
		\| cobbly loam											
	35-45	\|Unweathered bedrock			---	---	---	---	---	---	--	---	
Rock outcrop----	0-60				---	---	---	---	---	---	---	---	
		\| bedrock											
$157 \text { : }$													
Krackle--------	0-4	$\begin{aligned} & \text { Very gravelly } \\ & \text { loam } \end{aligned}$	\|GC-GM, SC-SM	A-2, A-4	0-10	5-15	\| 50-75	40-60	35-55	25-40	25-30	5-10	
	4-15	\|Very stony clay		\| CL	\|A-6	\|15-40	\|25-45	\|80-95	70-90	65-85	\|50-70	30-40	\|10-15
		\qquad											
		\| cobbly clay											
		loam, very											
		\| cobbly loam											
	15-30	\|Very stony clay		CL	\|A-6	25-45	15-30	\|80-95	70-90	65-85	50-70	30-40	10-15
		loam, very											
		\| cobbly loam											
	30-40	Unweathered			---	---	-	---	---	---	---	---	
		\| bedrock											
Baconcamp-------	0-4	$\begin{aligned} & \text { \|Very gravelly } \\ & \text { \| loam } \end{aligned}$	$\begin{array}{\|l} \mid G C-G M, ~ G M, ~ \\ \text { SC-SM, SM } \end{array}$	\|A-2, A-4	0-10	5-15	\|60-70	45-55	40-50	30-40	25-35	5-10	
	4-20	$\begin{array}{\|} \mid \text { Gravelly loam, } \\ \text { very gravelly } \\ \text { loam } \end{array}$	$\begin{array}{\|} \mid \text { GC-GM, GM, } \\ \text { SC-SM, SM } \end{array}$	$\mid A-2, A-4$	0-5	0-10	50-80	40-75	35-65	25-50	25-35	5-10	
	20-35	Very gravelly	\| GM, ML,	\|A-2, A-4	0-10	5-35	50-85	35-80	30-75	\|25-65	25-35	5-10	
		loam, very	SC-SM, SM										
		\| gravelly clay											
		loam, very											
		cobbly loam											
	35-45	Unweathered			---	---	---	---	-	--	---	--	
		bedrock											
Rock outcrop----	0-60	Unweathered			---	--	-	--	--	---	---	--	
		bedrock											
158:													
Krackle--------\|	0-4	\| Cobbly clay	ML	\|A-6	5-10	\|15-20	\|80-95	70-90	65-85	50-70	35-40	10-15	
		\| loam											
	4-15	\|Very stony clay		CL	\|A-6	15-40	25-45	\|80-95	70-90	65-85	50-70	30-40	10-15
		loam, very											
		\| cobbly clay											
		\| loam, very											
		cobbly loam											
	15-30	\|Very stony clay		CL	\|A-6	\|25-45	\|15-30	\|80-95	70-90	65-85	\|50-70	30-40	10-15
		loam, very											
		cobbly loam											
	30-40				---	---	---	---	--	---	---	---	
		\| bedrock											
Rock outcrop----	0-60	Unweathered			---	---	---	---	---	---	---	---	
		bedrock											

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid \|limit			
					>10	3-10								
			Unified	AASHTO	inches	inches	4	10	40	200				
	In				Pct	PCt					Pct			
194:														
Merlin, very stony														
	0-7	\|Very stony loam		$\begin{aligned} & \mid \text { CL-ML, ML, } \\ & \text { \| SC-SM, SM } \end{aligned}$	\|A-4	25-45	15-30	75-90	\| 65-85	\|55-75	\|45-60	\| 25-35	5-10	
	7-12	\|Clay loam, gravelly clay	\| CL, ML	\|A-6, A-7	0	0-5	75-100	65-95	60-90	\| 50-70	35-45	10-20		
		loam												
	12-18	$\begin{aligned} & \text { \|Clay, cobbly } \\ & \text { \| clay } \end{aligned}$	CH	\|A-7	0	0-15	\|90-100		85-100	\|80-100		75-95	55-65	\|30-40
	18-29	\|Unweathered bedrock			---	---	---	---	---	---	---	---		
Merlin, very cobbly-----	0-7					30-50	70-90							
	0-7	Very cobbly loam	SC-SM, SM	A-4	5-25	30-50	70-90	55-80	50-70	40-55	25-35	5-10		
	7-12	\|Clay loam, gravelly clay loam	CL, ML	\|A-6, A-7	0	0-5	\|75-100		65-95	\|60-90	\|50-70	35-45	10-20	
	12-18	$\begin{aligned} & \text { Clay, cobbly } \\ & \text { \| clay } \end{aligned}$	CH	\|A-7	0	0-15	\|90-100		85-100	\|80-100		75-95	55-65	\| 30-40
	18-29	Unweathered bedrock			-	-	---	---	---	--	--	---		
195:														
Merlin----------	0-7	$\begin{aligned} & \text { \|Very cobbly } \\ & \text { loam } \end{aligned}$	$\begin{aligned} & \mid \mathrm{CL}-\mathrm{ML}, \mathrm{ML}, \\ & \mid \mathrm{SC}-\mathrm{SM}, \mathrm{SM} \end{aligned}$	\|A-4	5-25	30-50	\|70-90	\| 55-80	\| 50-70	\|40-55	25-35	5-10		
	7-12	\|Clay loam, gravelly clay loam	\| CL, ML	\|A-6, A-7	0	0-5	\|75-100		65-95	\|60-90	\|50-70	35-45	10-20	
	12-18	$\begin{aligned} & \text { \|Clay, cobbly } \\ & \text { clay } \end{aligned}$	CH	\|A-7	0	0-15	\|90-100		85-100	80-100	75-95	55-65	\|30-40	
	18-29	Unweathered bedrock			---	---	---	---	---	---	---	---		
	0-5	\|Gravelly loam	SC-SM, SM	A-4	0-5	5-15	70-85	60-75	50-65	35-50	25-35	5-10		
Ateron---------	5-12	\|Very cobbly clay loam	\|ML, SM	\|A-6	5-20	20-55	70-90	\|60-80	\|55-75	45-60	35-40	10-15		
	12-18	\|Extremely stony clay, very stony clay, very cobbly clay	$\begin{aligned} & \text { \|CH, CL, GC, } \\ & \text { SC } \end{aligned}$	A-7	\|20-45	30-55	60-80	45-70	40-70	\|35-60	45-55	20-30		
	18-28	\|Unweathered bedrock			---	---	---	---	---	---	---	---		
Merlin----------	0-7	\|Very stony clay	CL-ML, ML	\|A-4	25-45	15-30	75-90	65-85	\| 60-80	50-65	25-35	5-10		
		\| loam												
	7-12	\|Clay loam, gravelly clay loam	\| CL, ML	\|A-6, A-7	0	0-5	\|75-100		65-95	\|60-90	50-70	35-45	10-20	
	12-18	$\begin{aligned} & \text { Clay, cobbly } \\ & \text { \| clay } \end{aligned}$	CH	\|A-7	0	0-15	\|90-100		85-100	\|80-100		\|75-95	55-65	\| 30-40
	18-29	Unweathered bedrock			---	---	---	---	---	---	---	---		
Ateron----------	0-5	$\begin{aligned} & \text { \|Very cobbly } \\ & \text { loam } \end{aligned}$	\|GM, ML, SM	\|A-4	5-15	30-40	\|60-85	\| 50-80	45-70	\| 35-55	\|25-35	5-10		
	5-12	$\begin{aligned} & \text { \|Very cobbly } \\ & \text { clay loam } \end{aligned}$	ML, SM	\|A-6	5-20	20-55	70-90	\| 60-80	\|55-75	\|45-60	\| 35-40	10-15		
	12-18	\|Extremely stony clay, very stony clay, very cobbly clay	$\begin{aligned} & \text { \|CH, CL, GC, } \\ & \mid \mathrm{SC} \end{aligned}$	\|A-7	\|20-40	30-55	\|60-80	\| 45-70	\|40-70	\|35-60	45-55	20-30		
	18-28	\| Unweathered			---	---	---	---	---	---	---	--		

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \mid \text { Liquid } \mid \\ & \mid \text { limit } \end{aligned}$	Plasticity index	
					>10	3-10							
			Unified	AASHTO	inches	\|inches		4	10	40	200		
			\|										
	In		-		Pct	Pct					Pct		
		\|		\|									
202 :													
Merlin---------	0-7	\|Very gravelly	\|GC-GM, GM,	A-2, A-4	0-5	5-20	50-80	35-60	\| 30-55	\|25-40	\|25-35	5-10	
		\| loam	\| SC-SM, SM										
	7-12	\| Clay loam,	\|CL, ML	A-6, A-7	0	0-5	\|75-100		65-95	60-90	\| 50-70	35-45	10-20
		gravelly clay											
		\| loam											
	12-18	Clay, cobbly	$\mid \mathrm{CH}$	A-7	0	0-15	\| 90-100		85-100	80-100	75-95	55-65	30-40
		\| clay											
	18-29	Unweathered			---	-	---	---	---	---	--	--	
		bedrock											
Teguro--------- \|	0-2	\|Very gravelly	\|GC-GM, GM	A-1, A-2	0-5	5-15	40-55	30-50	30-45	20-35	25-35	5-10	
	2-5	\| loam Loam, cobbly		\| CL-ML, ML,	A-4	0-5	\|10-15	70-95	60-95	50-85	35-70	25-35	5-10
		$\left\lvert\, \begin{aligned} & \text { loam, gravelly } \\ & \text { loam } \end{aligned}\right.$	SC-SM, SM										
	5-14	Gravelly clay	\| ML, SM	A-6	0-10	\|10-40	70-90	60-90	50-90	35-70	35-40	10-15	
		loam, cobbly											
		clay loam,											
		gravelly loam											
	14-24	Unweathered			---	---	---	---	---	---	--	---	
		bedrock											
$203 \text { : }$													
Merlin----------	0-7	Very stony loam\|	$\begin{aligned} & \text { CL-ML, ML, } \\ & \text { SC-SM, SM } \end{aligned}$	A-4	25-45	\| 15-30	75-90	65-85	55-75	45-60	25-35	5-10	
	7-12	Clay loam,	\|CL, ML	A-6, A-7	0	0-5	75-100	65-95	60-90	50-70	35-45	10-20	
	$7-12$	gravelly clay	\|CL, MW	A-6, A-7	0	0-5	\|75-100		65-95	60-90	50-70	\|35-45	10-20
		loam											
	12-18	Clay, cobbly	\| CH	A-7	0	0-15	\|90-100		85-100	80-100	75-95	55-65	30-40
		\| clay											
	18-29	Unweathered			\| ---	---	---	---	---	--	--	--	
		\| bedrock											
Teguro---------	0-2	Very stony loam\|	GC-GM, GM	A-2, A-4	20-30	5-20	55-70	45-70	45-60	30-50	25-35	5-10	
	2-5	Loam, cobbly \|	\| CL-ML, ML,	A-4	0-5	\| 10-15	70-95	60-95	50-85	35-70	25-35	5-10	
		loam, gravelly\|	SC-SM, SM										
		loam											
	5-14	Gravelly clay	\| ML, SM	A-6	0-10	\|10-40	70-90	60-90	50-90	35-70	35-40	10-15	
		loam, cobbly											
		clay loam,											
		gravelly loam											
	14-24	Unweathered			-	---	--	--	---	--	--	---	
		bedrock											
204:													
Mesman--------- \|	0-4	\|Loamy fine sand				0	0	100	100	\| 65-80	20-35	15-20	\|NP-5
	4-26	\|Loam, clay	\| CL	A-6	0	0	100	100	\| 85-95	70-90	\| 30-45	10-20	
		loam, silty											
		clay loam											
	26-62	Clay loam,	\| CL, CL-ML, ML		A-4, A-6	0	0	100	100	\| 85-95	60-80	20-35	NP-15
		loam, silt											
		loam											
205:													
Mesman--------- \|	0-4	Fine sandy loam\|	\|ML, SM	A-4	0	0	100	100	\|70-85	40-55	\|15-25	NP-5	
	4-26	Loam, clay \|	\| CL	A-6	0	0	100	100	\| 85-95	70-90	\|30-45	10-20	
		loam, silty			\|								
		clay loam											
	26-62	Clay loam,	\|CL, CL-ML, ML		A-6, A-4	0	0	100	100	85-95	60-80	20-35	\|NP-15
		loam, silt											
		loam \|			1 \|								

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \mid \text { Liquid } \mid \\ & \mid \text { limit } \end{aligned}$	$\begin{aligned} & \text { Plas- } \\ & \mid \text { ticity } \\ & \mid \text { index } \end{aligned}$		
					>10	3-10								
			Unified	AASHTO	\|inches	\|inches		4	10	40	200			
	In				Pct	Pct					Pct			
223 :														
Madeline--------	0-2	\| Gravelly clay	\| ML, SM	\|A-6	0	0-10	75-90	60-75	\|55-70	40-55	35-40	\|10-15		
		\| loam												
	2-10	\| Clay loam	\| CL	\|A-7	0	0-10	\| 85-100		75-95	\|70-90	55-70	40-45	\|15-20	
	10-19	\| Cobbly clay	\| CH , CL	\|A-7	0	0-25	\| 90-100		80-100	60-95	55-80	40-55	\|15-30	
		\| loam, clay,												
		clay loam												
	19-29	\|Unweathered			---	---	---	---	---	---	---	---		
		bedrock												
224:														
Ninemile-------	0-4		\|GC, SC	\|A-6	0-5	\|25-40	65-85	40-75	\|40-65	35-50	30-35	\| 10-15		
		clay loam												
	4-16	\| Clay, gravelly	\| CH, CL	\|A-7	0	0-30	80-100	60-100	\|60-100		55-85	45-60	25-40	
		$\left\lvert\, \begin{aligned} & \text { clay, cobbly } \\ & \text { clay } \end{aligned}\right.$												
	16-26	\| Unweathered			---	---	---	---	---	---	---	---		
		bedrock												
Pearlwise------	0-6	\| Clay loam		A-6	0	0-10	\| 95-100		85-100	\|80-100		60-80	35-40	\|10-15
	6-22	\|Loam, clay	\|CL, CL-ML	A-4, A-6	0	0-10	\| 80-100		70-100\|	\|65-100		50-80	25-40	5-15
		$\left\lvert\, \begin{aligned} & \text { loam, gravelly } \\ & \text { clay loam } \end{aligned}\right.$												
	22-32	\|Unweathered bedrock			---	-	---	---	---	---	---	---		
225:														
Ninemile--------	0-4	\| Very cobbly loam	\|GC, SC, SC-SM		A-2, A-4	0-5	\|25-40	65-85	40-75	\|40-65	25-45	20-30	5-10	
	4-16	\| Clay, gravelly	\| CH , CL	\|A-7	0	0-30	\| 80-100		60-100	\|60-100		55-85	45-60	\|25-40
		clay, cobbly												
		\| clay												
	16-26	\| Unweathered			-	---	---	---	---	---	--	--		
		bedrock												
Reluctan--------	0-2	\| Cobbly loam	\| CL-ML	\|A-4	0-5	0-20	80-100	70-100\|	60-95	40-75	25-30	5-10		
	2-9	\| Sandy loam,	\| CL-ML, SC-SM	\|A-4	0-5	0-20	\| 80-100		70-100	\|50-90	35-65	25-30	5-10	
		$\left\{\begin{array}{l} \text { loam, cobbly } \\ \text { loam } \end{array}\right.$	\|CL-M, SC-SM											
	9-26	\|Sandy clay	\| CL, SC	\|A-6	0-5	0-20	\| 80-100		70-95	\| 55-90	40-70	30-40	10-15	
		\| loam, clay												
		l loam, cobbly												
		\| sandy clay												
		loam												
	26-36	\| Unweathered			---	---	---	---	-	--	---	---		
		bedrock												
226:														
Ninemile--------	0-4	\|Very cobbly	\|GC, SC, SC-SM		A-2, A-4	0-5	\|25-40	\|65-85	40-75	\|40-65	25-45	20-30	5-10	
		\| loam												
	4-16	\| Clay, gravelly	\| CH, CL	\|A-7	0	0-30	80-100	60-100	\|60-100		\|55-85	45-60	\|25-40	
		\| clay, cobbly												
		\| clay												
	16-26	\| Unweathered			---	---	---	---	---	---	---	---		
		\| bedrock												
Reluctan-------	0-2						85-100	\|75-100		65-95	\| 50-75	\|25-30	5-10	
	2-9	\| Sandy loam,	\| CL-ML, SC-SM	\|A-4	0-5	0-20	\| 80-100		\|70-100		\|50-90	\| 35-65	\| 25-30	5-10
		$\begin{aligned} & \text { loam, cobbly } \\ & \text { loam } \end{aligned}$												
	9-26	\| Sandy clay	$\mid \mathrm{CL}, \mathrm{SC}$	\|A-6	0-5	0-20	80-100	\|70-95	\|55-90	\| 40-70	\| 30-40	\|10-15		
		\| loam, clay												
		\| sandy clay												
		loam												
	26-36	\| Unweathered			---	---	---	---	---	---	---	---		
		\| bedrock												

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid limit	Plas- \|ticity \|index		
					>10	3-10								
			Unified	AASHTO	\|inches	\|inches	4	10	40	200				
	In				Pct	PCt					Pct			
233:														
Noname---------- \|	0-3	\|Stony clay loam		CL	\|A-6	5-20	5-15	\|75-95	70-90	65-85	\|55-70	30-35	\|10-15	
	3-12	\|Clay loam, loam, cobbly	\| CL, CL-ML	\|A-4, A-6	0-5	5-10	\| 80-95	\|70-95	\| 65-90	\| 55-70	\| 25-40	5-20		
		\| clay loam												
	12-22	\|Unweathered bedrock			---	---	---	---	---	---	-	---		
Dickle--------- \|	0-3	$\begin{aligned} & \text { \|Very cobbly } \\ & \text { \| clay loam } \end{aligned}$	CL	A-6	0-15	\|25-40	70-90	\|65-80	\| 60-80	\|50-65	\| 30-40	10-15		
	3-14	$\begin{aligned} & \text { Clay loam, } \\ & \text { cobbly clay } \\ & \text { loam } \end{aligned}$	CL	A-6	0	0-15	\|90-100		\|80-100		\|80-100	\|65-80	\| 30-40	\| $10-15$
	14-24	Unweathered			---	---	---	---						
		bedrock										---		
234:														
Noname---------- \|	0-3	\|Very stony loam		$\begin{aligned} & \text { CL-ML, SC-SM, } \\ & \text { GC-GM } \end{aligned}$	\|A-4	20-30	5-15	\| 65-80	\| 55-70	\| 50-65	\|40-55	\| 25-30	5-10	
	3-12	\|Clay loam, loam, cobbly clay loam	\| CL, CL-ML	\|A-4, A-6	0-5	5-10	\|80-95	70-95	\| 65-90	\|55-70	\|25-40	5-20		
	12-22	\|Unweathered bedrock			---	---	---	---	---	---	--	---		
Duff------------	0-8	\|Very stony loam		\|CL-ML, GC-GM,	A-4	20-30	\|10-15	\|75-90	\|70-75	65-70	\|45-55	\| 25-35	5-10	
		\|Very stony loam		\mid SC-SM, ML \|										
	8-24	\| Loam	\| CL-ML, ML	\|A-4	0	0-5	\|85-100		75-100\|	\| 65-95	\|50-75	25-35	5-10	
	24-43	$\begin{aligned} & \mid \text { Very gravelly } \\ & \left\|\begin{array}{l} \text { loam, gravelly } \end{array}\right\| \\ & \text { loam } \end{aligned}$	$\begin{aligned} & \mid \mathrm{GC}-\mathrm{GM}, \mathrm{GM}, \\ & \mathrm{SC}-\mathrm{SM}, \mathrm{SM} \end{aligned}$	\|A-2, A-4	0-5	\|10-20	\|55-85	\|45-75	\|40-70	\|30-50	\|25-35	5-10		
	43-53	\|Unweathered \| bedrock			---	---	---	---	---	---	---	---		
Rock outcrop----	0-60	Unweathered bedrock			---	---	---	---	---	---	---	---		
235:														
Norad---------- \|	0-3	\|Silt loam	\| ML	\|A-4	0	0	100	100	\| 90-100	\|80-90	\| 30-35	5-10		
	3-23	$\begin{aligned} & \text { Silty clay } \\ & \mid \text { loam, silty } \\ & \text { clay } \end{aligned}$	\| CL, MH, ML	\|A-7	0	0	100	100	\| 95-100	\|85-95	40-55	15-25		
	23-34	\|Silty clay loam		CL, ML	A-6, A-7	0	0	100	100	\| 95-100	\|85-95	\| 35-45	10-20	
	34-61	\|Stratified loam \mid to silty clay loam	CL, ML	$\|\mathrm{A}-4, \mathrm{~A}-6, \mathrm{~A}-7\|$	0	0	100	100	\| 90-100	\|75-90	\| 30-45	5-20		
236:														
Norad-----------	0-3	\|Silt loam	ML	\|A-4	0	0	100	100	\| 90-100	\|80-90	\| 30-35	5-10		
	3-23	$\left\lvert\, \begin{aligned} & \text { Silty clay } \\ & \text { loam, silty } \\ & \text { clay } \end{aligned}\right.$	\| CL, MH, ML	\|A-7	0	0	100	100	\| 95-100	\|85-95	\| $40-55$	15-25		
	23-34	\|Silty clay loam		CL, ML	A-6, A-7	0	0	100	100	\| 95-100	\|85-95	\| 35-45	10-20	
	34-61	$\begin{aligned} & \mid \text { Stratified loam } \\ & \text { to silty clay } \\ & \text { loam } \end{aligned}$	CL, ML	$\|\mathrm{A}-4, \mathrm{~A}-6, \mathrm{~A}-7\|$	0	0	100	100	\| 90-100	\|75-90	\| 30-45	5-20		
Spangenburg-----	0-2	\|Silt loam	ML	\|A-4	0	0	100	100	\| 90-100	\|70-90	\|25-35	5-10		
	2-15	$\begin{aligned} & \text { \|Silty clay, } \\ & \text { \| clay } \end{aligned}$	CH	\|A-7	0	0	100	100	\| 90-100	\|80-95	\| 50-65	\|25-40		
	15-34	$\begin{aligned} & \text { \|Silty clay } \\ & \mid \text { loam, silt } \end{aligned}$	\| CL, ML	\|A-6, A-7	0	0	100	100	\| 90-100	70-95	\| 35-45	10-20		
		loam												
	34-60	\|Loam, silt loam		\|CL, CL-ML, ML	\|A-4	0	0	100	100	\| 85-95	\|65-80	\|25-35	5-10	

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid \|limit	Plas- \|ticity index	
					>10	3-10							
			Unified	AASHTO	\|inches	\|inches		4	10	40	200		
241: Observation-	In				Pct	Pct					Pct		
	0-4	\|Stony loam	\| CL-ML, ML,	A-4	10-15	5-15	80-90	70-90	65-85	45-65	25-35	5-10	
			SC-SM, SM										
	4-8	\| Cobbly loam	\| ML	\|A-4	0-10	15-25	\|80-95	\|75-90	70-85	50-65	30-35	5-10	
	8-23	\|Clay loam, clay, cobbly clay loam	\| CH, CL	\|A-7	0-10	0-30	\| 80-100	75-100	70-95	50-80	40-60	15-35	
	23-33	Unweathered			---	---	---	---	---	---	---		
	23-33	bedrock			---	---	---	---	--	---			
	0-60	Unweathered			---	---	---		---	---	---	---	
Rock outcrop	0-60	\| bedrock			---	---	---	---					
242:													
Observation-----	0-4	\|Stony loam	$\begin{aligned} & \text { \|CL-ML, ML, } \\ & \mid \text { SC-SM, SM } \end{aligned}$	\|A-4	\| 10-15	5-15	\|80-90	\|70-90	65-85	45-65	25-35	5-10	
	4-8	\| Cobbly loam	\| ML	\|A-4	0-10	15-25	\|80-95	\|75-90	70-85	50-65	30-35	5-10	
	8-23	\|Clay loam, clay, cobbly clay loam	\| CH, CL	\|A-7	0-10	0-30	\| 80-100	75-100	70-95	50-80	40-60	15-35	
	23-33	\|Unweathered \| bedrock			---	---	---	---	---	---	---	---	
Royst-----------	0-3	$\begin{aligned} & \text { \|Very cobbly } \\ & \text { loam } \end{aligned}$	$\begin{gathered} \mid \mathrm{GC}-\mathrm{GM}, \mathrm{GM}, \\ \mid \mathrm{SC}-\mathrm{SM}, \mathrm{SM} \end{gathered}$	\|A-4	5-20	25-45	\|65-85	\| 55-75	50-65	40-50	\| 25-35	5-10	
	3-7	\| Cobbly loam	\| CL-ML, ML	\|A-4	0-5	15-30	\|80-95	\| 75-90	65-80	50-65	25-35	5-10	
	7-14	\|Very stony clay		\| CL	\|A-7	\| 15-60	5-35	\|75-95	\| 65-90	60-85	50-80	40-50	15-25
		$\left\|\begin{array}{l\|}\text { loam, very } \\ \text { cobbly clay } \\ \text { loam, very } \\ \text { cobbly clay }\end{array}\right\|$											
	14-22	\mid Very stony clay loam, very cobbly clay loam, very cobbly clay$\|$	\| ${ }^{\text {CL }}$	A-7	\| 15-60	5-35	\|75-95	\| 65-90	60-85	50-80	40-50	15-25	
	22-23	\|Weathered bedrock			--	---	---	---	---	---	---	---	
	23-33	\|Unweathered bedrock			---	---	---	---	---	---	---	---	
Merlin----------	0-7	\|Very stony loam			\|A-4	\| 25-45	15-30	\|75-90	\| 65-85	55-75	45-60	25-35	5-10
	7-12	\|Clay loam, gravelly clay	\| CL, ML	\|A-6, A-7	0	0-5	\|75-100	65-95	60-90	50-70	35-45	10-20	
		loam											
	12-18	$\begin{aligned} & \text { Clay, cobbly } \\ & \text { \| clay } \end{aligned}$	\| CH	A-7	0	0-15	\| 90-100	85-100	80-100	75-95	55-65	\|30-40	
	18-29	\|Unweathered bedrock			-	-	-	---	---	--	---	---	
$243:$ Observation													
	0-4	$\begin{aligned} & \text { \|Very gravelly } \\ & \text { \| loam } \end{aligned}$	$\begin{gathered} \mid G C-G M, G M, \\ \mid S C-S M, S M \end{gathered}$	\|A-2, A-4	5-15	15-20	\|60-70	\| 35-60	35-55	25-45	\| 25-35	5-10	
	4-8	\| Cobbly loam	\| ML	\|A-4	0-10	15-25	\| 80-95	\|75-90	\|70-85	50-65	\|30-35	5-10	
	8-23	$\begin{array}{\|l} \mid \text { Clay loam, } \\ \text { clay, cobbly } \\ \text { clay loam } \end{array}$	\| CH, CL	\|A-7	0-10	0-30	\| 80-100	75-100	\|70-95	50-80	\| 40-60	15-35	
	23-33	\|Unweathered bedrock			---	---	---	---	---	---	---	---	

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \text { \| Liquid } \\ & \text { \|limit } \end{aligned}$	Plas\|ticity index			
					>10	3-10									
		\|	Unified	AASHTO	\|inches	\|inches		4	10	40	200				
	In				Pct	Pct					Pct				
257:															
Pernty----------\|	0-3	\|Gravelly silt	\|CL, SC	\|A-6	0	0-5	\|70-90	\| 50-75	50-75	45-65	25-30	10-15			
		loam													
	3-8	\| Cobbly loam,	\| CL, SC	\|A-6	0	\|15-35	\|80-95	\| 65-90	55-90	45-70	\|25-35	10-15			
		\| cobbly clay loam													
	8-15	\|Very cobbly	\| CL, SC	\|A-6	0	\|30-60	75-90	\| 55-90	50-90	40-70	\|30-40	10-15			
		\| loam, very													
		cobbly clay													
		loam													
	15-25	\| Unweathered			-	---	---	---	---	---	---	---			
		bedrock													
Westbutte-------	0-12	\| Extremely stony	\|GC-GM, GM,	\|A-2, A-4	30-55	\|15-30	\|60-75	\|45-60	40-55	30-40	\|25-35	5-10			
		loam	SC-SM, SM												
	12-24	\| Very cobbly	\| CL-ML, ML,	A-4	5-35	15-45	70-85	\|60-85	55-80	35-65	25-35	5-10			
		loam, very	$\mathrm{SC}, \mathrm{SC}-\mathrm{SM}$												
		cobbly clay	SM												
		loam, very													
		stony clay													
		loam													
	24-34	\| Unweathered			-	---	---	---	---	---	--	---			
		\| bedrock													
Ninemile--------	0-4	\|Very cobbly	$\mid \mathrm{GC}, \mathrm{SC}$	\|A-6	0-5	\|25-40	\|65-85	40-75	40-65	35-50	30-35	\|10-15			
		\| clay loam													
	4-16	\| Clay, gravelly	\| CH, CL	\|A-7	0	0-30	\|80-100		60-100	60-100	55-85	45-60	\|25-40		
		clay, cobbly													
		\| clay													
	16-26	\| Unweathered			---	---	---	--	---	---	---	-			
		\| bedrock													
258:															
Pits----------	---	--- \|	-	---	-	-	---	--	-	---	---	---			
259 :															
Playas--------- \|	0-60	\|Stratified	$\mid \mathrm{CH}, \mathrm{CL}, \mathrm{MH}$	\|A-7	0	0	100	100	100	90-100	45-75	20-40			
		silty clay													
		loam to clay													
260:															
Playas---------	0-60	\|Stratified	$\mid \mathrm{CH}, \mathrm{CL}, \mathrm{MH}$	\|A-7	0	0	100	100	100	90-100	45-75	\|20-40			
		\| silty clay													
		\| loam to clay													
Thenarrows------	0-3	\|Sandy loam	\| SM	\|A-4	0	0	100	100	65-75	35-45	\|20-25	\|NP-5			
	3-14	\|Sandy loam	\|SM	\|A-4	0	0	100	100	65-75	35-45	\|20-25	NP-5			
	14-22	\|Loamy sand, sandy loam	\|SM	\|A-2, A-4	0	0	100	100	65-75	25-45	\|15-25	\|NP-5			
	22-31	\| Sandy loam			0	0	100	100	65-75	40-50	\|20-25	NP-5			
	31-54	\|Sandy loam,	\|SM	\|A-2, A-4	0	0	100	100	65-75	25-50	\|15-25	\|NP-5			
		\| loamy sand													
	54-60	\| Loamy sand	\| SM	\|A-2	0	0	100	100	65-75	25-35	0-14	NP			
261:															
Poall---------- \|		\|Silt loam					\|90-100		\|80-100		\|75-95	\|60-90	\|25-35	5-10	
	8-17	\| Clay	\| CL, CH	\|A-7	0	0	\| 90-100		\|80-100		\|75-100		\|65-95	\|45-55	20-30
	17-33	\| Clay loam,	\| ML	\|A-7	0	0	\| 80-100		\|70-100		\| 65-100		50-80	\| 40-45	\|10-15
		$\left\lvert\, \begin{aligned} & \text { gravelly clay } \\ & \text { loam, gravelly } \\ & \text { silty clay } \end{aligned}\right.$			$1)$										
		loam \|													
	33-65		\|GM, ML, SM	A-6, A-7	0	0	\|70-100		55-100	50-95	\|40-75	\| 35-45	\|10-15		
		\| gravelly clay													
		\| loam, silty			1 \|										
		\| clay loam			1 \|										

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \mid \text { Liquid } \mid \\ & \mid \text { limit } \end{aligned}$	$\begin{aligned} & \text { Plas- } \\ & \text { \| ticity } \\ & \text { \|index } \end{aligned}$				
					>10	3-10										
			Unified	AASHTO	\|inches		\|inches	4	10	40	200					
		1														
270:																
	In				Pct	PCt					Pct					
Poujade--------	0-4	\mid Very fine sandy \mid	CL-ML	\|A-4	0	0	100	100	85-95	\| 50-65	20-30	5-10				
		\| loam														
	4-6	Loam	\| CL-ML, ML	\|A-4	0	0	100	100	85-95	60-75	25-35	5-10				
	6-13	Silty clay	\|CL, ML	\|A-6	0	0	100	\| 80-100		80-95	60-90	35-40	10-15			
		loam, clay														
		loam														
	13-40	Loam, clay loam\|	CL	\|A-6	0	0	100	100	85-95	60-80	30-35	10-15				
	40-65	Stratified very	CL, CL-ML	\|A-4, A-6	0	0	100	100	85-95	50-90	20-35	5-15				
		fine sandy														
		\| loam to silty														
		clay loam														
Ausmus---------																
	0-2	Fine sandy loam\|	\|ML, SM	\|A-4	0	0	100	100	70-85	40-55	20-30	NP-5				
	2-9	\|Silty clay loam		ML	\|A-6, A-7	0	0	100	100	95-100	\|85-95	35-45	10-15			
	9-16	Silty clay	\| ML	\|A-6, A-7	0	0	100	100	90-100\|	70-95	35-45	10-15				
		loam, clay														
		loam														
	16-29	Silt loam, loam\|	ML	\|A-4	0	0	100	100	85-95	65-80	30-35	5-10				
	29-69	Loam	\| ML	\|A-4	0	0	100	100	85-95	60-75	30-35	5-10				
271:																
Raz------------	0-2	\| Cobbly fine	\| SM	\|A-4	0-5	\| 15-25	\|75-90	\|65-90	50-75	35-50	25-30	\|NP-5				
		\| sandy loam														
	2-7	\|Gravelly clay	\| CL, GM, ML,	\|A-4, A-6	0	0-30	\|70-95	\|65-90	55-85	40-70	30-40	5-15				
		\| loam, gravelly		\| SM												
		loam, cobbly \|														
		clay loam \|														
	7-12	Clay loam, loam\|	CL, ML	\|A-4, A-6	0	0	\|90-100		\|85-100		\|75-100		55-80	30-40	5-15	
	12-23	Indurated			---	---	---	---	\| ---		\| ---	---	---			
	23-33	Unweathered			---	---	---	---	---	---	---	--				
		bedrock														
$272 \text { : }$																
Raz------------	0-2	Very cobbly	\|GM, ML, SM	\|A-4	0-5	\| 25-55	\|65-95	\|60-90	50-80	40-65	30-35	5-10				
	2-7	\|Gravelly clay		\|CL, GM, ML,	\|A-4, A-6	0	0-30	\|70-95	\|65-90	55-85	40-70	30-40	5-15			
	2	loam, gravelly	\| SM	\|A-4, A-6					55-85	-	30-40	5-15				
		loam, cobbly \|														
		clay loam \|														
	7-12	Clay loam, loam\|	\| CL, ML	\|A-4, A-6	0	0	\| 90-100		\|85-100		\|75-100		55-80	30-40	5-15	
	12-23	Indurated			---	---	--- \|	\| ---		\| ---		\| ---	---	---		
	23-33	Unweathered			--	---	---	---	---	---	---	--				
		bedrock														
Brace---------					\| 15-30	\| 10-15	\|75-90	\|65-85	60-80	\|45-70	20-30	5-10				
	6-13	\|Loam, sandy	\| CL, CL-ML,	\|A-4, A-6	\| 0	\| 0-10	\| 85-100		\|80-90	75-90	40-70	25-40	5-15			
		clay loam, clay loam	SC-SM													
	13-32	\|Sandy loam, loam	\| CL-ML, SC-SM	\|A-2, A-4	0	0-5	\| 90-100		75-90	60-85	\|30-65	20-30	5-10			
	32-36	Indurated			-	---	---	---	---	---	---	---				
	36-46	Unweathered bedrock			--	--	---	---	---	---	---	---				
273:																
Raz-----------	0-2	\|Very cobbly	\|GM, ML, SM	\|A-4	0-5	\| 25-55	\|65-95	\| 60-90	50-80	40-65	30-35	5-10				
		loam														
	2-7	$\begin{array}{\|} \text { Gravelly clay } \\ \mid \text { loam, gravelly } \\ \text { loam, cobbly } \end{array}$	$\begin{aligned} & \mid C L, G M, M L, \\ & \mid=S M \end{aligned}$	\|A-4, A-6	0	0-30	70-95	\|65-90	\| 55-85	\|40-70	30-40	5-15				
		clay loam														
	7-12	\|Clay loam, loam		\| CL, ML	\|A-4, A-6	0	0	\| 90-100		\| 85-100		\|75-100		55-80	30-40	5-15
	12-23	\| Indurated				---	---	---	---	---	---	---	---			
	23-33	\| Unweathered			---	---	---	---	---	---	---	---				
		bedrock														

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid| |limit | $\begin{aligned} & \text { Plas- } \\ & \text { \|ticity } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | >10 | 3-10 | | | | | | |
| | | | Unified | AASHTO | \|inches | \|inches | 4 | 10 | 40 | 200 | | index |
| | In | | | | Pct | Pct | | | | | Pct | |
| 278: | | | | | | | | | | | | |
| Reluctan------- | 0-2 | \|Very stony silt| | CL-ML, GC-GM | \|A-2, A-4 | \| 20-40 | \|15-20 | \| 50-70 | \| 35-70 | \| 35-65 | \| 30-55 | 25-30 | 5-10 |
| | | \| loam | | | | | | | | | | |
| | 2-9 | $\begin{aligned} & \text { Sandy loam, } \\ & \mid \text { cobbly loam, } \\ & \text { loam } \end{aligned}$ | \| CL-ML, SC-SM | A-4 | 0-5 | 0-20 | \|80-100| | 70-100 | 50-90 | \| 35-65 | 25-30 | 5-10 |
| | 9-15 | \| Sandy clay | \| CL, SC | \|A-6 | 0-5 | 0-20 | \|80-100| | 70-95 | \| 55-90 | \|40-70 | 30-40 | 10-15 |
| | | \| loam, cobbly | | | | | | | | | | |
| | | \| clay loam, | | | | | | | | | | |
| | | clay loam | | | | | | | | | | |
| | 15-26 | \|Sandy clay | \| CL, SC | \|A-6 | 0-5 | 0-20 | \| 80-100| | 70-95 | \| 55-90 | \|40-70 | 30-40 | 10-15 |
| | | $\begin{array}{\|l} \text { loam, clay } \\ \text { loam, cobbly } \\ \text { sandy clay } \end{array}$ | | | | | | | | | | |
| | | loam | | | | | | | | | | |
| | 26-36 | \| Unweathered | | | --- | --- | --- | --- | --- | --- | --- | --- |
| | | bedrock | | | | | | | | | | |
| | | | | | | | | | | | | |
| $279:$ | | | | | | | | | | | | |
| Riddleranch | 0-7 | \|Very stony sandy loam | \|SC-SM | A-2 | 25-45 | 15-30 | \|65-85 | 55-80 | \|35-55 | 20-30 | 25-30 | 5-10 |
| | 7-16 | \|Very cobbly | \|GC, CL-ML, | \|A-4, A-6 | 5-30 | \|25-45 | \|60-85 | 50-80 | \|45-75 | \|35-60 | 25-40 | 5-15 |
| | | $\|$loam, very
 cobbly clay
 loam, very
 stony loam | GC-GM, SC-SM | | | | | | | | | |
| | 16-27 | \|Extremely stony | \|GC, CL-ML, | \|A-4, A-6 | 40-60 | \| 25-45 | \| 50-90 | 40-90 | \| 35-85 | \| 35-65 | 25-40 | 5-15 |
| | | $\|$loam,
 extremely
 stony clay
 loam | \| GC-GM, SC-SM| | | | | | | | | | |
| | 27-37 | \|Unweathered bedrock | | | --- | --- | --- | --- | --- | --- | --- | --- |
| Lambring------- | 0-7 | \|Very stony loam| | \|GC-GM, GM, | \|A-4 | \|20-45 | \|10-20 | \|60-85 | 50-75 | \|45-65 | \|35-50 | 25-35 | 5-10 |
| | | \|Very stony loam| | SC-SM, SM | | | | | | | | | 5-10 |
| | 7-12 | \| Gravelly loam | \|SC-SM, SM | | 0-5 | 0-15 | \|70-85 | 65-75 | \| 55-65 | \| 35-45 | 25-35 | 5-10 |
| | 12-21 | \|Gravelly loam, very gravelly | $\begin{aligned} & \mid \text { GC-GM, GM, } \\ & \mid \mathrm{SC}-\mathrm{SM}, \mathrm{SM} \end{aligned}$ | \|A-2, A-4 | 0-5 | 5-20 | \|45-80 | 40-75 | \| 35-65 | \|25-45 | 25-35 | 5-10 |
| | | loam | | | | | | | | | | |
| | 21-60 | \|Very cobbly loam, very gravelly loam | $\begin{aligned} & \mid \text { GC-GM, GM, } \\ & \mid \text { SC-SM, SM } \end{aligned}$ | \|A-2, A-4 | 5-20 | \| 15-45 | \| 50-80 | 45-75 | \| 40-65 | \| 30-45 | 25-35 | 5-10 |
| | | | | | | | | | | | | |
| Rock outcrop- | 0-60 | Unweathered
 bedrock | | | --- | --- | --- | --- | -- | --- | --- | --- |
| | | | | | | | | | | | | |
| 280: | | | | | | | | | | | | |
| Riddleranch----- | 0-7 | \|Very stony loam| | \|CL-ML, SC-SM | \|A-4 | \| 25-45 | \|15-30 | \| 65-85 | \| 55-80 | \| 50-75 | \|40-55 | 25-30 | 5-10 |
| | 7-16 | \|Very cobbly | \|GC, CL-ML, | \|A-4, A-6 | 5-30 | \| 25-45 | \|60-85 | \| $50-80$ | \|45-75 | \| 35-60 | 25-40 | 5-15 |
| | | $\left\lvert\, \begin{aligned} & \text { loam, very } \\ & \text { cobbly clay } \end{aligned}\right.$ | \| GC-GM, SC-SM| | | | | | | | | | |
| | | loam, very | | | | | | | | | | |
| | | stony loam | | | | | | | | | | |
| | 16-27 | \|Extremely stony | GC, CL-ML, | \|A-4, A-6 | \|40-60 | \|25-45 | 50-90 | \|40-90 | \|35-85 | \|35-65 | 25-40 | 5-15 |
| | | $\|$loam,
 extremely
 stony clay
 loam | \| GC-GM, SC-SM| | | | | | | | | | |
| | | | | | | | | | | | | |
| | 27-37 | Unweathered
 \| bedrock | | | --- | --- | --- | --- | --- | --- | --- | --- |
| | | | | | | | | | | | | |
| Rock outcrop---- | 0-60 | Unweathered
 \| bedrock | | | --- | -- | -- | --- | -- | -- | --- | --- |
| | | | | | | | | | | | | |

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid	$\begin{aligned} & \text { Plas- } \\ & \text { \|ticity } \end{aligned}$	
					>10	3-10							
			Unified	AASHTO	\|inches	\|inches	4	10	40	200		\|index	
	In				Pct	Pct					Pct		
281:													
Rinconflat-----	0-4	\|Stony loam	\| CL-ML, ML,	\|A-4	\| 10-30	\| 10-15	75-95	\| 65-90	\|55-85	\|40-65	25-35	5-10	
			SC-SM, SM										
	4-13	\|Gravelly loam	\|GC-GM, GM,	\|A-4	0-5	0-5	\|65-95	\| 55-75	\| 50-65	\|40-50	\|25-35	5-10	
			SC-SM, SM										
	13-29	\|Very gravelly	\|GC-GM, GM,	\|A-2, A-4	0-5	\|25-45	\|50-80	\| 35-65	\|30-55	\|25-45	\| 25-35	5-10	
		$\left\lvert\, \begin{aligned} & \text { loam, very } \\ & \text { cobbly loam } \end{aligned}\right.$	SC-SM, SM										
	29-61	\| Very gravelly	\|GC-GM, GM,	\|A-1, A-2	0-5	\|15-45	50-80	\|45-75	30-50	\| 15-30	\|25-35	5-10	
		sandy loam,	\| SC-SM, SM										
		\| cobbly sandy											
		\| loam, very											
		cobbly sandy											
		clay loam											
282:													
Rio King-------	0-4	\| Loam	\| ML	\|A-4	0	0	100	\| 90-100	\|70-85	\| 55-60	20-25	\|NP-5	
	4-17	\|Loam	\| ML	\|A-4	0	0	100	\| 90-100	\|70-85	\| 55-60	\| 20-25	\|NP-5	
	17-27	$\begin{aligned} & \text { \|Sandy loam, } \\ & \text { loam } \end{aligned}$	\|ML, SM	\|A-4	0	0	100	\| 90-100	\|70-85	\| $40-65$	\| 20-25	\|NP-5	
	27-45	\|Very fine sandy		\|ML, SM	\|A-4	0	0	100	\| 90-100	85-100	45-70	20-25	\|NP-5
		$\begin{aligned} & \text { loam, sandy } \\ & \text { loam } \end{aligned}$											
	45-64	\|Sandy loam	\|SM	\|A-4	0	0	100	\|90-100	70-75	35-50	20-25	\|NP-5	
283:													
Rio King-------	0-4	Loam	\|ML	\|A-4	0	0	100	\|90-100	70-85	55-60	20-25	\|NP-5	
	4-17	\| Loam	\| ML	\|A-4	0	0	100	\| 90-100	\|70-85	\| 55-60	\| 20-25	\|NP-5	
	17-27	$\begin{aligned} & \text { Sandy loam, } \\ & \mid \text { loam } \end{aligned}$	\|ML, SM	\|A-4	0	0	100	\| 90-100	\|70-85	\| $40-65$	20-25	\|NP-5	
	27-45	\|Very fine sandy		ML, SM	\|A-4	0	0	100	\| 90-100	85-100	45-70	20-25	\|NP-5
		$\left\lvert\, \begin{aligned} & \text { loam, sandy } \\ & \text { loam } \end{aligned}\right.$											
	45-64	\|Sandy loam	\|SM	\|A-4	0	0	100	\| 90-100	70-75	\| 35-50	\|20-25	\|NP-5	
Droval--------	0-4	\|Loam	\| CL-ML, ML	\|A-4	0	0	100	100	\| 85-95	60-75	25-35	5-10	
	4-22	\|Silty clay	\| CH, CL	\|A-7	0	0	100	100	\| 95-100	\| 90-95	\| 45-55	\|20-30	
	22-32	\| Clay	$\mid \mathrm{CH}$	A-7	0	0	100	100	\| 90-100	\|75-95	55-65	\| $30-40$	
	32-61	$\begin{aligned} & \text { \|Silty clay, } \\ & \text { \| clay } \end{aligned}$	\| CH, CL	\|A-7	0	0	100	100	\| 90-100	\|75-95	45-60	\|20-35	
284:													
Risley--------	0-3	\|Gravelly loam	\|GC-GM, GM,	\|A-4	0	0-5	\|70-90	\| 55-75	\|50-65	\|40-50	\| 25-35	5-10	
			\| SC-SM, SM										
	3-25	\| Clay, gravelly	\| CH , CL	\|A-7	0	0-5	\| 85-100		70-100	70-100	55-85	40-55	15-30
		$\begin{aligned} & \text { clay, gravelly } \\ & \text { clay loam } \end{aligned}$											
	25-37	$\begin{aligned} & \text { \|Gravelly clay } \\ & \text { loam, clay } \end{aligned}$	$\begin{aligned} & \mid \mathrm{SC}, \mathrm{CL}, \mathrm{GC}, \\ & \mathrm{GM}, \mathrm{ML} \end{aligned}$	\|A-6, A-7	0	0-5	\|65-90	\| 50-85	\|45-80	35-65	35-45	10-20	
		loam											
	37-39	$\begin{aligned} & \text { \|Very gravelly } \\ & \text { \| sandy clay } \end{aligned}$	$\begin{aligned} & \text { \|GC, GM, SC, } \\ & \mid S M \end{aligned}$	\|A-2	0	0-5	\|55-70	\| 35-50	\|30-50	\|15-35	\| 35-45	10-20	
		\| loam, very											
		gravelly clay											
		loam											
	39-49	\|Weathered bedrock			---	---	---	--	---	--	---	---	

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid \|limit			
					>10	3-10								
			Unified	AASHTO	\|inches	\|inches	4	10	40	200				
	In				Pct	PCt					Pct			
290:														
	0-8	\|Very cobbly clay loam	$\begin{aligned} & \text { CL, ML, SC, } \\ & \text { SM } \end{aligned}$	\|A-6	0	\| 25-45	70-95	55-90	\|50-90	\| $40-70$	35-40	\| 10-15		
	8-16	\|Very gravelly	\|GC, SC	A-7	0	10-25	60-80	45-60	40-60	35-50	40-55	15-30		
		clay loam, very gravelly												
	16-22	$\begin{aligned} & \text { Very cobbly } \\ & \text { clay loam, } \\ & \text { very cobbly } \\ & \text { clay } \end{aligned}$	\|CL, GC, SC	$\|\mathrm{A}-2, \mathrm{~A}-6, \mathrm{~A}-7\|$	0	\|25-45	60-85	40-75	\|35-70	\|30-65	35-45	\|10-20		
	22-32	\|Unweathered bedrock			---	---	---	---	---	---	---	---		
Rock outcrop----	0-60	Unweathered \| bedrock			---	-	---	---	---	---	---	---		
Rubble land-----	0-60	\|Fragmental material			---	---	---	---	---	---	---	---		
292:														
Rock outcrop----	0-60	\|Unweathered \| bedrock			---	---	---	---	---	---	---	---		
Baconcamp------	0-4	$\begin{aligned} & \text { \|very gravelly } \\ & \text { loam } \end{aligned}$	$\begin{aligned} & \mid \mathrm{GC}-\mathrm{GM}, \mathrm{GM}, \\ & \mathrm{SC}-\mathrm{SM}, \mathrm{SM} \end{aligned}$	\|A-2, A-4	0-10	5-15	60-70	45-55	\|40-50	\|30-40	25-35	5-10		
	4-20	$\begin{aligned} & \text { \|Gravelly loam, } \\ & \mid \text { very gravelly } \\ & \text { loam } \end{aligned}$	$\begin{gathered} \mid \text { GC-GM, GM, } \\ \text { SC-SM, SM } \end{gathered}$	A-4, A-2	0-5	0-10	\|50-80	40-75	\| 35-65	\|25-50	25-35	5-10		
	20-35	\|Very gravelly loam, very gravelly clay \| loam, very cobbly loam	$\begin{aligned} & \text { \|GM, ML, } \\ & \mid \mathrm{SC}-\mathrm{SM}, \mathrm{SM} \end{aligned}$	A-2, A-4	0-10	5-35	\|50-85	35-80	30-75	\|25-65	25-35	5-10		
	35-45	\|Unweathered bedrock			---	---	---	---	---	---	---	---		
Royst-----------	0-3	$\begin{aligned} & \text { \|Very cobbly } \\ & \text { loam } \end{aligned}$	$\begin{aligned} & \mid \text { GC-GM, GM, } \\ & \text { SC-SM, SM } \end{aligned}$	\|A-4	5-20	\|25-45	\|65-85	55-75	\| 50-65	40-50	25-35	5-10		
	3-7	\| Cobbly loam	\| CL-ML, ML	\|A-4	0-5	\|15-30	\| 80-95	75-90	65-80	\|50-65	25-35	5-10		
	7-14	\|Very stony clay $\left\|\begin{array}{l}\text { loam, very } \\ \text { cobbly clay } \\ \text { loam, very } \\ \text { lobbly clay }\end{array}\right\|$	CL	A-7	15-60	5-35	75-95	65-90	60-85	\|50-80	40-50	15-25		
	14-22	\mid Very stony clay loam, very cobbly clay loam, very cobbly clay$\|$	CL	A-7	15-60	5-35	\|75-95	65-90	\| 60-85	\|50-80	40-50	15-25		
	22-23	\mid Weathered \| bedrock			---	---	---	---	---	---	---	---		
	23-33	Unweathered bedrock			---	--	---	---	---	---	---	---		
Merlin----------	0-7	$\begin{aligned} & \text { \|very cobbly } \\ & \text { loam } \end{aligned}$	$\begin{aligned} & \mid \mathrm{CL}-\mathrm{ML}, \mathrm{ML}, \\ & \mid \mathrm{SC}-\mathrm{SM}, \mathrm{SM} \end{aligned}$	A-4	5-25	30-50	70-90	55-80	50-70	\|40-55	25-35	5-10		
	7-12	\|Clay loam, gravelly clay loam	CL, ML	\|A-6, A-7	0	0-5	\|75-100		\|65-95	\| 60-90	\| 50-70	35-45	\|10-20	
	12-18	$\begin{aligned} & \text { \|Clay, cobbly } \\ & \text { \| clay } \end{aligned}$	CH	\|A-7	0	0-15	\| 90-100		\|85-100		\|80-100	\|75-95	55-65	\| 30-40
	18-29	Unweathered bedrock			---	--	---	---	--	---	---	---		

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \mid \text { Liquid } \\ & \mid \text { limit } \end{aligned}$	Plasticity	
					>10	3-10							
			Unified	AASHTO	\|inches	\|inches	4	10	40	200		index	
	In				Pct	PCt					PCt		
301:													
Skedaddle-------	0-3	\|Very cobbly	$\mid \mathrm{GC}, \mathrm{SC}$	\|A-6	0-15	\|20-40	65-80	55-65	50-60	\|40-45	30-35	10-15	
		clay loam											
	3-8	\|Very cobbly	\|CL, GC, SC	\|A-6	0-40	\|15-40	65-90	\|55-85	\| 50-80	\| 35-65	25-35	10-15	
		clay loam, very stony											
		clay loam,											
		\| very cobbly											
		loam											
	8-11	\|Very cobbly	$\mid \mathrm{GC}, \mathrm{SC}$	\|A-6	0-15	\|20-40	65-75	\|55-65	\| 50-60	\| 35-45	25-35	10-15	
		\| clay loam,											
		\| very cobbly											
		loam											
	11-21				---	---	---	---	---	---	---	---	
		\| bedrock											
Atlow----------	0-3	\|Very stony loam		GC-GM, GM,	\|A-4	\| 20-25	5-20	60-75	\|45-65	40-60	\| 35-50	25-35	5-10
			\| SC-SM, SM										
	3-11	\|Very gravelly	$\mid \mathrm{GC}, \mathrm{GM}, \mathrm{SC}$,	\|A-2, A-6	0-15	\|15-30	55-70	\|35-70	30-65	\|25-50	35-40	10-15	
		clay loam,	SM										
		\| very cobbly											
		\| clay loam,											
		\| very cobbly											
		\| sandy clay											
		loam											
	11-21	\|Unweathered			---	---	---	---	---	---	---	--	
		\| bedrock											
Rock outcrop----	0-60	\|Unweathered bedrock			---	---	-	---	---	---	---	---	
302 :													
Skedaddle-------	0-3	\|Very cobbly	\|GC, SC	\|A-6	0-15	\|20-40	65-80	\|55-65	50-60	\|40-45	30-35	10-15	
		\| clay loam											
	3-8	\|Very cobbly	\|CL, GC, SC	\|A-6	0-40	15-40	65-90	\|55-85	50-80	\| 35-65	25-35	10-15	
		\| clay loam,											
		\| very stony											
		clay loam,											
		\| very cobbly											
	8-11	\|Very cobbly	\|GC, SC	\|A-6	0-15	\|20-40	65-75	\|55-65	\| 50-60	\| 35-45	25-35	10-15	
		$\left\lvert\, \begin{aligned} & \text { clay loam, } \\ & \text { very cobbly } \end{aligned}\right.$											
		\| loam											
	11-21	\| Unweathered			---	---	---	---	---	---	-	---	
		\| bedrock											
Rock outcrop----\|	0-60	\|Unweathered bedrock			---	--	-	---	---	---	---	--	
		\| bedrock											
$303:$													
Skedaddle, south													
slopes---------\|	0-3	$\begin{aligned} & \text { \|Very gravelly } \\ & \text { \| sandy loam } \end{aligned}$	\|GC-GM, SC-SM	\|A-1, A-2	0	0-5	50-65	\|35-50	\|25-40	\|15-25	20-25	5-10	
	3-8	\|Very cobbly	\|CL, GC, SC	\|A-6	0-40	\|15-40	65-90	\|55-85	\| 50-80	\| 35-65	25-35	10-15	
		$\left\lvert\, \begin{aligned} & \text { clay loam, } \\ & \text { very stony } \end{aligned}\right.$											
		clay loam,											
		\| very cobbly											
		loam											
	8-11	\| Very cobbly	\|GC, SC	\|A-6	0-15	\|20-40	65-75	\|55-65	\| 50-60	\| 35-45	25-35	10-15	
		\| clay loam,											
		\| very cobbly											
		loam											
	11-21	\| Unweathered			---	---	---	---	---	---	---	---	
		\| bedrock											

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \mid \text { Liquid } \mid \\ & \mid \text { limit } \end{aligned}$	$\begin{aligned} & \text { Plas- } \\ & \text { \|ticity } \\ & \text { \|index } \end{aligned}$	
					>10	3-10							
			Unified	AASHTO	\|inches	\|inches		4	10	40	200		
			\mid										
	In				Pct	Pct					Pct		
		\|		\|									
327:													
Thenarrows------	0-3	Sandy loam	\|SM	\|A-4	0	0	100	100	\|65-75	35-45	20-25	\|NP-5	
	3-14	Sandy loam	\|SM	\|A-4	0	0	100	100	65-75	35-45	20-25	\|NP-5	
	14-22	Loamy sand,	\|SM	\|A-2, A-4	0	0	100	100	65-75	25-45	15-25	\|NP-5	
		sandy loam											
	22-31	Sandy loam	\| SM	A-4	0	0	100	100	65-75	40-50	20-25	\|NP-5	
	31-54	Sandy loam,	\| SM	A-2, A-4	0	0	100	100	65-75	25-50	15-25	\|NP-5	
		loamy sand											
	54-60	Loamy sand	\|SM	\|A-2	0	0	100	100	65-75	25-35	0-14	NP	
Duckclub--------	0-5	\|Loamy fine sand		SM	A-2	0	0	100	100	\| 65-80	20-35	0-14	NP
	5-27	\|Loamy fine sand		SM	A-2	0	0	100	100	\|65-80	20-35	0-14	NP
	27-32	Fine sandy loam\|	\|ML, SM	\|A-4	0	0	100	100	\| 70-85	40-55	20-25	\|NP-5	
	32-41	Sandy clay	\|SC-SM, SM	\|A-4	0	0	100	100	65-85	35-45	25-35	5-10	
		$\left\lvert\, \begin{aligned} & \text { loam, sandy } \\ & \text { loam } \end{aligned}\right.$											
	41-63	Loam, sandy	\| CL-ML, ML,	\|A-2, A-4	0	0	100	100	65-85	25-65	15-25	NP-10	
		$\left\lvert\, \begin{aligned} & \text { loam, loamy } \\ & \text { fine sand } \end{aligned}\right.$	SC-SM, SM										
Sandgap---------	0-2	Sand	\|SM, SP-SM	\|A-2, A-3	0	0	100	100	\| 50-70	5-15	0-14	NP	
	2-19	$\begin{aligned} & \text { Loamy sand, } \\ & \text { sand } \end{aligned}$	\|SM, SP-SM	\|A-2, A-3	0	0	100	100	\| 50-75	5-25	0-14	NP	
	19-30	$\begin{aligned} & \text { Loamy sand, } \\ & \text { sand } \end{aligned}$	\|SM, SP-SM	\|A-2, A-3	0	0	100	100	\| 50-75	5-25	0-14	NP	
	30-45	\|Loamy sand, sand	\|SM, SP-SM	A-2, A-3	0	0	100	95-100	50-75	5-25	0-14	NP	
	45-60	\|Sandy loam, loamy sand	\| SM	\|A-2	0	0	100	95-100\|	50-75	15-30	15-20	\|NP-5	
		, loar sand											
328:													
Ticino---------	0-9	Cobbly loam	$\begin{array}{\|l} \text { CL-ML, ML, } \\ \text { SC-SM, SM } \end{array}$	\|A-4	0-5	\|15-40	75-95	65-90	55-85	40-70	25-35	5-10	
	9-26	Sandy clay	\|ML, SM	\|A-2, A-6	0	0-5	70-95	55-90	\|45-85	30-70	35-40	10-15	
		\| loam, clay											
		\| loam, gravelly											
		\| sandy clay											
		loam											
	26-29	Weathered			---	-	---	---	---	---	---	---	
		\| bedrock											
	29-39	Unweathered			---	---	---	---	---	---	---	--	
		\| bedrock											
Merlin----------	0-7	Stony loam		\|A-4	\|15-30	5-15	70-90	60-90	55-80	40-65	25-35	5-10	
		\|	\| SC-SM, SM										
	7-12	$\begin{aligned} & \text { \|Clay loam, } \\ & \text { \| gravelly clay } \end{aligned}$	\| CL, ML	\|A-6, A-7	0	0-5	75-100	65-95	\| 60-90	50-70	35-45	10-20	
		loam											
	12-18	Clay, cobbly	\| CH	A-7	0	0-15	90-100	85-100\|	\| 80-100		75-95	55-65	30-40
		clay											
	18-29	Unweathered			---	---	---	---	---	---	---	---	
		bedrock											
329:													
Ticino---------	0-9	\|Gravelly loam			0-5		85-100\|	55-75	\| 50-65	40-60	\| 25-35	5-10	
	9-26	\|Sandy clay	$\mid \mathrm{ML}, \mathrm{SM}$	\|A-2, A-6	0	0-5	70-95	55-90	\|45-85	30-70	\| 35-40	10-15	
		loam, clay											
		loam, gravelly\|											
		sandy clay											
		\| loam											
	26-29	Weathered			---	---	---	---	---	---	---	---	
		\| bedrock											
	29-39	Unweathered			---	---	---	---	---	---	---	---	
		bedrock \|											

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				Liquid limit	Plas\|ticity	
				\|	>10	3-10							
			Unified	AASHTO	\|inches	\|inches	4	10	40	200		\|index	
	In				Pct	Pct					Pct		
343:													
Vitale---------	0-3	\|Very cobbly	\|SC-SM, SM	\|A-4	5-15	\|20-35	75-85	\|55-70	\|55-60	40-50	25-35	5-10	
		loam											
	3-12	\|Gravelly loam,	\| CL-ML, ML,	\|A-4	0-15	0-45	75-90	\|55-90	\|55-85	\|40-65	25-35	5-10	
		\| cobbly loam,	SC-SM, SM										
		\| very cobbly											
		loam											
	12-26	\| Very gravelly	\|CL, GC, SC	\|A-2, A-6	0-15	5-45	65-85	\|35-80	\|35-75	25-60	\|30-40	10-15	
		\| clay loam,											
		\| very cobbly											
		\| clay loam,											
		\| very cobbly											
		sandy clay											
		loam											
	26-36	\|Unweathered			\| ---	---	---	---	---	---	---	-	
		\| bedrock											
Merlin----------	0-7	\|Very cobbly	\| SC-SM, SM,	\|A-4	5-25	\| 30-50	70-90	\| 55-80	150-70	40-55	25-35	5-10	
		\| loam	\| CL-ML, ML										
	7-12	\| Clay loam,	\| CL, ML	\|A-6, A-7	0	0-5	75-100	65-95	\|60-90	50-70	\|35-45	10-20	
		\| gravelly clay											
		loam											
	12-18	\|Clay, cobbly	\| CH	\|A-7	0	0-15	90-100	\| 85-100	\| 80-100	75-95	\|55-65	\|30-40	
		\| clay											
	18-29	\|Unweathered			---	---	---	---	---	---	---	---	
		bedrock											
344:													
Vitale----------	0-3	\|Gravelly loam	\| CL-ML, ML,	\|A-4	0	0-5	70-85	\|55-75	50-70	35-55	25-35	5-10	
			\| SC-SM, SM										
	3-12	\|Gravelly loam,	\|ML, SC-SM,	\|A-4	0-15	0-45	75-90	\|55-90	55-85	40-65	25-35	5-10	
		$\left\lvert\, \begin{aligned} & \text { cobbly loam, } \\ & \text { very cobbly } \end{aligned}\right.$	\| SM, CL-ML										
		\| loam											
	12-26	\|Very gravelly	\|CL, GC, SC	\|A-2, A-6	0-15	5-45	65-85	\|35-80	35-75	\|25-60	30-40	10-15	
		\| clay loam,											
		\| very cobbly											
		\| clay loam,											
		\| very cobbly											
		\| sandy clay											
		loam											
	26-36	\| Unweathered			---	---	---	---	--	---	---	---	
		bedrock											
Merlin---------\|	0-7	\|Very cobbly	\| CL-ML, ML,	\|A-4	5-25	\|30-50	70-90	\|55-80	50-70	40-55	25-35	5-10	
		loam	\| SC-SM, SM										
	7-12	\| Clay loam,	\| CL, ML	\|A-6, A-7	0	0-5	75-100	65-95	60-90	50-70	\|35-45	10-20	
		gravelly clay											
		loam											
	12-18	\| Clay, cobbly	$\mid \mathrm{CH}$	\|A-7	0	0-15	90-100	\| 85-100	80-100	75-95	55-65	\|30-40	
		\| clay											
	18-29	\| Unweathered			---	---	---	---	---	---	---	---	
		bedrock											
Doyn------------	0-2	\|Very stony loam		\| CL-ML, ML,	\|A-4	\|15-35	15-30	70-95	\|60-90	50-80	\|40-65	25-35	5-10
			SC-SM, SM										
	2-8	\| Sandy clay	\|ML, SM	\|A-4	0-5	0-20	75-95	\|70-95	60-85	\|40-70	\|30-35	5-10	
		\| loam, cobbly											
		loam, loam											
	8-18	\| Unweathered			---	---	---	---	---	---	---	---	
		\| bedrock											

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

| Map symbol and soil name | Depth | USDA texture | Classification | | Fragments | | Percentage passing sieve number-- | | | | \|Liquid|
 \|limit | Plas\|ticity |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | >10 | 3-10 | | | | | | |
| | | | Unified | AASHTO | \|inches | \|inches| | 4 | 10 | 40 | 200 | | |
| | In | | | | Pct | Pct | | | | | Pct | |
| | 0-6 | Silt loam | \| CL-ML | A-4 | 0 | 0 | 100 | 90-100 | 80-95 | \| 65-80 | 20-30 | 5-10 |
| | 6-9 | \| Loam | \| CL-ML | A-4 | 0 | 0 | 100 | 90-100\| | 75-90 | \| 55-65 | 25-30 | 5-10 |
| | 9-13 | \|Clay loam, loam| | CL | A-6 | 0 | 0 | \| 90-100| | 85-100 | 70-90 | \| 55-80 | 30-40 | 10-15 |
| | 13-16 | $\begin{aligned} & \text { Gravelly clay } \\ & \mid \text { loam, gravelly } \\ & \text { loam } \end{aligned}$ | \| CL, SC | A-6 | 0 | 0-10 | \| 80-90 | 65-75 | \| 55-70 | \| 45-55 | 30-40 | \| $10-15$ |
| | 16-37 | \| Indurated | | | --- | --- | --- | --- | --- | --- | --- | --- |
| | 37-60 | $\begin{aligned} & \text { \|Very gravelly } \\ & \text { \| sandy loam } \end{aligned}$ | \|GM, SM | A-1 | 0-5 | 0-20 | \| 55-75 | 35-55 | \| 25-40 | \| 15-25 | 20-25 | NP-5 |
| | | | | | | | | | | | | |
| 353: | | | | | | | | | | | | |
| Waspo----------- | 0-3 | | MH | A-7 | | | 100 | 100 | 95-100 | \|75-95 | 55-75 | 25-40 |
| | $3-25$ | $\begin{aligned} & \text { \|Clay, silty } \\ & \text { \| clay } \end{aligned}$ | $\mid \mathrm{MH}$ | A-7 | 0 | 0 | 100 | 100 | \| 100 | \| 80-100 | 65-80 | \| 30-45 |
| | 25-35 | \|Weathered
 bedrock | | | --- | --- | --- | --- | --- | --- | - | --- |
| Poall---------- | 0-8 | \|Silt loam | \| CL-ML, ML | A-4 | 0 | 0 | \|90-100| | 80-100 | \|75-95 | \| 60-90 | 25-35 | 5-10 |
| | 8-17 | \| Clay | \| CL, CH | A-7 | 0 | 0 | \|90-100| | 80-100\| | 75-100 | 65-95 | 45-55 | 20-30 |
| | 17-33 | \| Clay loam, | \| ML | A-7 | 0 | 0 | \| 80-100| | 70-100 | 65-100 | 50-80 | 40-45 | 10-15 |
| | | gravelly clay
 loam, gravelly
 silty clay
 loam | | | | | | | | | | |
| | 33-65 | \|Clay loam, gravelly clay loam, silty clay loam | \|GM, ML, SM | A-6, A-7 | 0 | 0 | \|70-100| | 55-100 | 50-95 | \|40-75 | 35-45 | 10-15 |
| 354: | | | | | | | | | | | | |
| Water----------- | --- | --- | --- | - | --- | --- | --- | --- | --- | --- | --- | -- |
| 355: | | | | | | | | | | | | |
| Welch----------- | 0-9 | Silt loam | \| CL-ML | A-4 | 0 | 0 | 100 | 100 | \| 85-95 | \|60-70 | 25-30 | 5-10 |
| | 9-60 | Stratified | \| CL | A-6 | 0 | 0 | 100 | 75-100 | \| 65-90 | \|50-70 | 30-40 | 10-20 |
| | | sandy loam to silty clay loam | | | | | | | | | | |
| 356: | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| Welch---------- \| | 0-9 | \|Silt loam | \| CL-ML | \| A -4 | 0 | 0 | 100 | 100 | \| 85-95 | \| 60-70 | 25-30 | 5-10 |
| | 9-60 | \|Stratified
 sandy loam to
 silty clay
 loam | \| CL | \|A-6 | 0 | 0 | 100 | \| 75-100| | \| 65-90 | \| 50-70 | 30-40 | 10-20 |
| | | loam | | | | | | | | | | |
| 357: | | | | | | | | | | | | |
| Welch----------\| | 0-5 | \| Loam | \| CL-ML | A-4 | 0 | 0 | \| 95-100| | \|95-100| | \|85-95 | \| 60-70 | 25-30 | 5-10 |
| | 5-60 | \|Stratified
 sandy loam to
 silty clay
 loam | \| CL | \|A-6 | 0 | 0 | \| 80-100| | \|75-100| | \| 65-90 | \| 50-70 | \| 30-40 | 10-20 |
| Roschene------- \| | 0-5 | \|Loam | \| CL-ML, ML | A-4 | 0 | 0 | 100 | 85-100 | \|75-95 | \| 60-75 | 25-35 | 5-10 |
| | 5-18 | Loam | \| CL-ML, ML | \|A-4 | 0 | 0 | 100 | \| 85-100| | \|75-95 | \|60-75 | 25-35 | 5-10 |
| | 18-36 | \|Loam, clay loam| | CL, ML | \|A-4, A-6 | 0 | 0 | 100 | \| 85-100| | 75-100 | \|60-80 | 30-40 | 5-15 |
| | 36-62 | \|Loam, clay loam| | CL, ML | \|A-4, A-6 | 0 | 0 | 100 | \| 85-100| | 75-100 | \|60-80 | 30-40 | 5-15 |
| Cumulic | | | | | | | | | | | | |
| Haploxerolls--- | 0-25 | Loam | \| ML | \|A-4 | 0 | 0-5 | \|90-100| | \|85-100| | 70-95 | \|50-75 | \|25-35 | \|NP-10 |
| | 25-60 | \|Variable | | | --- | --- | --- | --- | --- | --- | --- | --- |
| | | | | | | | | | | | | |

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				$\begin{aligned} & \mid \text { Liquid } \\ & \mid \text { limit } \end{aligned}$	$\begin{aligned} & \text { Plas- } \\ & \mid \text { ticity } \\ & \text { \|index } \end{aligned}$		
					>10	3-10								
			Unified	AASHTO	\|inches	\|inches	4	10	40	200				
	In				Pct	Pct					Pct			
358:														
Wenas-----------	0-10	\| Clay loam	\| CL	\|A-6	0	0	100	\|90-100		80-100	70-80	30-40	10-15	
	10-21	\|Fine sandy loam		SM	\|A-2, A-4	0	0	100	\| 90-100		60-75	\| 30-50	20-25	\|NP-5
	21-34	\| Loam	\| CL-ML	\|A-4	0	0	100	\|80-90	70-85	\| 55-65	20-30	5-10		
	34-53	\| Loam	\| CL-ML	\|A-4	0	0	100	\|80-90	70-85	\| 55-65	20-30	5-10		
	53-63	\|Gravelly loam	\| CL-ML, SC-SM	\|A-4	0	0-10	\|85-95	\|65-80	60-70	\|45-60	20-30	5-10		
	63-67	\|Very gravelly	\|SM, SP-SM	\|A-1	0-10	5-15	\|65-85	\|35-55	20-35	10-15	0-14	NP		
		\| loamy sand												
Loupence------- \|	0-2	\|Silt loam	\| ML	\|A-4	0	0	100	100	90-100	85-95	25-35	5-10		
	2-24	\|Silt loam	\| ML	\|A-4	0	0	100	100	90-100	85-95	25-35	5-10		
	24-49	\|Silt loam	\| ML	\|A-4	0	0	100	100	90-100	85-95	25-35	5-10		
	49-60	\|Sandy loam	\|SM	\|A-4	0	0	100	100	\|70-80	35-45	15-20	NP-5		
Cumulic														
Haploxerolls---\|	0-25	\| Loam	\|ML	\|A-4	0	0-5	\|90-100		\|85-100		70-95	50-75	25-35	\|NP-10
	25-60	\|Variable			-	---	---	---	---	---	---	---		
359:														
Westbutte-------	0-12	\|Very stony loam			\|A-4	20-45	\| 10-20	60-85	50-75	45-65	\| 35-50	25-35	5-10	
			SC-SM, SM											
	12-24	\|Very cobbly	\| CL-ML, ML,	\|A-4	5-35	\| 15-45	70-85	60-85	55-80	35-65	25-35	5-10		
		loam, very	SC, SC-SM,											
		\| cobbly clay	SM											
		loam, very												
		stony clay												
		loam												
	24-34	\| Unweathered			-	---	---	---	---	---	---	-		
		bedrock												
360:														
Westbutte-------	0-12	$\begin{aligned} & \mid \text { Extremely stony } \mid \\ & \text { loam } \end{aligned}$	$\left\{\begin{array}{c} \text { GC-GM, GM, } \\ \text { SC-SM, SM } \end{array}\right.$	\|A-2, A-4	30-55	\| 15-30	\|60-75	45-60	40-55	30-40	25-35	5-10		
	12-24	\|Very cobbly	\|ML, SC, SC-	\|A-4	5-35	\| 15-45	70-85	60-85	55-80	35-65	25-35	5-10		
		loam, very cobbly clay	SM, SM,											
		cobbly clay	CL-ML											
		\| stony clay												
		\| loam												
	24-34				---	---	---	---	---	---	---	---		
		\| bedrock												
361:														
Westbutte------\|	0-12	\| Extremely stony		$\begin{aligned} & \mid \text { GC-GM, GM, } \\ & \left\lvert\, \begin{array}{l} \text { SC-SM, SM } \end{array}\right. \end{aligned}$	$\left.\right\|^{\text {A-2, }} \mathrm{A}-4$	30-55	15-30	60-75	45-60	\|40-55	30-40	25-35	5-10	
	12-24	\|Very cobbly	\| CL-ML, ML,	\|A-4	5-35	\| 15-45	70-85	60-85	\| 55-80	\| 35-65	25-35	5-10		
		\| loam, very	\| SC, SC-SM,											
		\| cobbly clay												
		loam, very												
		stony clay												
		loam												
	24-34	\| Unweathered			---	---	---	---	---	---	---	--		
		bedrock												
Bocker---------- \|	0-3	\| Extremely stony	\|GC-GM, GM,	\|A-2, A-4	25-40	10-20	45-70	\|35-60	35-55	25-40	25-35	5-10		
		\| loam		\| SC-SM, SM										
	3-7	\|Very stony	\|GC, GM, SM	\|A-2, A-4	20-40	5-20	45-80	30-75	30-70	25-45	25-35	5-10		
		loam,												
		\| extremely												
		stony loam												
	7-17	\|Unweathered			---	---	---	---	---	---	---	---		
		bedrock			1									

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

Map symbol and soil name	Depth	USDA texture	Classification		Fragments		Percentage passing sieve number--				\|Liquid \|limit	$\begin{aligned} & \text { Plas- } \\ & \text { \|ticity } \end{aligned}$								
					>10	3-10														
			Unified	AASHTO	\|inches	\|inches	4	10	40	200		index								
	In				PCt	Pct					Pct									
365:																				
Lambring--------	0-7	\|Very stony loam		\|GC-GM, GM,	\|A-4	\| $20-45$	\|10-20	\|60-85	50-75	\|45-65	\| 35-50	25-35	5-10							
			SC-SM, SM																	
	7-12	\|Gravelly loam	\| SC-SM, SM	\|A-4	0-5	0-15	\|70-85	65-75	\| 55-65	\| 35-45	25-35	5-10								
	12-21	$\begin{gathered} \text { \|Gravelly loam, } \\ \text { \| very gravelly } \end{gathered}$	$\begin{array}{\|} \mid \mathrm{GC}-\mathrm{GM}, \mathrm{GM}, \\ \mid \mathrm{SC}-\mathrm{SM}, \mathrm{SM} \end{array}$	\|A-2, A-4	0-5	5-20	\|45-80	40-75	\| 35-65	\| 25-45	25-35	5-10								
		loam																		
	21-60	\|Very cobbly loam, very gravelly loam	$\begin{aligned} & \mid \text { GC-GM, GM, } \\ & \mid \text { SC-SM, SM } \end{aligned}$	\|A-2, A-4	5-20	\| 15-45	\|50-80	45-75	\|40-65	\|30-45	25-35	5-10								
Rock outcrop----	0-60	Unweathered \| bedrock			---	---	---	---	---	---	---	---								
366:																				
Westbutte------	0-12	\|Very cobbly	\| CL-ML, GC-GM,	\|A-4	0-15	\| 25-45	\|65-85	50-70	\|45-65	\| 35-60	25-35	5-10								
		loam	GM, ML, SM																	
	12-24	$\begin{array}{\|l} \text { \|Very cobbly } \\ \mid \text { loam, very } \\ \text { cobbly clay } \end{array}$	$\begin{aligned} & \mid \text { CL-ML, ML, } \\ & \left\lvert\, \begin{array}{l} \text { SC, SC-SM, } \\ \text { SM } \end{array}\right. \end{aligned}$	\|A-4	5-35	\| 15-45	\|70-85	60-85	\| 55-80	\|35-65	25-35	5-10								
		loam, very																		
		stony clay																		
		loam																		
	24-34	Unweathered \| bedrock			---	---	---	---	---	---	---	---								
Lambring-------	0-7	\|very stony loam		$\begin{aligned} & \text { \|GC-GM, GM, } \\ & \text { \| SC-SM, SM } \end{aligned}$	A-4	20-45	10-20	60-85	50-75	45-65	35-50	25-35	5-10							
	7-12	\| Gravelly loam	\|SC-SM, SM	\|A-4	0-5	0-15	\|70-85	65-75	\| 55-65	\| 35-45	25-35	5-10								
	12-21	\|Gravelly loam, very gravelly loam	$\begin{aligned} & \mid \text { GC-GM, GM, } \\ & \mid \mathrm{SC}-\mathrm{SM}, \mathrm{SM} \end{aligned}$	\|A-2, A-4	0-5	5-20	\| 45-80	40-75	\| 35-65	\| 25-45	25-35	5-10								
	21-60	$\begin{array}{\|l\|} \text { loam } \\ \text { Very cobbly } \end{array}$		A-2, A-4	5-20	15-45	50-80	\|45-75	\|40-65	\|30-45	25-35	5-10								
	21-60	loam, very gravelly loam	$\begin{aligned} & \text { \|GC-GM, GM, } \\ & \text { SC-SM, SM } \end{aligned}$	A-2, A-4	5-20	15-45	50-80	\|45-75												
Rock outcrop----	0-60	\| Unweathered			---	---	---	---	---	---	---	---								
		bedrock																		
367 :																				
Westbutte-------	0-12	\|Very stony loam		$\begin{aligned} & \mid \text { GC-GM, GM, } \\ & \mid \text { SC-SM, SM } \end{aligned}$	\|A-4	\| $20-45$	\|10-20	\| 60-85	50-75	\|45-65	\| 35-50	25-35	5-10							
	12-24	\|Very cobbly	\| CL-ML, ML,	\|A-4	5-35	\|15-45	\|70-85	60-85	\|55-80	\| 35-65	25-35	5-10								
		$\left\{\begin{array}{l} \text { loam, very } \\ \text { cobbly clay } \end{array}\right.$	$\left\lvert\, \begin{aligned} & \text { SC, SC-SM, } \\ & \text { SM } \end{aligned}\right.$																	
		loam, very																		
		stony clay																		
		loam																		
	24-34	\| Unweathered			---	---	---	---	---	---	---	---								
		bedrock																		
Lambring-------	0-7	\|Very stony loam		\|GC-GM, GM,	\|A-4	\| $20-45$	\|10-20	\|60-85	50-75	\|45-65	\| 35-50	25-35	5-10							
			\| SC-SM, SM																	
	7-12	\|Gravelly loam	\|SC-SM, SM	\|A-4	0-5	0-15	\|70-85	\| 65-75	\| 55-65	\| 35-45	25-35	5-10								
	12-21	$\begin{aligned} & \text { \|Gravelly loam, } \\ & \mid \text { very gravelly } \\ & \text { loam } \end{aligned}$	$\begin{gathered} \mid \mathrm{GC}-\mathrm{GM}, \mathrm{GM}, \\ \mid \mathrm{SC}-\mathrm{SM}, \mathrm{SM} \end{gathered}$	\|A-2, A-4	0-5	5-20	\|45-80	\| 40-75	\| 35-65	\| $25-45$	25-35	5-10								
	21-60	$\begin{aligned} & \text { \|Very cobbly } \\ & \mid \text { loam, very } \\ & \text { \| gravelly loam } \end{aligned}$	$\begin{gathered} \mid \text { GC-GM, GM, } \\ \mid \mathrm{SC}-\mathrm{SM}, \mathrm{SM} \end{gathered}$	\|A-2, A-4	5-20	\| 15-45	\|50-80	\| 45-75	\|40-65	\|30-45	25-35	5-10								
Rock outcrop----	0-60	\| Unweathered			---	---	---	---	---	---	---	---								
		\| bedrock																		

Table 14.--Engineering Index Properties--Continued

Table 14.--Engineering Index Properties--Continued

(Entries under "Erosion factors--T" apply to the entire profile. Entries under "Wind erodibility group" and "Wind erodibility index" apply only to the surface layer. Absence of an entry indicates that data were not estimated)

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \mid \text { Available } \mid \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$ | Linear \|extensibility | Organic matter | \|Erosion factors | | | Wind \|erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | Pct | $g / c c$ | In/hr | In/in | PCt | PCt | | | | | |
| 9 : | | | | | | | | | | | | |
| Teguro----------- | 0-2 | 18-27 | \|1.30-1.50| | 0.6-2 | \|0.12-0.15 | 0.0-2.9 | 2.0-4.0 | . 24 | . 28 | 1 | 7 | 38 |
| | 2-5 | 18-27 | \|1.30-1.50| | 0.2-0.6 | \|0.10-0.16 | 0.0-2.9 | 2.0-4.0 | . 20 | . 28 | | | |
| | 5-14 | 25-35 | \|1.30-1.50| | 0.2-0.6 | \|0.10-0.13 | 3.0-5.9 | 1.0-2.0 | . 24 | . 32 | | | |
| | 14-24 | --- | --- | --- | --- | --- | --- | - | - | | | |
| Observation------- | 0-4 | 18-27 | \|1.40-1.50| | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 2.0-4.0 | . 20 | . 28 | 2 | 8 | 0 |
| | 4-8 | 20-27 | \|1.40-1.50| | 0.6-2 | \|0.12-0.15 | 0.0-2.9 | 1.0-3.0 | . 24 | . 32 | | | |
| | 8-23 | 35-50 | \|1.30-1.50| | 0.06-0.2 | \|0.13-0.16 | 6.0-8.9 | 0.5-1.0 | . 24 | . 28 | | | |
| | 23-33 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| 10: | | | | | | | | | | | | |
| Anatone, moist--- | 0-8 | 18-27 | \|1.30-1.50| | 0.6-2 | \|0.04-0.06 | 0.0-2.9 | 2.0-4.0 | . 05 | . 28 | 1 | 8 | 0 |
| | 8-14 | 18-30 | \|1.40-1.60| | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 0.5-3.0 | . 15 | . 28 | | | |
| | 14-24 | --- | - | --- | \| --- | --- | --- | --- | --- | | | |
| Egyptcreek-------- | 0-8 | 18-25 | \|1.30-1.50| | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 2.0-4.0 | . 10 | . 24 | 2 | 8 | 0 |
| | 8-18 | 20-27 | \|1.35-1.50| | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 1.0-2.0 | . 15 | . 28 | | | |
| | 18-24 | 20-27 | \|1.35-1.50| | 0.6-2 | \|0.05-0.10 | 0.0-2.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | 24-34 | --- | --- \| | --- | --- | --- | --- | --- | --- | | | |
| Rock outcrop- | 0-60 | --- | --- | --- | --- | --- | --- | --- | --- | -- | --- | --- |
| 11: | | | | | | | | | | | | |
| Anatone, moist---- | 0-5 | 18-27 | \|1.30-1.50| | 0.6-2 | \|0.04-0.06 | 0.0-2.9 | 2.0-4.0 | . 05 | . 28 | 1 | 8 | 0 |
| | 5-16 | 18-30 | \|1.40-1.60| | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 0.5-3.0 | . 15 | . 28 | | | |
| | 16-26 | --- | --- | -- | -- | - --- | --- | --- | --- | | | |
| Minam------------ | 0-3 | 15-25 | \|1.20-1.30| | 0.6-2 | \|0.13-0.16 | 0.0-2.9 | 3.0-7.0 | . 20 | . 24 | 5 | 7 | 38 |
| | 3-29 | 18-27 | \|1.25-1.35| | 0.6-2 | \|0.12-0.15 | 0.0-2.9 | 1.0-5.0 | . 24 | . 28 | | | |
| | 29-39 | 18-27 | \|1.25-1.35| | 0.6-2 | \|0.14-0.17 | 0.0-2.9 | 1.0-2.0 | . 32 | . 32 | | | |
| | 39-52 | 20-30 | \|1.35-1.50| | 0.6-2 | \|0.13-0.16 | 0.0-2.9 | 0.5-1.0 | . 24 | . 28 | | | |
| | 52-62 | 15-20 | \|1.35-1.50| | 2-6 | \|0.07-0.10 | 0.0-2.9 | 0.0-0.5 | . 24 | . 28 | | | |
| Rock outcrop- | 0-60 | --- | --- | --- | --- | --- | --- | --- | --- | -- | -- | --- |
| 12 : | | | | | | | | | | | | |
| Anatone---------- | 0-5 | 18-27 | \|1.30-1.50| | 0.6-2 | 10.06-0.08 | 0.0-2.9 | 2.0-4.0 | . 10 | . 28 | 1 | 8 | 0 |
| | 5-16 | 18-30 | \|1.40-1.60| | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 0.5-3.0 | . 15 | . 28 | | | |
| | 16-26 | --- | --- | --- | --- | --- | --- | --- | -- | | | |
| Teguro----------- | 0-2 | 18-27 | 1.30-1.50 | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 2.0-4.0 | . 10 | . 28 | 1 | 8 | 0 |
| | 2-5 | 18-27 | \|1.30-1.50| | 0.2-0.6 | \|0.10-0.16 | 0.0-2.9 | 2.0-4.0 | . 20 | . 28 | | | |
| | 5-14 | 25-35 | \|1.30-1.50| | 0.2-0.6 | \|0.10-0.13 | 3.0-5.9 | 1.0-2.0 | . 24 | . 32 | | | |
| | 14-24 | --- | | --- | \| --- | --- | --- | - | --- | | | |
| Rock outcrop- | 0-60 | --- | --- | --- | --- | --- | --- | - | --- | -- | --- | --- |
| 13: | | | | | | | | | | | | |
| Anatone---------- | 0-5 | 18-27 | \|1.30-1.50| | 0.6-2 | \|0.04-0.06 | 0.0-2.9 | 2.0-4.0 | . 05 | . 28 | 1 | 8 | 0 |
| | 5-16 | 18-30 | \|1.40-1.60| | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 0.5-3.0 | . 15 | . 28 | | | |
| | 16-26 | --- | --- | --- | O. | --- | --- | - | --- | | | |
| Westbutte--------- | 0-12 | 15-27 | 1.20-1.40\| | 0.6-2 | 10.07-0.10 | 0.0-2.9 | 2.0-3.0 | . 15 | . 28 | 2 | 8 | 0 |
| | 12-24 | 18-30 | \|1.30-1.50| | 0.6-2 | \|0.07-0.11 | 0.0-2.9 | 1.0-2.0 | . 15 | . 32 | | | |
| | 24-34 | --- | --- | --- | --- | - --- | --- | -- | -- | | | |
| Rock outcrop--- | 0-60 | -- | --- | --- | --- | --- | --- | --- | --- | --- | --- | -- |
| 14: | | | | | | | | | | | | |
| Anawalt---------- | 0-2 | 27-30 | \|1.30-1.50| | 0.6-2 | \|0.15-0.18 | 3.0-5.9 | 1.0-2.0 | . 28 | . 32 | 1 | 7 | 38 |
| | 2-11 | 20-35 | \|1.30-1.50| | 0.6-2 | \|0.14-0.19 | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 11-16 | 40-60 | \|1.30-1.50| | 0.06-0.2 | \|0.10-0.16 | 6.0-8.9 | 0.0-0.5 | . 24 | . 32 | | | |
| | 16-26 | --- | --- | --- | \| --- | \| --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \mid \text { Available\| } \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$ | Linear \|extensibility | Organic matter | Erosi | fac | ors | \|Wind |erodi|bility |group | \|Wind |erodi|bility
 \|index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | Pct | g/cc | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct | | | | | |
| 15: | | | | | | | | | | | | |
| Anawalt---------- | 0-2 | 27-30 | \|1.30-1.50 | 0.6-2 | \|0.15-0.18| | 3.0-5.9 | 1.0-2.0 | . 28 | . 32 | 1 | 7 | 38 |
| | 2-11 | 20-35 | \|1.30-1.50 | 0.6-2 | \|0.14-0.19| | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 11-16 | 40-60 | \|1.30-1.50 | 0.06-0.2 | \|0.10-0.16| | 6.0-8.9 | 0.0-0.5 | . 24 | . 32 | | | |
| | 16-26 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Lonely----------- | 0-4 | 27-35 | \|1.20-1.30 | 0.2-0.6 | \|0.13-0.18| | 3.0-5.9 | 1.0-2.0 | . 17 | . 32 | 2 | 8 | 0 |
| | 4-16 | 27-35 | \|1.20-1.30 | 0.2-0.6 | \|0.16-0.20| | 3.0-5.9 | 0.5-1.0 | . 24 | . 37 | | | |
| | 16-24 | 27-35 | \|1.20-1.30 | 0.2-0.6 | \|0.14-0.18| | 3.0-5.9 | 0.0-0.5 | . 20 | . 37 | | | |
| | 24-34 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| 16: | | | | | | | | | | | | |
| Anawalt---------- | 0-2 | 27-30 | \|1.30-1.50 | 0.6-2 | \|0.15-0.18| | 3.0-5.9 | 1.0-2.0 | . 28 | . 32 | 1 | 7 | 38 |
| | 2-11 | 20-35 | \|1.30-1.50 | 0.6-2 | \|0.14-0.19| | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 11-16 | 40-60 | \|1.30-1.50 | 0.06-0.2 | \|0.10-0.16| | 6.0-8.9 | 0.0-0.5 | . 24 | . 32 | | | |
| | 16-26 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Oreneva----------- | 0-2 | 18-27 | \|1.20-1.30 | 0.6-2 | \|0.11-0.15| | 0.0-2.9 | 1.0-2.0 | . 24 | . 28 | 2 | 7 | 38 |
| | 2-10 | 18-30 | \|1.30-1.40 | 0.2-0.6 | \|0.15-0.19| | 0.0-2.9 | 0.5-2.0 | . 28 | . 28 | | | |
| | 10-21 | 18-30 | \|1.30-1.40 | 0.2-2 | \|0.08-0.13| | 0.0-2.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | 21-31 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| 17: | | | | | | | | | | | | |
| Anawalt----------- | 0-2 | 27-30 | \|1.30-1.50 | 0.6-2 | \|0.15-0.18| | 3.0-5.9 | 1.0-2.0 | . 28 | . 32 | 1 | 7 | 38 |
| | 2-11 | 20-35 | \|1.30-1.50 | 0.6-2 | \|0.14-0.19| | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 11-16 | 40-60 | \|1.30-1.50 | 0.06-0.2 | \|0.10-0.16| | 6.0-8.9 | 0.0-0.5 | . 24 | . 32 | | | |
| | 16-26 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Raz-------------- | 0-2 | 20-27 | \|1.20-1.30| | 0.6-2 | \|0.10-0.13| | 0.0-2.9 | 1.0-2.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 2-7 | 20-35 | \|1.20-1.30 | 0.2-0.6 | \|0.15-0.19| | 3.0-5.9 | 0.5-1.0 | . 24 | . 32 | | | |
| | 7-12 | 20-35 | \|1.20-1.30 | 0.2-0.6 | \|0.15-0.21| | 3.0-5.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 12-23 | --- | --- | --- | \|0.00-0.00| | --- | --- | --- | --- | | | |
| | 23-33 | --- | --- | --- | --- | --- | --- | --- | -- | | | |
| 18: | | | | | | | | | | | | |
| Ateron----------- | 0-5 | 20-27 | 1.20-1.30 | 0.6-2 | \|0.11-0.14| | 0.0-2.9 | 1.0-2.0 | . 24 | . 28 | 1 | 7 | 38 |
| | 5-12 | 27-35 | \|1.25-1.35 | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 1.0-2.0 | . 20 | . 32 | | | |
| | 12-18 | 40-50 | \|1.35-1.50 | 0.06-0.2 | \|0.05-0.10| | 6.0-8.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | 18-28 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| 19: | | | | | | | | | | | | |
| Ateron----------- | 0-5 | 20-27 | 1.20-1.30 | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 1.0-2.0 | . 17 | . 28 | 1 | 8 | 0 |
| | 5-12 | 27-35 | \|1.25-1.35 | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 1.0-2.0 | . 20 | . 32 | | | |
| | 12-18 | 40-50 | \|1.35-1.50 | 0.06-0.2 | \|0.05-0.10| | 6.0-8.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | 18-28 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Rubble land- | 0-60 | --- | --- | --- | --- | -- | --- | --- | - | -- | --- | --- |
| $20:$ | | | | | | | | | | | | |
| Ateron----------- | 0-5 | 20-27 | \|1.20-1.30 | 0.6-2 | \|0.05-0.08| | 0.0-2.9 | 1.0-2.0 | . 10 | . 32 | 1 | 8 | 0 |
| | 5-12 | 27-35 | \|1.25-1.35 | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 1.0-2.0 | . 20 | . 32 | | | |
| | $12-18$ | 40-50 | \|1.35-1.50 | 0.06-0.2 | \|0.05-0.10| | 6.0-8.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | 18-28 | --- | | --- | --- | --- | --- | -- | --- | | | |
| Observation------ | 0-4 | 18-27 | \|1.40-1.50 | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 2.0-4.0 | . 20 | . 28 | 2 | 8 | - |
| | 4-8 | 20-27 | \|1.40-1.50 | 0.6-2 | \|0.12-0.15| | 0.0-2.9 | 1.0-3.0 | . 24 | . 32 | | | |
| | 8-23 | 35-50 | \|1.30-1.50 | 0.06-0.2 | \|0.13-0.16| | 6.0-8.9 | 0.5-1.0 | . 24 | . 28 | | | |
| | 23-33 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| 21: | | | | | | | | | | | | |
| Atlow------------ | 0-3 | 20-27 | \|1.40-1.50 | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 1.0-2.0 | . 10 | . 32 | 1 | 8 | 0 |
| | 3-11 | 27-35 | \|1.40-1.50 | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 0.5-2.0 | . 10 | . 32 | | | |
| | 11-21 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | ```Moist bulk density``` | Permeability ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \mid \text { Available } \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$ | Linear extensibility | Organic matter | \|Erosion factors | | | Wind \|erodi|bility |group | \|Wind erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | | | | | | | | | | | | |
| | In | Pct | $g / c c$ | In/hr | In/in | Pct | Pct | | | | | |
| | | | | | | | | | | | | |
| 22: | | | | | | | | | | | | |
| Atlow------------ | 0-3 | 20-27 | \|1.40-1.50| | 0.6-2 | 0.07-0.10 | 0.0-2.9 | 1.0-2.0 | . 10 | . 32 | 1 | 8 | 0 |
| | 3-11 | 27-35 | $\|1.40-1.50\|$ | 0.2-0.6 | 0.08-0.11 | 3.0-5.9 | 0.5-2.0 | . 10 | . 32 | | | |
| | 11-21 | --- | --- | --- | - | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |
| Rock outcrop- | 0-60 | --- | --- | --- | -- | --- | --- | --- | --- | | --- | --- |
| | | | | | | | | | | | | |
| 23: | | | | | | | | | | | | |
| Atlow------------ | 0-3 | 20-27 | \|1.40-1.50| | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 1.0-2.0 | . 10 | . 32 | 1 | 8 | 0 |
| | 3-11 | 27-35 | \|1.40-1.50| | 0.2-0.6 | \|0.08-0.11 | 3.0-5.9 | 0.5-2.0 | . 10 | . 32 | | | |
| | 11-21 | - | --- | -- | --- | - | --- | -- | --- | | | |
| | | | | | | | | | | | | |
| Rock outcrop- | 0-60 | --- | - | - | - | - | --- | - | --- | | --- | --- |
| | | | | | | | | | | | | |
| 24: | | | | | | | | | | | | |
| Atlow------------ | 0-3 | 20-27 | \|1.40-1.50| | 0.6-2 | 0.07-0.10 | 0.0-2.9 | 1.0-2.0 | . 10 | . 32 | 1 | 8 | 0 |
| | 3-11 | 27-35 | $\|1.40-1.50\|$ | 0.2-0.6 | 0.08-0.11 | 3.0-5.9 | 0.5-2.0 | . 10 | . 32 | | | |
| | 11-21 | --- | --- | --- | --- | --- | --- | -- | --- | | | |
| | | | | | | | | | | | | |
| Skedaddle-------- | 0-3 | 27-30 | \|1.35-1.55| | 0.6-2 | \|0.09-0.12 | 3.0-5.9 | 0.5-1.0 | . 10 | . 32 | 1 | 8 | 0 |
| | 3-8 | 20-30 | \|1.40-1.55| | 0.6-2 | \|0.07-0.12 | 3.0-5.9 | 0.0-0.5 | . 10 | . 37 | | | |
| | 8-11 | 20-30 | 1.40-1.55 | 0.6-2 | 0.07-0.12 | 3.0-5.9 | 0.0-0.5 | . 10 | . 37 | | | |
| | $11-21$ | --- | --- | --- | --- | --- | --- | -- | --- | | | |
| | | | | | | | | | | | | |
| 25: | | | | | | | | | | | | |
| Ausmus------------ | 0-2 | 10-20 | \|1.00-1.20| | 0.6-2 | \|0.10-0.13 | 0.0-2.9 | 1.0-3.0 | . 37 | . 37 | 5 | 3 | 86 |
| | 2-9 | 27-35 | $\|1.20-1.30\|$ | 0.2-0.6 | 0.09-0.12 | 3.0-5.9 | 0.5-1.0 | . 43 | . 43 | | | |
| | 9-16 | 27-35 | 1.20-1.30\| | 0.2-0.6 | 0.07-0.10 | 3.0-5.9 | 0.3-0.7 | . 43 | . 43 | | | |
| | 16-29 | 20-27 | \|1.00-1.20| | 0.6-2 | 0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 29-69 | 20-27 | \|1.00-1.20| | 0.6-2 | 0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | | | | | | | | | | | | |
| 26: | | | | | | | | | | | | |
| Ausmus------------ | 0-2 | 10-20 | \|1.00-1.20| | 0.6-2 | 0.10-0.13 | 0.0-2.9 | 1.0-3.0 | . 37 | . 37 | 5 | 3 | 86 |
| | 2-9 | 27-35 | \|1.20-1.30| | 0.2-0.6 | 0.09-0.12 | 3.0-5.9 | 0.5-1.0 | . 43 | . 43 | | | |
| | 9-16 | 27-35 | 1.20-1.30\| | 0.2-0.6 | 0.07-0.10 | 3.0-5.9 | 0.3-0.7 | . 43 | . 43 | | | |
| | 16-29 | 20-27 | 1.00-1.20 | 0.6-2 | 0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 29-69 | 20-27 | 1.00-1.20 | 0.6-2 | 0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | | | | | | | | | | | | |
| 27: | | | | | | | | | | | | |
| Baconcamp-------- | 0-4 | 27-30 | \|1.20-1.30| | 0.6-2 | \|0.10-0.13 | 0.0-2.9 | 3.0-8.0 | . 17 | . 20 | 2 | 7 | 38 |
| | 4-20 | 18-27 | \|1.25-1.35| | 0.6-2 | \|0.07-0.13 | 0.0-2.9 | 1.0-4.0 | . 20 | . 24 | | | |
| | 20-35 | 18-30 | 1.30-1.40 | 0.6-2 | 0.07-0.10 | 0.0-2.9 | 1.0-2.0 | . 20 | . 28 | | | |
| | 35-45 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |
| 28: | | | | | | | | | | | | |
| Baconcamp-------- | 0-4 | 27-30 | \|1.20-1.30| | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 3.0-8.0 | . 10 | . 20 | 2 | 8 | 0 |
| | 4-20 | 18-27 | \|1.25-1.35| | 0.6-2 | \|0.07-0.13 | 0.0-2.9 | 1.0-4.0 | . 20 | . 24 | | | |
| | 20-35 | 18-30 | \|1.30-1.40| | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 1.0-2.0 | . 20 | . 28 | | | |
| | 35-45 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |
| Clamp------------ | $0-3$ | 27-35 | \|1.20-1.30| | 0.2-0.6 | \|0.10-0.15 | 3.0-5.9 | 2.0-4.0 | . 10 | . 24 | 1 | 8 | 0 |
| | 3-12 | 27-35 | \|1.20-1.30| | 0.2-0.6 | \|0.10-0.15 | 3.0-5.9 | 1.0-3.0 | . 10 | . 28 | | | |
| | 12-22 | --- | --- | --- | \| --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |
| 29: | | | | | | | | | | | | |
| Baconcamp-------- | 0-4 | 27-30 | \|1.20-1.30| | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 3.0-8.0 | . 10 | . 20 | 2 | 8 | 0 |
| | 4-20 | 18-27 | \|1.25-1.35| | 0.6-2 | \|0.07-0.13 | 0.0-2.9 | 1.0-4.0 | . 20 | . 24 | | | |
| | 20-35 | 18-30 | $\|1.30-1.40\|$ | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 1.0-2.0 | . 20 | . 28 | | | |
| | 35-45 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |
| Clamp------------ | 0-3 | 27-35 | \|1.20-1.30| | 0.2-0.6 | \|0.10-0.15 | 3.0-5.9 | 2.0-4.0 | . 10 | . 24 | 1 | 8 | 0 |
| | 3-12 | 27-35 | $\|1.20-1.30\|$ | 0.2-0.6 | \|0.10-0.15 | 3.0-5.9 | 1.0-3.0 | . 10 | . 28 | | | |
| | 12-22 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist
 bulk
 density | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \text { \|Available\| } \\ & \mid \text { water } \mid \\ & \mid \text { capacity } \end{aligned}$ | \mid Linear
 \mid extensi-
 \mid bility | Organic matter | \|Erosion factors | | | Wind erodibility group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | Pct | $g / c c$ | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | PCt | | | | | |
| $30:$ | | | | | | | | | | | | |
| Baconcamp-------- | 0-4 | 27-30 | 1.20-1.30 | 0.6-2 | \|0.10-0.13 | 0.0-2.9 | 3.0-8.0 | . 17 | . 20 | 2 | 7 | 38 |
| | 4-20 | 18-27 | 1.25-1.35 | 0.6-2 | \|0.07-0.13 | 0.0-2.9 | 1.0-4.0 | . 20 | . 24 | | | |
| | 20-35 | 18-30 | 1.30-1.40 | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 1.0-2.0 | . 20 | . 28 | | | |
| | 35-45 | --- | --- \| | --- | --- | --- | --- | --- | --- | | | |
| Clamp------------ | 0-3 | 27-35 | 1.20-1.30\| | 0.2-0.6 | 0.07-0.11 | 3.0-5.9 | 2.0-4.0 | . 05 | . 24 | 1 | 8 | 0 |
| | 3-12 | 27-35 | 1.20-1.30 | 0.2-0.6 | \|0.10-0.15 | 3.0-5.9 | 1.0-3.0 | . 10 | . 28 | | | |
| | 12-22 | --- | --- | --- | --- | --- | --- | - | --- | | | |
| Rock outcrop- | 0-60 | --- | --- | --- | --- | --- | --- | - | --- | -- | --- | --- |
| 31: | | | | | | | | | | | | |
| Baconcamp-------- | 0-4 | 18-27 | 1.20-1.30 | 0.6-2 | \|0.10-0.13 | 0.0-2.9 | 3.0-8.0 | . 17 | . 20 | 2 | 7 | 38 |
| | 4-20 | 18-27 | 1.25-1.35 | 0.6-2 | \|0.07-0.13 | 0.0-2.9 | 1.0-4.0 | . 20 | . 24 | | | |
| | 20-35 | 18-30 | 1.30-1.40 | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 1.0-2.0 | . 20 | . 28 | | | |
| | 35-45 | --- | --- | --- | --- | \| --- | --- | - | --- | | | |
| Rock outcrop | 0-60 | --- | --- | --- | --- | --- | --- | --- | --- | | --- | --- |
| 32 : | | | | | | | | | | | | |
| Baconcamp-------- | 0-4 | 27-30 | 1.20-1.30 | 0.6-2 | 10.07-0.10 | 0.0-2.9 | 3.0-8.0 | . 10 | . 20 | 2 | 8 | 0 |
| | 4-20 | 18-27 | 1.25-1.35 | 0.6-2 | \|0.07-0.13 | 0.0-2.9 | 1.0-4.0 | . 20 | . 24 | | | |
| | 20-35 | 18-30 | 1.30-1.40 | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 1.0-2.0 | . 20 | . 28 | | | |
| | 35-45 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Rock outcrop- | 0-60 | --- | --- | --- | --- | -- | - | - | --- | --- | --- | --- |
| 33: | | | | | | | | | | | | |
| Baconcamp-------- | 0-4 | 18-27 | 1.20-1.30 | 0.6-2 | 0.07-0.10 | 0.0-2.9 | 3.0-8.0 | . 10 | . 20 | 2 | 8 | 0 |
| | 4-20 | 18-27 | 1.25-1.35 | 0.6-2 | \|0.07-0.13 | 0.0-2.9 | 1.0-4.0 | . 20 | . 24 | | | |
| | 20-35 | 18-30 | 1.30-1.40 | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 1.0-2.0 | . 20 | . 28 | | | |
| | 35-45 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Rock outcrop- | 0-60 | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| Hackwood--------- | 0-11 | 15-27 | 1.20-1.40\| | 0.6-2 | \|0.10-0.13 | 0.0-2.9 | 3.0-8.0 | . 17 | . 20 | 5 | 7 | 38 |
| | 11-23 | 18-27 | 1.30-1.40 | 0.6-2 | \|0.07-0.13 | 0.0-2.9 | 1.0-4.0 | . 20 | . 24 | | | |
| | 23-48 | 18-30 | 1.40-1.50 | 0.6-2 | \|0.07-0.11 | 0.0-2.9 | 0.5-1.0 | . 17 | . 28 | | | |
| | 48-60 | 18-30 | 1.40-1.50 | 0.6-2 | \|0.05-0.10 | 0.0-2.9 | 0.5-1.0 | . 15 | . 28 | | | |
| 34 : | | | | | | | | | | | | |
| Baconcamp-------- | 0-4 | 18-27 | 1.20-1.30\| | 0.6-2 | 0.07-0.10 | 0.0-2.9 | 3.0-8.0 | . 10 | . 20 | 2 | 8 | 0 |
| | 4-20 | 18-27 | 1.25-1.35 | 0.6-2 | \|0.07-0.13 | 0.0-2.9 | 1.0-4.0 | . 20 | . 24 | | | |
| | 20-35 | 18-30 | 1.30-1.40 | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 1.0-2.0 | . 20 | . 28 | | | |
| | 35-45 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Hapgood----------- | 0-10 | 15-20 | 1.20-1.30 | 2-6 | \|0.09-0.11 | 0.0-2.9 | 3.0-8.0 | . 17 | . 20 | 3 | 4 | 86 |
| | 10-23 | 18-27 | 1.30-1.40 | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 1.0-4.0 | . 15 | . 24 | | | |
| | 23-43 | 18-30 | 1.40-1.50 | 2-6 | \|0.07-0.13 | 0.0-2.9 | 1.0-2.0 | . 17 | . 28 | | | |
| | 43-53 | --- | --- \| | --- | --- | \| --- | --- | - | --- | | | |
| Rock outcrop--- | 0-60 | --- | --- | --- | -- | --- | -- | --- | --- | --- | --- | - |
| $35:$ | | | | | | | | | | | | |
| Baconcamp- | 0-4 | 18-27 | 1.20-1.30 | 0.6-2 | \|0.10-0.13 | 0.0-2.9 | 3.0-8.0 | . 17 | . 20 | 2 | 7 | 38 |
| | 4-20 | 18-27 | 1.25-1.35 | 0.6-2 | \|0.07-0.13 | 0.0-2.9 | 1.0-4.0 | . 20 | . 24 | | | |
| | 20-35 | 18-30 | 1.30-1.40 | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 1.0-2.0 | . 20 | . 28 | | | |
| | 35-45 | --- | --- \| | --- | --- | \| --- | --- | --- | --- | | | |
| Krackle---------- | 0-4 | 27-35 | 1.20-1.30 | 0.2-0.6 | \|0.14-0.17 | 3.0-5.9 | 1.0-3.0 | . 20 | . 28 | 2 | 8 | 0 |
| | 4-15 | 25-35 | 1.20-1.30\| | 0.2-0.6 | \|0.10-0.15 | 3.0-5.9 | 1.0-2.0 | . 17 | . 32 | | | |
| | 15-30 | 25-35 | 1.20-1.30\| | 0.2-0.6 | \|0.10-0.15 | 3.0-5.9 | 0.0-0.5 | . 17 | . 37 | | | |
| | 30-40 | --- | --- | --- | --- | --- | --- | - | - | | | |
| Rock outcrop------ | 0-60 | --- | -- | -- | -- | --- | --- | --- | --- | --- | --- | --- |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Permea- bility ($\mathrm{K}_{\text {sat }}$)	$\begin{aligned} & \text { \| Available } \\ & \text { \| water } \\ & \text { \| capacity } \end{aligned}$	Linear extensibility	Organic matter	Erosion factors			Wind erodi- \|bility group	Wind erodi\|bility index		
								Kw	Kf	T				
	In	Pct	g/cc	In/hr	In/in	Pct	Pct							
49:														
Brunzell----------	0-11	18-27	\|1.20-1.40		0.6-2	0.11-0.14	0.0-2.9	1.0-4.0	. 20	. 28	3	7	38	
	11-18	20-30	\|1.40-1.50		0.2-0.6	0.08-0.14	0.0-2.9	0.5-1.0	. 17	. 28				
	18-30	20-30	\|1.40-1.50		0.2-0.6	0.08-0.11\|	0.0-2.9	0.5-1.0	. 17	. 32				
	30-62	5-18	\|1.45-1.60		6-20	0.02-0.06	0.0-2.9	0.0-0.5	. 05	. 17				
50:														
Bucklake---------	0-2	27-30	\|1.30-1.55		0.2-0.6	0.09-0.12	0.0-2.9	1.0-3.0	. 15	. 28	2	8	0	
	2-16	40-50	\|1.35-1.50		0.06-0.2	0.10-0.15	6.0-8.9	0.5-2.0	. 24	. 28				
	16-31	35-40	\|1.25-1.55		0.2-0.6	0.13-0.16	3.0-5.9	0.5-1.0	. 20	. 28				
	31-41	---	---	---	---	---	---	---	---					
51:														
Bucklake----------	0-2	20-27	\|1.40-1.55		0.6-2	0.08-0.11	0.0-2.9	1.0-3.0	. 17	. 32	2	8	0	
	2-16	40-50	\|1.35-1.50		0.06-0.2	0.10-0.15\|	6.0-8.9	0.5-2.0	. 24	. 28				
	16-31	35-40	\|1.25-1.55		0.2-0.6	0.13-0.16	3.0-5.9	0.5-1.0	. 20	. 28				
	31-41	---	---	---	---	---	---	---	---					
Mahoon------------	0-3	18-27	\|1.30-1.50		0.6-2	0.08-0.11	0.0-2.9	1.0-2.0	. 10	. 28	3	8	0	
	3-9	35-45	\|1.35-1.45		0.2-0.6	0.10-0.15	3.0-5.9	1.0-2.0	. 24	. 32				
	9-18	40-60	\|1.35-1.45		0.06-0.2	0.11-0.15	6.0-8.9	0.5-1.0	. 20	. 24				
	18-25	40-60	\|1.35-1.45		0.06-0.2	0.11-0.15	6.0-8.9	0.0-0.5	. 20	. 24				
	25-35	---	---	---	---	---	---	---	---					
Rubble land-	0-60	---	---	---	---	---	---	---	---	-	--	---		
52:														
Calderwood--------	0-3	20-27	\|1.20-1.30		0.6-2	0.07-0.11	0.0-2.9	1.0-2.0	. 20	. 32	1	8	0	
	3-12	20-35	\|1.35-1.45		0.2-0.6	0.07-0.10	3.0-5.9	0.5-2.0	. 10	. 37				
	12-18	20-35	\|1.35-1.45		0.2-0.6	0.07-0.10	3.0-5.9	0.0-0.5	. 10	. 37				
	18-28	---	--- \|	---	---	---	---	---	---					
53:														
Calderwood--------	0-3	20-27	\|1.20-1.30		0.6-2	0.11-0.14	0.0-2.9	1.0-2.0	. 24	. 32	1	7	38	
	3-12	20-35	\|1.35-1.45		0.2-0.6	0.07-0.10	3.0-5.9	0.5-2.0	. 10	. 37				
	12-18	20-35	\|1.35-1.45		0.2-0.6	0.07-0.10	3.0-5.9	0.0-0.5	. 10	. 37				
	18-28	---	--- \|	---	---	---	---	---	---					
McConnel----------	0-3	5-15	\|1.40-1.60		2-6	0.04-0.07\|	0.0-2.9	0.8-1.0	. 10	. 24	5	5	56	
	3-11	5-15	\|1.40-1.60		2-6	0.07-0.11\|	0.0-2.9	0.5-1.0	. 17	. 24				
	11-62	2-5	\|1.50-1.60		20-20	0.02-0.05	0.0-2.9	0.0-0.5	. 02	. 17				
54:														
Carryback---------	0-7	27-35	\|1.30-1.50		0.6-2	0.16-0.19	3.0-5.9	1.0-2.0	. 28	. 28	2	7	38	
	7-24	40-60	\|1.40-1.60		0.06-0.2	\|0.12-0.16		6.0-8.9	0.5-2.0	. 24	. 24			
	24-34	---	--- \|	---	---	---	---	---	-					
55:														
Carryback--------	0-7	27-35	\|1.30-1.50		0.6-2	\|0.12-0.15		3.0-5.9	1.0-2.0	. 20	. 28	2	7	38
	7-24	40-60	\|1.40-1.60		0.06-0.2	0.12-0.16	6.0-8.9	0.5-2.0	. 20	. 24				
	24-34	---	---	---	--- \|	---	---	,	---					
56:														
Carryback--------	0-7	27-35	\|1.30-1.50		0.6-2	\|0.07-0.10		3.0-5.9	1.0-2.0	. 10	. 28	2	8	0
	7-24	40-60	\|1.40-1.60		0.06-0.2	\|0.12-0.16		6.0-8.9	0.5-2.0	. 20	. 24			
	24-34	---	--- \|	---	---	---	---	---	---					
57:														
Carryback--------	0-7	20-27	\|1.30-1.50		0.6-2	\|0.08-0.11		0.0-2.9	1.0-2.0	. 10	. 28	2	8	0
	7-24	40-60	\|1.40-1.60		0.06-0.2	\|0.12-0.16		6.0-8.9	0.5-2.0	. 20	. 24			
	24-34	---	---	---	--- \|	---	---	---	---					
58:														
Carryback, thin														
surface	0-7	27-35	\|1.30-1.50		0.6-2	\|0.16-0.19		3.0-5.9	1.0-2.0	. 28	. 28	2	7	38
	7-24	40-60	\|1.40-1.60		0.06-0.2	$\|0.12-0.16\|$	6.0-8.9	0.5-2.0	. 20	. 24				
	24-34	---	---	---	---	---	---	---	---					

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist bulk density | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \mid \text { Available } \mid \\ & \mid \text { water } \\ & \text { \|capacity } \mid \end{aligned}$ | $\begin{aligned} & \text { Linear } \\ & \text { \|extensi- } \\ & \text { bility } \end{aligned}$ | Organic matter | Erosion factors | | | Wind \|erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | Pct | g/cc | In/hr | In/in | Pct | PCt | | | | | |
| 65: | | | | | | | | | | | | |
| Clamp------------- | 0-3 | 27-35 | \|1.20-1.30| | 0.2-0.6 | 0.10-0.15 | 3.0-5.9 | 2.0-4.0 | . 10 | . 24 | 1 | 8 | 0 |
| | 3-12 | 27-35 | \|1.20-1.30| | 0.2-0.6 | 0.10-0.15 | 3.0-5.9 | 1.0-3.0 | . 10 | . 28 | | | |
| | 12-22 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Baconcamp-------- | 0-4 | 27-30 | \|1.20-1.30| | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 3.0-8.0 | . 10 | . 20 | 2 | 8 | 0 |
| | 4-20 | 18-27 | \|1.25-1.35| | 0.6-2 | 0.07-0.13\| | 0.0-2.9 | 1.0-4.0 | . 20 | . 24 | | | |
| | 20-35 | 18-30 | \|1.30-1.40| | 0.6-2 | 0.07-0.10 | 0.0-2.9 | 1.0-2.0 | . 20 | . 28 | | | |
| | 35-45 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Hackwood--------- | 0-11 | 15-27 | \|1.20-1.40| | 0.6-2 | 0.10-0.13\| | 0.0-2.9 | 3.0-8.0 | . 17 | . 20 | 5 | 7 | 38 |
| | 11-23 | 18-27 | \|1.30-1.40| | 0.6-2 | 0.07-0.13\| | 0.0-2.9 | 1.0-4.0 | . 20 | . 24 | | | |
| | 23-48 | 18-30 | \|1.40-1.50| | 0.6-2 | 0.07-0.11\| | 0.0-2.9 | 0.5-1.0 | . 17 | . 28 | | | |
| | 48-60 | 18-30 | \|1.40-1.50| | 0.6-2 | 0.05-0.10\| | 0.0-2.9 | 0.5-1.0 | . 15 | . 28 | | | |
| 66: | | | | | | | | | | | | |
| Coztur----------- | 0-9 | 12-20 | \|1.40-1.60| | 2-6 | 0.09-0.12 | 0.0-2.9 | 0.7-1.0 | . 24 | . 24 | 1 | 3 | 86 |
| | 9-18 | 20-35 | \|1.30-1.50| | 0.2-0.6 | 0.10-0.17\| | 3.0-5.9 | 0.0-0.7 | . 24 | . 28 | | | |
| | 18-28 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| 67: | | | | | | | | | | | | |
| Crowcamp---------- | 0-3 | 15-27 | \|1.25-1.35| | 0.6-2 | 0.14-0.17 | 0.0-2.9 | 4.0-6.0 | . 32 | . 32 | 5 | 5 | 56 |
| | 3-30 | 40-55 | \|1.40-1.55| | 0.06-0.2 | 0.12-0.16\| | 6.0-8.9 | 0.5-4.0 | . 24 | . 24 | | | |
| | 30-53 | 18-27 | \|1.40-1.60| | 0.2-0.6 | 0.13-0.17\| | 0.0-2.9 | 0.0-0.5 | . 24 | . 28 | | | |
| | 53-68 | 18-27 | \|1.30-1.45| | 0.6-2 | 0.10-0.15 | 0.0-2.9 | 0.0-0.5 | . 20 | . 28 | | | |
| 68: | | | | | | | | | | | | |
| Crowcamp---------- | $0-3$ | 27-30 | \|1.25-1.35| | 0.2-0.6 | 0.15-0.18 | 3.0-5.9 | 4.0-6.0 | . 28 | . 28 | 5 | 7 | 38 |
| | $3-30$ | 40-55 | \|1.40-1.55| | 0.06-0.2 | 0.12-0.16\| | 6.0-8.9 | 0.5-4.0 | . 24 | . 24 | | | |
| | 30-53 | 18-27 | \|1.40-1.60| | 0.2-0.6 | 0.13-0.17\| | 0.0-2.9 | 0.0-0.5 | . 24 | . 28 | | | |
| | 53-68 | 18-27 | \|1.30-1.45| | 0.6-2 | 0.10-0.15 | 0.0-2.9 | 0.0-0.5 | . 20 | . 28 | | | |
| Ausmus----------- | 0-2 | 10-20 | \|1.00-1.20| | 0.6-2 | 0.10-0.13 | 0.0-2.9 | 1.0-3.0 | . 37 | . 37 | 5 | 3 | 86 |
| | 2-9 | 27-35 | \|1.20-1.30| | 0.2-0.6 | 0.09-0.12\| | 3.0-5.9 | 0.5-1.0 | . 43 | . 43 | | | |
| | 9-16 | 27-35 | \|1.20-1.30| | 0.2-0.6 | 0.07-0.10 | 3.0-5.9 | 0.3-0.7 | . 43 | . 43 | | | |
| | 16-29 | 20-27 | \|1.00-1.20| | 0.6-2 | 0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 29-69 | 20-27 | \|1.00-1.20| | 0.6-2 | 0.02-0.05 | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| Poujade---------- | 0-4 | 10-18 | \|1.30-1.40| | 0.6-2 | 0.12-0.15 | 0.0-2.9 | 2.0-3.0 | . 43 | . 43 | 5 | 3 | 86 |
| | 4-6 | 15-25 | \|1.30-1.40| | 0.6-2 | 0.12-0.15\| | 0.0-2.9 | 1.0-2.0 | . 37 | . 37 | | | |
| | 6-13 | 27-35 | \|1.40-1.50| | 0.2-0.6 | 0.08-0.11 | 3.0-5.9 | 0.5-1.0 | . 32 | . 32 | | | |
| | 13-40 | 20-30 | \|1.40-1.50| | 0.2-0.6 | 0.06-0.09 | 3.0-5.9 | 0.0-0.5 | . 43 | . 43 | | | |
| | 40-65 | 10-30 | \|1.30-1.40| | 0.6-2 | 0.08-0.11 | 0.0-2.9 | 0.0-0.5 | . 49 | . 49 | | | |
| | | | | | | | | | | | | |
| 69 : | | | | | | | | | | | | |
| Davey------------ | 0-3 | 5-15 | \|1.40-1.50| | 2-6 | 0.08-0.11 | 0.0-2.9 | 0.5-1.0 | . 24 | . 24 | 5 | 3 | 86 |
| | 3-18 | 5-15 | \|1.35-1.45| | 2-6 | \|0.08-0.11| | 0.0-2.9 | 0.0-0.7 | . 28 | . 28 | | | |
| | 18-60 | 5-10 | \|1.40-1.60| | 6-20 | 0.04-0.08 | 0.0-2.9 | 0.0-0.5 | . 17 | . 20 | | | |
| | | | | | | | | | | | | |
| 70: | | | | | | | | | | | | |
| Davey------------ | 0-3 | 5-15 | \|1.40-1.50| | 2-6 | \|0.05-0.08| | 0.0-2.9 | 0.5-1.0 | . 20 | . 24 | 5 | 4 | 86 |
| | 3-18 | 5-15 | \|1.35-1.45| | 2-6 | \|0.08-0.11| | 0.0-2.9 | 0.0-0.7 | . 28 | . 28 | | | |
| | 18-60 | 5-10 | \|1.40-1.60| | 6-20 | \|0.04-0.08| | 0.0-2.9 | 0.0-0.5 | . 17 | . 20 | | | |
| Oreanna----------- | 0-7 | 20-30 | \|1.35-1.40| | 0.6-2 | \|0.12-0.14| | 3.0-5.9 | 1.0-2.0 | . 20 | . 28 | 3 | 6 | 48 |
| | 7-21 | 20-30 | \|1.35-1.40| | 0.6-2 | $\|0.12-0.20\|$ | 3.0-5.9 | 0.5-1.0 | . 28 | . 32 | | | |
| | 21-43 | 0-10 | \|1.50-1.55| | 6-20 | \|0.04-0.06| | 0.0-2.9 | 0.0-0.5 | . 05 | . 15 | | | |
| | 43-50 | 5-15 | \|1.45-1.50| | 2-6 | \|0.07-0.09| | 0.0-2.9 | 0.0-0.5 | . 15 | . 24 | | | |
| | 50-60 | 0-10 | \|1.50-1.55| | 6-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 20 | . 20 | | | |
| 71: | | | | | | | | | | | | |
| Defenbaugh-------- | 0-5 | 20-27 | \|1.30-1.45| | 0.6-2 | \|0.08-0.10| | 0.0-2.9 | 1.0-2.0 | . 37 | . 37 | 5 | 6 | 48 |
| | 5-29 | 20-35 | \|1.30-1.45| | 0.2-0.6 | \|0.13-0.17| | 3.0-5.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 29-60 | 15-25 | \|1.40-1.50| | 0.6-2 | \|0.11-0.18| | 0.0-2.9 | 0.0-0.5 | . 43 | . 43 | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Permea- bility ($\mathrm{K}_{\text {sat }}$)	Available water capacity	$\begin{aligned} & \text { Linear } \\ & \text { \|extensi- } \\ & \text { \| bility } \end{aligned}$	Organic matter	\|Erosion factors			\|Wind	erodi	bility group	\|Wind	erodi	bility	index				
								Kw	Kf	T											
	In	Pct	g/cc	In/ hr	In/in	PCt	PCt														
81:																					
Doyn-------------	0-2	18-27	\|1.30-1.40		0.6-2	\|0.07-0.10		0.0-2.9	1.0-3.0	. 15	. 28	1	8	0							
	2-8	20-30	\|1.30-1.40		0.6-2	0.13-0.18	0.0-2.9	1.0-2.0	. 24	. 32											
	8-18	---	---	\| ---	-	\| ---	---	---	-												
Merlin-----------	0-7	27-30	\|1.20-1.30		0.6-2	\|0.10-0.12		0.0-2.9	2.0-4.0	. 15	. 28	1	8	0							
	7-12	30-40	\|1.30-1.40		0.2-0.6	0.15-0.18	3.0-5.9	0.5-2.0	. 24	. 32											
	12-18	50-70	\|1.30-1.45		0.0015-0.06	0.11-0.14	6.0-8.9	0.5-1.0	. 20	. 28											
	18-29	---	---	---	\| ---		\| ---	---	---	---											
82 :																					
Doyn-------------	0-2	18-27	\|1.30-1.40		0.6-2	\|0.07-0.10		0.0-2.9	1.0-3.0	. 15	. 28	1	8	0							
	2-8	20-30	\|1.30-1.40		0.6-2	\|0.13-0.18		0.0-2.9	1.0-2.0	. 24	. 32										
	8-18	---	--- \|	\| ---	--- \|	\| ---	---	---	---												
Arcia------------	0-4	20-27	\|1.30-1.55		0.6-2	0.02-0.07	0.0-2.9	2.0-4.0	. 05	. 24	2	8	0								
	4-13	20-30	\|1.30-1.55		0.6-2	0.10-0.15	0.0-2.9	2.0-4.0	. 15	. 24											
	13-23	35-50	\|1.25-1.55		0.06-0.2	0.15-0.20	6.0-8.9	1.0-2.0	. 24	. 28											
	23-33	---	--- \|	\| ---	---	\| ---	---	---	-												
83:																					
Drewsey----------		$10-18$	\|1.30-1.50		0.6-2	\|0.15-0.18		0.0-2.9	0.5-1.0	. 43	. 43	5	3	86							
	3-32	10-18	\|1.40-1.50		0.6-2	\|0.14-0.18		0.0-2.9	0.5-0.8	. 37	. 37										
	32-62	10-18	\|1.40-1.50		0.6-2	0.11-0.16	0.0-2.9	0.0-0.5	. 37	. 37											
84:																					
Drewsey----------	0-3	10-18	\|1.30-1.50		0.6-2	0.15-0.18	0.0-2.9	0.5-1.0	. 43	. 43	5	3	86								
	3-32	10-18	\|1.40-1.50		0.6-2	0.14-0.18\|	0.0-2.9	0.5-0.8	. 37	. 37											
	32-62	10-18	\|1.40-1.50		0.6-2	0.11-0.16\|	0.0-2.9	0.0-0.5	. 37	. 37											
85:																					
Drewsey----------	0-3	10-18	\|1.30-1.50		0.6-2	\|0.09-0.12		0.0-2.9	0.5-1.0	. 20	. 32	5	5	56							
	3-32	10-18	\|1.40-1.50		0.6-2	\|0.14-0.18		0.0-2.9	0.5-0.8	. 37	. 37										
	32-62	10-18	\|1.40-1.50		0.6-2	0.11-0.16	0.0-2.9	0.0-0.5	. 37	. 37											
Torriorthents-----	0-7	---	---	---	---	--	---	---	-	2	---	---									
	7-17	---	---	---	---	---	---	---	---												
Gumble-----------	0-3	18-27	\|1.35-1.45		0.6-2	\|0.07-0.10		0.0-2.9	0.5-1.0	. 17	. 32	2	8	0							
	3-8	18-27	\|1.35-1.45		0.6-2	\|0.13-0.15		0.0-2.9	0.5-1.0	. 32	. 32										
	8-14	35-50	\|1.30-1.45		0.06-0.6	\|0.10-0.17		6.0-8.9	0.0-0.5	. 24	. 28										
	14-16	30-40	\|1.30-1.45		0.2-0.6	0.13-0.17	3.0-5.9	0.0-0.5	. 37	. 37											
	16-26	---	--- \|	\| ---	--- \|	\| ---	---	--	---												
86:																					
Droval-----------	0-4	15-25	\|1.30-1.40		0.6-2	\|0.09-0.11		0.0-2.9	0.5-1.0	. 37	. 37	5	6	48							
	4-22	40-50	\|1.30-1.35		0.06-0.2	\|0.01-0.20		6.0-8.9	0.1-0.5	. 24	. 24										
	22-32	50-60	\|1.30-1.35		0.06-0.2	0.01-0.20	6.0-8.9	0.0-0.5	. 28	. 28											
	32-61	40-55	\|1.30-1.35		0.06-0.2	0.01-0.20	6.0-8.9	0.0-0.5	. 28	. 28											
87:																					
Duff------------	0-8	18-27	\|1.20-1.40		0.6-2	\|0.14-0.17		0.0-2.9	3.0-8.0	. 20	. 20	3	6	48							
	8-24	18-27	\|1.30-1.40		0.6-2	\|0.10-0.17		0.0-2.9	2.0-4.0	. 20	. 24										
	24-43	18-27	\|1.40-1.50		0.6-2	\|0.07-0.14		0.0-2.9	0.5-2.0	. 17	. 28										
	43-53	---	\|	\| ---	---	---	---	--	---												
88:																					
Duff-------------	0-8	18-27	\|1.20-1.40		0.6-2	\|0.14-0.17		0.0-2.9	3.0-8.0	. 20	. 20	3	6	48							
	8-24	18-27	\|1.30-1.40		0.6-2	\|0.10-0.17		0.0-2.9	2.0-4.0	. 20	. 24										
	24-43	18-27	\|1.40-1.50		0.6-2	\|0.07-0.14		0.0-2.9	0.5-2.0	. 17	. 28										
	43-53	---	--- \|	\| ---	---	\| ---	---	--	---												
Clamp-----------	0-3	27-35	\|1.20-1.30		0.2-0.6	\|0.14-0.17		3.0-5.9	2.0-4.0	. 17	. 24	1	7	38							
	3-12	27-35	\|1.20-1.30		0.2-0.6	\|0.10-0.15		3.0-5.9	1.0-3.0	. 10	. 28										
	12-22	---	--- \|	---	---	---	---	---	---												

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | ```Moist bulk density``` | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \text { \|Available } \\ & \text { \| water } \\ & \text { \|capacity } \end{aligned}$ | \mid Linear
 \mid extensi-
 \mid bility | Organic matter | Erosion factors | | | \|Wind |erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | Pct | $g / c c$ | In/hr | In/in | PCt | Pct | | | | | |
| 89 : | | | | | | | | | | | | |
| Duff-------------- | 0-8 | 18-27 | \|1.20-1.40 | 0.6-2 | \|0.14-0.17 | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 3 | 6 | 48 |
| | 8-24 | 18-27 | \| 1.30-1.40 | 0.6-2 | \|0.10-0.17 | 0.0-2.9 | 2.0-4.0 | . 20 | . 24 | | | |
| | 24-43 | 18-27 | \|1.40-1.50| | 0.6-2 | \|0.07-0.14 | 0.0-2.9 | 0.5-2.0 | . 17 | . 28 | | | |
| | 43-53 | --- | --- | --- | --- | --- | --- | -- | --- | | | |
| Clamp------------ | | | | | | | | | | | | |
| | 0-3 | 27-35 | \|1.20-1.30 | 0.2-0.6 | \|0.14-0.17 | 3.0-5.9 | 2.0-4.0 | . 17 | . 24 | 1 | 7 | 38 |
| | 3-12 | 27-35 | \|1.20-1.30 | 0.2-0.6 | \|0.10-0.15 | 3.0-5.9 | 1.0-3.0 | . 10 | . 28 | | | |
| | 12-22 | --- | --- | --- | - | --- | --- | -- | --- | | | |
| | | | | | | | | | | | | |
| 90: | | | | | | | | | | | | |
| Duff------------- | 0-8 | 18-27 | \| 1.20-1.40 | 0.6-2 | \|0.14-0.17 | 0.0-2.9 | 3.0-8.0 | . 20 | . 20 | 3 | 6 | 48 |
| | 8-24 | 18-27 | \|1.30-1.40 | 0.6-2 | \|0.10-0.17 | 0.0-2.9 | 2.0-4.0 | . 20 | . 24 | | | |
| | 24-43 | 18-27 | \|1.40-1.50 | 0.6-2 | \|0.07-0.14 | 0.0-2.9 | 0.5-2.0 | . 17 | . 28 | | | |
| | 43-53 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Hackwood---------- | 0-11 | 15-27 | 1.20-1.40 | 0.6-2 | 0.07-0.10 | 0.0-2.9 | 3.0-8.0 | . 10 | . 20 | 5 | 8 | 0 |
| | 11-23 | 18-27 | \|1.30-1.40 | 0.6-2 | \|0.07-0.13 | 0.0-2.9 | 1.0-4.0 | . 20 | . 24 | | | |
| | 23-48 | 18-30 | \|1.40-1.50| | 0.6-2 | \|0.07-0.11 | 0.0-2.9 | 0.5-1.0 | . 17 | . 28 | | | |
| | 48-60 | 18-30 | \| 1.40-1.50| | 0.6-2 | \|0.05-0.10 | 0.0-2.9 | 0.5-1.0 | . 15 | . 28 | | | |
| | | | | | | | | | | | | |
| 91: | | | | | | | | | | | | |
| Edemaps---------- | 0-7 | 20-27 | \|1.30-1.50 | 0.6-2 | \|0.14-0.17 | 0.0-2.9 | 1.0-2.0 | . 28 | . 28 | 2 | 6 | 48 |
| | 7-18 | 35-45 | \|1.40-1.50| | 0.06-0.2 | \|0.12-0.15 | 6.0-8.9 | 0.5-2.0 | . 28 | . 32 | | | |
| | 18-25 | 35-40 | \|1.35-1.45 | 0.2-0.6 | \|0.10-0.16 | 3.0-5.9 | 0.5-1.0 | . 24 | . 32 | | | |
| | 25-30 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| | 30-40 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |
| 92: | | | | | | | | | | | | |
| Edemaps----------- | 0-7 | 27-35 | \|1.30-1.50 | 0.2-0.6 | \|0.13-0.16 | 3.0-5.9 | 1.0-2.0 | . 20 | . 28 | 2 | 7 | 38 |
| | 7-18 | 35-45 | \| 1.40-1.50 | 0.06-0.2 | \|0.12-0.15 | 6.0-8.9 | 0.5-2.0 | . 28 | . 32 | | | |
| | 18-25 | 35-40 | \|1.35-1.45 | 0.2-0.6 | \|0.10-0.16 | 3.0-5.9 | 0.5-1.0 | . 24 | . 32 | | | |
| | 25-30 | --- | --- | --- | --- | --- | --- | - | --- | | | |
| | 30-40 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |
| Carryback-------- | 0-7 | 27-35 | \| 1.30-1.50 | 0.6-2 | \|0.12-0.15 | 3.0-5.9 | 1.0-2.0 | . 20 | . 28 | 2 | 7 | 38 |
| | 7-24 | 40-60 | \| 1.40-1.60 | 0.06-0.2 | \|0.12-0.16 | 6.0-8.9 | 0.5-2.0 | . 20 | . 24 | | | |
| | 24-34 | --- | , | --- | --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |
| 93: | | | | | | | | | | | | |
| Enko-------------- | 0-8 | 5-10 | \|1.40-1.50 | 6-20 | \|0.05-0.08 | 0.0-2.9 | 0.5-1.0 | . 20 | . 20 | 5 | 2 | 134 |
| | 8-29 | 10-18 | \|1.45-1.55 | 0.6-2 | \|0.10-0.13 | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 | | | |
| | 29-45 | 10-18 | \| 1.60-1.65 | 0.06-0.2 | \|0.10-0.13 | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 | | | |
| | 45-62 | 5-15 | \|1.60-1.65 | 0.06-0.2 | \|0.04-0.11 | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 | | | |
| | | | | | | | | | | | | |
| 94 : | | | | | | | | | | | | |
| Enko------------- | | 5-10 | \|1.40-1.50 | 6-20 | \|0.05-0.08 | 0.0-2.9 | 0.5-1.0 | . 20 | . 20 | 5 | 2 | 134 |
| | 8-29 | 10-18 | \|1.45-1.55 | 0.6-2 | \|0.10-0.13 | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 | | | |
| | 29-45 | 10-18 | \|1.60-1.65 | 0.06-0.2 | \|0.10-0.13 | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 | | | |
| | 45-62 | 5-15 | \|1.60-1.65 | 0.06-0.2 | \|0.04-0.11 | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 | | | |
| | | | | | | | | | | | | |
| Catlow----------- | 0-3 | 15-25 | \|1.20-1.30| | 0.6-2 | \|0.11-0.14 | 0.0-2.9 | 1.0-2.0 | . 24 | . 32 | 5 | 7 | 38 |
| | 3-22 | 15-25 | \|1.20-1.30 | 0.6-2 | \|0.05-0.09 | 0.0-2.9 | 0.5-1.0 | . 17 | . 28 | | | |
| | 22-31 | 5-15 | \|1.40-1.55 | 0.2-0.6 | \|0.03-0.05 | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 | | | |
| | 31-60 | 0-10 | \| 1.30-1.40 | 6-20 | \|0.01-0.04 | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 | | | |
| | | | | | | | | | | | | |
| 95: | | | | | | | | | | | | |
| Enko------------- | 0-8 | 5-10 | \| 1.40-1.50 | 6-20 | \|0.05-0.08 | 0.0-2.9 | 0.5-1.0 | . 20 | . 20 | 5 | 2 | 134 |
| | 8-29 | 10-18 | \| 1.45-1.55 | 0.6-2 | \|0.10-0.13 | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 | | | |
| | 29-45 | 10-18 | \|1.60-1.65 | 0.06-0.2 | \|0.10-0.13 | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 | | | |
| | 45-62 | 5-15 | \|1.60-1.65 | 0.06-0.2 | \|0.04-0.11 | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 | | | |
| Catlow------------ | 0-3 | 15-25 | \|1.20-1.30 | 0.6-2 | \|0.11-0.14 | 0.0-2.9 | 1.0-2.0 | . 24 | . 32 | 5 | 7 | 38 |
| | 3-22 | 15-25 | \|1.20-1.30 | 0.6-2 | \|0.05-0.09 | 0.0-2.9 | 0.5-1.0 | . 17 | . 28 | | | |
| | 22-31 | 5-15 | \| 1.40-1.55 | 0.2-0.6 | \|0.03-0.05 | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 | | | |
| | 31-60 | 0-10 | \|1.30-1.40 | 6-20 | \|0.01-0.04 | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist
 bulk
 density | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \mid \text { Available } \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$ | Linear
 extensibility | Organic matter | \|Erosion factors | | | Wind \|erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | PCt | g/cc | In/hr | In/in | Pct | Pct | | | | | |
| 96: | | | | | | | | | | | | |
| Enko-------------- | 0-8 | 5-10 | 1.40-1.50 | 6-20 | \|0.05-0.08| | 0.0-2.9 | 0.5-1.0 | . 20 | . 20 | 5 | 2 | 134 |
| | 8-29 | 10-18 | 1.45-1.55 | 0.6-2 | \|0.10-0.13| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 | | | |
| | 29-45 | 10-18 | 1.60-1.65 | 0.06-0.2 | \|0.10-0.13| | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 | | | |
| | 45-62 | 5-15 | 1.60-1.65 | 0.06-0.2 | \|0.04-0.11| | 0.0-2.9 | 0.0-0.5 | . 20 | . 24 | | | |
| Catlow------------ | 0-3 | 15-25 | 1.20-1.30\| | 0.6-2 | \|0.06-0.10| | 0.0-2.9 | 1.0-2.0 | . 15 | . 32 | 5 | 8 | 0 |
| | 3-22 | 15-25 | 1.20-1.30\| | 0.6-2 | \|0.04-0.09| | 0.0-2.9 | 0.5-1.0 | . 17 | . 32 | | | |
| | 22-31 | 5-15 | 1.40-1.55 | 0.2-0.6 | 0.03-0.05 | 0.0-2.9 | 0.0-0.5 | . 10 | . 17 | | | |
| | 31-60 | 0-10 | 1.30-1.40\| | 6-20 | \|0.01-0.04| | 0.0-2.9 | 0.0-0.5 | . 05 | . 10 | | | |
| 97: | | | | | | | | | | | | |
| Erakatak---------- | 0-7 | 27-35 | 1.30-1.40\| | 0.2-0.6 | \|0.06-0.08| | 3.0-5.9 | 2.0-4.0 | . 05 | . 28 | 2 | 8 | 0 |
| | 7-16 | 35-40 | 1.35-1.45 | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 1.0-2.0 | . 10 | . 28 | | | |
| | 16-25 | 40-55 | 1.35-1.50\| | 0.06-0.6 | \|0.06-0.11| | 6.0-8.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | 25-35 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| 98: | | | | | | | | | | | | |
| Erakatak---------- | 0-7 | 18-27 | 1.30-1.40\| | 0.6-2 | \|0.08-0.12| | 0.0-2.9 | 2.0-4.0 | . 10 | . 24 | 2 | 8 | 0 |
| | 7-16 | 35-40 | 1.35-1.45\| | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 1.0-2.0 | . 10 | . 28 | | | |
| | 16-25 | 40-55 | 1.35-1.50 | 0.06-0.6 | \|0.06-0.11| | 6.0-8.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | 25-35 | --- | --- \| | --- | --- | --- | --- | --- | --- | | | |
| Lambring--------- | 0-7 | 15-27 | 1.20-1.40\| | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 2.0-3.0 | . 15 | . 28 | 5 | 8 | 0 |
| | 7-12 | 15-27 | 1.20-1.40\| | 0.6-2 | \|0.10-0.13| | 0.0-2.9 | 1.0-3.0 | . 20 | . 28 | | | |
| | 12-21 | 15-27 | 1.25-1.45 | 0.6-2 | \|0.07-0.13| | 0.0-2.9 | 1.0-2.0 | . 15 | . 32 | | | |
| | 21-60 | 15-27 | 1.30-1.60\| | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 0.5-1.0 | . 10 | . 32 | | | |
| Rock outcrop- | 0-60 | --- | --- | --- | --- | --- | --- | --- | --- | -- | --- | --- |
| 99 : | | | | | | | | | | | | |
| Erakatak--------- | 0-7 | 18-27 | 1.30-1.40\| | 0.6-2 | \|0.08-0.12| | 0.0-2.9 | 2.0-4.0 | . 10 | . 24 | 2 | 8 | 0 |
| | 7-16 | 35-40 | 1.35-1.45 | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 1.0-2.0 | . 10 | . 28 | | | |
| | 16-25 | 40-55 | 1.35-1.50\| | 0.06-0.6 | \|0.06-0.11| | 6.0-8.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | 25-35 | --- | --- | --- | --- \| | --- | --- | --- | --- | | | |
| Merlin----------- | 0-7 | 20-27 | 1.20-1.30 | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 2.0-4.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 7-12 | 30-40 | 1.30-1.40\| | 0.2-0.6 | \|0.15-0.18| | 3.0-5.9 | 0.5-2.0 | . 24 | . 32 | | | |
| | 12-18 | 50-70 | 1.30-1.45 | 0.0015-0.06 | \|0.11-0.14| | 6.0-8.9 | 0.5-1.0 | . 20 | . 28 | | | |
| | 18-29 | --- | --- | --- | \| --- | | --- | --- | --- | --- | | | |
| Westbutte--------- | 0-12 | 15-27 | 1.20-1.40 | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 2.0-3.0 | . 15 | . 28 | 2 | 8 | 0 |
| | 12-24 | 18-30 | 1.30-1.50\| | 0.6-2 | \|0.07-0.11| | 0.0-2.9 | 1.0-2.0 | . 15 | . 32 | | | |
| | 24-34 | --- | --- | --- | --- \| | --- | --- | --- | -- | | | |
| 100: | | | | | | | | | | | | |
| Erakatak---------- | 0-7 | 27-35 | 1.30-1.40 | 0.2-0.6 | \|0.08-0.12| | 3.0-5.9 | 2.0-4.0 | . 10 | . 24 | 2 | 8 | 0 |
| | 7-16 | 35-40 | 1.35-1.45 | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 1.0-2.0 | . 10 | . 28 | | | |
| | 16-25 | 40-55 | 1.35-1.50\| | 0.06-0.6 | \|0.06-0.11| | 6.0-8.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | 25-35 | --- | --- | --- | --- \| | --- | --- | --- | --- | | | |
| Rock outcrop-- | 0-60 | -- | --- | --- | --- | --- | -- | --- | -- | -- | --- | -- |
| 101: | | | | | | | | | | | | |
| Erakatak---------- | 0-7 | 27-35 | 1.30-1.40\| | 0.2-0.6 | \|0.08-0.12| | 3.0-5.9 | 2.0-4.0 | . 10 | . 24 | 2 | 8 | 0 |
| | 7-16 | 35-40 | 1.35-1.45 | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 1.0-2.0 | . 10 | . 28 | | | |
| | 16-25 | 40-55 | 1.35-1.50\| | 0.06-0.6 | \|0.06-0.11| | 6.0-8.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | 25-35 | --- | --- | --- | --- \| | --- | --- | --- | -- | | | |
| Ninemile--------- | 0-4 | 15-27 | 1.35-1.50\| | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 1.0-3.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 4-16 | 40-60 | 1.30-1.50\|0. | 0.0015-0.06 | \|0.10-0.13| | 6.0-8.9 | 1.0-2.0 | . 24 | . 28 | | | |
| | 16-26 | --- | -- | --- | \| --- | | --- | --- | --- | --- | | | |
| Hapgood---------- | 0-10 | 18-27 | 1.20-1.30\| | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 3.0-8.0 | . 17 | . 20 | 3 | 8 | 0 |
| | 10-23 | 18-27 | 1.30-1.40\| | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 1.0-4.0 | . 15 | . 24 | | | |
| | 23-43 | 18-30 | 1.40-1.50\| | 2-6 | \|0.07-0.13| | 0.0-2.9 | 1.0-2.0 | . 17 | . 28 | | | |
| | 43-53 | --- | --- | \| --- | --- | --- | --- | --- | -- | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist
 bulk
 density | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \text { \|Available } \\ & \mid \text { water } \\ & \text { \| capacity } \end{aligned}$ | Linear
 extensi-
 bility | Organic matter | Erosion factors\| | | | Wind \|erodi|bility group | \|Wind erodi|bility
 index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | Pct | g/cc | In/hr | In/in | Pct | Pct | | | | | |
| 102: | | | | | | | | | | | | |
| Felcher---------- | 0-10 | 27-35 | \|1.20-1.30 | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 1.0-2.0 | . 05 | . 37 | 2 | 8 | 0 |
| | 10-22 | 20-35 | \|1.20-1.30 | 0.2-0.6 | \|0.12-0.15| | 3.0-5.9 | 0.5-1.0 | . 10 | . 37 | | | |
| | 22-32 | --- | - | --- | --- | --- | --- | --- | --- | | | |
| 103: | | | | | | | | | | | | |
| Felcher---------- | 0-10 | 27-35 | 1.20-1.30 | 0.2-0.6 | \|0.11-0.15| | 3.0-5.9 | 1.0-2.0 | . 10 | . 37 | 2 | 8 | 0 |
| | 10-22 | 20-35 | \|1.20-1.30 | 0.2-0.6 | \|0.12-0.15| | 3.0-5.9 | 0.5-1.0 | . 10 | . 37 | | | |
| | 22-32 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Rock outcrop- | 0-60 | --- | --- | --- | --- | --- | --- | --- | --- | --- | -- | --- |
| 104: | | | | | | | | | | | | |
| Felcher---------- | 0-10 | 27-35 | \|1.20-1.30 | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 1.0-2.0 | . 05 | . 37 | 2 | 8 | 0 |
| | 10-22 | 20-35 | \|1.20-1.30 | 0.2-0.6 | \|0.12-0.15| | 3.0-5.9 | 0.5-1.0 | . 10 | . 37 | | | |
| | 22-32 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Rock outcrop- | 0-60 | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| Brezniak--------- | 0-3 | 18-20 | \|1.35-1.50 | 0.6-2 | \|0.11-0.14| | 0.0-2.9 | 1.0-2.0 | . 28 | . 28 | 1 | 7 | 38 |
| | 3-7 | 35-50 | \|1.35-1.55 | 0.06-0.2 | \|0.13-0.18| | 6.0-8.9 | 1.0-2.0 | . 28 | . 28 | | | |
| | $7-10$ | 35-50 | 1.35-1.55 | 0.06-0.2 | \|0.13-0.18| | 6.0-8.9 | 0.5-1.0 | . 28 | . 28 | | | |
| | 10-20 | --- | - | --- | --- | --- | --- | --- | --- | | | |
| 105: | | | | | | | | | | | | |
| Felcher---------- | 0-10 | 20-27 | \|1.20-1.30 | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 1.0-2.0 | . 15 | . 32 | 2 | 8 | 0 |
| | 10-22 | 20-35 | \|1.20-1.30 | 0.2-0.6 | \|0.12-0.15| | 3.0-5.9 | 0.5-1.0 | . 10 | . 37 | | | |
| | $22-32$ | --- | --- | --- | --- | --- | --- | --- | -- | | | |
| Rock outcrop- | 0-60 | --- | --- | --- | --- | --- | --- | --- | --- | -- | --- | --- |
| Westbutte-------- | 0-12 | 15-27 | \|1.20-1.40 | 0.6-2 | \|0.05-0.08| | 0.0-2.9 | 2.0-3.0 | . 10 | . 28 | 2 | 8 | 0 |
| | 12-24 | 18-30 | \|1.30-1.50 | 0.6-2 | \|0.07-0.11| | 0.0-2.9 | 1.0-2.0 | . 15 | . 32 | | | |
| | $24-34$ | --- | \| --- | -- | --- | --- | --- | --- | --- | | | |
| 106: | | | | | | | | | | | | |
| Felcher----------- | | 27-35 | \|1.20-1.30 | 0.2-0.6 | \|0.11-0.15| | 3.0-5.9 | 1.0-2.0 | . 10 | . 37 | 2 | 8 | 0 |
| | 10-22 | 20-35 | 1.20-1.30 | 0.2-0.6 | \|0.12-0.15| | 3.0-5.9 | 0.5-1.0 | . 10 | . 37 | | | |
| | 22-32 | --- | --- | --- | --- | --- | --- | --- | -- | | | |
| Sagehen---------- | 0-10 | 27-35 | \|1.30-1.50 | 0.2-0.6 | \|0.13-0.16| | 3.0-5.9 | 0.5-1.0 | . 24 | . 32 | 1 | 7 | 38 |
| | 10-19 | 25-35 | 1.30-1.50 | 0.2-0.6 | \|0.08-0.13| | 3.0-5.9 | 0.0-0.5 | . 20 | . 37 | | | |
| | 19-29 | --- | --- | --- | --- | --- | --- | --- | -- | | | |
| 107: | | | | | | | | | | | | |
| Felcher---------- | 0-10 | 27-35 | \|1.20-1.30 | 0.2-0.6 | \|0.11-0.15| | 3.0-5.9 | 1.0-2.0 | . 10 | . 37 | 2 | 8 | 0 |
| | 10-22 | 20-35 | \|1.20-1.30 | 0.2-0.6 | \|0.12-0.15| | 3.0-5.9 | 0.5-1.0 | . 10 | . 37 | | | |
| | 22-32 | --- | | --- | --- | --- | --- | | --- | | | |
| Sagehen---------- | 0-10 | 27-35 | \|1.30-1.50 | 0.2-0.6 | \|0.13-0.16| | 3.0-5.9 | 0.5-1.0 | . 24 | . 32 | 1 | 7 | 38 |
| | 10-19 | 25-35 | \|1.30-1.50 | 0.2-0.6 | \|0.08-0.13| | 3.0-5.9 | 0.0-0.5 | . 20 | . 37 | | | |
| | 19-29 | --- | --- | --- | - | --- | --- | --- | --- | | | |
| 108: | | | | | | | | | | | | |
| Felcher---------- | 0-10 | 20-27 | \|1.20-1.30 | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 1.0-2.0 | . 15 | . 32 | 2 | 8 | 0 |
| | 10-22 | 20-35 | 1.20-1.30 | 0.2-0.6 | \|0.12-0.15| | 3.0-5.9 | 0.5-1.0 | . 10 | . 37 | | | |
| | 22-32 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| | 0-9 | 18-27 | \|1.20-1.40 | 2-6 | \|0.07-0.10| | 0.0-2.9 | 1.0-3.0 | . 17 | . 32 | 3 | 8 | 0 |
| Fitzwater--------- | 9-16 | 18-27 | \|1.25-1.45 | 2-6 | \|0.04-0.10| | 0.0-2.9 | 1.0-2.0 | . 17 | . 32 | | | |
| | 16-30 | 18-27 | \|1.25-1.45 | 2-6 | \|0.02-0.07| | 0.0-2.9 | 0.5-1.0 | . 15 | . 37 | | | |
| | 30-58 | 15-25 | \|1.25-1.45 | 2-6 | \|0.02-0.05| | 0.0-2.9 | 0.0-0.5 | . 10 | . 32 | | | |
| | 58-68 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Rock outcrop------ | 0-60 | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Permea- bility ($\mathrm{K}_{\text {sat }}$)	$\begin{aligned} & \mid \text { Available\| } \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$	Linear \|extensi- bility	Organic matter	\|Erosi	factors		Wind erodi- \|bility group	\|Wind	erodibility	index									
								Kw	Kf	T													
	In	Pct	$g / c c$	In/hr	In/in	PCt	PCt																
109:																							
Felcher----------	0-10	27-35	1.20-1.30\|	0.2-0.6	\|0.11-0.15		3.0-5.9	1.0-2.0	. 10	. 37	2	8	0										
	10-22	20-35	1.20-1.30\|	0.2-0.6	\|0.12-0.15		3.0-5.9	0.5-1.0	. 10	. 37													
	22-32	---	---	\| ---	---	---	---	---	---														
Pernty--------------- \|	0-3	20-25	1.30-1.40\|	0.6-2	\|0.10-0.13		3.0-5.9	1.0-2.0	. 24	. 28	1	7	38										
	3-8	20-30	1.30-1.40\|	0.6-2	\|0.11-0.15		3.0-5.9	1.0-2.0	. 24	. 32													
	8-15	25-35	1.35-1.45\|	0.2-0.6	\|0.08-0.11		3.0-5.9	0.5-1.0	. 20	. 32													
Ninemile------------- \|	15-25	---	---	\| ---	---	---	---	-	---														
	0-4	27-30	1.35-1.50\|	0.2-0.6	\|0.08-0.12		3.0-5.9	1.0-3.0	. 17	. 32	1	8	0										
	4-16	40-60	1.30-1.50\|	\|0.0015-0.06		\|0.10-0.13		6.0-8.9	1.0-2.0	. 24	. 28												
	16-26	---	---	\| ---	\| ---	---	---	---	---														
110:																							
Felcher-------------- \|	0-10	27-35	1.20-1.30\|	0.2-0.6	\|0.11-0.15		3.0-5.9	1.0-2.0	. 10	. 37	2	8	0										
	10-22	20-35	1.20-1.30\|	0.2-0.6	\|0.12-0.15		3.0-5.9	0.5-1.0	. 10	. 37													
	22-32	---	--- \|	\| ---	---	---	---	---	---														
Westbutte------------\|	0-12	15-27	1.20-1.40\|	0.6-2	\|0.05-0.08		0.0-2.9	2.0-3.0	. 10	. 28	2	8	0										
	12-24	18-30	1.30-1.50\|	0.6-2	\|0.07-0.11		0.0-2.9	1.0-2.0	. 15	. 32													
	24-34	---	--- \|	\| ---	---	---	---	---	---														
111:																							
Final-----------------	0-3	15-25	1.20-1.30\|	0.6-2	\|0.10-0.14		0.0-2.9	1.0-2.0	. 43	. 43	5	4	86										
	3-12	40-55	1.40-1.50\|	0.06-0.2	\|0.07-0.10		6.0-8.9	1.0-2.0	. 20	. 20													
	12-24	40-50	1.40-1.50\|	0.06-0.2	\|0.04-0.07		6.0-8.9	0.0-0.5	. 20	. 20													
	24-42	27-40	1.30-1.45\|	0.2-0.6	\|0.06-0.09		3.0-5.9	0.0-0.5	. 37	. 37													
	42-60	27-40	1.30-1.45\|	0.2-0.6	\|0.09-0.12		3.0-5.9	0.0-0.5	. 37	. 37													
112:																							
Fitzwater------------	0-9	18-27	1.20-1.40\|	2-6	\|0.07-0.10		0.0-2.9	1.0-3.0	. 17	. 32	3	8	0										
	9-16	18-27	1.25-1.45\|	2-6	\|0.04-0.10		0.0-2.9	1.0-2.0	. 17	. 32													
	16-30	18-27	1.25-1.45\|	2-6	\|0.02-0.07		0.0-2.9	0.5-1.0	. 15	. 37													
	30-58	15-25	1.25-1.45\|	2-6	\|0.02-0.05		0.0-2.9	0.0-0.5	. 10	. 32													
	58-68	---	--- \|	\| ---	---	\| ---	---	---	---														
Hapgood, thick surface	0-10	15-20	1.20-1.30	2-6				. 17	. 20	3	4	86											
	10-23	18-27	1.30-1.40\|	0.6-2	\|0.07-0.10		0.0-2.9	1.0-4.0	. 15	. 24													
	23-43	18-30	1.40-1.50\|	2-6	\|0.07-0.13		0.0-2.9	1.0-2.0	. 17	. 28													
	43-53	---	---	\| ---	---	- ---	---	---	---														
Hapgood, thin surface	0-5	15-20	1.20-1.30	2-6	\|0.03-0.06		0.0-2.9	3.0-8.0	. 05	. 20	3	8	0										
	5-23	18-27	1.30-1.40\|	0.6-2	\|0.07-0.10		0.0-2.9	1.0-4.0	. 15	. 24													
	23-43	18-30	1.40-1.50\|	2-6	\|0.07-0.13		0.0-2.9	1.0-2.0	. 17	. 28													
	43-53	---	--- \|	\| ---	---	---	---	---	---														
$113:$																							
Fitzwater-------------	0-9		1.20-1.40\|	2-6	\|0.07-0.10		0.0-2.9	1.0-3.0	. 17	. 32	3	8	0										
	9-16	18-27	1.25-1.45\|	2-6	\|0.04-0.10		0.0-2.9	1.0-2.0	. 17	. 32													
	16-30	18-27	1.25-1.45\|	2-6	\|0.02-0.07		0.0-2.9	0.5-1.0	. 15	. 37													
	30-58	15-25	1.25-1.45\|	2-6	\|0.02-0.05		0.0-2.9	0.0-0.5	. 10	. 32													
	58-68	---	-	\| ---	\| ---		\| ---	---	---	---													
Rock outcrop--------- \|	0-60	---	-	-	--	---	---	---	---	--	---	--											
114 :																							
Flank----------------\|	0-1	5-10	1.30-1.50\|	6-20	\|0.02-0.05		0.0-2.9	1.0-2.0	. 05	. 20	1	8	0										
	1-9	5-18	1.30-1.50\|	0.6-6	\|0.07-0.10		0.0-2.9	0.0-0.5	. 15	. 28													
	9-19	---	---	\| ---		\| ---		\| ---	---	---	---												
Lava flows-----------\|	0-60	---	---	-	---	---	---	---	---	--	---	---											
115:																							
Fourwheel------------ \|	0-7	20-27	1.30-1.50\|	0.6-2	\|0.11-0.14		0.0-2.9	0.5-1.0	. 24	. 37	2	7	38										
	7-22	45-60	1.30-1.50\|	\|0.0015-0.06		\|0.12-0.16		6.0-8.9	0.0-0.5	. 28	. 28												
	22-32	---	---	---	---	---	---	-	---														

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \mid \text { Available } \mid \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$ | Linear \|extensibility | Organic matter | \|Erosion factors | | | Wind erodi\|bility group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | Pct | g/cc | In/hr | In/in | PCt | PCt | | | | | |
| 127: | | | | | | | | | | | | |
| Gaib------------- | 0-7 | 18-27 | \|1.35-1.50 | 0.6-2 | \|0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 1 | 7 | 38 |
| | 7-16 | 25-35 | \|1.35-1.50 | 0.2-0.6 | \|0.07-0.11| | 3.0-5.9 | 0.5-2.0 | . 10 | . 24 | | | |
| | 16-26 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Ateron----------- | 0-5 | 20-27 | \|1.20-1.30 | 0.6-2 | \|0.08-0.11 | 0.0-2.9 | 1.0-2.0 | . 17 | . 28 | 1 | 8 | 0 |
| | 5-12 | 27-35 | \|1.25-1.35 | 0.2-0.6 | \|0.08-0.11 | 3.0-5.9 | 1.0-2.0 | . 20 | . 32 | | | |
| | 12-18 | 40-50 | \|1.35-1.50 | 0.06-0.2 | \|0.05-0.10 | 6.0-8.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | 18-28 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| 128: | | | | | | | | | | | | |
| Gaib------------- | 0-7 | 18-27 | \|1.35-1.50 | 0.6-2 | \|0.11-0.15 | 0.0-2.9 | 2.0-5.0 | . 17 | . 24 | 1 | 7 | 38 |
| | 7-16 | 25-35 | \|1.35-1.50 | 0.2-0.6 | \|0.07-0.11 | 3.0-5.9 | 0.5-2.0 | . 10 | . 24 | | | |
| | 16-26 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Rock outcrop- | 0-60 | --- | --- | --- | --- | --- | --- | --- | --- | | --- | --- |
| 129: | | | | | | | | | | | | |
| Gilispie--------- | 0-5 | 18-25 | \|1.30-1.40 | 0.6-2 | \|0.14-0.18 | 0.0-2.9 | 2.0-4.0 | . 24 | . 24 | 1 | 6 | 48 |
| | 5-14 | 25-35 | \|1.30-1.50 | 0.6-2 | \|0.14-0.20 | 3.0-5.9 | 1.0-2.0 | . 28 | . 28 | | | |
| | 14-24 | --- | - | --- | --- | --- | --- | --- | --- | | | |
| Noname------------ | 0-3 | 20-27 | \|1.30-1.50| | 0.6-2 | \|0.10-0.13 | 0.0-2.9 | 1.0-2.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 3-12 | 20-35 | \|1.30-1.50 | 0.2-0.6 | \|0.13-0.17 | 3.0-5.9 | 0.5-1.0 | . 28 | . 32 | | | |
| | 12-22 | --- | --- | --- | --- | - --- | --- | --- | --- | | | |
| 130: | | | | | | | | | | | | |
| Gochea----------- | | 10-20 | | | $\|0.09-0.11\|$ | 0.0-2.9 | 1.0-2.0 | . 20 | . 20 | 5 | 3 | 86 |
| | $9-13$ | 18-25 | \|1.40-1.50 | 0.6-2 | \|0.09-0.12 | 0.0-2.9 | 1.0-2.0 | . 20 | . 24 | | | |
| | 13-27 | 15-20 | \|1.45-1.55 | 0.6-2 | \|0.06-0.11| | 0.0-2.9 | 0.5-1.0 | . 24 | . 28 | | | |
| | 27-62 | 5-15 | \|1.45-1.55 | 2-6 | \|0.04-0.09 | 0.0-2.9 | 0.0-0.5 | . 17 | . 28 | | | |
| 131: | | | | | | | | | | | | |
| Goldrun---------- | 0-24 | 1-5 | \|1.50-1.60 | 6-20 | \|0.06-0.08 | 0.0-2.9 | 0.5-1.0 | . 20 | . 20 | 5 | 2 | 134 |
| | 24-56 | 1-5 | \|1.50-1.60 | 6-20 | \|0.05-0.10 | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 56-62 | 20-30 | \|1.40-1.50 | 0.2-0.6 | \|0.14-0.17| | 0.0-2.9 | 0.0-0.5 | . 24 | . 24 | | | |
| Alvodest---------- | 0-6 | 30-40 | \|1.35-1.40 | 0.2-0.6 | \|0.03-0.07 | 3.0-5.9 | 0.5-1.0 | . 37 | . 37 | 5 | 4L | 86 |
| | 6-42 | 35-60 | \|1.30-1.45 | 0.06-0.2 | \|0.03-0.07 | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 42-78 | 25-50 | \|1.30-1.45 | 0.06-0.2 | \|0.03-0.07| | 6.0-8.9 | 0.0-0.5 | . 32 | . 32 | | | |
| 132: | | | | | | | | | | | | |
| Gradon----------- | 0-3 | 10-20 | \|1.30-1.40 | 2-6 | \|0.10-0.12 | 0.0-2.9 | 1.0-2.0 | . 20 | . 32 | 2 | 4 | 86 |
| | 3-10 | 10-25 | \|1.35-1.45 | 0.6-2 | \|0.14-0.17 | 0.0-2.9 | 1.0-2.0 | . 32 | . 32 | | | |
| | 10-32 | 25-35 | \|1.40-1.50 | 0.2-0.6 | \|0.10-0.15 | 3.0-5.9 | 0.5-1.0 | . 24 | . 28 | | | |
| | 32-48 | --- | --- | --- | \| --- | --- | --- | --- | --- | | | |
| | 48-52 | --- | --- | --- | --- | --- | --- | -- | --- | | | |
| | 52-62 | 5-15 | \|1.40-1.55 | 2-6 | 10.00-0.00 | 0.0-2.9 | 0.0-0.5 | . 32 | . 37 | | | |
| | | | | | | | | | | | | |
| 133 : | | | | | | | | | | | | |
| Guano------------- | 0-3 | 10-18 | \|1.30-1.50 | 2-6 | \|0.07-0.10 | 0.0-2.9 | 0.5-1.0 | . 15 | . 20 | 2 | 4 | 86 |
| | 3-11 | 18-35 | \|1.40-1.50 | 0.2-2 | \|0.12-0.16 | 3.0-5.9 | 0.0-0.5 | . 24 | . 28 | | | |
| | 11-21 | --- | --- | - | \| --- | \| --- | --- | --- | --- | | | |
| 134: | | | | | | | | | | | | |
| Gumble----------- | 0-3 | 18-27 | 1.25-1.35 | 0.6-2 | \|0.08-0.11 | 0.0-2.9 | 0.5-1.0 | . 20 | . 37 | 2 | 8 | 0 |
| | 3-8 | 18-27 | \|1.35-1.45 | 0.6-2 | \|0.13-0.15 | 0.0-2.9 | 0.5-1.0 | . 32 | . 32 | | | |
| | 8-14 | 35-50 | \|1.30-1.45 | 0.06-0.6 | \|0.10-0.17| | 6.0-8.9 | 0.0-0.5 | . 24 | . 28 | | | |
| | 14-16 | 30-40 | \|1.30-1.45 | 0.2-0.6 | \|0.13-0.17| | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 16-26 | --- | , | --- | \| --- | \| --- | --- | -- | -- | | | |
| | | | | | | | | | | | | |
| 135: | | | | | | | | | | | | |
| Gumble----------- | 0-3 | 18-27 | \|1.35-1.45 | 0.6-2 | \|0.07-0.10 | 0.0-2.9 | 0.5-1.0 | . 17 | . 32 | 2 | 8 | 0 |
| | 3-8 | 18-27 | \|1.35-1.45 | 0.6-2 | \|0.13-0.15 | 0.0-2.9 | 0.5-1.0 | . 32 | . 32 | | | |
| | 8-14 | 35-50 | \|1.30-1.45 | 0.06-0.6 | \|0.10-0.17| | 6.0-8.9 | 0.0-0.5 | . 24 | . 28 | | | |
| | 14-16 | 30-40 | \|1.30-1.45 | 0.2-0.6 | \|0.13-0.17 | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 16-26 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	```Moist bulk density```	Permea- bility ($\mathrm{K}_{\text {sat }}$)	$\begin{aligned} & \mid \text { Available } \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$	Linear extensi- bility	Organic matter	\|Erosion factors			\|Wind	erodi	bility group	\|Wind\|erodi-\mid bility\|index										
								Kw	Kf	T														
	In	Pct	$g / c c$	In/hr	In/in	Pct	Pct																	
136:																								
Gumble-----------	0-3	18-27	\|1.25-1.35		0.6-2	0.08-0.11\|	0.0-2.9	0.5-1.0	. 20	. 37	2	8	0											
	3-8	18-27	\|1.35-1.45		0.6-2	0.13-0.15	0.0-2.9	0.5-1.0	. 32	. 32														
	8-14	35-50	\|1.30-1.45		0.06-0.6	0.10-0.17\|	6.0-8.9	0.0-0.5	. 24	. 28														
	14-16	30-40	\|1.30-1.45		0.2-0.6	0.13-0.17\|	3.0-5.9	0.0-0.5	. 37	. 37														
	16-26	---	---	---	---	---	--	--	---															
Mahoon-----------	0-3	18-27	\|1.30-1.50		0.6-2	0.08-0.11\|	0.0-2.9	1.0-2.0	. 10	. 28	3	8	0											
	3-9	35-45	\|1.35-1.45		0.2-0.6	0.10-0.15	3.0-5.9	1.0-2.0	. 24	. 32														
	9-18	40-60	\|1.35-1.45		0.06-0.2	0.11-0.15\|	6.0-8.9	0.5-1.0	. 20	. 24														
	18-25	40-60	\|1.35-1.45		0.06-0.2	0.11-0.15	6.0-8.9	0.0-0.5	. 20	. 24														
	25-35	---	--- \|	---	---	--	-	---	---															
Cagle------------	0-4	20-27	\|1.30-1.40		0.6-2	0.07-0.10\|	0.0-2.9	1.0-2.0	. 15	. 32	3	8	0											
	4-12	35-50	\|1.30-1.50		0.06-0.2	0.09-0.13\|	6.0-8.9	1.0-2.0	. 20	. 28														
	12-24	35-50	\|1.30-1.50		0.06-0.2	0.09-0.13\|	6.0-8.9	0.5-1.0	. 20	. 28														
	24-36	30-40	\|1.30-1.50		0.2-0.6	0.10-0.17\|	3.0-5.9	0.2-0.8	. 28	. 32														
	36-46	---	--- \|	---	---	---	---	---	---															
137:																								
Hackwood---------	0-11	15-27	\|1.20-1.40		0.6-2	\|0.10-0.13		0.0-2.9	3.0-8.0	. 17	. 20	5	7	38										
	11-23	18-27	\|1.30-1.40		0.6-2	0.07-0.13\|	0.0-2.9	1.0-4.0	. 20	. 24														
	23-48	18-30	\|1.40-1.50		0.6-2	0.07-0.11\|	0.0-2.9	0.5-1.0	. 17	. 28														
	48-60	18-30	\|1.40-1.50		0.6-2	0.05-0.10\|	0.0-2.9	0.5-1.0	. 15	. 28														
138:																								
Hackwood----------	0-11	15-27	\|1.20-1.40		0.6-2	0.10-0.13\|	0.0-2.9	3.0-8.0	. 17	. 20	5	7	38											
	11-23	18-27	\|1.30-1.40		0.6-2	0.07-0.13\|	0.0-2.9	1.0-4.0	. 20	. 24														
	23-48	18-30	\|1.40-1.50		0.6-2	0.07-0.11\|	0.0-2.9	0.5-1.0	. 17	. 28														
	48-60	18-30	\|1.40-1.50		0.6-2	\|0.05-0.10		0.0-2.9	0.5-1.0	. 15	. 28													
Baconcamp--------	0-4	18-27	\|1.20-1.30		0.6-2	0.07-0.10\|	0.0-2.9	3.0-8.0	. 10	. 20	2	8	0											
	4-20	18-27	\|1.25-1.35		0.6-2	0.07-0.13\|	0.0-2.9	1.0-4.0	. 20	. 24														
	20-35	18-30	\|1.30-1.40		0.6-2	0.07-0.10\|	0.0-2.9	1.0-2.0	. 20	. 28														
	35-45	---	\|1.30-1.40		---	0.07-0.10	--	---		---														
139 :																								
Hapgood----------	0-10	18-27	\|1.20-1.30		0.6-2	\|0.07-0.10		0.0-2.9	3.0-8.0	. 17	. 20	3	8	0										
	10-23	18-27	\|1.30-1.40		0.6-2	\|0.07-0.10		0.0-2.9	1.0-4.0	. 15	. 24													
	23-43	18-30	\|1.40-1.50		2-6	$\|0.07-0.13\|$	0.0-2.9	1.0-2.0	. 17	. 28														
	43-53	---	--- \|	---	\|0.07-0.13					---														
140:																								
Hart Camp--------	0-3	15-25	\|1.30-1.40		0.6-2	\|0.11-0.14		0.0-2.9	1.0-2.0	. 20	. 28	2	6	48										
	3-9	20-30	\|1.30-1.40		0.2-0.6	\|0.11-0.15		0.0-2.9	1.0-2.0	. 20	. 28													
	9-19	20-30	\|1.30-1.45		0.2-0.6	$\|0.11-0.15\|$	0.0-2.9	0.5-1.0	. 24	. 32														
	19-29	---	---	---	---	---	--	---	---															
141:																								
Hart Camp--------	0-3	15-25	\|1.30-1.40		0.6-2	\|0.11-0.14		0.0-2.9	1.0-2.0	. 20	. 28	2	6	48										
	3-9	20-30	\|1.30-1.40		0.2-0.6	\|0.11-0.15		0.0-2.9	1.0-2.0	. 20	. 28													
	9-19	20-30	\|1.30-1.45		0.2-0.6	$\|0.11-0.15\|$	0.0-2.9	0.5-1.0	. 24	. 32														
	19-29	---	\| ---		---	--- \|	---	---	---	---														
142:																								
Helphenstein------	0-3	10-20	\|1.10-1.20		0.6-2	\|0.03-0.08		0.0-2.9	1.0-2.0	. 37	. 37	5	3	86										
	3-9	10-20	\|1.10-1.20		0.6-2	\|0.03-0.08		0.0-2.9	0.5-1.0	. 43	. 43													
	9-26	18-27	\|1.25-1.40		0.2-0.6	\|0.06-0.09		0.0-2.9	0.0-0.5	. 43	. 43													
	26-62	15-27	\|1.25-1.40		0.06-0.2	$\|0.07-0.10\|$	0.0-2.9	0.0-0.5	. 43	. 43														
Goldrun----------	0-24	1-5	\|1.50-1.60		6-20	$\|0.08-0.10\|$	0.0-2.9	0.5-1.0	. 24	. 24	5	2	134											
	24-56	1-5	\|1.50-1.60		6-20	\|0.05-0.10		0.0-2.9	0.0-0.5	. 28	. 28													
	56-62	20-30	\|1.40-1.50		0.2-0.6	\|0.14-0.17		0.0-2.9	0.0-0.5	. 24	. 24													

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist
 bulk
 density | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \mid \text { Available } \mid \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$ | Linear
 extensi-
 bility | Organic matter | \|Erosion factors | | | \|Wind |erodi|bility |group | \|Wind
 \|erodi-
 \|bility
 \|index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | Pct | $g / c c$ | In/hr | In/in | Pct | Pct | | | | | |
| 143: | | | | | | | | | | | | |
| Homefield--------- | 0-6 | 15-25 | \|0.50-0.70 | 0.6-2 | \|0.13-0.16| | 0.0-2.9 | 10-20 | . 05 | . 05 | 5 | 4 | 86 |
| | 6-36 | 18-25 | \|0.50-0.70 | 0.6-2 | 0.16-0.20\| | 0.0-2.9 | 10-20 | . 05 | . 05 | | | |
| | 36-48 | 18-35 | \|0.50-0.70 | 0.6-2 | 0.16-0.20 | 0.0-2.9 | 10-20 | . 05 | . 05 | | | |
| | 48-60 | 40-60 | \| 1.40-1.50 | 0.06-0.2 | 0.12-0.15\| | 6.0-8.9 | 1.0-5.0 | . 28 | . 28 | | | |
| | | | | | | | | | | | | |
| 144: | | | | | | | | | | | | |
| Housefield------- | 0-6 | 15-25 | \|0.50-0.70 | 0.6-2 | \|0.25-0.35| | 0.0-2.9 | 10-20 | . 05 | . 05 | 5 | 4 | 86 |
| | 6-36 | 18-25 | \|0.50-0.70 | 0.6-2 | 0.25-0.35 | 0.0-2.9 | 10-20 | . 05 | . 05 | | | |
| | 36-48 | 18-35 | \|0.50-0.70 | 0.6-2 | 0.25-0.35\| | 0.0-2.9 | 10-20 | . 05 | . 05 | | | |
| | 48-60 | 40-60 | \|1.40-1.50 | 0.06-0.2 | \|0.14-0.17| | 6.0-8.9 | 1.0-5.0 | . 28 | . 28 | | | |
| | | | | | | | | | | | | |
| 145 : | | | | | | | | | | | | |
| Housefield-------- | 0-6 | 15-25 | \|0.50-0.70 | 0.6-2 | \|0.25-0.35| | 0.0-2.9 | 10-20 | . 05 | . 05 | 5 | 4 | 86 |
| | 6-36 | 18-25 | \|0.50-0.70 | 0.6-2 | \|0.25-0.35| | 0.0-2.9 | 10-20 | . 05 | . 05 | | | |
| | 36-48 | 18-35 | \|0.50-0.70 | 0.6-2 | \|0.25-0.35| | 0.0-2.9 | 10-20 | . 05 | . 05 | | | |
| | 48-60 | 40-60 | \|1.40-1.50 | 0.06-0.2 | \|0.14-0.17| | 6.0-8.9 | 1.0-5.0 | . 28 | . 28 | | | |
| Doubleo---------- | 0-3 | 18-27 | 1.20-1.30 | 0.6-2 | 0.14-0.17 | 0.0-2.9 | 4.0-8.0 | . 20 | . 20 | 5 | 6 | 48 |
| | 3-10 | 35-50 | \|1.30-1.40 | 0.0015-0.06 | 0.14-0.16\| | 6.0-8.9 | 2.0-5.0 | . 24 | . 24 | | | |
| | 10-20 | 40-60 | \|1.30-1.40 | 0.0015-0.06 | 0.13-0.16\| | 6.0-8.9 | 1.0-2.0 | . 24 | . 24 | | | |
| | 20-28 | 35-40 | \|1.30-1.35 | 0.2-0.6 | \|0.18-0.20| | 3.0-5.9 | 1.0-2.0 | . 28 | . 28 | | | |
| | 28-45 | 5-15 | \|1.40-1.45 | 2-6 | 0.12-0.14 | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 | | | |
| | 45-60 | 15-20 | \|1.35-1.40 | 0.6-2 | \|0.15-0.17| | 0.0-2.9 | 0.2-1.0 | . 55 | . 55 | | | |
| | | | | | | | | | | | | |
| 146: | | | | | | | | | | | | |
| Icene------------- | 0-6 | 15-25 | \|1.10-1.20 | 0.6-2 | \|0.05-0.09| | 0.0-2.9 | 1.0-2.0 | . 32 | . 32 | 5 | 6 | 48 |
| | 6-22 | 20-30 | \|1.30-1.50 | 0.06-0.2 | \|0.03-0.05| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 | | | |
| | 22-44 | 20-30 | \|1.30-1.50 | 0.06-0.2 | \|0.03-0.05| | 0.0-2.9 | 0.0-0.5 | . 49 | . 49 | | | |
| | 44-62 | 20-30 | \|1.40-1.60 | 0.2-0.6 | \|0.03-0.05| | 0.0-2.9 | 0.0-0.5 | . 43 | . 43 | | | |
| | | | | | | | | | | | | |
| Playas- | 0-60 | 35-70 | \|1.10-1.50 | 0.0015-0.06 | 0.02-0.04\| | 6.0-8.9 | 0.0-0.1 | . 37 | . 37 | 5 | 4L | 86 |
| 147: | | | | | | | | | | | | |
| Icene------------- | 0-6 | 10-20 | \|1.10-1.20 | 0.6-2 | \|0.03-0.08| | 0.0-2.9 | 1.0-2.0 | . 37 | . 37 | 5 | 3 | 86 |
| | 6-22 | 20-30 | \|1.30-1.50 | 0.06-0.2 | \|0.03-0.05| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 | | | |
| | 22-44 | 20-30 | \|1.30-1.50 | 0.06-0.2 | \|0.03-0.05| | 0.0-2.9 | 0.0-0.5 | . 49 | . 49 | | | |
| | 44-62 | 20-30 | \|1.40-1.60 | 0.2-0.6 | \|0.03-0.05| | 0.0-2.9 | 0.0-0.5 | . 43 | . 43 | | | |
| | | | | | | | | | | | | |
| Playas | 0-60 | 35-70 | \|1.10-1.50 | 0.0015-0.06 | 0.02-0.04 | 6.0-8.9 | 0.0-0.1 | . 37 | . 37 | 5 | 4L | 86 |
| 148: | | | | | | | | | | | | |
| Jesse Camp | 0-4 | 10-25 | \|1.30-1.40 | 0.6-2 | \|0.16-0.19| | 0.0-2.9 | 1.0-2.0 | . 43 | . 43 | 5 | 6 | 48 |
| | 4-34 | 18-27 | \|1.35-1.45 | 0.2-0.6 | \|0.16-0.19| | 3.0-5.9 | 0.5-2.0 | . 43 | . 43 | | | |
| | 34-50 | 18-27 | \|1.35-1.45 | 0.2-0.6 | \|0.16-0.19| | 3.0-5.9 | 0.5-1.0 | . 43 | . 43 | | | |
| | 50-60 | 10-25 | \|1.30-1.40 | 0.6-6 | \|0.10-0.13| | 0.0-2.9 | 0.0-0.5 | . 20 | . 37 | | | |
| | | | | | | | | | | | | |
| 149: | | | | | | | | | | | | |
| Jimgreen--------- | 0-10 | 10-35 | \|0.30-0.50 | 0.6-2 | \|0.40-0.50| | --- | 30-60 | . 02 | . 02 | 5 | 2 | 134 |
| | 10-12 | 15-25 | \|0.50-0.70 | 0.6-2 | \|0.25-0.35| | 0.0-2.9 | 10-20 | . 05 | . 05 | | | |
| | 12-32 | 10-35 | \|0.30-0.70 | 0.6-2 | $\|0.40-0.50\|$ | --- | 30-60 | . 02 | . 02 | | | |
| | 32-44 | 10-35 | \|0.30-0.70 | 0.6-2 | \|0.40-0.50| | --- | 30-60 | . 02 | . 02 | | | |
| | 44-60 | 10-35 | \|0.30-0.70 | 0.6-2 | \| 0.40-0.50| | - | 30-60 | . 02 | . 02 | | | |
| | | | | | | | | | | | | |
| 150: | | | | | | | | | | | | |
| Jimgreen---------- | 0-10 | 10-35 | \|0.30-0.50 | 0.6-2 | \|0.40-0.50| | --- | 30-60 | . 02 | . 02 | 5 | 2 | 134 |
| | 10-12 | 15-25 | \|0.50-0.70 | 0.6-2 | \|0.25-0.35| | 0.0-2.9 | 10-20 | . 05 | . 05 | | | |
| | 12-32 | 10-35 | \|0.30-0.70 | 0.6-2 | \|0.40-0.50| | --- | 30-60 | . 02 | . 02 | | | |
| | 32-44 | 10-35 | \|0.30-0.70 | 0.6-2 | \|0.40-0.50| | --- | 30-60 | . 02 | . 02 | | | |
| | 44-60 | 10-35 | \|0.30-0.70 | 0.6-2 | \|0.40-0.50| | --- | 30-60 | . 02 | . 02 | | | |
| | | | | | | | | | | | | |
| Housefield------- | 0-6 | 15-25 | \|0.50-0.70 | 0.6-2 | \|0.25-0.35| | 0.0-2.9 | 10-20 | . 05 | . 05 | 5 | 4 | 86 |
| | 6-36 | 18-25 | \|0.50-0.70 | 0.6-2 | \|0.25-0.35| | 0.0-2.9 | 10-20 | . 05 | . 05 | | | |
| | 36-48 | 18-35 | \|0.50-0.70 | 0.6-2 | \|0.25-0.35| | 0.0-2.9 | 10-20 | . 05 | . 05 | | | |
| | 48-60 | 40-60 | \|1.40-1.50 | 0.06-0.2 | \|0.14-0.17| | 6.0-8.9 | 1.0-5.0 | . 28 | . 28 | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Permea- bility ($\mathrm{K}_{\text {sat }}$)	$\begin{aligned} & \mid \text { Available } \mid \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$	Linear \|extensibility	Organic matter	\|Erosion factors				Wind erodi\|bility group	\|Wind erodibility index	
								Kw	Kf	T				
	In	Pct	$g / c c$	In/ hr	In/in	PCt	PCt							
164:														
Lambring---------	0-7	15-27	\|1.20-1.40		0.6-2	\|0.05-0.08		0.0-2.9	2.0-3.0	. 10	. 28	5	8	0
	7-12	15-27	\|1.25-1.45		0.6-2	\|0.10-0.13		0.0-2.9	1.0-3.0	. 20	. 28			
	12-21	15-27	\|1.25-1.45		0.6-2	\|0.07-0.13		0.0-2.9	1.0-2.0	. 17	. 32			
	21-60	15-27	\|1.30-1.50		0.6-2	\|0.07-0.10		0.0-2.9	0.5-1.0	. 15	. 32			
Rubble land-	0-60	---	---	---	---	---	---	---	---	---	---	---		
165:														
Langslet---------	0-14	40-50	\|1.30-1.50		0.06-0.2	\|0.13-0.16		6.0-8.9	0.5-1.0	. 24	. 24	5	4	86
	14-23	35-40	\|1.30-1.50		0.2-0.6	\|0.15-0.18		3.0-5.9	0.5-1.0	. 28	. 28			
	23-49	35-50	\|1.30-1.50		0.06-0.2	\|0.13-0.18		6.0-8.9	0.0-0.5	. 24	. 24			
	49-62	30-40	\|1.30-1.50		0.2-0.6	\|0.15-0.18		3.0-5.9	0.0-0.5	. 28	. 28			
166 :														
Lava flows-	0-60	---	---	---	---	---	---	---	---	---	---	---		
167 :														
Lava flows---	0-60	---	---	---	---	---	---	---	---	---	---	---		
Flank------------	0-1	5-15	\|1.30-1.50		2-6	\|0.06-0.09		0.0-2.9	1.0-2.0	. 15	. 28	1	5	56
	1-9	5-18	\|1.30-1.50		0.6-6	\|0.07-0.10		0.0-2.9	0.0-0.5	. 15	. 28			
	9-19	---	---	---	---	---	---	---	---					
168 :														
Lawen------------	0-10	5-10	\|1.45-1.50		2-6	\|0.13-0.15		0.0-2.9	1.0-2.0	. 17	. 17	5	3	86
	10-15	10-18	\|1.40-1.50		0.2-0.6	\|0.15-0.18		0.0-2.9	0.5-1.0	. 32	. 32			
	15-40	5-10	\|1.50-1.60		0.2-0.6	\|0.13-0.15		0.0-2.9	0.0-0.5	. 32	. 32			
	40-60	5-10	\|1.50-1.60		0.2-0.6	\|0.13-0.15		0.0-2.9	0.0-0.5	. 32	. 32			
169 :														
Leathers---------	0-2	10-20	\|1.20-1.30		0.6-2	\|0.12-0.15		0.0-2.9	1.0-2.0	. 43	. 43	5	4 L	86
	2-9	10-20	\|1.20-1.30		0.6-2	\|0.10-0.14		0.0-2.9	1.0-2.0	. 43	. 43			
	9-24	10-18	\|1.40-1.50		0.6-2	\|0.08-0.12		0.0-2.9	0.5-1.0	. 32	. 32			
	24-28	10-18	\|1.40-1.50		0.2-0.6	\|0.08-0.12		0.0-2.9	0.0-0.5	. 28	. 28			
	28-52	5-18	\|1.40-1.50		2-6	\|0.05-0.10		0.0-2.9	0.0-0.5	. 32	. 32			
	52-61	0-5	\|1.50-1.70		6-20	\|0.04-0.07		0.0-2.9	0.0-0.5	. 15	. 15			
170:														
Leathers---------	0-2	10-20	\|1.20-1.30		0.6-2	\|0.12-0.15		0.0-2.9	1.0-2.0	. 43	. 43	5	4 L	86
	2-9	10-20	\|1.20-1.30		0.6-2	\|0.10-0.14		0.0-2.9	1.0-2.0	. 43	. 43			
	9-24	10-18	\|1.40-1.50		0.6-2	\|0.08-0.12		0.0-2.9	0.5-1.0	. 32	. 32			
	24-28	10-18	\|1.40-1.50		0.2-0.6	\|0.08-0.12		0.0-2.9	0.0-0.5	. 28	. 28			
	28-52	5-18	\|1.40-1.50		2-6	\|0.05-0.10		0.0-2.9	0.0-0.5	. 32	. 32			
	52-61	0-5	\|1.50-1.70		6-20	\|0.04-0.07		0.0-2.9	0.0-0.5	. 15	. 15			
171:														
Leemorris---------	0-5	27-35	\|1.20-1.40		0.2-0.6	\|0.13-0.16		3.0-5.9	2.0-4.0	. 20	. 24	2	7	38
	5-26	30-40	\|1.20-1.40		0.2-0.6	\|0.13-0.16		3.0-5.9	2.0-4.0	. 24	. 28			
	26-30	40-60	\|1.30-1.50		0.06-0.2	\|0.10-0.15		6.0-8.9	0.5-2.0	. 15	. 17			
	30-40	---	--- \|	---	--- \|	\| ---	---	---	---					
Buckwilder-------	0-8		1.20-1.40	0.2-0.6	0.10-0.13	3.0-5.9	2.0-4.0	. 15	. 24	2	8	0		
	8-21	60-75	\|1.30-1.50		0.0015-0.06	$\|0.11-0.13\|$	6.0-8.9	1.0-2.0	. 17	. 17				
	21-27	60-75	\|1.35-1.50		0.0015-0.06	$\mid 0.09-0.12$ \|	6.0-8.9	0.5-1.0	. 15	. 17				
	27-37	---	---	---	\| ---		\| ---	---	---	---				
172 :														
Leemorris--------	0-5	27-35	\|1.20-1.40		0.2-0.6	\|0.13-0.16		3.0-5.9	2.0-4.0	. 20	. 24	2	7	38
	5-26	30-40	\|1.20-1.40		0.2-0.6	\|0.13-0.16		3.0-5.9	2.0-4.0	. 24	. 28			
	26-30	40-60	\|1.30-1.50		0.06-0.2	\|0.10-0.15		6.0-8.9	0.5-2.0	. 15	. 17			
	30-40	---	---	---	--- \|	\| ---	---	---	---					
Buckwilder-------	0-8	30-40	\|1.20-1.40		0.2-0.6	\|0.10-0.13		3.0-5.9	2.0-4.0	. 15	. 24	2	8	0
	8-21	60-75	\|1.30-1.50		0.0015-0.06	\|0.11-0.13		6.0-8.9	1.0-2.0	. 17	. 17			
	21-27	60-75	\|1.35-1.50		0.0015-0.06	$\|0.09-0.12\|$	6.0-8.9	0.5-1.0	. 15	. 17				
	27-37		,	,		---	---	---	---					

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	$\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$	Permea- bility ($\mathrm{K}_{\text {sat }}$)	$\begin{aligned} & \mid \text { Available\| } \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$	Linear extensibility	Organic matter	Erosion factors			Wind erodibility group	Wind erodi\|bility	index								
								Kw	Kf	T											
	In	Pct	$g / c c$	In/hr	In/in	Pct	Pct														
181:																					
Loupence----------	0-2	18-27	\|1.00-1.20		0.6-2	\|0.19-0.21		0.0-2.9	2.0-4.0	. 24	. 24	5	6	48							
	2-24	18-27	\|1.00-1.20		0.6-2	\|0.19-0.21		0.0-2.9	1.0-4.0	. 24	. 24										
	24-49	18-27	\|1.10-1.20		0.6-2	\|0.17-0.20		0.0-2.9	1.0-3.0	. 28	. 28										
	49-60	10-15	\|1.20-1.40		2-6	\|0.11-0.14		0.0-2.9	0.5-1.0	. 24	. 24										
182:																					
Madeline---------	0-2	18-27	\|1.40-1.50		0.6-2	\|0.07-0.10		0.0-2.9	1.0-2.0	. 15	. 28	1	8	0							
	2-10	35-40	\|1.45-1.55		0.2-0.6	\|0.15-0.18		3.0-5.9	1.0-2.0	. 32	. 32										
	10-19	35-50	\|1.35-1.55		0.06-0.2	\|0.13-0.17		6.0-8.9	0.5-1.0	. 24	. 28										
	19-29	---	---	\| ---		\| ---	-	---	---												
183 :																					
Madeline---------	0-2	18-27	\|1.40-1.50		0.6-2	\|0.07-0.10		0.0-2.9	1.0-2.0	. 15	. 28	1	8	0							
	2-10	35-40	\|1.45-1.55		0.2-0.6	\|0.15-0.18		3.0-5.9	1.0-2.0	. 32	. 32										
	10-19	35-50	\|1.35-1.55		0.06-0.2	\|0.13-0.17		6.0-8.9	0.5-1.0	. 24	. 28										
	19-29	---	---	\| ---	---	\| ---	---	---	---												
184:																					
Madeline---------	0-2	27-30	\|1.40-1.50		0.6-2	\|0.13-0.16		3.0-5.9	1.0-2.0	. 24	. 28	1	7	38							
	2-10	35-40	\|1.45-1.55		0.2-0.6	\|0.15-0.18		3.0-5.9	1.0-2.0	. 32	. 32										
	10-19	35-50	\|1.35-1.55		0.06-0.2	\|0.13-0.17		6.0-8.9	0.5-1.0	. 24	. 28										
	19-29	---	---	\| ---	--- \|	\| ---	---	-	---												
Ninemile---------	0-4	15-27	\|1.35-1.50		0.6-2	\|0.07-0.10		0.0-2.9	1.0-3.0	. 15	. 28	1	8	0							
	4-16	40-60	\|1.30-1.50		0.0015-0.06	\|0.10-0.13		6.0-8.9	1.0-2.0	. 24	. 28										
	16-26	---	--- \|	\| ---	\| ---		\| ---	---	---	---											
185:																					
Madeline---------	0-2	18-27	\|1.40-1.50		0.6-2	\|0.07-0.10		0.0-2.9	1.0-2.0	. 15	. 28	1	8	0							
	2-10	35-40	\|1.45-1.55		0.2-0.6	\|0.15-0.18		3.0-5.9	1.0-2.0	. 32	. 32										
	10-19	35-50	\|1.35-1.55		0.06-0.2	\|0.13-0.17		6.0-8.9	0.5-1.0	. 24	. 28										
	19-29	---	---	\| ---	--- \|	\| ---	---	---	---												
Rock outcrop-	0-60	---	---	---	---	---	---	---	---	--	--	---									
186:																					
Mahoon------------	0-3	18-27	\|1.30-1.50		0.6-2	\|0.08-0.11		0.0-2.9	1.0-2.0	. 10	. 28	3	8	0							
	3-9	35-45	\|1.35-1.45		0.2-0.6	\|0.10-0.15		3.0-5.9	1.0-2.0	. 24	. 32										
	9-18	40-60	\|1.35-1.45		0.06-0.2	\|0.11-0.15		6.0-8.9	0.5-1.0	. 20	. 24										
	18-25	40-60	\|1.35-1.45		0.06-0.2	\|0.11-0.15		6.0-8.9	0.0-0.5	. 20	. 24										
	25-35	---	--- \|	\| ---	--- \|	\| ---	---	-	---												
187:																					
Mahoon-----------	0-3	18-27	\|1.30-1.50		0.6-2	\|0.08-0.11		0.0-2.9	1.0-2.0	. 10	. 28	3	8	0							
	3-9	35-45	\|1.35-1.45		0.2-0.6	\|0.10-0.15		3.0-5.9	1.0-2.0	. 24	. 32										
	9-18	40-60	\|1.35-1.45		0.06-0.2	\|0.11-0.15		6.0-8.9	0.5-1.0	. 20	. 24										
	18-25	40-60	\|1.35-1.45		0.06-0.2	\|0.11-0.15		6.0-8.9	0.0-0.5	. 20	. 24										
	25-35	---	--- \|	\| ---	--- \|	\| ---	---	---	---												
Brezniak----------	0-3	18-20	\|1.35-1.50		0.6-2	\|0.11-0.14		0.0-2.9	1.0-2.0	. 28	. 28	1	7	38							
	3-7	35-50	\|1.35-1.55		0.06-0.2	\|0.13-0.18		6.0-8.9	1.0-2.0	. 28	. 28										
	7-10	35-50	\|1.35-1.55		0.06-0.2	\|0.13-0.18		6.0-8.9	0.5-1.0	. 28	. 28										
	10-20	---	---	\| ---	--- \|	\| ---	---	--	---												
Longcreek--------	0-7	18-27	\|1.35-1.50		0.6-2	\|0.11-0.14		0.0-2.9	1.0-3.0	. 20	. 28	1	7	38							
	7-18	35-50	\|1.35-1.55		0.06-0.2	\|0.06-0.12		6.0-8.9	0.5-2.0	. 20	. 28										
	18-28	---	--- \|	\| ---	--- \|	\| ---	---	---	---												
188:																					
Mahoon------------	0-3	18-27	\|1.30-1.50		0.6-2	\|0.08-0.11		0.0-2.9	1.0-2.0	. 10	. 28	3	8	0							
	3-9	35-45	\|1.35-1.45		0.2-0.6	\|0.10-0.15		3.0-5.9	1.0-2.0	. 24	. 32										
	9-18	40-60	\|1.35-1.45		0.06-0.2	\|0.11-0.15		6.0-8.9	0.5-1.0	. 20	. 24										
	18-25	40-60	\|1.35-1.45		0.06-0.2	\|0.11-0.15		6.0-8.9	0.0-0.5	. 20	. 24										
	25-35	---	--- \|	\| ---	--- \|	\| ---	---	-	---												

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist bulk density | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \mid \text { Available } \mid \\ & \mid \text { water } \\ & \mid \text { capacity } \mid \end{aligned}$ | $\begin{aligned} & \text { Linear } \\ & \mid \text { extensi- } \\ & \mid \text { bility } \end{aligned}$ | Organic matter | Erosion factors | | | Wind \|erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| 188: | In | Pct | g/cc | In/hr | In/in | PCt | Pct | | | | | |
| | | | | | | | | | | | | |
| Cagle | 0-4 | 27-30 | \|1.30-1.40| | 0.2-0.6 | \|0.08-0.11| | 0.0-2.9 | 1.0-2.0 | . 15 | . 32 | 3 | 8 | 0 |
| | 4-12 | 35-50 | \|1.30-1.50| | 0.06-0.2 | \|0.09-0.13| | 6.0-8.9 | 1.0-2.0 | . 20 | . 28 | | | |
| | 12-24 | 35-50 | \|1.30-1.50| | 0.06-0.2 | \|0.09-0.13| | 6.0-8.9 | 0.5-1.0 | . 20 | . 28 | | | |
| | 24-36 | 30-40 | \|1.30-1.50| | 0.2-0.6 | \|0.10-0.17| | 3.0-5.9 | 0.2-0.8 | . 28 | . 32 | | | |
| | 36-46 | | - | - --- | --- | \| --- | --- | --- | --- | | | |
| 189: | | | | | | | | | | | | |
| Mahoon------------ | 0-3 | 18-27 | 1.20-1.40\| | 0.6-2 | \|0.16-0.19| | 0.0-2.9 | 1.0-2.0 | . 43 | . 43 | 3 | 6 | 48 |
| | 3-9 | 35-45 | \|1.35-1.45| | 0.2-0.6 | \|0.10-0.15| | 3.0-5.9 | 1.0-2.0 | . 24 | . 32 | | | |
| | 9-18 | 40-60 | \|1.35-1.45| | 0.06-0.2 | \|0.11-0.15| | 6.0-8.9 | 0.5-1.0 | . 20 | . 24 | | | |
| | 18-25 | 40-60 | \|1.35-1.45| | 0.06-0.2 | \|0.11-0.15| | 6.0-8.9 | 0.0-0.5 | . 20 | . 24 | | | |
| | 25-35 | --- | --- | --- | --- | \| --- | --- | --- | --- | | | |
| Risley------------ | 0-3 | 18-27 | 1.30-1.40\| | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 1.0-2.0 | . 17 | . 28 | 3 | 8 | 0 |
| | 3-25 | 35-55 | 1.40-1.50\| | 0.06-0.2 | \|0.13-0.16| | 6.0-8.9 | 0.5-1.0 | . 24 | . 28 | | | |
| | 25-37 | 27-40 | \|1.30-1.50| | 0.2-0.6 | \|0.14-0.17| | 3.0-5.9 | 0.0-0.5 | . 24 | . 32 | | | |
| | 37-39 | 27-40 | \|1.30-1.50| | 0.2-0.6 | \|0.10-0.13| | 3.0-5.9 | 0.0-0.5 | . 20 | . 32 | | | |
| | 39-49 | --- | --- | - --- | --- | \| --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |
| 190: | | | | | | | | | | | | |
| Mahoon------------- | | 18-27 | 1.30-1.50\| | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 1.0-2.0 | . 10 | . 28 | 3 | 8 | 0 |
| | 3-9 | 35-45 | \|1.35-1.45| | 0.2-0.6 | \|0.10-0.15| | 3.0-5.9 | 1.0-2.0 | . 24 | . 32 | | | |
| | 9-18 | 40-60 | \|1.35-1.45| | 0.06-0.2 | \|0.11-0.15| | 6.0-8.9 | 0.5-1.0 | . 20 | . 24 | | | |
| | 18-25 | 40-60 | \|1.35-1.45| | 0.06-0.2 | \|0.11-0.15| | 6.0-8.9 | 0.0-0.5 | . 20 | . 24 | | | |
| | 25-35 | --- | --- | \| --- | --- | \| --- | --- | --- | --- | | | |
| Cotant------------ | 0-3 | 18-27 | 1.40-1.50\| | 0.6-2 | \|0.12-0.15| | 0.0-2.9 | 1.0-3.0 | . 20 | . 28 | 2 | 7 | 38 |
| | 3-13 | 40-50 | \|1.35-1.40| | 0.06-0.2 | \|0.12-0.15| | 6.0-8.9 | 1.0-2.0 | . 24 | . 24 | | | |
| | 13-23 | --- | --- | \| --- | --- | \| --- | --- | --- | --- | | | |
| 191: | | | | | | | | | | | | |
| Mcbain------------ | 0-5 | 10-20 | \|1.20-1.30| | 0.6-2 | \|0.05-0.08| | 0.0-2.9 | 2.0-4.0 | . 43 | . 43 | 5 | 4L | 86 |
| | 5-22 | 18-25 | \|1.35-1.55| | 0.6-2 | \|0.05-0.08| | 3.0-5.9 | 1.0-2.0 | . 43 | . 43 | | | |
| | 22-27 | 27-35 | \|1.30-1.50| | 0.2-0.6 | \|0.05-0.08| | 3.0-5.9 | 1.0-2.0 | . 32 | . 32 | | | |
| | 27-37 | 10-18 | \|1.40-1.55| | 0.6-2 | \|0.12-0.16| | 0.0-2.9 | 0.0-0.5 | . 55 | . 55 | | | |
| | 37-43 | 27-30 | \|1.35-1.45| | 0.2-0.6 | \|0.17-0.20| | 3.0-5.9 | 0.0-0.5 | . 43 | . 43 | | | |
| | 43-60 | 15-27 | \|1.35-1.45| | 0.6-2 | \|0.14-0.17| | 3.0-5.9 | 0.0-0.5 | . 43 | . 43 | | | |
| Ausmus------------ | 0-2 | 10-20 | 1.00-1.20\| | 0.6-2 | \|0.10-0.13| | 0.0-2.9 | 1.0-3.0 | . 37 | . 37 | 5 | 3 | 86 |
| | 2-9 | 27-35 | \|1.20-1.30| | 0.2-0.6 | \|0.09-0.12| | 3.0-5.9 | 0.5-1.0 | . 43 | . 43 | | | |
| | 9-16 | 27-35 | \|1.20-1.30| | 0.2-0.6 | \|0.07-0.10| | 3.0-5.9 | 0.3-0.7 | . 43 | . 43 | | | |
| | 16-29 | 20-27 | \|1.00-1.20| | 0.6-2 | \|0.02-0.05| | 0.0-2.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 29-69 | 20-27 | \|1.00-1.20| | 0.6-2 | \|0.02-0.05| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| 192 : | | | | | | | | | | | | |
| McConnel----------- | 0-3 | 5-15 | \|1.40-1.60| | 2-6 | \|0.07-0.10| | 0.0-2.9 | 0.8-1.0 | . 17 | . 24 | 5 | 4 | 86 |
| | 3-11 | 5-15 | \|1.40-1.60| | 2-6 | \|0.07-0.11| | 0.0-2.9 | 0.5-1.0 | . 17 | . 24 | | | |
| | 11-62 | 2-5 | 1.50-1.60\| | 20-20 | \|0.02-0.05| | 0.0-2.9 | 0.0-0.5 | . 02 | . 17 | | | |
| | | | | | | | | | | | | |
| 193: | | | | | | | | | | | | |
| Merlin | 0-7 | 20-27 | 1.20-1.30\| | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 2.0-4.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 7-12 | 30-40 | \|1.30-1.40| | 0.2-0.6 | \|0.15-0.18| | 3.0-5.9 | 0.5-2.0 | . 24 | . 32 | | | |
| | 12-18 | 50-70 | 1.30-1.45\| | 0.0015-0.06\| | \|0.11-0.14| | 6.0-8.9 | 0.5-1.0 | . 20 | . 28 | | | |
| | 18-29 | --- | --- | \| --- | \| --- | | -- | -- | --- | --- | | | |
| 194 : | | | | | | | | | | | | |
| Merlin, very stony- | 0-7 | 20-27 | \|1.20-1.30| | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 2.0-4.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 7-12 | 30-40 | \|1.30-1.40| | 0.2-0.6 | \|0.15-0.18| | 3.0-5.9 | 0.5-2.0 | . 24 | . 32 | | | |
| | 12-18 | 50-70 | 1.30-1.45\| | 0.0015-0.06\| | \|0.11-0.14| | 6.0-8.9 | 0.5-1.0 | . 20 | . 28 | | | |
| | 18-29 | -- | --- | --- | --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \mid \text { Available } \mid \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$ | \mid Linear
 \mid extensi-
 \mid
 bility | Organic matter | \|Erosion factors | | | Wind \|erodi|bility group | \|Wind |erodi|bility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | Pct | g/cc | In/hr | In/in | Pct | Pct | | | | | |
| 194: | | | | | | | | | | | | |
| Merlin, very cobbly---\| | 0-7 | 20-27 | \|1.20-1.30| | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 2.0-4.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 7-12 | 30-40 | \|1.30-1.40| | 0.2-0.6 | \|0.15-0.18| | 3.0-5.9 | 0.5-2.0 | . 24 | . 32 | | | |
| | 12-18 | 50-70 | \|1.30-1.45| | 0.0015-0.06 | 0.11-0.14 | 6.0-8.9 | 0.5-1.0 | . 20 | . 28 | | | |
| | 18-29 | --- | --- | --- | \| --- | | \| --- | --- | --- | --- | | | |
| 195: | | | | | | | | | | | | |
| Merlin--------------- \| | 0-7 | 20-27 | \|1.20-1.30| | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 2.0-4.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 7-12 | 30-40 | \|1.30-1.40| | 0.2-0.6 | \|0.15-0.18| | 3.0-5.9 | 0.5-2.0 | . 24 | . 32 | | | |
| | 12-18 | 50-70 | \|1.30-1.45| | 0.0015-0.06 | 0.11-0.14 | 6.0-8.9 | 0.5-1.0 | . 20 | . 28 | | | |
| | 18-29 | --- | --- | --- | \| --- | --- | --- | -- | --- | | | |
| Ateron--------------- | 0-5 | 20-27 | \|1.20-1.30| | 0.6-2 | \|0.11-0.14| | 0.0-2.9 | 1.0-2.0 | . 24 | . 28 | 1 | 7 | 38 |
| | 5-12 | 27-35 | \|1.25-1.35| | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 1.0-2.0 | . 20 | . 32 | | | |
| | 12-18 | 40-50 | \|1.35-1.50| | 0.06-0.2 | \|0.05-0.10| | 6.0-8.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | 18-28 | --- | --- | - --- | --- | \| --- | --- | --- | - | | | |
| 196: | | | | | | | | | | | | |
| Merlin--------------- | 0-7 | 27-30 | \|1.20-1.30| | 0.6-2 | \|0.10-0.12| | 0.0-2.9 | 2.0-4.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 7-12 | 30-40 | \|1.30-1.40| | 0.2-0.6 | \|0.15-0.18| | 3.0-5.9 | 0.5-2.0 | . 24 | . 32 | | | |
| | 12-18 | 50-70 | \|1.30-1.45| | 0.0015-0.06 | \|0.11-0.14| | 6.0-8.9 | 0.5-1.0 | . 20 | . 28 | | | |
| | 18-29 | --- | --- | --- | \| --- | \| --- | --- | --- | --- | | | |
| Ateron--------------- \| | 0-5 | 20-27 | \|1.20-1.30| | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 1.0-2.0 | . 17 | . 28 | 1 | 8 | 0 |
| | 5-12 | 27-35 | \|1.25-1.35| | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 1.0-2.0 | . 20 | . 32 | | | |
| | 12-18 | 40-50 | \|1.35-1.50| | 0.06-0.2 | 0.05-0.10 | 6.0-8.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | $18-28$ | --- | --- | \| --- | . | --- | --- | -- | --- | | | |
| Rubble land- | 0-60 | --- | --- | --- | --- | --- | --- | --- | --- | | --- | --- |
| 197: | | | | | | | | | | | | |
| Merlin---------------- | $0-7$ | 20-27 | \|1.20-1.30 | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 2.0-4.0 | . 15 | . 28 | 1 | 8 | 0 |
| | $7-12$ | 30-40 | \|1.30-1.40 | 0.2-0.6 | \|0.15-0.18| | 3.0-5.9 | 0.5-2.0 | . 24 | . 32 | | | |
| | 12-18 | 50-70 | \|1.30-1.45 | 0.0015-0.06 | \|0.11-0.14| | 6.0-8.9 | 0.5-1.0 | . 20 | . 28 | | | |
| | 18-29 | --- | --- | - --- | \| --- | --- | --- | -- | --- | | | |
| Ateron--------------- | 0-5 | 20-27 | \|1.20-1.30 | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 1.0-2.0 | . 17 | . 28 | 1 | 8 | 0 |
| | 5-12 | 27-35 | \|1.25-1.35 | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 1.0-2.0 | . 20 | . 32 | 1 | | |
| | 12-18 | 40-50 | \|1.35-1.50 | 0.06-0.2 | 0.05-0.10 | 6.0-8.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | 18-28 | --- | --- | \| --- | --- | \| --- | --- | --- | --- | | | |
| Ticino---------------\| | 0-9 | 18-27 | \|1.30-1.40 | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 1.0-4.0 | . 20 | . 28 | 2 | 8 | 0 |
| | 9-26 | 25-35 | \|1.35-1.50 | 0.6-2 | \|0.10-0.17| | 3.0-5.9 | 0.5-2.0 | . 28 | . 32 | | | |
| | 26-29 | --- | --- | - --- | --- | \| --- | --- | --- | --- | | | |
| | 29-39 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |
| 198: | | | | | | | | | | | | |
| Merlin--------------- | 0-7 | 20-27 | \|1.20-1.30 | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 2.0-4.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 7-12 | 30-40 | \|1.30-1.40 | 0.2-0.6 | \|0.15-0.18| | 3.0-5.9 | 0.5-2.0 | . 24 | . 32 | | | |
| | 12-18 | 50-70 | \|1.30-1.45 | 0.0015-0.06 | \|0.11-0.14| | 6.0-8.9 | 0.5-1.0 | . 20 | . 28 | | | |
| | 18-29 | --- | --- | -- | \| --- | | \| --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |
| Erakatak-------------\| | 0-7 | 18-27 | \|1.30-1.40 | 0.6-2 | \|0.08-0.12| | 0.0-2.9 | 2.0-4.0 | . 10 | . 24 | 2 | 8 | 0 |
| | 7-16 | 35-40 | \|1.35-1.45 | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 1.0-2.0 | . 10 | . 28 | | | |
| | 16-25 | 40-55 | \|1.35-1.50 | 0.06-0.6 | \|0.06-0.11| | 6.0-8.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | 25-35 | --- | --- | \| --- | \| --- | | \| --- | --- | --- | --- | | | |
| Teguro--------------- | 0-2 | 18-27 | \|1.30-1.50| | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 2.0-4.0 | . 10 | . 28 | 1 | 8 | 0 |
| | 2-5 | 18-27 | \|1.30-1.50 | 0.2-0.6 | \|0.10-0.16| | 0.0-2.9 | 2.0-4.0 | . 20 | . 28 | | | |
| | 5-14 | 25-35 | \|1.30-1.50 | 0.2-0.6 | $\|0.10-0.13\|$ | 3.0-5.9 | 1.0-2.0 | . 24 | . 32 | | | |
| | 14-24 | - | --- | --- | --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Permea- bility ($\mathrm{K}_{\text {sat }}$)	$\begin{aligned} & \mid \text { Available } \mid \\ & \mid \text { water } \\ & \text { \|capacity } \mid \end{aligned}$	Linear \|extensibility	Organic matter	\|Erosion factors				Wind erodi\|bility group	\|Wind	erodi	bility	index					
								Kw	Kf	T											
	In	Pct	$g / c c$	In/ hr	In/in	Pct	PCt														
199:																					
Merlin-----------	0-7	27-30	\|1.20-1.30		0.6-2	\|0.10-0.12		0.0-2.9	2.0-4.0	. 15	. 28	1	8	0							
	7-12	30-40	\|1.30-1.40		0.2-0.6	\|0.15-0.18		3.0-5.9	0.5-2.0	. 24	. 32										
	12-18	50-70	\|1.30-1.45		0.0015-0.06\|	0.11-0.14	6.0-8.9	0.5-1.0	. 20	. 28											
	18-29	---	---	---	\| ---		\| ---	---	-	---											
Observation-------	0-4	18-27	\|1.40-1.50		0.6-2	\|0.07-0.10		0.0-2.9	2.0-4.0	. 20	. 28	2	8	0							
	4-8	20-27	\|1.40-1.50		0.6-2	\|0.12-0.15		0.0-2.9	1.0-3.0	. 24	. 32										
	8-23	35-50	\|1.30-1.50		0.06-0.2	\|0.13-0.16		6.0-8.9	0.5-1.0	. 24	. 28										
	23-33	---	---	\| ---	---	\| ---	---	---	---												
200:																					
Merlin-----------	0-7	27-30	\|1.20-1.30		0.6-2	\|0.10-0.12		0.0-2.9	2.0-4.0	. 15	. 28	1	8	0							
	7-12	30-40	\|1.30-1.40		0.2-0.6	\|0.15-0.18		3.0-5.9	0.5-2.0	. 24	. 32										
	12-18	50-70	\|1.30-1.45		0.0015-0.06\|	0.11-0.14	6.0-8.9	0.5-1.0	. 20	. 28											
	18-29	---	--- \|	--	--	\| ---	---	---	---												
Observation-------	0-4	18-27	\|1.40-1.50		0.6-2	\|0.07-0.10		0.0-2.9	2.0-4.0	. 20	. 28	2	8	0							
	4-8	20-27	\|1.40-1.50		0.6-2	\|0.12-0.15		0.0-2.9	1.0-3.0	. 24	. 32										
	8-23	35-50	\|1.30-1.50		0.06-0.2	0.13-0.16	6.0-8.9	0.5-1.0	. 24	. 28											
	23-33	---	--- \|	\| ---	---	\| ---	---	-	---												
201:																					
Merlin------------		27-30	\|1.20-1.30		0.6-2	\|0.10-0.12		0.0-2.9	2.0-4.0	. 15	. 28	1	8	0							
	7-12	30-40	\|1.30-1.40		0.2-0.6	\|0.15-0.18		3.0-5.9	0.5-2.0	. 24	. 32										
	12-18	50-70	\|1.30-1.45		0.0015-0.06\|	0.11-0.14	6.0-8.9	0.5-1.0	. 20	. 28											
	18-29	---	--- \|	\| ---	\| ---		- ---	---	---	---											
Rubble land-	0-60	---	---	---	---	---	---	---	---		---	---									
202:																					
Merlin-----------			\|1.20-1.30			\|0.08-0.11		0.0-2.9	2.0-4.0	. 15	. 28	1	8	0							
	$7-12$	30-40	\|1.30-1.40		0.2-0.6	\|0.15-0.18		3.0-5.9	0.5-2.0	. 24	. 32										
	12-18	50-70	\|1.30-1.45		0.0015-0.06	0.11-0.14	6.0-8.9	0.5-1.0	. 20	. 28											
	$18-29$	---	--- \|	- --	\| ---		---	---	-	---											
Teguro-----------	0-2	18-27	\|1.30-1.50		0.6-2	\|0.07-0.10		0.0-2.9	2.0-4.0	. 10	. 28	1	8	0							
	2-5	18-27	\|1.30-1.50		0.2-0.6	\|0.10-0.16		0.0-2.9	2.0-4.0	. 20	. 28	1	8								
	5-14	25-35	\|1.30-1.50		0.2-0.6	0.10-0.13	3.0-5.9	1.0-2.0	. 24	. 32											
	14-24	---	--- \|	\| ---	---	---	---	---	---												
203:																					
Merlin-----------	0-7	20-27	\|1.20-1.30		0.6-2	\|0.08-0.11		0.0-2.9	2.0-4.0	. 15	. 28	1	8	0							
	7-12	30-40	\|1.30-1.40		0.2-0.6	\|0.15-0.18		3.0-5.9	0.5-2.0	. 24	. 32										
	12-18	50-70	\|1.30-1.45		0.0015-0.06	\|0.11-0.14		6.0-8.9	0.5-1.0	. 20	. 28										
	18-29	---	--- \|	\| ---	\| ---		\| ---	---	---	---											
Teguro------------	0-2	18-27	\|1.30-1.50		0.6-2	\|0.07-0.10		0.0-2.9	2.0-4.0	. 10	. 28	1	8	0							
	2-5	18-27	\|1.30-1.50		0.2-0.6	\|0.10-0.16		0.0-2.9	2.0-4.0	. 20	. 28										
	5-14	25-35	\|1.30-1.50		0.2-0.6	\|0.10-0.13		3.0-5.9	1.0-2.0	. 24	. 32										
	14-24	---	--- \|		---	--	---	---	---												
204:																					
Mesman	0-4	2-5	\|1.10-1.30		6-20	\|0.06-0.09		0.0-2.9	0.5-1.0	. 43	. 43	5	2	134							
	4-26	18-35	\|1.20-1.35		0.2-0.6	\|0.01-0.09		3.0-5.9	0.5-1.0	. 32	. 32										
	26-62	10-30	\|1.30-1.45		0.06-0.2	\|0.01-0.09		0.0-2.9	0.0-0.5	. 37	. 37										
205:																					
Mesman------------	0-4	5-10	\|1.10-1.30		2-6	\|0.07-0.10		0.0-2.9	1.0-2.0	. 37	. 37	5	3	86							
	4-26	18-35	\|1.20-1.35		0.2-0.6	\|0.01-0.09		3.0-5.9	0.5-1.0	. 32	. 32										
	26-62	10-30	\|1.30-1.45		0.06-0.2	\|0.01-0.09		0.0-2.9	0.0-0.5	. 37	. 37										
206:																					
Mesman	0-4	5-10	\|1.10-1.30		2-6	\|0.07-0.10		0.0-2.9	1.0-2.0	. 37	. 37	5	3	86							
	4-26	18-35	\|1.20-1.35		0.2-0.6	\|0.01-0.09		3.0-5.9	0.5-1.0	. 32	. 32										
	26-62	10-30	\|1.30-1.45		0.06-0.2	\|0.01-0.09		0.0-2.9	0.0-0.5	. 37	. 37										

Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Permea- bility ($\mathrm{K}_{\text {sat }}$)	$\begin{aligned} & \mid \text { Available } \mid \\ & \mid \text { water } \mid \\ & \mid \text { capacity } \mid \end{aligned}$	Linear \|extensibility	Organic matter	\|Erosion factors			Wind \|erodi	bility	group	\|Wind	erodi	bility	index				
								Kw	Kf	T											
	In	Pct	$g / c c$	In/hr	In/in	Pct	PCt														
206:																					
Norad----------------- \|	0-3	20-27	1.10-1.30	0.6-2	\|0.21-0.23	0.0-2.9	1.0-2.0	. 28	. 28	5	6	48									
	3-23	27-45	1.20-1.40	0.06-0.2	\|0.16-0.23		3.0-5.9	0.5-2.0	. 37	. 37											
	23-34	27-35	\|1.20-1.40	0.06-0.2	0.21-0.23	3.0-5.9	0.0-0.5	. 37	. 37												
	34-61	20-40	1.50-1.60	0.06-0.2	0.21-0.23	3.0-5.9	0.0-0.5	. 32	. 32												
207:																					
Middlebox------------ \|	0-4	15-20	1.10-1.20	2-6	\|0.08-0.10	0.0-2.9	0.5-1.0	. 24	. 28	3	4	86									
	4-10	15-30	1.10-1.20	2-6	\|0.06-0.09	0.0-2.9	0.0-0.5	. 15	. 28												
	10-35	15-30	\|1.10-1.20	2-6	0.06-0.09	0.0-2.9	0.0-0.5	. 15	. 28												
	35-45	---	---	---	---	---	---	---	---												
208:																					
Middlebox, north																					
slopes--------------	0-4	15-20	\|1.10-1.20	2-6	\|0.08-0.10	0.0-2.9	0.5-1.0	. 24	. 28	3	4	86									
	4-10	15-30	\|1.10-1.20	2-6	\|0.06-0.09	0.0-2.9	0.0-0.5	. 15	. 28												
	10-35	15-30	1.10-1.20	2-6	\|0.06-0.09	0.0-2.9	0.0-0.5	. 15	. 28												
	35-45	---	---	---	---	---	---	---	---												
Middlebox, south																					
slopes--------------\|	0-4	15-20	1.10-1.20	2-6	\|0.08-0.10	0.0-2.9	0.5-1.0	. 24	. 28	3	4	86									
	4-10	15-30	1.10-1.20	2-6	\|0.06-0.09	0.0-2.9	0.0-0.5	. 15	. 28												
	10-35	15-30	1.10-1.20	2-6	\|0.06-0.09	0.0-2.9	0.0-0.5	. 15	. 28												
	35-45	---	---	---	---	---	---	---	---												
209:																					
Minam---------------- \|	0-3	15-25	\|1.20-1.30	0.6-2	\|0.15-0.18	0.0-2.9	3.0-7.0	. 24	. 24	5	6	48									
	3-29	18-27	\|1.25-1.35	0.6-2	\|0.12-0.15	0.0-2.9	1.0-5.0	. 24	. 28												
	29-39	18-27	1.25-1.35	0.6-2	\|0.14-0.17		0.0-2.9	1.0-2.0	. 32	. 32											
	39-52	20-30	\|1.35-1.50	0.6-2	\|0.13-0.16		0.0-2.9	0.5-1.0	. 24	. 28											
	52-62	15-20	\|1.35-1.50	2-6	\|0.07-0.10	0.0-2.9	0.0-0.5	. 24	. 28												
210:																					
Minam---------------- \|	0-3	15-25	\|1.20-1.30	0.6-2	\|0.15-0.18	0.0-2.9	3.0-7.0	. 24	. 24	5	6	48									
	3-29	18-27	1.25-1.35	0.6-2	\|0.12-0.15	0.0-2.9	1.0-5.0	. 24	. 28												
	29-39	18-27	\|1.25-1.35	0.6-2	\|0.14-0.17		0.0-2.9	1.0-2.0	. 32	. 32											
	39-52	20-30	\|1.35-1.50	0.6-2	\|0.13-0.16		0.0-2.9	0.5-1.0	. 24	. 28											
	52-62	15-20	1.35-1.50	2-6	\|0.07-0.10	0.0-2.9	0.0-0.5	. 24	. 28												
Welch----------------- \|	0-5	15-20	1.25-1.40	0.6-2	\|0.16-0.18	0.0-2.9	2.0-4.0	. 32	. 32	5	5	56									
	5-60	20-35	1.30-1.45	0.2-0.6	\|0.16-0.21	3.0-5.9	0.5-3.0	. 28	. 55												
211:																					
Modoc-----------------	0-2	10-15	\|1.40-1.50	2-6	\|0.08-0.11		0.0-2.9	1.0-2.0	. 15	. 20	2	3	86								
	2-13	15-20	1.30-1.40	0.6-2	\|0.14-0.17		0.0-2.9	1.0-2.0	. 28	. 28											
	13-22	20-27	1.30-1.40	0.6-2	\|0.14-0.17		3.0-5.9	0.5-1.0	. 28	. 28											
	22-25	27-35	1.30-1.40	0.2-0.6	\|0.12-0.15	3.0-5.9	0.5-1.0	. 20	. 28												
	25-41	0-0	---	---	\|0.00-0.00	\| ---	---	---	---												
	41-60	5-10	1.40-1.60	6-20	\|0.00-0.00	0.0-2.9	0.0-0.5	. 05	. 17												
212:																					
Morfitt-------------- \|	0-2	18-27	1.20-1.30	0.6-2	\|0.14-0.17		0.0-2.9	1.0-2.0	. 37	. 37	5	6	48								
	2-41	25-35	\|1.30-1.40	0.2-0.6	\|0.16-0.19	3.0-5.9	0.5-2.0	. 32	. 32												
	41-60	20-30	1.35-1.50	0.6-2	\|0.14-0.18	0.0-2.9	0.0-0.5	. 37	. 37												
213:																					
Morganhills---------- \|	0-8	5-18	1.30-1.50	2-6	\|0.10-0.12		0.0-2.9	0.5-1.0	. 28	. 28	2	3	86								
	8-15	5-20	1.30-1.50	2-6	\|0.08-0.10	0.0-2.9	0.0-0.5	. 24	. 28												
	15-17	5-20	1.30-1.50	2-6	\|0.06-0.08	0.0-2.9	0.0-0.5	. 20	. 28												
	17-27	---	---	---	\| ---	---	---	---	---												
214:																					
Morganhills, more than\|																					
12 percent slopes----	0-8	5-18	1.30-1.50	2-6	\|0.10-0.12		0.0-2.9	0.5-1.0	. 28	. 28	2	3	86								
	8-15	5-20	1.30-1.50	2-6	\|0.08-0.10	0.0-2.9	0.0-0.5	. 24	. 28												
	15-17	5-20	1.30-1.50	2-6	\|0.06-0.08	0.0-2.9	0.0-0.5	. 20	. 28												
	17-27	---	---	---	---	---	---	---	---												

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist
 bulk
 density | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | Available
 water capacity | Linearbility | Organic matter | \|Erosi | fa | ors | Wind \|erodi- | \|Wind |erodi- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | \|bility group | \|bility
 index |
| | In | Pct | g / cc | In/hr | In/in | Pct | Pct | | | | | |
| 223: | | | | | | | | | | | | |
| Ninemile--------- | 0-4 | 27-30 | 1.35-1.50 | 0.2-0.6 | \|0.08-0.12| | 3.0-5.9 | 1.0-3.0 | . 17 | . 32 | 1 | 8 | 0 |
| | 4-16 | 40-60 | 1.30-1.50 | 0.0015-0.06\| | \|0.10-0.13| | 6.0-8.9 | 1.0-2.0 | . 24 | . 28 | | | |
| | 16-26 | --- | --- | --- | \| --- | | \| --- | --- | --- | - | | | |
| Madeline---------- | 0-2 | 27-30 | 1.40-1.50 | 0.6-2 | \|0.13-0.16| | 3.0-5.9 | 1.0-2.0 | . 24 | . 28 | 1 | 7 | 38 |
| | 2-10 | 35-40 | 1.45-1.55 | 0.2-0.6 | \|0.15-0.18| | 3.0-5.9 | 1.0-2.0 | . 32 | . 32 | | | |
| | 10-19 | 35-50 | 1.35-1.55 | 0.06-0.2 | \|0.13-0.17| | 6.0-8.9 | 0.5-1.0 | . 24 | . 28 | | | |
| | 19-29 | --- | --- | --- | --- | \| --- | --- | --- | - | | | |
| 224: | | | | | | | | | | | | |
| Ninemile---------- | 0-4 | 27-30 | 1.35-1.50 | 0.2-0.6 | \|0.08-0.12| | 3.0-5.9 | 1.0-3.0 | . 17 | . 32 | 1 | 8 | 0 |
| | 4-16 | 40-60 | 1.30-1.50 | 0.0015-0.06 | 0.10-0.13 | 6.0-8.9 | 1.0-2.0 | . 24 | . 28 | | | |
| | 16-26 | --- | --- | --- | \| --- | | \| --- | --- | | --- | | | |
| Pearlwise--------- | 0-6 | 27-35 | 1.20-1.30 | 0.6-2 | \|0.15-0.18| | 0.0-2.9 | 2.0-4.0 | . 24 | . 24 | 2 | 6 | 48 |
| | 6-22 | 20-35 | 1.25-1.45 | 0.6-2 | \|0.13-0.18| | 0.0-2.9 | 1.0-3.0 | . 28 | . 28 | | | |
| | 22-32 | --- | --- | --- | --- \| | \| --- | --- | --- | --- | | | |
| 225: | | | | | | | | | | | | |
| Ninemile--------- | 0-4 | 15-27 | 1.35-1.50 | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 1.0-3.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 4-16 | 40-60 | 1.30-1.50 | 0.0015-0.06 | \|0.10-0.13| | 6.0-8.9 | 1.0-2.0 | . 24 | . 28 | | | |
| | 16-26 | --- | --- | --- | \| --- | | \| --- | --- | --- | --- | | | |
| Reluctan---------- | 0-2 | 15-25 | 1.30-1.40 | 0.6-2 | \|0.12-0.15| | 0.0-2.9 | 1.0-2.0 | . 24 | . 28 | 2 | 7 | 38 |
| | 2-9 | 15-25 | 1.40-1.50 | 0.6-2 | \|0.12-0.15| | 0.0-2.9 | 1.0-2.0 | . 28 | . 32 | | | |
| | 9-26 | 25-35 | 1.40-1.50 | 0.2-0.6 | \|0.14-0.17| | 3.0-5.9 | 0.5-2.0 | . 28 | . 32 | | | |
| | 26-36 | --- | --- | --- | --- \| | \| --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |
| 226: | | | | | | | | | | | | |
| Ninemile--------- | 0-4 | 15-27 | 1.35-1.50 | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 1.0-3.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 4-16 | 40-60 | 1.30-1.50 | 0.0015-0.06\| | \|0.10-0.13| | 6.0-8.9 | 1.0-2.0 | . 24 | . 28 | | | |
| | 16-26 | --- | --- | --- | \| --- | | \| --- | --- | --- | --- | | | |
| Reluctan---------- | 0-2 | 15-25 | 1.30-1.40 | 0.6-2 | \|0.14-0.17| | 0.0-2.9 | 1.0-2.0 | . 28 | . 28 | 2 | 6 | 48 |
| | 2-9 | 15-25 | 1.40-1.50 | 0.6-2 | \|0.12-0.15| | 0.0-2.9 | 1.0-2.0 | . 28 | . 32 | | | |
| | 9-26 | 25-35 | 1.40-1.50 | 0.2-0.6 | \|0.14-0.17| | 3.0-5.9 | 0.5-2.0 | . 28 | . 32 | | | |
| | 26-36 | --- | --- | --- | --- \| | \| --- | --- | --- | --- | | | |
| Rubble land- | 0-60 | --- | --- | --- | --- | --- | --- | --- | --- | - | -- | --- |
| 227: | | | | | | | | | | | | |
| Ninemile--------- | 0-4 | 15-27 | 1.35-1.50 | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 1.0-3.0 | . 15 | . 28 | 1 | 8 | - |
| | 4-16 | 40-60 | 1.30-1.50 | 0.0015-0.06\| | \|0.10-0.13| | 6.0-8.9 | 1.0-2.0 | . 24 | . 28 | | | |
| | 16-26 | --- | --- | --- | \| --- | | \| --- | --- | --- | --- | | | |
| Rock outcrop--- | 0-60 | -- | --- | --- | --- | --- | --- | --- | --- | -- | --- | -- |
| 228: | | | | | | | | | | | | |
| Ninemile---------- | 0-4 | 15-27 | 1.35-1.50 | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 1.0-3.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 4-16 | 40-60 | 1.30-1.50 | 0.0015-0.06\| | \|0.10-0.13| | 6.0-8.9 | 1.0-2.0 | . 24 | . 28 | | | |
| | 16-26 | --- | --- | --- | \| --- | | \| --- | --- | --- | --- | | | |
| Rubble land- | 0-60 | --- | --- | - | - | --- | --- | --- | - | -- | --- | --- |
| 229: | | | | | | | | | | | | |
| Ninemile---------- | 0-4 | 15-27 | 1.35-1.50 | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 1.0-3.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 4-16 | 40-60 | 1.30-1.50 | 0.0015-0.06 | \|0.10-0.13| | 6.0-8.9 | 1.0-2.0 | . 24 | . 28 | | | |
| | 16-26 | --- | --- | --- | --- | --- | -- | --- | --- | | | |
| Westbutte--------- | 0-12 | 15-27 | 1.20-1.40 | 0.6-2 | \|0.05-0.08| | 0.0-2.9 | 2.0-3.0 | . 10 | . 28 | 2 | 8 | 0 |
| | 12-24 | 18-30 | 1.30-1.50 | 0.6-2 | \|0.07-0.11| | 0.0-2.9 | 1.0-2.0 | . 15 | . 32 | | | |
| | 24-34 | - | --- | --- | --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist
 bulk
 density | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \mid \text { Available } \mid \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$ | Linear \|extensibility | Organic matter | \|Erosion factors| | | | Wind erodi\|bility group | \|Wind erodi|bility index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | Pct | $g / c c$ | In/hr | In/in | Pct | PCt | | | | | |
| 230: | | | | | | | | | | | | |
| Ninemile, very cobbly | 0-4 | 27-30 | \|1.35-1.50 | 0.2-0.6 | 0.08-0.12 | 3.0-5.9 | 1.0-3.0 | . 17 | . 32 | 1 | 8 | 0 |
| | 4-16 | 40-60 | \|1.30-1.50| | 0.0015-0.06\| | 0.10-0.13 | 6.0-8.9 | 1.0-2.0 | . 24 | . 28 | | | |
| | 16-26 | --- | --- | --- | --- | --- | --- | --- | - | | | |
| Westbutte------------ \| | 0-12 | 15-27 | \|1.20-1.40 | 0.6-2 | \|0.05-0.08| | 0.0-2.9 | 2.0-3.0 | . 10 | . 28 | 2 | 8 | 0 |
| | 12-24 | 18-30 | \|1.30-1.50 | 0.6-2 | 0.07-0.11 | 0.0-2.9 | 1.0-2.0 | . 15 | . 32 | | | |
| | 24-34 | --- | --- | \| --- | --- | --- | --- | --- | - | | | |
| Ninemile, extremely | | | | | | | | | | | | |
| stony--------------- | 0-4 | 15-27 | \|1.25-1.30 | 0.6-2 | 0.05-0.08 | 0.0-2.9 | 1.0-3.0 | . 05 | . 37 | 1 | 8 | 0 |
| | 4-16 | 40-60 | \|1.30-1.50| | 0.0015-0.06\| | 0.10-0.13 | 6.0-8.9 | 1.0-2.0 | . 24 | . 28 | | | |
| | 16-26 | | --- | --- | --- \| | --- | --- | . | --- | | | |
| 231: | | | | | | | | | | | | |
| Ninemile, very cobbly | 0-4 | 27-30 | \|1.35-1.50 | 0.2-0.6 | \|0.08-0.12 | 3.0-5.9 | 1.0-3.0 | . 17 | . 32 | 1 | 8 | 0 |
| | 4-16 | 40-60 | \|1.30-1.50| | 0.0015-0.06 | 0.10-0.13 | 6.0-8.9 | 1.0-2.0 | . 24 | . 28 | | | |
| | 16-26 | --- | --- | \| --- | \| --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |
| stony | 0-4 | 15-27 | \|1.25-1.30| | 0.6-2 | \|0.05-0.08| | 0.0-2.9 | 1.0-3.0 | . 05 | . 37 | 1 | 8 | 0 |
| | 4-16 | 40-60 | \|1.30-1.50| | 0.0015-0.06\| | \|0.10-0.13| | 6.0-8.9 | 1.0-2.0 | . 24 | . 28 | | | |
| | 16-26 | --- | --- | -- | -- | -- | --- | --- | --- | | | |
| 232: | | | | | | | | | | | | |
| Ninemile------------- | 0-4 | 27-30 | \|1.35-1.50 | 0.2-0.6 | 0.08-0.12 | 3.0-5.9 | 1.0-3.0 | . 17 | . 32 | 1 | 8 | 0 |
| | 4-16 | 40-60 | \|1.30-1.50| | 0.0015-0.06\| | 0.10-0.13 | 6.0-8.9 | 1.0-2.0 | . 24 | . 28 | | | |
| | 16-26 | --- | --- | --- | \| --- | | \| --- | --- | --- | --- | | | |
| Felcher-------------- | 0-10 | 27-30 | \|1.20-1.30 | 0.6-2 | \|0.10-0.13| | 0.0-2.9 | 1.0-2.0 | . 24 | . 32 | 2 | 7 | 38 |
| | 10-22 | 20-35 | \|1.20-1.30 | 0.2-0.6 | \|0.12-0.15| | 3.0-5.9 | 0.5-1.0 | . 10 | . 37 | | | |
| | 22-32 | --- | --- | --- | --- \| | \| --- | --- | --- | --- | | | |
| 233 : | | | | | | | | | | | | |
| Noname--------------- \| | 0-3 | 27-30 | \|1.30-1.50 | 0.2-0.6 | \|0.13-0.16| | 3.0-5.9 | 1.0-2.0 | . 20 | . 28 | 1 | 7 | 38 |
| | 3-12 | 20-35 | \|1.30-1.50 | 0.2-0.6 | \|0.13-0.17| | 3.0-5.9 | 0.5-1.0 | . 28 | . 32 | | | |
| | 12-22 | --- | --- | \| --- | --- | \| --- | --- | --- | --- | | | |
| Dickle--------------- | 0-3 | 27-35 | \|1.20-1.40| | 0.2-0.6 | \|0.10-0.13| | 3.0-5.9 | 2.0-5.0 | . 15 | . 24 | 1 | 8 | 0 |
| | 3-14 | 27-35 | \|1.30-1.50 | 0.2-0.6 | \|0.13-0.17| | 3.0-5.9 | 1.0-2.0 | . 28 | . 32 | | | |
| | 14-24 | --- | --- | \| --- | --- \| | \| --- | --- | --- | - | | | |
| 234: | | | | | | | | | | | | |
| Noname---------------- | 0-3 | 20-27 | \|1.30-1.50 | 0.6-2 | \|0.10-0.13| | 0.0-2.9 | 1.0-2.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 3-12 | 20-35 | \|1.30-1.50 | 0.2-0.6 | \|0.13-0.17| | 3.0-5.9 | 0.5-1.0 | . 28 | . 32 | | | |
| | 12-22 | --- | --- | \| --- | --- | \| --- | --- | --- | --- | | | |
| Duff----------------- | 0-8 | 18-27 | \|1.20-1.40 | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 3.0-8.0 | . 10 | . 20 | 3 | 8 | 0 |
| | 8-24 | 18-27 | \|1.30-1.40 | 0.6-2 | \|0.10-0.17| | 0.0-2.9 | 2.0-4.0 | . 20 | . 24 | | | |
| | 24-43 | 18-27 | \|1.40-1.50 | 0.6-2 | \|0.07-0.14| | 0.0-2.9 | 0.5-2.0 | . 17 | . 28 | | | |
| | 43-53 | --- | --- | -- | -- | -- | - | --- | --- | | | |
| Rock outcrop--------- | 0-60 | --- | --- | --- | -- | --- | --- | -- | --- | -- | --- | --- |
| 235: | | | | | | | | | | | | |
| Norad----------------- \| | 0-3 | 20-27 | \|1.10-1.30 | 0.6-2 | \|0.21-0.23| | 0.0-2.9 | 1.0-2.0 | . 28 | . 28 | 5 | 6 | 48 |
| | 3-23 | 27-45 | \|1.20-1.40 | 0.06-0.2 | \|0.16-0.23| | 3.0-5.9 | 0.5-2.0 | . 37 | . 37 | | | |
| | 23-34 | 27-35 | \|1.20-1.40 | 0.06-0.2 | \|0.21-0.23| | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 34-61 | 20-40 | \|1.50-1.60 | 0.06-0.2 | \|0.21-0.23| | 3.0-5.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Permea- bility ($\mathrm{K}_{\text {sat }}$)	$\begin{aligned} & \mid \text { Available } \mid \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$	Linear \|extensibility	Organic matter	\|Erosion factors			Wind erodibility group	\|Wind erodi	bility index	
								Kw	Kf	T				
	In	Pct	$g / c c$	$\mathrm{In} / \mathrm{hr}$	In/in	Pct	PCt							
260:														
Playas-	0-60	35-70	\|1.10-1.50		0.0015-0.06	\|0.02-0.04		6.0-8.9	0.0-0.1	. 37	. 37	5	4L	86
Thenarrows-------	0-3	10-18	\|1.35-1.55		2-6	0.06-0.09	0.0-2.9	1.0-2.0	. 32	. 32	5	3	86	
	3-14	10-18	\|1.35-1.55		2-6	0.06-0.09	0.0-2.9	1.0-2.0	. 32	. 32				
	14-22	5-18	\|1.35-1.65		2-20	0.06-0.09	0.0-2.9	0.0-0.5	. 28	. 28				
	22-31	10-18	\|1.45-1.60		2-6	0.08-0.10	0.0-2.9	0.0-0.5	. 32	. 32				
	31-54	5-18	\|1.35-1.65		2-20	0.05-0.10	0.0-2.9	0.0-0.5	. 28	. 28				
	54-60	5-10	\|1.45-1.65		6-20	0.05-0.07\|	0.0-2.9	0.0-0.5	. 28	. 28				
261:														
Poall------------	0-8	18-27	\|1.20-1.30		0.6-2	\|0.15-0.18		0.0-2.9	0.5-1.0	. 37	. 37	5	6	48
	8-17	40-50	\|1.25-1.35		0.06-0.2	\|0.12-0.15		6.0-8.9	0.0-0.5	. 28	. 28			
	17-33	35-40	\|1.25-1.40		0.2-0.6	\|0.14-0.17		3.0-5.9	0.0-0.5	. 28	. 32			
	33-65	27-40	\|1.25-1.40		0.2-0.6	0.14-0.17	3.0-5.9	0.0-0.5	. 28	. 32				
262:														
Poall------------	0-8	18-27	\|1.20-1.30		0.6-2	\|0.15-0.18		0.0-2.9	0.5-1.0	. 37	. 37	5	6	48
	8-17	40-50	\|1.25-1.35		0.06-0.2	\|0.12-0.15		6.0-8.9	0.0-0.5	. 28	. 28			
	17-33	35-40	\|1.25-1.40		0.2-0.6	\|0.14-0.17		3.0-5.9	0.0-0.5	. 28	. 32			
	33-65	27-40	\|1.25-1.40		0.2-0.6	0.14-0.17	3.0-5.9	0.0-0.5	. 28	. 32				
Gumble-----------	0-3	18-27	\|1.25-1.35		0.6-2	\|0.08-0.11		0.0-2.9	0.5-1.0	. 20	. 37	2	8	0
	3-8	18-27	\|1.35-1.45		- 0.6-2	\|0.13-0.15		0.0-2.9	0.5-1.0	. 32	. 32			
	8-14	35-50	\|1.30-1.45		0.06-0.6	\|0.10-0.17		6.0-8.9	0.0-0.5	. 24	. 28			
	14-16	30-40	\|1.30-1.45		0.2-0.6	0.13-0.17	3.0-5.9	0.0-0.5	. 37	. 37				
	16-26	---	--- \|	\| ---	---	\| ---	---	---	---					
263 :														
Pomerening--------	0-4	5-10	\|1.40-1.60		20-20	\|0.02-0.05		0.0-2.9	1.0-2.0	. 02	. 17	5	4	86
	4-9	2-10	\|1.40-1.60		20-20	\|0.02-0.05		0.0-2.9	0.0-0.5	. 02	. 15			
	9-62	2-10	\| 1.40-1.60		20-20	\|0.02-0.05		0.0-2.9	0.0-0.5	. 02	. 15			
264:														
Pomerening-------	0-4	5-15	\|1.40-1.60		20-20	\|0.05-0.08		0.0-2.9	1.0-2.0	. 02	. 20	5	5	56
	4-9	2-10	\|1.40-1.60		20-20	\|0.02-0.05		0.0-2.9	0.0-0.5	. 02	. 15			
	9-62	2-10	\|1.40-1.60		20-20	\|0.02-0.05		0.0-2.9	0.0-0.5	. 02	. 15			
Flank------------	0-1	5-15	\|1.30-1.50		2-6	\|0.06-0.09		0.0-2.9	1.0-2.0	. 15	. 28	1	5	56
	1-9	5-18	\|1.30-1.50		0.6-6	\|0.07-0.10		0.0-2.9	0.0-0.5	. 15	. 28			
	9-19	---	--- \|	\| ---	---	\| ---	---	---	---					
Lava flows-	0-60	---	---	---	---	---	---	---	---	-	---	---		
265:														
Porterfield------	0-6	18-27	\|1.40-1.50		0.6-2	\|0.14-0.17		0.0-2.9	0.5-0.9	. 28	. 28	2	6	48
	6-14	18-30	\|1.40-1.50		0.6-2	\|0.10-0.16		0.0-2.9	0.0-0.5	. 24	. 32			
	14-24	---	---	\| ---	---	\| ---	---	-	---					
266:														
Porterfield-------			\|1.40-1.50		0.6-2	\|0.07-0.10		0.0-2.9	0.5-0.9	. 17	. 28	2	8	0
	6-14	18-30	\|1.40-1.50		0.6-2	\|0.10-0.16		0.0-2.9	0.0-0.5	. 24	. 32			
	14-24	---	--- \|	---	---	---	---	-	--					
267:														
Porterfield------	0-6	18-27	\|1.40-1.50		0.6-2	\|0.07-0.10		0.0-2.9	0.5-0.9	. 17	. 28	2	8	0
	6-14	18-30	\|1.40-1.50		0.6-2	\|0.10-0.16		0.0-2.9	0.0-0.5	. 24	. 32			
	14-24	---	--- \|	\| ---	\| ---		--	--	---	---				
Tincan------------	0-10	20-27	\|1.35-1.45		0.6-2	\|0.12-0.15		0.0-2.9	1.0-2.0	. 28	. 37	2	7	38
	10-16	20-27	\|1.35-1.45		\| 0.6-2	\|0.12-0.15		0.0-2.9	1.0-2.0	. 28	. 37			
	16-26	---	---	---	---	---	---	---	---					
Rock outcrop-----	0-60	---	---	---	---	---	---	---	---	---	---	---		

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Permea- bility ($\mathrm{K}_{\text {sat }}$)	$\begin{aligned} & \mid \text { Available } \mid \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$	Linear \|extensibility	Organic matter	Erosion factors			Wind \|erodi	bility group	\|Wind	erodi	bility \|index						
								Kw	Kf	T											
	In	Pct	$g / c c$	In/ hr	In/in	Pct	PCt														
275:																					
Reallis----------	0-9	5-15	1.35-1.45\|	0.6-2	\|0.10-0.12		0.0-2.9	1.0-2.0	. 32	. 32	5	3	86								
	9-17	5-15	\|1.35-1.45		0.6-2	\|0.10-0.12		0.0-2.9	0.5-1.0	. 37	. 37										
	17-27	5-15	\|1.50-1.60		0.2-0.6	\|0.07-0.09		0.0-2.9	0.0-0.5	. 24	. 24										
	27-60	2-15	\|1.40-1.50		0.6-2	\|0.04-0.11		0.0-2.9	0.0-0.5	. 20	. 24										
276:																					
Reese------------	0-4	20-27	1.30-1.45\|	0.2-0.6	\|0.01-0.03		0.0-2.9	1.0-3.0	. 32	. 32	5	4	86								
	4-10	20-27	\|1.30-1.45		0.2-0.6	\|0.01-0.03		0.0-2.9	0.5-1.0	. 32	. 32										
	10-33	20-30	\|1.30-1.50		0.06-0.2	\|0.01-0.03		3.0-5.9	0.0-0.5	. 32	. 32										
	33-44	10-27	\|1.40-1.55		0.6-2	\|0.03-0.06		0.0-2.9	0.0-0.5	. 28	. 28										
	44-60	20-27	1.40-1.55\|	0.2-0.6	\|0.05-0.08		0.0-2.9	0.0-0.5	. 32	. 32											
277:																					
Reluctan---------	0-2	15-25	\|1.30-1.40		0.6-2	\|0.14-0.17		0.0-2.9	1.0-2.0	. 28	. 28	2	6	48							
	2-9	15-25	\|1.40-1.50		0.6-2	\|0.12-0.15		0.0-2.9	1.0-2.0	. 28	. 32										
	9-26	25-35	1.40-1.50\|	0.2-0.6	\|0.14-0.17		3.0-5.9	0.5-2.0	. 28	. 32											
	26-36	---	---	---	---	---	---	---	-												
278:																					
Reluctan---------	0-2	15-25	\|1.30-1.40		0.6-2	\|0.08-0.11		0.0-2.9	1.0-2.0	. 17	. 43	2	8	0							
	2-9	15-25	1.40-1.50\|	0.6-2	\|0.12-0.15		0.0-2.9	1.0-2.0	. 24	. 28											
	9-15	25-35	\|1.40-1.50		0.2-0.6	\|0.14-0.17		3.0-5.9	1.0-2.0	. 28	. 32										
	15-26	25-35	\|1.40-1.50		0.2-0.6	\|0.14-0.17		3.0-5.9	0.5-1.0	. 28	. 32										
	26-36	---	---	---	---	---	---	---	---												
279:																					
Riddleranch------	0-7	15-20	\|1.20-1.30		2-6	\|0.05-0.09		0.0-2.9	1.0-3.0	. 17	. 32	2	5	56							
	7-16	18-35	1.20-1.35\|	0.6-2	\|0.07-0.12		0.0-2.9	1.0-2.0	. 10	. 37											
	16-27	18-35	\|1.25-1.45		0.6-2	\|0.05-0.08		0.0-2.9	0.0-1.0	. 10	. 37										
	27-37	---	---	---	---	---	---	---	---												
Lambring---------	0-7	15-27	1.20-1.40	0.6-2	\|0.07-0.10	0.0-2.9	2.0-3.0	. 15	. 28	5	8	0									
	7-12	15-27	1.25-1.45	0.6-2	\|0.10-0.13		0.0-2.9	1.0-3.0	. 20	. 28											
	12-21	15-27	\|1.25-1.45		0.6-2	\|0.07-0.13		0.0-2.9	1.0-2.0	. 17	. 32										
	21-60	15-27	\|1.30-1.50		0.6-2	\|0.07-0.10		0.0-2.9	0.5-1.0	. 15	. 32										
Rock outcrop-	0-60	---	---	---	---	---	---	---	---	--	---	---									
280:																					
Riddleranch------	0-7	15-27	1.20-1.30\|	0.6-2	\|0.07-0.10		0.0-2.9	1.0-3.0	. 17	. 32	2	8	0								
	7-16	18-35	\|1.20-1.35		0.6-2	\|0.07-0.12		0.0-2.9	1.0-2.0	. 10	. 37										
	16-27	18-35	1.25-1.45\|	0.6-2	\|0.05-0.08		0.0-2.9	0.0-1.0	. 10	. 37											
	27-37	---	--- \|	---	---	---	---	---	---												
Rock outcrop	0-60	---	---	---	---	---	---	---		--	---	---									
281:																					
Rinconflat-------	0-4	15-27	1.30-1.50\|	0.6-2	\|0.11-0.15		0.0-2.9	1.0-2.0	. 24	. 32	5	7	38								
	4-13	18-27	\|1.30-1.50		0.6-2	\|0.11-0.14		0.0-2.9	0.5-1.0	. 24	. 32										
	13-29	18-27	\|1.40-1.50		0.6-2	\|0.08-0.11		0.0-2.9	0.0-0.5	. 20	. 37										
	29-61	10-27	\|1.40-1.50		0.6-2	\|0.06-0.10		0.0-2.9	0.0-0.5	. 20	. 32										
	282 :																				
Rio King----------																					
	0-4	10-18	1.30-1.40\|	0.6-2	\|0.15-0.18		0.0-2.9	1.0-2.0	. 24	. 24	5	5	56								
	4-17	10-18	\|1.30-1.40		0.6-2	\|0.15-0.18		0.0-2.9	1.0-2.0	. 24	. 24										
	17-27	10-18	\|1.30-1.40		0.6-2	\|0.15-0.18		0.0-2.9	0.5-1.0	. 28	. 28										
	27-45	10-18	1.40-1.50\|	0.6-2	\|0.14-0.17		0.0-2.9	0.5-1.0	. 32	. 32											
	45-64	10-18	1.40-1.50\|	2-6	\|0.12-0.15		0.0-2.9	0.5-1.0	. 32	. 32											
	283 :																				
Rio King----------	0-4	10-18	\|1.30-1.40		0.6-2	\|0.15-0.18		0.0-2.9	1.0-2.0	. 24	. 24	5	5	56							
	4-17	10-18	\|1.30-1.40		0.6-2	\|0.15-0.18		0.0-2.9	1.0-2.0	. 24	. 24										
	17-27	10-18	\|1.30-1.40		0.6-2	\|0.15-0.18		0.0-2.9	0.5-1.0	. 28	. 28										
	27-45	10-18	\|1.40-1.50		0.6-2	\|0.14-0.17		0.0-2.9	0.5-1.0	. 32	. 32										
	45-64	10-18	\|1.40-1.50		2-6	\|0.12-0.15		0.0-2.9	0.5-1.0	. 32	. 32										

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist
 bulk
 density | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \mid \text { Available\| } \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$ | Linear
 extensi-
 bility | Organic matter | \|Erosion factors | | | Wind \|erodi|bility group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | Pct | $g / c c$ | In/hr | In/in | Pct | Pct | | | | | |
| 283: | | | | | | | | | | | | |
| Droval----------- | 0-4 | 15-25 | 1.30-1.40\| | 0.6-2 | \|0.09-0.11| | 0.0-2.9 | 0.5-1.0 | . 37 | . 37 | 5 | 6 | 48 |
| | 4-22 | 40-50 | 1.30-1.35 | 0.06-0.2 | \|0.01-0.20| | 6.0-8.9 | 0.1-0.5 | . 24 | . 24 | | | |
| | 22-32 | 50-60 | 1.30-1.35 | 0.06-0.2 | \|0.01-0.20| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 32-61 | 40-55 | 1.30-1.35 | 0.06-0.2 | \|0.01-0.20| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| 284: | | | | | | | | | | | | |
| Risley------------ | 0-3 | 18-27 | 1.30-1.40\| | 0.6-2 | \|0.11-0.14| | 0.0-2.9 | 1.0-2.0 | . 20 | . 28 | 3 | 7 | 38 |
| | 3-25 | 35-55 | 1.40-1.50\| | 0.06-0.2 | \|0.13-0.16| | 6.0-8.9 | 0.5-1.0 | . 24 | . 28 | | | |
| | 25-37 | 27-40 | 1.30-1.50\| | 0.2-0.6 | \|0.14-0.17| | 3.0-5.9 | 0.0-0.5 | . 24 | . 32 | | | |
| | 37-39 | 27-40 | 1.30-1.50\| | 0.2-0.6 | \|0.10-0.13| | 3.0-5.9 | 0.0-0.5 | . 20 | . 32 | | | |
| | 39-49 | --- | --- \| | --- | --- | --- | --- | --- | - | | | |
| Gumble----------- | 0-3 | 18-27 | 1.25-1.35 | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 0.5-1.0 | . 20 | . 37 | 2 | 8 | 0 |
| | 3-8 | 18-27 | 1.35-1.45 | 0.6-2 | \|0.13-0.15| | 0.0-2.9 | 0.5-1.0 | . 32 | . 32 | | | |
| | 8-14 | 35-50 | 1.30-1.45 | 0.06-0.6 | \|0.10-0.17| | 6.0-8.9 | 0.0-0.5 | . 24 | . 28 | | | |
| | 14-16 | 30-40 | 1.30-1.45 | 0.2-0.6 | \|0.13-0.17| | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 16-26 | --- | --- \| | --- | --- | --- | --- | --- | -- | | | |
| 285: | | | | | | | | | | | | |
| Risley----------- | 0-3 | 27-30 | 1.30-1.40\| | 0.2-0.6 | \|0.16-0.19| | 3.0-5.9 | 1.0-2.0 | . 32 | . 32 | 3 | 7 | 38 |
| | 3-25 | 35-55 | 1.40-1.50\| | 0.06-0.2 | \|0.13-0.16| | 6.0-8.9 | 0.5-1.0 | . 24 | . 28 | | | |
| | 25-37 | 27-40 | 1.30-1.50\| | 0.2-0.6 | \|0.14-0.17| | 3.0-5.9 | 0.0-0.5 | . 24 | . 32 | | | |
| | 37-39 | 27-40 | 1.30-1.50\| | 0.2-0.6 | \|0.10-0.13| | 3.0-5.9 | 0.0-0.5 | . 20 | . 32 | | | |
| | 39-49 | - | -- | --- | --- | --- | --- | --- | --- | | | |
| Gumble----------- | 0-3 | 18-27 | \|1.35-1.45| | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 0.5-1.0 | . 17 | . 32 | 2 | 8 | 0 |
| | 3-8 | 18-27 | 1.35-1.45 | 0.6-2 | \|0.13-0.15| | 0.0-2.9 | 0.5-1.0 | . 32 | . 32 | | | |
| | 8-14 | 35-50 | 1.30-1.45\| | 0.06-0.6 | \|0.10-0.17| | 6.0-8.9 | 0.0-0.5 | . 24 | . 28 | | | |
| | 14-16 | 30-40 | 1.30-1.45 | 0.2-0.6 | \|0.13-0.17| | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 16-26 | --- | - | --- | --- \| | --- | --- | -- | --- | | | |
| Torriorthents---- | | | | | | | | | | | | |
| | 0-7 | --- | --- | --- | --- | --- | --- | --- | --- | 2 | -- | --- |
| | 7-17 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| 286: | | | | | | | | | | | | |
| Risley----------- | 0-3 | 18-27 | 1.30-1.40\| | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 1.0-2.0 | . 17 | . 28 | 3 | 8 | 0 |
| | 3-25 | 35-55 | 1.40-1.50\| | 0.06-0.2 | \|0.13-0.16| | 6.0-8.9 | 0.5-1.0 | . 24 | . 28 | | | |
| | 25-37 | 27-40 | \|1.30-1.50| | 0.2-0.6 | \|0.14-0.17| | 3.0-5.9 | 0.0-0.5 | . 24 | . 32 | | | |
| | 37-39 | 27-40 | 1.30-1.50\| | 0.2-0.6 | $\|0.10-0.13\|$ | 3.0-5.9 | 0.0-0.5 | . 20 | . 32 | | | |
| | 39-49 | --- | , | --- | --- \| | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |
| Rock outcrop-- | 0-60 | --- | --- | --- | --- | --- | --- | --- | --- | -- | --- | --- |
| 287: | | | | | | | | | | | | |
| Robson----------- | 0-4 | 27-35 | 1.30-1.50\| | 0.2-0.6 | \|0.11-0.14| | 3.0-5.9 | 1.0-2.0 | . 20 | . 28 | 1 | 7 | 38 |
| | 4-13 | 40-50 | 1.40-1.50\| | 0.06-0.2 | \|0.05-0.08| | 6.0-8.9 | 0.5-1.0 | . 10 | . 32 | | | |
| | 13-23 | --- | --- | --- | --- \| | --- | --- | --- | --- | | | |
| Anawalt----------- | 0-2 | 20-27 | 1.30-1.50\| | 0.6-2 | \|0.10-0.15| | 0.0-2.9 | 1.0-2.0 | . 32 | . 37 | 1 | 7 | 38 |
| | 2-11 | 20-35 | 1.30-1.50\| | 0.6-2 | \|0.14-0.19| | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 11-16 | 40-60 | 1.30-1.50\| | 0.06-0.2 | \|0.10-0.16| | 6.0-8.9 | 0.0-0.5 | . 24 | . 32 | | | |
| | 16-26 | - | --- \| | --- | --- \| | --- | --- | --- | --- | | | |
| 288: | | | | | | | | | | | | |
| Robson----------- | 0-4 | 27-35 | \|1.30-1.50| | 0.2-0.6 | \|0.09-0.12| | 3.0-5.9 | 1.0-2.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 4-13 | 40-50 | 1.40-1.50\| | 0.06-0.2 | \|0.05-0.08| | 6.0-8.9 | 0.5-1.0 | . 10 | . 32 | | | |
| | 13-23 | --- | --- | \| --- | --- \| | --- | --- | --- | -- | | | |
| Fourwheel-------- | 0-7 | 27-35 | 1.30-1.50\| | 0.2-0.6 | \|0.16-0.19| | 3.0-5.9 | 0.5-1.0 | . 32 | . 32 | 2 | 6 | 48 |
| | 7-22 | 45-60 | 1.30-1.50\| | 0.0015-0.06 | \|0.12-0.16| | 6.0-8.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 22-32 | --- | --- | \| --- | -- | \| --- | --- | --- | --- | | | |
| 289: | | | | | | | | | | | | |
| Robson------------ | 0-4 | 27-35 | \|1.30-1.50| | 0.2-0.6 | \|0.09-0.12| | 3.0-5.9 | 1.0-2.0 | . 15 | . 28 | 1 | 8 | 0 |
| | 4-13 | 40-50 | 1.40-1.50\| | 0.06-0.2 | \|0.05-0.08| | 6.0-8.9 | 0.5-1.0 | . 10 | . 32 | | | |
| | 13-23 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	```Moist bulk density```	Permea- bility ($\mathrm{K}_{\text {sat }}$)	Available water capacity	Linear extensibility	Organic matter	\|Erosion factors			Wind \|erodi	bility	group	\|Wind	erodi	bility \|index								
								Kw	Kf	T														
	In	Pct	$g / c c$	In/hr	In/in	Pct	Pct																	
297:																								
Sandgap----------	0-2	2-5	\|1.45-1.60		6-20	\|0.06-0.08		0.0-2.9	0.5-1.0	. 10	. 10	5	1	180										
	2-19	2-10	\|1.45-1.60		6-20	\|0.06-0.08		0.0-2.9	0.0-0.5	. 15	. 15													
	19-30	2-10	\|1.50-1.65		0.6-2	\|0.04-0.07		0.0-2.9	0.0-0.5	. 15	. 15													
	30-45	2-10	\|1.45-1.60		6-20	\|0.06-0.08		0.0-2.9	0.0-0.5	. 15	. 15													
	45-60	5-15	\|1.45-1.55		2-6	\|0.06-0.10		0.0-2.9	0.0-0.5	. 15	. 15													
298:																								
Sandgap----------	0-2	2-5	\|1.45-1.60		6-20	\|0.06-0.08		0.0-2.9	0.5-1.0	. 10	. 10	5	1	180										
	2-19	2-10	\|1.45-1.60		6-20	\|0.06-0.08		0.0-2.9	0.0-0.5	. 15	. 15													
	19-30	2-10	\|1.50-1.65		0.6-2	\|0.04-0.07		0.0-2.9	0.0-0.5	. 15	. 15													
	30-45	2-10	\|1.45-1.60		6-20	\|0.06-0.08		0.0-2.9	0.0-0.5	. 15	. 15													
	45-60	5-15	\|1.45-1.55		2-6	\|0.06-0.10		0.0-2.9	0.0-0.5	. 15	. 15													
299:																								
Seharney---------	0-2	18-27	\|1.30-1.50		0.6-2	\|0.13-0.16		0.0-2.9	0.5-1.0	. 32	. 49	1	7	38										
	2-5	18-27	\|1.30-1.50		0.6-2	\|0.15-0.17		0.0-2.9	0.5-1.0	. 49	. 49													
	5-11	18-27	\|1.30-1.50		0.6-2	\|0.13-0.16		0.0-2.9	0.0-0.5	. 28	. 49													
	11-17	18-27	\|1.30-1.50		0.6-2	\|0.10-0.13		0.0-2.9	0.0-0.5	. 24	. 49													
	17-24	---	--- \|	---	-	---	---	-	---															
	24-34	---	---	---	---	---	---	-	---															
300:																								
Skedaddle--------	0-3	27-30	\|1.35-1.55		0.6-2	\|0.09-0.12		3.0-5.9	0.5-1.0	. 10	. 32	1	8	0										
	3-8	20-30	\|1.40-1.55		0.6-2	\|0.07-0.12		3.0-5.9	0.0-0.5	. 10	. 37													
	8-11	20-30	\|1.40-1.55		0.6-2	\|0.07-0.12		3.0-5.9	0.0-0.5	. 10	. 37													
	11-21	---	--- \|	---	---	---	---	---	---															
Atlow------------	0-3	20-27	\|1.40-1.50		0.6-2	\|0.07-0.10		0.0-2.9	1.0-2.0	. 10	. 32	1	8	0										
	$3-11$	27-35	\|1.40-1.50		0.2-0.6	\|0.08-0.11		3.0-5.9	0.5-2.0	. 10	. 32													
	11-21	-	---	--	---	--	---	---	---															
Rock outcrop-	0-60	---	---	---	---	---	---	-	-		--	--												
301:																								
Skedaddle--------	0-3	27-30	\|1.35-1.55		0.6-2	\|0.09-0.12		3.0-5.9	0.5-1.0	. 10	. 32	1	8	0										
	3-8	20-30	\|1.40-1.55		0.6-2	\|0.07-0.12		3.0-5.9	0.0-0.5	. 10	. 37													
	8-11	20-30	\|1.40-1.55		0.6-2	\|0.07-0.12		3.0-5.9	0.0-0.5	. 10	. 37													
	11-21	---	--- \|	---	---	---	---	-	---															
Atlow------------	0-3	20-27	\|1.40-1.50		0.6-2	\|0.07-0.10		0.0-2.9	1.0-2.0	. 10	. 32	1	8	0										
	3-11	27-35	\|1.40-1.50		0.2-0.6	\|0.08-0.11		3.0-5.9	0.5-2.0	. 10	. 32													
	11-21	--	---	-	---	---	-	---	---															
Rock outcrop--	0-60	---	---	---	---	---	---	-	-	--	---	---												
302 :																								
Skedaddle--------	0-3	27-30	\|1.35-1.55		0.6-2	\|0.09-0.12		3.0-5.9	0.5-1.0	. 10	. 32	1	8	0										
	3-8	20-30	\|1.40-1.55		0.6-2	\|0.07-0.12		3.0-5.9	0.0-0.5	. 10	. 37													
	$8-11$	20-30	\|1.40-1.55		0.6-2	\|0.07-0.12		3.0-5.9	0.0-0.5	. 10	. 37													
	11-21	---	--- \|	---	---	---	--	---	---															
Rock outcrop---	0-60	---	---	---	---	---	---	---	---	--	---	---												
303:																								
Skedaddle, south																								
slopes	0-3	18-20	\|1.50-1.60		0.6-2	\|0.05-0.08		0.0-2.9	0.5-1.0	. 10	. 24	1	4	86										
	3-8	20-30	\|1.40-1.55		0.6-2	\|0.07-0.12		3.0-5.9	0.0-0.5	. 10	. 37													
	8-11	20-30	\|1.40-1.55		0.6-2	\|0.07-0.12		3.0-5.9	0.0-0.5	. 10	. 37													
	11-21	-	---	---	---	---	---	---	---															
Skedaddle, north																								
slopes----------	0-3	27-30	\|1.35-1.55		0.6-2	\|0.09-0.12		3.0-5.9	0.5-1.0	. 10	. 32	1	8	0										
	3-8	20-30	\|1.40-1.55		0.6-2	\|0.07-0.12		3.0-5.9	0.0-0.5	. 10	. 37													
	8-11	20-30	\|1.40-1.55		0.6-2	\|0.07-0.12		3.0-5.9	0.0-0.5	. 10	. 37													
	11-21	-	--- \|	---	---	---	---	---	---															

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist
 bulk
 density | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | Available
 water capacity | Linear
 \|extensibility | Organic matter | Erosion factors | | | Wind \|erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | Pct | $g / c c$ | $\mathrm{In} / \mathrm{hr}$ | In/in | Pct | Pct | | | | | |
| 304 : | | | | | | | | | | | | |
| Skidoosprings-------- | 0-11 | 10-18 | \|1.50-1.65| | 2-6 | \|0.03-0.06| | 0.0-2.9 | 0.5-1.0 | . 32 | . 32 | 3 | 3 | 86 |
| | 11-23 | 10-18 | \|1.50-1.65| | 2-6 | \|0.03-0.06| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 23-30 | 10-18 | \|1.55-1.70| | 2-6 | \|0.03-0.06| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 30-41 | 10-18 | 1.50-1.65\| | 2-6 | \|0.03-0.06| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 41-49 | --- | --- | --- | \|0.00-0.00| | --- | --- | --- | --- | | | |
| | 49-60 | 5-15 | 1.55-1.70\| | 2-6 | \|0.00-0.00| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| 305 : | | | | | | | | | | | | |
| Skidoosprings-------- | 0-11 | 10-18 | \|1.50-1.65| | 2-6 | \|0.03-0.06| | 0.0-2.9 | 0.5-1.0 | . 32 | . 32 | 3 | 3 | 86 |
| | 11-23 | 10-18 | \|1.50-1.65| | 2-6 | \|0.03-0.06| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 23-30 | 10-18 | \|1.55-1.70| | 2-6 | \|0.03-0.06| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 30-41 | 10-18 | \|1.50-1.65| | 2-6 | \|0.03-0.06| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 41-49 | --- | --- \| | --- | \|0.00-0.00| | --- | --- | --- | --- | | | |
| | 49-60 | 5-15 | 1.55-1.70\| | 2-6 | \|0.00-0.00| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| 306: | | | | | | | | | | | | |
| Skunkfarm------------ \| | 0-2 | 15-25 | 1.20-1.30\| | 0.6-2 | \|0.17-0.20| | 0.0-2.9 | 2.0-4.0 | . 37 | . 37 | 5 | 5 | 56 |
| | 2-13 | 27-35 | \|1.40-1.50| | 0.2-0.6 | \|0.17-0.20| | 3.0-5.9 | 1.0-2.0 | . 37 | . 37 | | | |
| | 13-18 | 25-35 | \|1.30-1.35| | 0.2-0.6 | \|0.17-0.19| | 3.0-5.9 | 0.5-1.0 | . 37 | . 37 | | | |
| | 18-29 | 15-30 | \|1.35-1.50| | 0.6-2 | \|0.15-0.17| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 | | | |
| | 29-60 | 10-15 | \|1.55-1.60| | 2-6 | \|0.12-0.14| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| Cumulic Haploxerolls-- | 0-25 | 10-25 | \|1.20-1.40| | 0.6-2 | \|0.15-0.20| | 0.0-2.9 | 2.0-3.0 | . 32 | . 37 | 5 | 6 | 48 |
| | 25-60 | --- | | --- | --- | --- | --- | --- | --- | | | |
| 307 : | | | | | | | | | | | | |
| Skunkfarm------------- | 0-2 | 15-25 | 1.20-1.30\| | 0.6-2 | \|0.17-0.20| | 0.0-2.9 | 2.0-4.0 | . 37 | . 37 | 5 | 5 | 56 |
| | 2-13 | 27-35 | \|1.40-1.50| | 0.2-0.6 | \|0.17-0.20| | 3.0-5.9 | 1.0-2.0 | . 37 | . 37 | | | |
| | 13-18 | 25-35 | \|1.30-1.35| | 0.2-0.6 | \|0.17-0.19| | 3.0-5.9 | 0.5-1.0 | . 37 | . 37 | | | |
| | 18-29 | 15-30 | \|1.35-1.50| | 0.6-2 | \|0.15-0.17| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 | | | |
| | 29-60 | 10-15 | \|1.55-1.60| | 2-6 | \|0.12-0.14| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| Doubleo-------------- \| | 0-3 | 18-27 | \|1.20-1.30| | 0.6-2 | \|0.14-0.17| | 0.0-2.9 | 4.0-8.0 | . 20 | . 20 | 5 | 6 | 48 |
| | 3-10 | 35-50 | \|1.30-1.40|0 | 0.0015-0.06\|0 | \|0.14-0.16| | 6.0-8.9 | 2.0-5.0 | . 24 | . 24 | | | |
| | 10-20 | 40-60 | \|1.30-1.40|0 | 0.0015-0.06\| | \|0.13-0.16| | 6.0-8.9 | 1.0-2.0 | . 24 | . 24 | | | |
| | 20-28 | 35-40 | \|1.30-1.35| | 0.2-0.6 | \|0.18-0.20| | 3.0-5.9 | 1.0-2.0 | . 28 | . 28 | | | |
| | 28-45 | 5-15 | \|1.40-1.45| | 2-6 | \|0.12-0.14| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 | | | |
| | 45-60 | 15-20 | \|1.35-1.40| | 0.6-2 | \|0.15-0.17| | 0.0-2.9 | 0.2-1.0 | . 55 | . 55 | | | |
| 308: | | | | | | | | | | | | |
| Skunkfarm------------ \| | 0-2 | 15-25 | 1.20-1.30\| | 0.6-2 | \|0.17-0.20| | 0.0-2.9 | 2.0-4.0 | . 37 | . 37 | 5 | 5 | 56 |
| | 2-13 | 27-35 | \|1.40-1.50| | 0.2-0.6 | \|0.17-0.20| | 3.0-5.9 | 1.0-2.0 | . 37 | . 37 | | | |
| | 13-18 | 25-35 | \|1.30-1.35| | 0.2-0.6 | \|0.17-0.19| | 3.0-5.9 | 0.5-1.0 | . 37 | . 37 | | | |
| | 18-29 | 15-30 | \|1.35-1.50| | 0.6-2 | \|0.15-0.17| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 | | | |
| | 29-60 | 10-15 | \|1.55-1.60| | 2-6 | \|0.12-0.14| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| Mcbain--------------- | 0-5 | 10-20 | \|1.20-1.30| | 0.6-2 | \|0.05-0.08| | 0.0-2.9 | 2.0-4.0 | . 43 | . 43 | 5 | 4L | 86 |
| | 5-22 | 18-25 | \|1.35-1.55| | 0.6-2 | \|0.05-0.08| | 3.0-5.9 | 1.0-2.0 | . 43 | . 43 | | | |
| | 22-27 | 27-35 | \|1.30-1.50| | 0.2-0.6 | \|0.05-0.08| | 3.0-5.9 | 1.0-2.0 | . 32 | . 32 | | | |
| | 27-37 | 10-18 | \|1.40-1.55| | 0.6-2 | \|0.12-0.16| | 0.0-2.9 | 0.0-0.5 | . 55 | . 55 | | | |
| | 37-43 | 27-30 | \|1.35-1.45| | 0.2-0.6 | \|0.17-0.20| | 3.0-5.9 | 0.0-0.5 | . 43 | . 43 | | | |
| | 43-60 | 15-27 | \|1.35-1.45| | 0.6-2 | \|0.14-0.17| | 3.0-5.9 | 0.0-0.5 | . 43 | . 43 | | | |
| Doubleo--------------- \| | 0-3 | 18-27 | 1.20-1.30\| | 0.6-2 | \|0.14-0.17| | 0.0-2.9 | 4.0-8.0 | . 20 | . 20 | 5 | 6 | 48 |
| | 3-10 | 35-50 | \|1.30-1.40| | 0.0015-0.06\|0 | \|0.14-0.16| | 6.0-8.9 | 2.0-5.0 | . 24 | . 24 | | | |
| | 10-20 | 40-60 | \|1.30-1.40|0 | 0.0015-0.06\| | \|0.13-0.16| | 6.0-8.9 | 1.0-2.0 | . 24 | . 24 | | | |
| | 20-28 | 35-40 | \|1.30-1.35| | 0.2-0.6 | \|0.18-0.20| | 3.0-5.9 | 1.0-2.0 | . 28 | . 28 | | | |
| | 28-45 | 5-15 | \|1.40-1.45| | 2-6 | \|0.12-0.14| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 | | | |
| | 45-60 | 15-20 | \|1.35-1.40| | 0.6-2 | \|0.15-0.17| | 0.0-2.9 | 0.2-1.0 | . 55 | . 55 | | | |
| | | | | | | | | | | | | |
| 309: | | | | | | | | | | | | |
| Skunkfarm------------- | 0-2 | 15-25 | 1.20-1.30\| | 0.6-2 | \|0.17-0.20| | 0.0-2.9 | 2.0-4.0 | . 37 | . 37 | 5 | 5 | 56 |
| | 2-13 | 27-35 | \|1.40-1.50| | 0.2-0.6 | \|0.17-0.20| | 3.0-5.9 | 1.0-2.0 | . 37 | . 37 | | | |
| | 13-18 | 25-35 | \|1.30-1.35| | 0.2-0.6 | \|0.17-0.19| | 3.0-5.9 | 0.5-1.0 | . 37 | . 37 | | | |
| | 18-29 | 15-30 | \|1.35-1.50| | 0.6-2 | \|0.15-0.17| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 | | | |
| | 29-60 | 10-15 | \|1.55-1.60| | 2-6 | \|0.12-0.14| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | $\begin{aligned} & \text { Moist } \\ & \text { bulk } \\ & \text { density } \end{aligned}$ | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \text { \| Available } \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$ | Linear \|extensibility | Organic matter | \|Erosion factors | | | Wind \|erodi|bility group | \|Wind erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | Pct | g / cc | In/hr | In/in | Pct | PCt | | | | | |
| 318: | | | | | | | | | | | | |
| Swalesilver------- | 0-6 | 15-25 | 1.10-1.20 | 0.6-2 | \|0.15-0.17| | 0.0-2.9 | 1.0-2.0 | . 43 | . 43 | 5 | 4 | 86 |
| | 6-23 | 45-65 | 1.30-1.40 | 0.0015-0.06 | \|0.13-0.15| | 6.0-8.9 | 1.0-2.0 | . 17 | . 17 | | | |
| | 23-61 | 15-30 | 1.20-1.30 | 0.2-0.6 | \|0.15-0.18| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| 319: | | | | | | | | | | | | |
| Swalesilver------ | 0-6 | 15-25 | 1.10-1.20 | 0.6-2 | \|0.15-0.17| | 0.0-2.9 | 1.0-2.0 | . 43 | . 43 | 5 | 4 | 86 |
| | 6-23 | 45-65 | 1.30-1.40 | 0.0015-0.06 | \|0.13-0.15| | 6.0-8.9 | 1.0-2.0 | . 17 | . 17 | | | |
| | 23-61 | 15-30 | 1.20-1.30 | 0.2-0.6 | \|0.15-0.18| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| 320: | | | | | | | | | | | | |
| Teguro------------ | 0-2 | 18-27 | 1.30-1.50 | 0.6-2 | \|0.12-0.15| | 0.0-2.9 | 2.0-4.0 | . 24 | . 28 | 1 | 7 | 38 |
| | 2-5 | 18-27 | 1.30-1.50 | 0.2-0.6 | \|0.10-0.16| | 0.0-2.9 | 2.0-4.0 | . 20 | . 28 | | | |
| | 5-14 | 25-35 | 1.30-1.50 | 0.2-0.6 | \|0.10-0.13| | 3.0-5.9 | 1.0-2.0 | . 24 | . 32 | | | |
| | 14-24 | --- | --- | --- | --- | --- | --- | --- | - | | | |
| 321: | | | | | | | | | | | | |
| Teguro----------- | 0-2 | 18-27 | 1.30-1.50 | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 2.0-4.0 | . 10 | . 28 | 1 | 8 | 0 |
| | 2-5 | 18-27 | 1.30-1.50 | 0.2-0.6 | \|0.10-0.16| | 0.0-2.9 | 2.0-4.0 | . 20 | . 28 | | | |
| | 5-14 | 25-35 | 1.30-1.50 | 0.2-0.6 | \|0.10-0.13| | 3.0-5.9 | 1.0-2.0 | . 24 | . 32 | | | |
| | 14-24 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| 322: | | | | | | | | | | | | |
| Teguro------------ | 0-2 | 18-27 | 1.30-1.50 | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 2.0-4.0 | . 10 | . 28 | 1 | 8 | 0 |
| | 2-5 | 18-27 | 1.30-1.50 | 0.2-0.6 | \|0.10-0.16| | 0.0-2.9 | 2.0-4.0 | . 20 | . 28 | | | |
| | 5-14 | 25-35 | 1.30-1.50 | 0.2-0.6 | \|0.10-0.13| | 3.0-5.9 | 1.0-2.0 | . 24 | . 32 | | | |
| | 14-24 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| 323: | | | | | | | | | | | | |
| Teguro----------- | 0-2 | 18-27 | 1.30-1.50 | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 2.0-4.0 | . 10 | . 28 | 1 | 8 | 0 |
| | 2-5 | 18-27 | 1.30-1.50 | 0.2-0.6 | \|0.10-0.16| | 0.0-2.9 | 2.0-4.0 | . 20 | . 28 | | | |
| | 5-14 | 25-35 | 1.30-1.50 | 0.2-0.6 | \|0.10-0.13| | 3.0-5.9 | 1.0-2.0 | . 24 | . 32 | | | |
| | 14-24 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Anatone, moist---- | 0-8 | 18-27 | 1.30-1.50 | 0.6-2 | \|0.06-0.08| | 0.0-2.9 | 2.0-4.0 | . 10 | . 28 | 1 | 8 | 0 |
| | 8-14 | 18-30 | 1.40-1.60 | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 0.5-2.0 | . 15 | . 28 | | | |
| | 14-24 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| 324: | | | | | | | | | | | | |
| Teguro----------- | 0-2 | 18-27 | 1.30-1.50 | 0.6-2 | \|0.07-0.10| | 0.0-2.9 | 2.0-4.0 | . 10 | . 28 | 1 | 8 | 0 |
| | 2-5 | 18-27 | 1.30-1.50 | 0.2-0.6 | \|0.10-0.16| | 0.0-2.9 | 2.0-4.0 | . 20 | . 28 | | | |
| | 5-14 | 25-35 | 1.30-1.50 | 0.2-0.6 | \|0.10-0.13| | 3.0-5.9 | 1.0-2.0 | . 24 | . 32 | | | |
| | 14-24 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Ateron----------- | 0-5 | 20-27 | 1.20-1.30 | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 1.0-2.0 | . 17 | . 28 | 1 | 8 | 0 |
| | 5-12 | 27-35 | 1.25-1.35 | 0.2-0.6 | \|0.08-0.11| | 3.0-5.9 | 1.0-2.0 | . 20 | . 32 | | | |
| | 12-18 | 40-50 | 1.35-1.50 | 0.06-0.2 | \|0.05-0.10| | 6.0-8.9 | 0.5-1.0 | . 10 | . 28 | | | |
| | 18-28 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| | | | | | | | | | | | | |
| 325: | | | | | | | | | | | | |
| Thenarrows-------- | 0-3 | 10-18 | 1.35-1.55 | 2-6 | \|0.06-0.09| | 0.0-2.9 | 1.0-2.0 | . 32 | . 32 | 5 | 3 | 86 |
| | 3-14 | 10-18 | 1.35-1.55 | 2-6 | \|0.06-0.09| | 0.0-2.9 | 1.0-2.0 | . 32 | . 32 | | | |
| | 14-22 | 5-18 | 1.35-1.65 | 2-20 | \|0.06-0.09| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 22-31 | 10-18 | 1.45-1.60 | 2-6 | \|0.08-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 31-54 | 5-18 | 1.35-1.65 | 2-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 54-60 | 5-10 | 1.45-1.65 | 6-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| Duckclub---------- | 0-5 | 5-8 | 1.35-1.55 | 6-20 | \|0.04-0.07| | 0.0-2.9 | 1.0-2.0 | . 37 | . 37 | 5 | 2 | 134 |
| | 5-27 | 5-8 | 1.35-1.55 | 6-20 | \|0.04-0.07| | 0.0-2.9 | 0.3-1.0 | . 37 | . 37 | | | |
| | 27-32 | 10-18 | 1.35-1.55 | 2-6 | \|0.07-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 32-41 | 15-30 | 1.45-1.60 | 0.2-0.6 | \|0.07-0.11| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 41-63 | 5-20 | 1.45-1.60 | 0.2-0.6 | \|0.04-0.07| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist bulk density | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \mid \text { Available } \mid \\ & \mid \text { water } \\ & \text { \|capacity } \mid \end{aligned}$ | $\begin{aligned} & \text { Linear } \\ & \text { \|extensi- } \\ & \text { bility } \end{aligned}$ | Organic matter | Erosion factors | | | Wind \|erodi|bility |group | \|Wind |erodi|bility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | Pct | g/cc | In/hr | In/in | Pct | PCt | | | | | |
| 326: | | | | | | | | | | | | |
| Thenarrows------- | 0-3 | 10-18 | \|1.35-1.55| | 2-6 | \|0.06-0.09| | 0.0-2.9 | 1.0-2.0 | . 32 | . 32 | 5 | 3 | 86 |
| | 3-14 | 10-18 | \|1.35-1.55| | 2-6 | \|0.06-0.09| | 0.0-2.9 | 1.0-2.0 | . 32 | . 32 | | | |
| | 14-22 | 5-18 | \|1.35-1.65| | 2-20 | \|0.06-0.09| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 22-31 | 10-18 | \|1.45-1.60| | 2-6 | \|0.08-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 31-54 | 5-18 | \|1.35-1.65| | 2-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 54-60 | 5-10 | \|1.45-1.65| | 6-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| Duckclub--------- | 0-5 | 5-8 | \|1.35-1.55| | 6-20 | \|0.04-0.07| | 0.0-2.9 | 1.0-2.0 | . 37 | . 37 | 5 | 2 | 134 |
| | 5-27 | 5-8 | \|1.35-1.55| | 6-20 | \|0.04-0.07| | 0.0-2.9 | 0.3-1.0 | . 37 | . 37 | | | |
| | 27-32 | 10-18 | \|1.35-1.55| | 2-6 | \|0.07-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 32-41 | 15-30 | \|1.45-1.60| | 0.2-0.6 | \|0.07-0.11| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 41-63 | 5-20 | \|1.45-1.60| | 0.2-0.6 | \|0.04-0.07| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| Dentdraw--------- | 0-6 | 10-20 | \|1.30-1.50| | 0.6-2 | \|0.11-0.13| | 0.0-2.9 | 1.0-2.0 | . 32 | . 32 | 5 | 4L | 86 |
| | 6-9 | 10-18 | \|1.30-1.50| | 2-6 | \|0.08-0.11| | 0.0-2.9 | 1.0-2.0 | . 32 | . 32 | | | |
| | 9-18 | 10-20 | \|1.30-1.50| | 0.6-2 | \|0.08-0.13| | 0.0-2.9 | 0.5-1.0 | . 32 | . 32 | | | |
| | 18-27 | 20-30 | \|1.35-1.55| | 0.2-0.6 | \|0.11-0.14| | 3.0-5.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 27-42 | 10-18 | \|1.40-1.60| | 2-6 | \|0.07-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 42-60 | 5-10 | \|1.40-1.60| | 6-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| 327: | | | | | | | | | | | | |
| Thenarrows------- | 0-3 | 10-18 | \|1.35-1.55| | 2-6 | \|0.06-0.09| | 0.0-2.9 | 1.0-2.0 | . 32 | . 32 | 5 | 3 | 86 |
| | 3-14 | 10-18 | \|1.35-1.55| | 2-6 | \|0.06-0.09| | 0.0-2.9 | 1.0-2.0 | . 32 | . 32 | | | |
| | 14-22 | 5-18 | \|1.35-1.65| | 2-20 | \|0.06-0.09| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 22-31 | 10-18 | \|1.45-1.60| | 2-6 | \|0.08-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 31-54 | 5-18 | \|1.35-1.65| | 2-20 | \|0.05-0.10| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 54-60 | 5-10 | \|1.45-1.65| | 6-20 | \|0.05-0.07| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| Duckclub--------- | 0-5 | 5-8 | \|1.35-1.55| | 6-20 | \|0.04-0.07| | 0.0-2.9 | 1.0-2.0 | . 37 | . 37 | 5 | 2 | 134 |
| | $5-27$ | 5-8 | \|1.35-1.55| | 6-20 | \|0.04-0.07| | 0.0-2.9 | 0.3-1.0 | . 37 | . 37 | | | |
| | 27-32 | 10-18 | \|1.35-1.55| | 2-6 | \|0.07-0.10| | 0.0-2.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 32-41 | 15-30 | \|1.45-1.60| | 0.2-0.6 | \|0.07-0.11| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 41-63 | 5-20 | \|1.45-1.60| | 0.2-0.6 | \|0.04-0.07| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| Sandgap---------- | 0-2 | 2-5 | \|1.45-1.60| | 6-20 | \|0.06-0.08| | 0.0-2.9 | 0.5-1.0 | . 10 | . 10 | 5 | 1 | 180 |
| | 2-19 | 2-10 | \|1.45-1.60| | 6-20 | \|0.06-0.08| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | 19-30 | 2-10 | \|1.50-1.65| | 0.6-2 | \|0.04-0.07| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | 30-45 | 2-10 | \|1.45-1.60| | 6-20 | \|0.06-0.08| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | 45-60 | 5-15 | \|1.45-1.55| | 2-6 | \|0.06-0.10| | 0.0-2.9 | 0.0-0.5 | . 15 | . 15 | | | |
| | | | | | | | | | | | | |
| 328: | | | | | | | | | | | | |
| Ticino----------- | 0-9 | 18-27 | \|1.30-1.40| | 0.6-2 | \|0.11-0.14| | 0.0-2.9 | 1.0-4.0 | . 24 | . 28 | 2 | 7 | 38 |
| | 9-26 | 25-35 | \|1.35-1.50| | 0.6-2 | \|0.10-0.17| | 3.0-5.9 | 0.5-2.0 | . 28 | . 32 | | | |
| | 26-29 | --- | --- | \| --- | --- \| | \| --- | --- | --- | --- | | | |
| | 29-39 | --- | --- | --- | --- | --- | --- | - | - | | | |
| | | | | | | | | | | | | |
| Merlin----------- | 0-7 | 20-27 | \|1.20-1.30| | 0.6-2 | \|0.11-0.14| | 0.0-2.9 | 2.0-4.0 | . 20 | . 28 | 1 | 7 | 38 |
| | 7-12 | 30-40 | \|1.30-1.40| | 0.2-0.6 | \|0.15-0.18| | 3.0-5.9 | 0.5-2.0 | . 24 | . 32 | | | |
| | 12-18 | 50-70 | \|1.30-1.45| | \|0.0015-0.06| | \|0.11-0.14| | 6.0-8.9 | 0.5-1.0 | . 20 | . 28 | | | |
| | 18-29 | --- | --- \| | \| --- | | \| --- | | \| --- | --- | --- | --- | | | |
| 329: | | | | | | | | | | | | |
| Ticino----------- | 0-9 | 18-27 | \|1.30-1.40| | 0.6-2 | \|0.11-0.14| | 0.0-2.9 | 1.0-4.0 | . 24 | . 28 | 2 | 7 | 38 |
| | 9-26 | 25-35 | \|1.35-1.50| | 0.6-2 | \|0.10-0.17| | 3.0-5.9 | 0.5-2.0 | . 28 | . 32 | | | |
| | 26-29 | --- | --- | \| --- | | \| --- | | \| --- | --- | --- | - | | | |
| | 29-39 | --- | --- | --- | --- | --- | --- | - | --- | | | |
| Observation------ | 0-4 | 18-27 | \|1.40-1.50| | 0.6-2 | \|0.10-0.13| | 0.0-2.9 | 2.0-4.0 | . 24 | . 28 | 2 | 7 | 38 |
| | 4-8 | 20-27 | \|1.40-1.50| | 0.6-2 | \|0.12-0.15| | 0.0-2.9 | 1.0-3.0 | . 24 | . 32 | | | |
| | 8-23 | 35-50 | \|1.30-1.50| | 0.06-0.2 | \|0.13-0.16| | 6.0-8.9 | 0.5-1.0 | . 24 | . 28 | | | |
| | 23-33 | --- | --- \| | \| --- | | \| --- | | \| --- | --- | - | --- | | | |
| | | | | | | | | | | | | |

Table 15.--Physical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Clay | Moist
 bulk
 density | Permea-
 bility
 ($\mathrm{K}_{\text {sat }}$) | $\begin{aligned} & \mid \text { Available\| } \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$ | Linear \|extensibility | Organic matter | \|Erosion factors | | | Wind \|erodi|bility| group | \|Wind |erodibility |index |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | |
| | | | | | | | | Kw | Kf | T | | |
| | In | Pct | g/cc | In/hr | In/in | Pct | Pct | | | | | |
| 330: | | | | | | | | | | | | |
| Ticino----------- | 0-9 | 18-27 | \|1.30-1.40| | 0.6-2 | \|0.11-0.14| | 0.0-2.9 | 1.0-4.0 | . 24 | . 28 | 2 | 7 | 38 |
| | 9-26 | 25-35 | \|1.35-1.50| | 0.6-2 | \|0.10-0.17| | 3.0-5.9 | 0.5-2.0 | . 28 | . 32 | | | |
| | 26-29 | --- | --- \| | --- | --- | --- | --- | --- | --- | | | |
| | 29-39 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Rock outcrop | 0-60 | --- | --- | -- | --- | --- | --- | --- | --- | -- | -- | --- |
| 331: | | | | | | | | | | | | |
| Toll-------------- | 0-5 | 2-5 | \|1.50-1.60| | 6-20 | \|0.04-0.06| | 0.0-2.9 | 0.0-0.5 | . 20 | . 20 | 5 | 1 | 180 |
| | 5-13 | 2-8 | \|1.50-1.60| | 6-20 | \|0.04-0.08| | 0.0-2.9 | 0.0-0.5 | . 20 | . 20 | | | |
| | 13-60 | 2-8 | \|1.50-1.60| | 6-20 | \|0.04-0.08| | 0.0-2.9 | 0.0-0.5 | . 20 | . 20 | | | |
| 332 : | | | | | | | | | | | | |
| Toll------------- | 0-5 | 2-5 | \|1.50-1.60| | 6-20 | \|0.04-0.06| | 0.0-2.9 | 0.0-0.5 | . 20 | . 20 | 5 | 1 | 180 |
| | 5-13 | 2-8 | \|1.50-1.60| | 6-20 | \|0.04-0.08| | 0.0-2.9 | 0.0-0.5 | . 20 | . 20 | | | |
| | 13-60 | 2-8 | \|1.50-1.60| | 6-20 | \|0.04-0.08| | 0.0-2.9 | 0.0-0.5 | . 20 | . 20 | | | |
| Nevador---------- | 0-3 | 10-15 | 1.40-1.50\| | 2-6 | \|0.09-0.11| | 0.0-2.9 | 1.0-2.0 | . 24 | . 24 | 5 | 3 | 86 |
| | 3-7 | 15-25 | \|1.30-1.40| | 0.6-2 | \|0.12-0.15| | 0.0-2.9 | 1.0-2.0 | . 28 | . 28 | | | |
| | 7-18 | 27-35 | \|1.30-1.50| | 0.2-0.6 | \|0.15-0.17| | 3.0-5.9 | 0.5-1.0 | . 32 | . 32 | | | |
| | 18-32 | 8-15 | \|1.45-1.65| | 0.2-0.6 | \|0.07-0.11| | 0.0-2.9 | 0.0-0.5 | . 28 | . 28 | | | |
| | 32-62 | 5-15 | \|1.30-1.40| | 2-6 | \|0.07-0.11| | 0.0-2.9 | 0.0-0.5 | . 24 | . 28 | | | |
| 333: | | | | | | | | | | | | |
| Torriorthents---- | 0-7 | --- | --- | --- | --- | --- | --- | --- | --- | 2 | --- | --- |
| | 7-17 | --- | --- | --- | --- | --- | --- | --- | --- | | | |
| Gumble----------- | 0-3 | 18-27 | \|1.25-1.35| | 0.6-2 | \|0.08-0.11| | 0.0-2.9 | 0.5-1.0 | . 20 | . 37 | 2 | 8 | 0 |
| | 3-8 | 18-27 | \|1.35-1.45| | 0.6-2 | \|0.13-0.15| | 0.0-2.9 | 0.5-1.0 | . 32 | . 32 | | | |
| | 8-14 | 35-50 | \|1.30-1.45| | 0.06-0.6 | \|0.10-0.17| | 6.0-8.9 | 0.0-0.5 | . 24 | . 28 | | | |
| | 14-16 | 30-40 | \|1.30-1.45| | 0.2-0.6 | \|0.13-0.17| | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 16-26 | --- | --- \| | --- | --- \| | --- | --- | -- | --- | | | |
| 334: | | | | | | | | | | | | |
| Tumtum----------- | 0-2 | 20-27 | 1.40-1.45\| | 0.6-2 | \|0.13-0.15| | 0.0-2.9 | 0.3-0.5 | . 24 | . 32 | 1 | 7 | 38 |
| | 2-12 | 27-35 | \|1.30-1.40| | 0.06-0.2 | \|0.14-0.20| | 3.0-5.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 12-25 | --- | --- \| | --- | \|0.00-0.00| | --- | --- | --- | --- | | | |
| | 25-60 | 5-15 | 1.45-1.50\| | 6-20 | \|0.00-0.00| | 0.0-2.9 | 0.0-0.5 | . 15 | . 28 | | | |
| 335: | | | | | | | | | | | | |
| Tumtum----------- | 0-2 | 20-27 | \|1.40-1.45| | 0.6-2 | \|0.13-0.15| | 0.0-2.9 | 0.3-0.5 | . 24 | . 32 | 1 | 7 | 38 |
| | 2-12 | 27-35 | \| 1.30-1.40| | 0.06-0.2 | \|0.14-0.20| | 3.0-5.9 | 0.0-0.5 | . 32 | . 32 | | | |
| | 12-25 | --- | --- \| | --- | \|0.00-0.00| | --- | --- | --- | --- | | | |
| | 25-60 | 5-15 | 1.45-1.50\| | 6-20 | \|0.00-0.00| | 0.0-2.9 | 0.0-0.5 | . 15 | . 28 | | | |
| 336: | | | | | | | | | | | | |
| Turpin----------- | 0-4 | 20-30 | \|1.20-1.30| | 0.2-0.6 | \|0.07-0.12| | 3.0-5.9 | 0.5-1.0 | . 32 | . 32 | 5 | 5 | 56 |
| | 4-8 | 15-25 | \|1.20-1.30| | 0.6-2 | \|0.08-0.10| | 0.0-2.9 | 0.5-1.0 | . 43 | . 43 | | | |
| | 8-13 | 20-35 | \|1.30-1.45| | 0.2-0.6 | \|0.07-0.10| | 3.0-5.9 | 0.2-0.5 | . 37 | . 37 | | | |
| | 13-38 | 20-35 | \|1.30-1.45| | 0.06-0.2 | \|0.07-0.10| | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 38-48 | 20-35 | \|1.30-1.45| | 0.06-0.2 | \|0.07-0.10| | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| | 48-60 | 20-35 | 1.30-1.45\| | 0.06-0.2 | \|0.07-0.10| | 3.0-5.9 | 0.0-0.5 | . 37 | . 37 | | | |
| 337: | | | | | | | | | | | | |
| Vanwyper--------- | 0-3 | 30-40 | \|1.30-1.50| | 0.2-0.6 | \|0.04-0.07| | 3.0-5.9 | 0.5-1.0 | . 10 | . 32 | 2 | 8 | 0 |
| | 3-15 | 40-55 | \|1.30-1.50| | 0.06-0.2 | \|0.07-0.13| | 6.0-8.9 | 0.0-0.5 | . 15 | . 28 | | | |
| | 15-24 | 30-40 | \|1.30-1.50| | 0.2-0.6 | \|0.07-0.10| | 3.0-5.9 | 0.0-0.5 | . 15 | . 28 | | | |
| | 24-34 | --- | --- | --- | --- | --- | --- | -- | --- | | | |
| Rock outcrop- | 0-60 | --- | --- | --- | --- | --- | -- | -- | -- | --- | --- | --- |

Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Permea- bility ($\mathrm{K}_{\text {sat }}$)	$\begin{aligned} & \mid \text { Available } \mid \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$	Linear extensibility	Organic matter	\|Erosion factors			Wind \|erodi	bility group	Wind erodibility index											
								Kw	Kf	T														
	In	Pct	$g / c c$	In/hr	In/in	Pct	Pct																	
338:																								
Vergas------------	0-6	20-27	1.30-1.40	0.6-2	\|0.11-0.14		0.0-2.9	0.5-1.0	. 28	. 32	5	7	38											
	6-14	20-35	1.40-1.50	0.2-0.6	\|0.11-0.16		3.0-5.9	0.0-0.5	. 24	. 32														
	14-20	5-10	1.45-1.60	0.06-0.2	\|0.04-0.07		0.0-2.9	0.0-0.5	. 05	. 17														
	20-62	2-10	1.45-1.60	20-20	\|0.01-0.04		0.0-2.9	0.0-0.5	. 02	. 15														
339:																								
Vil--------------	0-6	10-18	1.30-1.40	0.6-2	\|0.16-0.19		0.0-2.9	1.0-2.0	. 37	. 37	1	5	56											
	6-9	15-20	1.30-1.40	0.6-2	\|0.15-0.18		0.0-2.9	1.0-2.0	. 37	. 37														
	9-13	20-30	1.30-1.40	0.2-0.6	0.14-0.20	3.0-5.9	0.5-1.0	. 32	. 32															
	13-16	20-30	1.30-1.40	0.2-0.6	\|0.12-0.17		3.0-5.9	0.0-0.5	. 28	. 32														
	16-37	---	---	---	0.00-0.00	---	---	---	---															
	37-60	10-15	1.40-1.50	2-6	\|0.00-0.00		0.0-2.9	0.0-0.5	. 15	. 32														
340:																								
Vining------------	0-2	10-20	1.30-1.40	2-6	\|0.14-0.17		0.0-2.9	0.5-1.0	. 28	. 28	2	5	56											
	2-13	10-18	1.30-1.40	2-6	\|0.09-0.15		0.0-2.9	0.3-0.8	. 28	. 28														
	13-29	10-18	1.30-1.40	2-6	0.09-0.15	0.0-2.9	0.0-0.5	. 28	. 28															
	29-39	---	---	---	---	---	---	---	---															
341:																								
Vining-----------	0-2	5-10	1.50-1.60	6-20	\|0.05-0.08		0.0-2.9	0.5-1.0	. 17	. 17	2	2	134											
	2-13	10-18	1.30-1.40	2-6	\|0.09-0.15		0.0-2.9	0.3-0.8	. 28	. 28														
	13-29	10-18	1.30-1.40	2-6	\|0.09-0.15		0.0-2.9	0.0-0.5	. 28	. 28														
	29-39	---	---	---	---	---	---	---	---															
Tuffo------------	0-2	5-15	1.30-1.50	2-6	\|0.12-0.15		0.0-2.9	0.0-0.5	. 37	. 37	2	3	86											
	2-7	5-15	1.30-1.50	2-6	\|0.12-0.15		0.0-2.9	0.0-0.5	. 37	. 37														
	7-17	---	---	---	---	---	---	---	---															
342:																								
Vitale-----------	0-3	18-27	1.40-1.50	0.6-2	\|0.07-0.10		0.0-2.9	2.0-4.0	. 10	. 28	2	8	0											
	3-12	18-27	1.40-1.50	0.6-2	\|0.07-0.13		0.0-2.9	1.0-2.0	. 17	. 32														
	12-26	20-35	1.45-1.60	0.2-0.6	\|0.07-0.10		3.0-5.9	0.5-1.0	. 15	. 32														
	26-36	---	---	---	---	---	---	---	---															
343:																								
Vitale-----------	0-3	18-27	1.40-1.50	0.6-2	\|0.07-0.10		0.0-2.9	2.0-4.0	. 10	. 28	2	8	0											
	3-12	18-27	1.40-1.50	0.6-2	\|0.07-0.13		0.0-2.9	1.0-2.0	. 17	. 32														
	12-26	20-35	1.45-1.60	0.2-0.6	\|0.07-0.10		3.0-5.9	0.5-1.0	. 15	. 32														
	26-36	---	---	---	--- \|	---	---	---	---															
Merlin------------	0-7	20-27	1.20-1.30	0.6-2	\|0.08-0.11	0.0-2.9	2.0-4.0	. 15	. 28	1	8	0												
	7-12	30-40	1.30-1.40	0.2-0.6	\|0.15-0.18		3.0-5.9	0.5-2.0	. 24	. 32														
	12-18	50-70	1.30-1.45	0.0015-0.06	\|0.11-0.14		6.0-8.9	0.5-1.0	. 20	. 28														
	18-29	---	---	---	\| ---	---	---	---	---															
344:																								
Vitale-----------	0-3	18-27	1.40-1.50	0.6-2	\|0.10-0.13		0.0-2.9	2.0-4.0	. 20	. 28	2	7	38											
	3-12	18-27	1.40-1.50	0.6-2	\|0.07-0.13		0.0-2.9	1.0-2.0	. 17	. 32														
	12-26	20-35	1.45-1.60	0.2-0.6	\|0.07-0.10		3.0-5.9	0.5-1.0	. 15	. 32														
	26-36	---	---	---	---	---	---	---	---															
Merlin------------	0-7	20-27	1.20-1.30	0.6-2	\|0.08-0.11		0.0-2.9	2.0-4.0	. 15	. 28	1	8	0											
	7-12	30-40	1.30-1.40	0.2-0.6	\|0.15-0.18		3.0-5.9	0.5-2.0	. 24	. 32														
	12-18	50-70	1.30-1.45	0.0015-0.06	\|0.11-0.14		6.0-8.9	0.5-1.0	. 20	. 28														
	18-29	---	---	---	\| ---		---	---	-	---														
Doyn------------	0-2	18-27	1.30-1.40	0.6-2	\|0.07-0.10		0.0-2.9	1.0-3.0	. 15	. 28	1	8	0											
	2-8	20-30	1.30-1.40	0.6-2	\|0.13-0.18		0.0-2.9	1.0-2.0	. 24	. 32														
	8-18	---	---	---	--- \|	---	---	-	---															
345:																								
Vitale-----------	0-3	18-27	1.40-1.50	0.6-2	\|0.07-0.10		0.0-2.9	2.0-4.0	. 10	. 28	2	8	0											
	3-12	18-27	1.40-1.50	0.6-2	\|0.07-0.13		0.0-2.9	1.0-2.0	. 17	. 32														
	12-26	20-35	1.45-1.60	0.2-0.6	\|0.07-0.10		3.0-5.9	0.5-1.0	. 15	. 32														
	26-36	---	-	---	---	---	--	--	---															

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

Table 15.--Physical Properties of the Soils--Continued

Map symbol and soil name	Depth	Clay	Moist bulk density	Permea- bility ($\mathrm{K}_{\text {sat }}$)	$\begin{aligned} & \mid \text { Available\| } \\ & \mid \text { water } \\ & \mid \text { capacity } \end{aligned}$	Linear extensi- bility	Organic matter	\|Erosion factors				Wind erodibility group	Wind erodi\|bility index	
								Kw	Kf	T				
	In	Pct	$g / c c$	In/hr	In/in	Pct	Pct							
368:														
Observation------	0-4	18-27	\|1.40-1.50		0.6-2	\|0.07-0.10		0.0-2.9	2.0-4.0	. 20	. 28	2	8	0
	4-8	20-27	\|1.40-1.50		0.6-2	\|0.12-0.15		0.0-2.9	1.0-3.0	. 24	. 32			
	8-23	35-50	\|1.30-1.50		0.06-0.2	\|0.13-0.16		6.0-8.9	0.5-1.0	. 24	. 28			
	23-33	---	---	---	---	---	---	---	---					
369 :														
Westbutte--------	0-12	15-27	\|1.20-1.40		0.6-2	\|0.07-0.10		0.0-2.9	2.0-3.0	. 15	. 28	2	8	0
	12-24	18-30	\|1.30-1.50		0.6-2	\|0.07-0.11		0.0-2.9	1.0-2.0	. 15	. 32			
	24-34	---	---	---	---	---	---	---	---					
Rock outcrop-	0-60	---	---	---	---	---	---	---	---	--	---	---		
Pernty------------	0-3	15-20	\|1.30-1.40		0.6-2	\|0.07-0.10		0.0-2.9	1.0-2.0	. 20	. 24	1	4	86
	3-8	20-30	\|1.30-1.40		0.6-2	\|0.11-0.15		3.0-5.9	1.0-2.0	. 24	. 32			
	8-15	25-35	\|1.35-1.45		0.2-0.6	\|0.08-0.11		3.0-5.9	0.5-1.0	. 20	. 32			
	$15-25$	---		---	---	---	---	---	---					
370:														
Widowspring-------		20-25	\|1.25-1.40		0.6-2	\|0.20-0.22		0.0-2.9	2.0-5.0	. 32	. 32	5	5	56
	22-43	20-35	\|1.30-1.45		0.2-2	\|0.19-0.21		0.0-2.9	1.0-3.0	. 37	. 37			
	43-63	20-25	\|1.25-1.45		0.6-2	\|0.16-0.21		0.0-2.9	0.2-1.0	. 37	. 37			
371:														
Windybutte--------	0-7	15-20	\|1.20-1.40		0.6-2	\|0.16-0.22		0.0-2.9	1.0-2.0	. 49	. 49	5	5	56
	7-13	25-35	\|1.20-1.40		0.2-0.6	\|0.18-0.22		3.0-5.9	1.0-2.0	. 49	. 49			
	13-17	10-20	\|1.30-1.50		0.2-0.6	\|0.13-0.18		0.0-2.9	0.0-0.5	. 37	. 37			
	17-60	10-15	\|1.30-1.50		0.2-0.6	\|0.16-0.18		0.0-2.9	0.0-0.5	. 37	. 37			
372:														
Wolverine--------	0-6	2-5	\|1.50-1.60		20-20	\|0.05-0.07		0.0-2.9	0.0-0.5	. 55	. 55	5	1	220
	6-37	2-5	\|1.50-1.60		20-20	\|0.04-0.07		0.0-2.9	0.0-0.5	. 20	. 20			
	37-51	2-5	\|1.50-1.60		20-20	\|0.04-0.07		0.0-2.9	0.0-0.5	. 20	. 20			
	51-70	2-5	\|1.60-1.70		20-20	\|0.04-0.07		0.0-2.9	0.0-0.5	. 20	. 20			
373:														
Denied access---	-	-	---	---	-	---	---	--	---	--	---	---		

(Absence of an entry indicates that data were not estimated)

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange capacity	$\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$	Calcium carbonate	Salinity	$\begin{array}{\|c} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$	
	In	\|meq/100 g		pH	Pct	mmhos/cm	
9:							
Teguro----------	0-2	15-25	6.6-7.8	0	0	0	
	2-5	15-25	6.6-7.8	0	0	0	
	5-14	10-20	6.6-7.8	0	0	0	
	14-24	---	---	---	---	--	
Observation-----	0-4	10-20	6.6-7.8	0	0	0	
	4-8	10-15	6.6-7.8	0	0	0	
	8-23	15-25	6.6-7.8	0	0	0	
	23-33	---	---	---	---	---	
10:							
Anatone, moist---	0-8	15-20	6.1-7.3	0	0	0	
	8-14	15-20	6.1-7.3	0	0	0	
	14-24	---	---	---	---	---	
Egyptcreek-------	0-8	15-25	6.1-7.3	0	0	0	
	8-18	10-20	6.1-7.3	0	0	0	
	18-24	10-20	6.1-7.3	0	0	0	
	24-34	---	---	---	---	---	
Rock outcrop-	0-60	---	---	---	---	---	
11:							
Anatone, moist--	0-5	15-20	6.6-7.3	0	0	0	
	5-16	15-20	6.6-7.3	0	0	0	
	16-26	---	---	---	---	---	
Minam-----------	0-3	20-30	6.6-7.3	0	0	0	
	3-29	15-25	6.6-7.3	0	0	0	
	29-39	15-25	6.6-7.3	0	0	0	
	39-52	10-20	6.6-7.3	0	0	0	
	52-62	5.0-15	6.6-7.3	0	0	0	
Rock outcrop-	0-60	-	---	--	---	---	
12:							
Anatone---------	0-5	15-20	6.6-7.3	0	0	0	
	5-16	15-20	6.6-7.3	0	0	0	
	16-26	---	---	---	---	---	
Teguro----------	0-2	15-25	6.6-7.8	0	0	0	
	2-5	15-25	6.6-7.8	0	0	0	
	5-14	10-20	6.6-7.8	0	0	0	
	14-24	---	---	---	---	---	
Rock outcrop-	0-60	---	---	-	---	---	
13:							
Anatone---------	0-5	15-20	6.6-7.3	0	0	0	
	5-16	15-20	6.6-7.3	0	0	0	
	16-26	---	---	---	---	---	
Westbutte-------	0-12	15-25	6.6-7.3	0	0	0	
	12-24	10-25	6.6-7.8	0	0	0	
	24-34	---	---	---	---	---	
Rock outcrop-	0-60	---	---	---	---	---	
14:							
Anawalt---------	0-2	10-20	6.6-7.8	0	0	0	
	2-11	15-25	6.6-7.8	0	0	0	
	11-16	25-40	6.6-7.8	0	0	0	
	16-26	---	---	---	---	---	

Table 16.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Cation \|exchange |capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \mid \text { reaction } \end{gathered}\right.$ | $\begin{aligned} & \mid \text { Calcium } \\ & \mid \text { carbon- } \mid \\ & \text { ate } \end{aligned}$ | Salinity | $\begin{array}{\|l} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | $\|\mathrm{meq} / 100 \mathrm{~g}\|$ | pH | Pct | mmhos/cm | |
| 15: | | | | | | |
| Anawalt--------- | 0-2 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 2-11 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 11-16 | 25-40 | 6.6-7.8 | 0 | 0 | 0 |
| | 16-26 | --- | --- | --- | --- | --- |
| Lonely---------- | 0-4 | 15-20 | 6.6-7.3 | 0 | 0 | 0 |
| | 4-16 | 15-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 16-24 | 15-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 24-34 | --- | --- | - | --- | --- |
| | | | | | | |
| 16: | | | | | | |
| Anawalt---------- | 0-2 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 2-11 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 11-16 | 25-40 | 6.6-7.8 | 0 | 0 | 0 |
| | 16-26 | --- | - | --- | --- | --- |
| | | | | | | |
| Oreneva---------- | 0-2 | 10-15 | 6.6-7.8 | 0 | 0 | 0 |
| | 2-10 | 10-15 | 6.6-7.8 | 0 | 0 | 0 |
| | 10-21 | 10-15 | 7.4-8.4 | 0 | 0 | 0 |
| | 21-31 | - | --- | --- | --- | --- |
| | | | | | | |
| 17: | | | | | | |
| Anawalt--------- | 0-2 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 2-11 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 11-16 | 25-40 | 6.6-7.8 | 0 | 0 | 0 |
| | 16-26 | -- | --- | --- | --- | --- |
| | | | | | | |
| Raz------------- | 0-2 | 10-15 | 7.4-7.8 | 0 | 0 | 0 |
| | 2-7 | 10-20 | 7.4-8.4 | 0-2 | 0 | 0 |
| | 7-12 | 10-20 | 7.9-8.4 | 1-3 | 0 | 0 |
| | 12-23 | --- | --- | --- | --- | --- |
| | 23-33 | --- | --- | - | --- | --- |
| | | | | | | |
| 18: | | | | | | |
| Ateron---------- | 0-5 | 10-20 | 6.6-7.3 | 0 | 0 | 0 |
| | 5-12 | 20-25 | 6.6-7.3 | 0 | 0 | 0 |
| | 12-18 | 25-35 | 6.6-7.3 | 0 | 0 | 0 |
| | 18-28 | -- | - | --- | --- | --- |
| | | | | | | |
| 19 : | | | | | | |
| Ateron---------- | 0-5 | 10-20 | 6.6-7.3 | 0 | 0 | 0 |
| | 5-12 | 20-25 | 6.6-7.3 | 0 | 0 | 0 |
| | 12-18 | 25-35 | 6.6-7.3 | 0 | 0 | 0 |
| | 18-28 | --- | --- | --- | --- | --- |
| | | | | | | |
| Rubble land- | 0-60 | --- | - | --- | --- | --- |
| | | | | | | |
| 20: | | | | | | |
| Ateron---------- | 0-5 | 10-20 | 6.6-7.3 | 0 | 0 | 0 |
| | 5-12 | 20-25 | 6.6-7.3 | 0 | 0 | 0 |
| | 12-18 | 25-35 | 6.6-7.3 | 0 | 0 | 0 |
| | 18-28 | --- | --- | --- | --- | --- |
| | | | | | | |
| Observation------ | 0-4 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 4-8 | 10-15 | 6.6-7.8 | 0 | 0 | 0 |
| | 8-23 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 23-33 | --- | --- | --- | --- | --- |
| | | | \| | | | |
| 21: | | | | | | |
| Atlow----------- | 0-3 | 10-15 | 7.4-7.8 | 0 | 0 | 0 |
| | 3-11 | 15-20 | 7.4-7.8 | 0 \| | 0 | 0 |
| | 11-21 | --- | --- | --- \| | --- | --- |
| | | | | | | |

Table 16.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | \| Cation |exchange |capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | $\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$ | Salinity | $\begin{array}{\|l} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | \|meq/100 g | pH | PCt | mmhos/cm | |
| 22: | | | | | | |
| Atlow----------- | 0-3 | 10-15 | 7.4-7.8 | 0 | 0 | 0 |
| | 3-11 | 15-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 11-21 | - | --- | --- | --- | --- |
| Rock outcrop--- | 0-60 | --- | --- | --- | --- | -- |
| 23: | | | | | | |
| Atlow----------- | 0-3 | 10-15 | 7.4-7.8 | 0 | 0 | 0 |
| | 3-11 | 15-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 11-21 | --- | --- | --- | --- | --- |
| Rock outcrop-- | 0-60 | --- | --- | --- | --- | --- |
| 24: | | | | | | |
| Atlow----------- | 0-3 | 10-15 | 7.4-7.8 | 0 | 0 | 0 |
| | 3-11 | 15-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 11-21 | --- | --- | --- | --- | --- |
| Skedaddle------- | 0-3 | 15-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 3-8 | 10-15 | 7.4-7.8 | 0 | 0 | 0 |
| | 8-11 | 10-15 | 7.4-7.8 | 0 | 0 | 0 |
| | 11-21 | --- | --- | --- | --- | --- |
| 25: | | | | | | |
| Ausmus---------- | 0-2 | 10-20 | 8.5-9.0 | 2-15 | 1.0-4.0 | 10-20 |
| | 2-9 | 20-35 | 9.1-11.0 | 10-20 | 4.0-8.0 | 20-100 |
| | 9-16 | 20-35 | 9.1-11.0 | 10-20 | 4.0-16.0 | 100-200 |
| | 16-29 | 20-35 | 9.1-11.0 | 10-20 | 16.0-32.0 | 300-500 |
| | 29-69 | 20-35 | 9.1-11.0 | 1-5 | 16.0-32.0 | 300-500 |
| 26: | | | | | | |
| Ausmus---------- | 0-2 | 10-20 | 8.5-9.0 | 2-15 | 1.0-4.0 | 10-20 |
| | 2-9 | 20-35 | 9.1-11.0 | 10-20 | 4.0-8.0 | 20-100 |
| | 9-16 | 20-35 | 9.1-11.0 | 10-20 | 4.0-16.0 | 100-200 |
| | 16-29 | 20-35 | 9.1-11.0 | 10-20 | 16.0-32.0 | 300-500 |
| | 29-69 | 20-35 | 9.1-11.0 | 1-5 | 16.0-32.0 | 300-500 |
| 27: | | | | | | |
| Baconcamp------- | 0-4 | 20-30 | 6.1-7.3 | 0 | 0 | 0 |
| | 4-20 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 20-35 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 35-45 | - | --- | --- | --- | --- |
| 28: | | | | | | |
| Baconcamp------- | 0-4 | 20-30 | 6.1-7.3 | 0 | 0 | 0 |
| | 4-20 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 20-35 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 35-45 | --- | --- | --- | --- | --- |
| Clamp----------- | 0-3 | 20-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 3-12 | 20-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 12-22 | --- | --- | --- | --- | --- |
| 29: | | | | | | |
| Baconcamp------- | | 20-30 | 6.1-7.3 | 0 | 0 | 0 |
| | 4-20 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 20-35 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 35-45 | --- | | --- | --- | --- |
| Clamp----------- | 0-3 | 20-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 3-12 | 20-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 12-22 | --- | - | --- | --- | --- |
| | | | | | | |

Table 16.--Chemical Properties of the Soils--Continued

Table 16.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | \| Cation |exchange |capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | Calcium\| carbonate | Salinity | $\begin{array}{\|c} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | \|meq/100 g| | pH | Pct | mmhos/cm | |
| Berdugo | 0-1 | 15-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 1-12 | 25-35 | 7.4-8.4 | 0 | 0 | 0 |
| | 12-17 | 15-20 | 7.9-8.4 | 1-3 | 0 | 0 |
| | 17-26 | 5.0-20 | 7.9-9.0 | 1-3 | 0.0-2.0 | 2-5 |
| | 26-65 | 5.0-10 | 7.9-8.4 | 0 | 0 | 0 |
| 37: | | | | | | |
| Berdugo--------- | 0-1 | 15-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 1-12 | 25-35 | 7.4-8.4 | 0 | 0 | 0 |
| | 12-17 | 15-20 | 7.9-8.4 | 1-3 | 0 | 0 |
| | 17-26 | 5.0-20 | 7.9-9.0 | 1-3 | 0.0-2.0 | 2-5 |
| | 26-65 | 5.0-10 | 7.9-8.4 | 0 | 0 | 0 |
| Catlow---------- | 0-3 | 10-15 | 7.4-7.8 | 0 | 0 | 0 |
| | 3-22 | 10-15 | 7.4-7.8 | 0 | 0 | 0 |
| | 22-31 | 5.0-10 | 7.4-8.4 | 1-2 | 0 | 0 |
| | 31-60 | 0.0-5.0 | 7.4-8.4 | 0-1 | 0 | 0 |
| 38: | | | | | | |
| Bigfrog | 0-3 | 10-15 | 6.6-7.8 | 0 | 0 | 0 |
| | 3-18 | 15-20 | 7.4-8.4 | 0 | 0 | 0 |
| | 18-38 | --- | --- | --- | --- | --- |
| | 38-60 | 5.0-10 | 7.9-8.4 | 0 | 0 | 0 |
| Brock----------- | 0-3 | 5.0-10 | 7.4-8.4 | 0 | 0 | 0 |
| | 3-7 | 10-15 | 7.9-8.4 | 0 | 0 | 0 |
| | 7-10 | 2.0-5.0 | 7.9-8.4 | 0 | 0 | 0 |
| | 10-16 | --- | --- | --- | --- | --- |
| | 16-60 | 1.0-5.0 | 7.9-8.4 | 0-3 | 0 | 0 |
| 39 : | | | | | | |
| Bocker | 0-3 | 10-20 | 6.1-7.3 | 0 | 0 | 0 |
| | 3-7 | 10-20 | 6.1-7.3 | 0 | 0 | 0 |
| | 7-17 | --- | --- | --- | --- | --- |
| Westbutte------- | 0-12 | 15-25 | 6.6-7.3 | 0 | 0 | 0 |
| | 12-24 | 10-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 24-34 | --- | --- | --- | --- | --- |
| 40 : | | | | | | |
| Boravall-------- | 0-9 | 20-30 | 9.1-11.0 | 1-5 | 16.0-32.0 | 100-200 |
| | 9-43 | 25-35 | 8.5-11.0 | 5-15 | 2.0-4.0 | 13-50 |
| | 43-60 | 15-30 | 7.9-9.0 | 0-5 | 0.0-2.0 | 5-13 |
| Playas-------- | 0-60 | - | 8.5-11.0\| | --- | 16.0-32.0 | 70-999 |
| 41: | | | | | | |
| Borobey--------- | 0-3 | 5.0-10 | 7.4-7.8 | 0 | 0 | 0 |
| | 3-11 | 5.0-10 | 7.4-7.8 | 0 | 0 | 0 |
| | 11-23 | 5.0-10 | 7.4-8.4 | 0 | 0 | 0 |
| | 23-27 | 1.0-5.0 | 7.4-8.4 | 0 | 0 | 0 |
| | 27-60 | 1.0-5.0 | 7.4-8.4 | 0 | 0 | 0 |
| 42: | | | | | | |
| Boulder Lake---- | 0-1 | 30-45 | 6.6-7.8 | 0 | 0 | 0 |
| | 1-42 | 25-40 | 6.6-7.8 | 0 | 0 | 0 |
| | 42-62 | 25-30 | 7.4-8.4 | 0-5 | 0 | 0 |
| 43: | | | | | | |
| Boulder Lake- | 0-1 | 30-45 | 6.6-7.8 | 0 | 0 | 0 |
| | 1-42 | 25-40 | 6.6-7.8 | 0 | 0 | 0 |
| | 42-62 | 25-30 | 7.4-8.4 | 0-5 | 0 | 0 |
| | | | | | | |

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	$\begin{aligned} & \text { Cation } \\ & \mid \text { exchange } \\ & \text { \| capacity } \end{aligned}$	Soil reaction	$\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \text { ate } \end{aligned}$	Salinity	$\|$Sodium \mid adsorption ratio
	In	\|meq/100 g	pH	Pct	mmhos/cm	
43:						
Merlin---------------	0-7	15-25	6.1-7.8	0	0	0
	7-12	20-30	6.6-7.8	0	0	0
	12-18	40-50	6.6-7.8	0	0	0
	18-29	---	---	-	---	--
44 :						
Boulder Lake---------	0-1	30-45	6.6-7.8	0	0	0
	1-42	25-40	6.6-7.8	0	0	0
	42-62	25-30	7.4-8.4	0-5	0	0
Spangenburg----------	0-2	15-20	6.6-7.8	0	0	0
	2-15	30-45	7.4-8.4	0	0	0
	15-34	20-30	7.4-8.4	1-3	0.0-2.0	0
	34-60	10-20	7.4-8.4	0	0.0-2.0	0
45:						
Brabble-------------	0-3	15-25	6.6-7.8	0	0	0
	3-9	15-25	6.6-7.8	0	0	0
	9-26	15-25	7.4-7.8	0	0	0
	26-33	15-20	7.9-9.0	1-5	0.0-2.0	0-3
	33-38	---	---	---	---	-
	38-48	---	---	--	--	---
Calderwood-----------	0-3	14-19	7.4-7.8	0	0	0
	3-12	14-25	7.4-7.8	0	0	0
	12-18	14-25	7.4-7.8	0	0	0
	18-28	---	---	---	---	---
46:						
Brace----------------	0-6	8.0-13	6.6-7.8	0	0	0
	6-13	9.0-18	7.4-7.8	0	0	0
	13-32	5.0-13	7.4-8.4	1-3	0	0
	32-36	---	---	---	---	---
	36-46	---	---	---	---	---
Coztur---------------	0-9	10-15	7.4-7.8	0	0	0
	9-18	15-25	7.4-8.4	0	0	0
	18-28	---	---	---	---	---
Rock outcrop---------	0-60	---	---	---	---	---
47:						
Brace---------------	0-6	5.0-10	6.6-7.8	0	0	0
	6-13	9.0-18	7.4-7.8	0	0	0
	13-32	5.0-13	7.4-8.4	1-3	0	0
	32-36	---	---	---	---	---
	36-46	---	---	---	---	---
Vergas---------------	0-6	5.0-15	6.6-7.3	0	0	0
	6-14	15-20	6.6-7.3	0	0	0
	14-20	2.0-5.0	7.4-8.4	0-2	0	0
	20-62	1.0-5.0	7.4-8.4	0-2	0	0
48:						
Bruncan, thick surface						
	0-5	5.0-10	6.6-8.4	0	0	0
	5-15	10-20	7.4-8.4	0	0	0
	15-17	---	---	---	---	---
	17-27	-	---	---	---	---
Bruncan, thin surface	0-1	5.0-10	6.6-8.4	0	0	0
	1-15	10-20	7.4-8.4	0	0	0
	15-17	---	---	---	---	---
	17-27	-	-	---	---	---

Table 16.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Cation exchange capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | \|Calcium| |carbonate | Salinity | $\begin{aligned} & \text { Sodium } \\ & \text { \|adsorption } \end{aligned}$ ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g | pH | Pct | mmhos/cm | |
| 49: | | | | | | |
| Brunzell------ | 0-11 | 10-20 | 6.6-7.3 | 0 | 0 | 0 |
| | 11-18 | 10-15 | 6.6-7.3 | 0 | 0 | 0 |
| | 18-30 | 10-15 | 6.6-7.3 | 0 | 0 | 0 |
| | 30-62 | 5.0-10 | 6.6-7.8 | 0 | 0 | 0 |
| 50: | | | | | | |
| Bucklake- | 0-2 | 20-30 | 7.4-7.8 | 0 | 0 | 0 |
| | 2-16 | 25-35 | 7.4-7.8 | 0 | 0 | 0 |
| | 16-31 | 25-30 | 7.4-7.8 | 0 | 0 | 0 |
| | 31-41 | --- | --- | --- | --- | --- |
| 51: | | | | | | |
| Bucklake-------- | 0-2 | 15-25 | 7.4-7.8 | 0 | 0 | 0 |
| | 2-16 | 25-35 | 7.4-7.8 | 0 | 0 | 0 |
| | 16-31 | 25-30 | 7.4-7.8 | 0 | 0 | 0 |
| | 31-41 | --- | --- | --- | --- | --- |
| Mahoon- | 0-3 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 3-9 | 20-40 | 7.4-7.8 | 0 | 0 | 0 |
| | 9-18 | 30-50 | 7.4-8.4 | 0 | 0 | 0 |
| | 18-25 | 30-50 | 7.4-8.4 | 0 | 0 | 0 |
| | 25-35 | --- | --- | --- | --- | --- |
| Rubble land- | 0-60 | --- | --- | --- | -- | -- |
| 52: | | | | | | |
| Calderwood- | 0-3 | 14-19 | 7.4-7.8 | 0 | 0 | 0 |
| | 3-12 | 14-25 | 7.4-7.8 | 0 | 0 | 0 |
| | 12-18 | 14-25 | 7.4-7.8 | 0 | 0 | 0 |
| | 18-28 | --- | --- | --- | --- | --- |
| 53: | | | | | | |
| Calderwood------- | 0-3 | 14-19 | 7.4-7.8 | 0 | 0 | 0 |
| | 3-12 | 14-25 | 7.4-7.8 | 0 | 0 | 0 |
| | 12-18 | 14-25 | 7.4-7.8 | 0 | 0 | 0 |
| | 18-28 | --- | --- | --- | -- | --- |
| McConnel-------- | 0-3 | 5.0-10 | 7.4-8.4 | 0 | 0 | 0 |
| | 3-11 | 5.0-10 | 7.4-8.4 | 0 | 0 | 0 |
| | 11-62 | 2.0-5.0 | 7.4-9.0 | 2-5 | 0.0-4.0 | 0-4 |
| 54: | | | | | | |
| Carryback------- | 0-7 | 20-25 | 7.4-7.8 | 0 | 0 | 0 |
| | 7-24 | 30-45 | 7.4-7.8 | 0 | 0 | 0 |
| | 24-34 | --- | --- | --- | --- | --- |
| 55: | | | | | | |
| Carryback------- | 0-7 | 20-25 | 7.4-7.8 | 0 | 0 | 0 |
| | 7-24 | 30-45 | 7.4-7.8 | 0 | 0 | 0 |
| | 24-34 | --- | --- | --- | --- | --- |
| 56: | | | | | | |
| Carryback------- | 0-7 | 20-25 | 7.4-7.8 | 0 | 0 | 0 |
| | 7-24 | 30-45 | 7.4-7.8 | 0 | 0 | 0 |
| | 24-34 | --- | --- | --- | --- | --- |
| 57: | | | | | | |
| Carryback------- | 0-7 | 20-25 | 7.4-7.8 | 0 | 0 | 0 |
| | 7-24 | 30-45 | 7.4-7.8 | 0 | 0 | 0 |
| | 24-34 | --- | --- | --- | --- | --- |
| | | | | | | |

Table 16.--Chemical Properties of the Soils--Continued

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange \|capacity	$\begin{array}{\|c\|} \text { Soil } \\ \text { reaction } \end{array}$	$\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \text { ate } \end{aligned}$	Salinity	Sodium adsorption ratio
	In	\|meq/100 g	pH	Pct	mmhos/cm	
64 :						
Carvix----------	0-6	10-20	6.6-7.8	0	0	0
	6-19	10-20	7.4-8.4	0	0	0
	19-60	10-15	7.4-8.4	0	0	0
65:						
Clamp-----------	0-3	20-25	6.6-7.8	0	0	0
	3-12	20-25	6.6-7.8	0	0	0
	12-22	---	---	---	---	--
Baconcamp-	0-4	20-30	6.1-7.3	0	0	0
	4-20	15-25	6.1-7.3	0	0	0
	20-35	15-25	6.1-7.3	0	0	0
	35-45	---	---	--	---	---
Hackwood-	0-11	20-30	6.6-7.3	0	0	0
	11-23	15-25	6.6-7.3	0	0	0
	23-48	10-20	6.6-7.3	0	0	0
	48-60	10-20	6.6-7.3	0	0	0
66:						
Coztur----------	0-9	5.0-10	7.4-7.8	0	0	0
	9-18	15-25	7.4-8.4	0	0	0
	18-28	---	---	---	---	---
67:						
Crowcamp--------	0-3	20-25	6.6-7.8	0	0	0
	3-30	35-50	7.4-8.4	0-1	0	0
	30-53	10-20	7.9-8.4	0-3	0.0-2.0	0
	53-68	10-20	7.9-8.4	0	0.0-2.0	0
68:						
Crowcamp--------	0-3	25-30	6.6-7.8	0	0	0
	3-30	35-50	7.4-8.4	0-1	0	0
	30-53	10-20	7.9-8.4	0-3	0.0-2.0	0
	53-68	10-20	7.9-8.4	0	0.0-2.0	0
Ausmus----------	0-2	10-20	8.5-9.0	2-15	1.0-4.0	10-20
	2-9	20-35	9.1-11.0	10-20	4.0-8.0	20-100
	9-16	20-35	$9.1-11.0$	10-20	4.0-16.0	100-200
	16-29	20-35	9.1-11.0	10-20	16.0-32.0	300-500
	29-69	20-35	9.1-11.0	1-5	16.0-32.0	300-500
Poujade---------	0-4	10-20	6.6-7.8	0	0	0-2
	4-6	10-20	7.4-8.4	0	0	1-5
	6-13	20-40	9.1-11.0	1-5	1.0-4.0	13-50
	13-40	20-40	9.1-11.0	1-5	4.0-8.0	50-170
	40-65	10-30	8.5-11.0	1-5	1.0-4.0	30-170
69:						
Davey-----------	0-3	3.0-8.0	7.4-7.8	0	0	0
	3-18	2.0-5.0	7.4-8.4	0	0.0-2.0	0-2
	18-60	1.0-3.0	7.4-9.0	2-5	1.0-2.0	0-5
70:						
Davey-----------	0-3	3.0-8.0	7.4-7.8	0	0	0
	3-18	2.0-5.0	7.4-8.4	0	0.0-2.0	0-2
	18-60	1.0-3.0	7.4-9.0	2-5	1.0-2.0	0-5
Oreanna---------	0-7	10-15	7.9-8.4	0	0	0
	7-21	10-15	7.9-8.4	0	0	0
	21-43	0.0-5.0	7.9-8.4	0	0.0-2.0	0-2
	43-50	5.0-10	8.5-9.0	2-5	0.0-2.0	2-8
	50-60	0.0-5.0	8.5-9.0	2-5	0.0-2.0	2-8

Table 16.--Chemical Properties of the Soils--Continued

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange capacity	$\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$	Calcium \|carbonate	Salinity	$\begin{array}{\|c} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$
	In	meq/100 g\|	pH	Pct	mmhos/cm	
80 :						
Doyn-------------	0-2	10-20	6.6-7.8	0	0	0
	2-8	10-20	7.4-8.4	0	0	0
	8-18	---	---	---	---	---
81:						
Doyn------------	0-2	10-20	6.6-7.8	0	0	0
	2-8	10-20	7.4-8.4	0	0	0
	8-18	---	---	---	---	---
Merlin----------	0-7	15-25	6.1-7.8	0	0	0
	7-12	20-30	6.6-7.8	0	0	0
	12-18	40-50	6.6-7.8	0	0	0
	18-29	--	---	---	---	---
82 :						
Doyn-------------	0-2	10-20	6.6-7.8	0	0	0
	2-8	10-20	7.4-8.4	0	0	0
	8-18	---	---	---	---	---
Arcia-----------	0-4	13-26	6.6-7.8	0	0	0
	4-13	14-27	6.6-7.8	0	0	0
	13-23	24-35	6.6-7.8	0	0	0
	23-33	-	---	---	---	---
83:						
Drewsey----------	0-3	25-35	6.6-7.8	0	0	0
	3-32	25-35	7.4-7.8	0	0	0
	32-62	25-35	7.4-8.4	1-5	0	0
84:						
Drewsey---------	0-3	25-35	6.6-7.8	0	0	0
	3-32	25-35	7.4-7.8	0	0	0
	32-62	25-35	7.4-8.4	1-5	0	0
85:						
Drewsey----------	0-3	25-35	6.6-7.8	0	0	0
	3-32	25-35	7.4-7.8	0	0	0
	32-62	25-35	7.4-8.4	1-5	0	0
Torriorthents----	$0-7$	---	---	---	---	---
	7-17	---	---	---	---	---
	0-3	10-20	7.4-7.8	0	0	0
Gumble----------	3-8	10-20	7.4-7.8	0	0	0
	8-14	25-35	7.4-8.4	0	0	0
	14-16	20-25	7.9-8.4	0	0	0
	16-26	-	---	---	---	---
86:						
Droval----------	0-4	10-20	9.1-11.0\|	1-2	8.0-16.0	75-120
	4-22	30-35	7.9-8.4	0-2	16.0-32.0	45-80
	22-32	35-40	6.1-6.5	0-2	16.0-32.0	45-80
	32-61	30-40	6.1-6.5	0-2	16.0-32.0	45-80
87:						
Duff-------------	0-8	20-30	6.6-7.3	0	0	0
	8-24	15-25	6.6-7.3	0	0	0
	24-43	10-20	6.6-7.3	0	0	0
	43-53	---	---	---	---	---
88:						
Duff------------	0-8	20-30	6.6-7.3	0	0	0
	8-24	15-25	6.6-7.3	0	0	0
	24-43	10-20	6.6-7.3	0	0	0
	43-53	---	---	---	---	---

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange capacity	$\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$	Calcium carbonate	Salinity	$\begin{array}{\|l\|l} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$
	In	meq/100 g\|	pH	Pct	mmhos/cm	
88:						
Clamp-----------	0-3	20-25	6.6-7.8	0	0	0
	3-12	20-25	6.6-7.8	0	0	0
	12-22	---	---	-	---	--
89:						
Duff	0-8	20-30	6.6-7.3	0	0	0
	8-24	15-25	6.6-7.3	0	0	0
	24-43	10-20	6.6-7.3	0	0	0
	43-53	---	---	---	---	---
Clamp-----------	0-3	20-25	6.6-7.8	0	0	0
	3-12	20-25	6.6-7.8	0	0	0
	12-22	---	,	---	---	---
90:						
Duff------------	0-8	20-30	6.6-7.3	0	0	0
	8-24	15-25	6.6-7.3	0	0	0
	24-43	10-20	6.6-7.3	0	0	0
	43-53	---	---	---	---	---
Hackwood--------	0-11	20-30	6.6-7.3	0	0	0
	11-23	15-25	6.6-7.3	0	0	0
	23-48	10-20	6.6-7.3	0	0	0
	48-60	10-20	6.6-7.3	0	0	0
91:						
Edemaps---------	0-7	15-25	6.6-7.8	0	0	0
	7-18	30-45	6.6-7.8	0	0	0
	18-25	30-45	7.4-8.4	0	0	0
	25-30	---	-	---	---	---
	30-40	--	---	--	---	---
92 :						
Edemaps---------	0-7	20-30	6.6-7.8	0	0	0
	7-18	30-45	6.6-7.8	0	0	0
	18-25	30-45	7.4-8.4	0	0	0
	25-30	---	---	---	---	---
	30-40	---	---	--	---	---
Carryback-------	0-7	20-25	7.4-7.8	0	0	0
	$7-24$	30-45	7.4-7.8	0	0	0
	24-34	---	---	---	---	---
93:						
Enko------------	0-8	2.0-5.0	7.4-8.4	0	0	0
	8-29	5.0-10	7.4-8.4	0	0	0
	29-45	5.0-10	7.4-8.4	1-3	0.0-2.0	0
	45-62	2.0-5.0	7.4-8.4	1-3	0.0-2.0	0
94:						
Enko-------------	0-8	2.0-5.0	7.4-8.4	0	0	0
	8-29	5.0-10	7.4-8.4	0	0	0
	29-45	5.0-10	7.4-8.4	1-3	0.0-2.0	0
	45-62	2.0-5.0	7.4-8.4	1-3	0.0-2.0	0
Catlow----------	0-3	10-15	7.4-7.8	0	0	0
	3-22	10-15	7.4-7.8	0	0	0
	22-31	5.0-10	7.4-8.4	1-2	0	0
	31-60	0.0-5.0	7.4-8.4	0-1	0	0
95:						
Enko------------	0-8	2.0-5.0	7.4-8.4	0	0	0
	8-29	5.0-10	7.4-8.4	0	0	0
	29-45	5.0-10	7.4-8.4	1-3	0.0-2.0	0
	45-62	2.0-5.0	7.4-8.4	1-3	0.0-2.0	0

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange capacity	$\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$	$\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \mid \quad \text { ate } \end{aligned}$	Salinity	Sodium adsorption ratio
	In	meq/100 g	pH	Pct	mmhos/cm	
95:						
Catlow----------	0-3	10-15	7.4-7.8	0	0	0
	3-22	10-15	7.4-7.8	0	0	0
	22-31	5.0-10	7.4-8.4	1-2	0	0
	31-60	0.0-5.0	7.4-8.4	0-1	0	0
96:						
Enko------------	0-8	2.0-5.0	7.4-8.4	0	0	0
	8-29	5.0-10	7.4-8.4	0	0	0
	29-45	5.0-10	7.4-8.4	1-3	0.0-2.0	0
	45-62	2.0-5.0	7.4-8.4	1-3	0.0-2.0	0
Catlow-	0-3	10-15	7.4-7.8	0	0	0
	3-22	10-15	7.4-7.8	0	0	0
	22-31	5.0-10	7.4-8.4	1-2	0	0
	31-60	0.0-5.0	7.4-8.4	0-1	0	0
97:						
Erakatak--------	0-7	20-25	6.6-7.3	0	0	0
	7-16	20-30	6.6-7.3	0	0	0
	16-25	25-35	6.6-7.3	0	0	0
	25-35	---	---	--	---	---
98:						
Erakatak--------	0-7	15-25	6.6-7.3	0	0	0
	7-16	20-30	6.6-7.3	0	0	0
	16-25	25-35	6.6-7.3	0	0	0
	25-35	---	---	---	---	---
Lambring--------	0-7	15-25	6.6-7.8	0	0	0
	7-12	10-20	6.6-7.8	0	0	0
	12-21	10-15	6.6-7.8	0	0	0
	21-60	10-15	6.6-7.8	0	0	0
Rock outcrop---	0-60	---	---	---	---	--
99:						
Erakatak--------	0-7	15-25	6.6-7.3	0	0	0
	7-16	20-30	6.6-7.3	0	0	0
	16-25	25-35	6.6-7.3	0	0	0
	25-35	---	---	--	---	---
Merlin----------	0-7	15-25	6.1-7.8	0	0	0
	7-12	20-30	6.6-7.8	0	0	0
	12-18	40-50	6.6-7.8	0	0	0
	18-29	---	---	---	---	---
Westbutte-------	0-12	15-25	6.6-7.3	0	0	0
	12-24	10-25	6.6-7.8	0	0	0
	24-34	---	---	---	---	---
100:						
Erakatak--------	0-7	20-25	6.6-7.3	0	0	0
	7-16	20-30	6.6-7.3	0	0	0
	16-25	25-35	6.6-7.3	0	0	0
	25-35	---	---	---	---	---
Rock outcrop-----	0-60	---	---	---	---	---
101:						
Erakatak--------	0-7	20-25	6.6-7.3	0	0	0
	7-16	20-30	6.6-7.3	0	0	0
	16-25	25-35	6.6-7.3	0	0	0
	25-35	---	---	---	---	---

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange capacity	$\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$	$\left.\begin{array}{\|c\|} \text { Calcium } \mid \\ \mid \text { carbon- } \\ \text { ate } \end{array} \right\rvert\,$	Salinity	$\begin{array}{\|c} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$
	In	meq/100 g\|	pH	Pct	mmhos/cm	
101:						
Ninemile---------	0-4	10-20	6.6-7.8	0	0	0
	4-16	35-45	6.6-7.8	0	0	0
	16-26	---	---	---	---	---
Hapgood----------	0-10	20-30	6.6-7.3	0	0	0
	10-23	15-25	6.6-7.3	0	0	0
	23-43	10-20	6.6-7.3	0	0	0
	43-53	---	---	---	---	---
102:						
Felcher----------	0-10	15-20	6.6-7.8	0	0	0
	10-22	10-20	6.6-7.8	0	0	0
	22-32	---	---	-	---	---
103:						
Felcher----------	0-10	15-20	6.6-7.8	0	0	0
	10-22	10-20	6.6-7.8	0	0	0
	22-32	---	---	-	---	---
Rock outcrop-	0-60	---	---	---	---	---
104:						
Felcher---------	0-10	15-20	6.6-7.8	0	0	0
	10-22	10-20	6.6-7.8	0	0	0
	22-32	---	---	---	---	---
Rock outcrop-	0-60	---	---	---	---	---
Brezniak---------	0-3	15-25	6.6-7.3	0	0	0
	3-7	25-35	6.6-7.3	0	0	0
	7-10	25-35	6.6-7.3	0	0	0
	10-20	---	-	---	---	---
105:						
Felcher---------	0-10	15-20	6.6-7.8	0	0	0
	10-22	10-20	6.6-7.8	0	0	0
	22-32	---	---	---	---	---
Rock outcrop--	0-60	---	---	-	---	---
Westbutte--------	0-12	15-25	6.6-7.3	0	0	0
	12-24	10-25	6.6-7.8	0	0	0
	24-34	---	---	---	---	---
106:						
Felcher----------	0-10	15-20	6.6-7.8	0	0	0
	10-22	10-20	6.6-7.8	0	0	0
	22-32	---	---	---	---	---
Sagehen---------	0-10	10-20	6.6-7.8	0	0	0
	10-19	10-20	6.6-7.8	0	0	0
	19-29	--	---	---	---	---
107:						
Felcher----------	0-10	15-20	6.6-7.8	0	0	0
	10-22	10-20	6.6-7.8	0	0	0
	22-32	--	-	---	---	---
Sagehen---------	0-10	10-20	6.6-7.8	0	0	0
	10-19	10-20	6.6-7.8	0	0	0
	19-29	---	---	---	---	---
108:						
Felcher----------	0-10	15-20	6.6-7.8	0	0	0
	10-22	10-20	6.6-7.8	0	0	0
	22-32	---	\| ---	---	---	---

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange capacity	$\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$	Calcium carbonate	Salinity	$\begin{array}{\|l} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$
	In	meq/100 g\|	pH	Pct	mmhos/cm	
108:						
Fitzwater------------\|	0-9	10-15	7.4-7.8	0	0	0
	9-16	10-15	7.4-7.8	0	0	0
	16-30	10-15	7.4-7.8	0	0	0
	30-58	5.0-10	7.4-7.8	0	0	0
	58-68	---	---	---	--	---
Rock outcrop---------	0-60	---	---	---	---	---
109:						
Felcher--------------\|	0-10	15-20	6.6-7.8	0	0	0
	10-22	10-20	6.6-7.8	0	0	0
	22-32	---	---	---	---	---
Pernty--------------	0-3	15-25	6.6-7.8	0	0	0
	3-8	20-30	6.6-7.8	0	0	0
	8-15	15-25	6.6-7.8	0	0	0
	15-25	---	---	---	---	---
Ninemile------------ \|	0-4	20-30	6.6-7.8	0	0	0
	4-16	35-45	6.6-7.8	0	0	0
	16-26	-	---	--	---	---
110:						
Felcher------------- \|	0-10	15-20	6.6-7.8	0	0	0
	10-22	10-20	6.6-7.8	0	0	0
	22-32	---	---	---	---	---
Westbutte------------ \|	0-12	15-25	6.6-7.3	0	0	0
	12-24	10-25	6.6-7.8	0	0	0
	24-34	---	---	---	--	--
111:						
Final----------------	0-3	20-25	7.9-9.0	0	2.0-4.0	25-45
	3-12	30-50	7.9-9.0	0-1	4.0-8.0	30-60
	12-24	30-50	8.5-9.0	0-1	8.0-16.0	50-90
	24-42	20-40	9.1-11.0	0-2	8.0-16.0	80-120
	42-60	20-40	9.1-11.0	1-2	4.0-8.0	80-120
112 :						
Fitzwater------------\|	0-9	10-15	7.4-7.8	0	0	0
	9-16	10-15	7.4-7.8	0	0	0
	16-30	10-15	7.4-7.8	0	0	0
	30-58	5.0-10	7.4-7.8	0	0	0
	58-68	---	---	---	---	---
Hapgood, thick surface------						
	0-10	15-25	6.6-7.3	0	0	0
	10-23	15-25	6.6-7.3	0	0	0
	23-43	10-20	6.6-7.3	0	0	0
	43-53	---	---	-	--	---
Hapgood, thin surface	0-5	15-25	6.6-7.3	0	0	0
	5-23	15-25	6.6-7.3	0	0	0
	23-43	10-20	6.6-7.3	0	0	0
	43-53	---	---	---	---	---
113 :						
Fitzwater------------	0-9	10-15	7.4-7.8	0	0	0
	9-16	10-15	7.4-7.8	0	0	0
	16-30	10-15	7.4-7.8	0	0	0
	30-58	5.0-10	7.4-7.8	0 \|	0	0
	58-68	---	---	---	---	---
Rock outcrop---------	0-60	-	---	---	---	---

Table 16.--Chemical Properties of the Soils--Continued

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange \|capacity	$\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$	Calcium carbonate	Salinity	Sodium \|adsorption ratio
	In	\|meq/100 g	pH	Pct	mmhos/cm	
121:						
Housefield------	0-6	20-40	6.6-7.8	0	0	0
	6-36	20-40	6.6-7.8	0	0	0
	36-48	20-40	6.6-7.8	0	0	0
	48-60	15-25	6.6-7.8	0	0	0
122:						
Fury----------	0-14	10-20	7.9-8.4	0-5	2.0-4.0	5-10
	14-21	15-20	7.4-7.8	0-5	0.0-2.0	5-10
	21-27	15-20	7.4-7.8	5-10	0.0-2.0	0-5
	27-34	10-15	7.4-7.8	0-5	0.0-2.0	0-5
	34-44	5.0-10	7.4-7.8	0	0.0-2.0	0-5
	44-60	15-20	7.4-7.8	0	0.0-2.0	0-5
Housefield-	0-6	20-40	6.6-7.8	0	0	0
	6-36	20-40	6.6-7.8	0	0	0
	36-48	20-40	6.6-7.8	0	0	0
	48-60	15-25	6.6-7.8	0	0	0
Skidoosprings----	0-11	5.0-15	8.5-11.0\|	2-5	2.0-10.0	30-90
	11-23	5.0-10	8.5-11.0\|	2-5	2.0-10.0	60-350
	23-30	5.0-10	8.5-11.0\|	2-5	2.0-10.0	60-350
	30-41	5.0-10	8.5-11.0\|	2-5	2.0-4.0	10-30
	41-49	---	---	---	---	---
	49-60	1.0-5.0	8.5-9.0	0	2.0-4.0	10-20
123:						
Fury------------	0-14	10-20	7.9-8.4	0-5	2.0-4.0	5-10
	14-21	15-20	7.4-7.8	0-5	0.0-2.0	5-10
	21-27	15-20	7.4-7.8	5-10	0.0-2.0	0-5
	27-34	10-15	7.4-7.8	0-5	0.0-2.0	0-5
	34-44	5.0-10	7.4-7.8	0	0.0-2.0	0-5
	44-60	15-20	7.4-7.8	0	0.0-2.0	0-5
Opie------------	0-7	15-20	9.1-11.0	1-2	16.0-30.0	2-8
	7-10	15-20	9.1-11.0	1-2	16.0-30.0	2-8
	10-16	10-15	8.5-9.0	2-5	8.0-16.0	5-10
	16-26	10-20	8.5-9.0	2-5	8.0-16.0	5-10
	26-44	10-15	8.5-9.0	2-5	8.0-16.0	5-10
	44-64	5.0-10	7.9-8.4	0-2	2.0-4.0	0-5
124:						
Fury------------	0-14	10-20	7.9-8.4	0-5	2.0-4.0	5-10
	14-21	15-20	7.4-7.8	0-5	0.0-2.0	5-10
	21-27	15-20	7.4-7.8	5-10	0.0-2.0	0-5
	27-34	10-15	7.4-7.8	0-5	0.0-2.0	0-5
	34-44	5.0-10	7.4-7.8	0	0.0-2.0	0-5
	44-60	15-20	7.4-7.8	0	0.0-2.0	0-5
Skidoosprings----	0-11	5.0-15	8.5-11.0\|	2-5	2.0-10.0	30-90
	11-23	5.0-10	8.5-11.0\|	2-5	2.0-10.0	60-350
	23-30	5.0-10	8.5-11.0\|	2-5	2.0-10.0	60-350
	30-41	5.0-10	8.5-11.0\|	2-5	2.0-4.0	10-30
	41-49	---	---	---	---	---
	49-60	1.0-5.0	8.5-9.0	0	2.0-4.0	10-20
Opie------------	0-7	15-20	9.1-11.0\|	1-2	16.0-30.0	2-8
	7-10	15-20	9.1-11.0\|	1-2	16.0-30.0	2-8
	10-16	10-15	8.5-9.0	2-5	8.0-16.0	5-10
	16-26	10-20	8.5-9.0	2-5	8.0-16.0	5-10
	26-44	10-15	8.5-9.0	2-5	8.0-16.0	5-10
	44-64	5.0-10	7.9-8.4	0-2	2.0-4.0	0-5

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange capacity	$\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$	Calcium \|carbon- ate	Salinity	Sodium adsorption ratio
	In	\|meq/100 g	pH	Pct	mmhos/cm	
125:						
Fury------------	0-14	10-20	7.9-8.4	0-5	2.0-4.0	5-10
	14-21	15-20	7.4-7.8	0-5	0.0-2.0	5-10
	21-27	15-20	7.4-7.8	5-10	0.0-2.0	0-5
	27-34	10-15	7.4-7.8	0-5	0.0-2.0	0-5
	34-44	5.0-10	7.4-7.8	0	0.0-2.0	0-5
	44-60	15-20	7.4-7.8	0	0.0-2.0	0-5
Widowspring------	0-22	15-20	6.6-7.8	0	0	0
	22-43	10-20	6.6-7.8	0	0	0
	43-63	10-15	6.6-7.8	0	0	0
126:						
Gaib------------	0-7	15-25	6.1-7.3	0	0	0
	7-16	10-20	6.1-7.3	0	0	0
	16-26	---	---	---	---	--
127 :						
Gaib------------	0-7	15-25	6.1-7.3	0	0	0
	7-16	10-20	6.1-7.3	0	0	0
	16-26	---	---	--	---	---
Ateron-----------	0-5	10-20	6.6-7.3	0	0	0
	5-12	20-25	6.6-7.3	0	0	0
	12-18	25-35	6.6-7.3	0	0	0
	18-28	---	---	--	---	---
128:						
Gaib------------	0-7	15-25	6.1-7.3	0	0	0
	7-16	10-20	6.1-7.3	0	0	0
	16-26	---	---	---	---	---
Rock outcrop-	0-60	---	---	-	---	---
129 :						
Gilispie--------	0-5	15-25	6.1-7.3	0	0	0
	5-14	15-25	6.1-7.3	0	0	0
	14-24	---	---	---	---	---
Noname-----------	0-3	15-25	6.1-7.3	0	0	0
	3-12	15-25	6.1-7.3	0	0	0
	12-22	-	---	---	---	---
130:						
Gochea----------	0-9	5.0-15	6.6-7.8	0	0	0
	9-13	5.0-15	6.6-7.8	0	0	0
	13-27	5.0-10	7.4-8.4	0	0	0
	27-62	5.0-10	7.4-8.4	0-1	0	0
131:						
Goldrun----------	0-24	1.0-8.0	7.9-8.4	0	0	0
	24-56	1.0-5.0	7.9-8.4	1-2	0	0-2
	56-62	10-15	7.9-8.4	2-5	1.0-2.0	2-5
Alvodest---------	0-6	20-30	9.1-11.0	5-10	16.0-32.0	800-999
	6-42	25-40	9.1-11.0	5-15	14.0-32.0	70-700
	42-78	20-35	9.1-11.0	5-15	12.0-32.0	70-700
132:						
Gradon-----------	0-3	10-15	6.6-7.8	0	0	0
	3-10	10-15	6.6-7.8	0	0	0
	10-32	15-20	7.4-7.8	0-5	0	0
	32-48	---	---	--	---	---
	48-52	---	---	---	---	---
	52-62	2.0-5.0	7.4-8.4	0	0.0-2.0	0

Table 16.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Cation \|exchange |capacity | $\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$ | $\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \text { ate } \end{aligned}$ | Salinity | $\begin{array}{\|l\|} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | \|meq/100 g| | pH | Pct | mmhos/cm | |
| 133: | | | | | | |
| Guano----------- | 0-3 | 5.0-10 | 7.4-8.4 | 0 | 0 | 0 |
| | 3-11 | 10-20 | 7.4-8.4 | 0 | 0 | 0 |
| | 11-21 | --- | --- | --- | --- | --- |
| 134: | | | | | | |
| Gumble---------- | 0-3 | 10-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 3-8 | 10-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 8-14 | 25-35 | 7.4-8.4 | 0 | 0 | 0 |
| | 14-16 | 20-25 | 7.9-8.4 | 0 | 0 | 0 |
| | 16-26 | --- | --- | --- | --- | --- |
| 135: | | | | | | |
| Gumble---------- | 0-3 | 10-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 3-8 | 10-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 8-14 | 25-35 | 7.4-8.4 | 0 | 0 | 0 |
| | 14-16 | 20-25 | 7.9-8.4 | 0 | 0 | 0 |
| | $16-26$ | --- | --- | --- | --- | --- |
| 136: | | | | | | |
| Gumble---------- | 0-3 | 10-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 3-8 | 10-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 8-14 | 25-35 | 7.4-8.4 | 0 | 0 | 0 |
| | 14-16 | 20-25 | 7.9-8.4 | 0 | 0 | 0 |
| | 16-26 | --- | --- | -- | --- | --- |
| Mahoon---------- | 0-3 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 3-9 | 20-40 | 7.4-7.8 | 0 | 0 | 0 |
| | 9-18 | 30-50 | 7.4-8.4 | 0 | 0 | 0 |
| | 18-25 | 30-50 | 7.4-8.4 | 0 | 0 | 0 |
| | 25-35 | --- | --- | -- | --- | --- |
| Cagle----------- | 0-4 | 15-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 4-12 | 25-35 | 7.4-7.8 | 0 | 0 | 0 |
| | 12-24 | 25-35 | 7.4-7.8 | 0 | 0 | 0 |
| | 24-36 | 25-30 | 7.4-7.8 | 0 | 0 | 0 |
| | 36-46 | --- | --- | --- | --- | --- |
| 137: | | | | | | |
| | | | | | | |
| Hackwood-------- | 0-11 | 20-30 | 6.6-7.3 | 0 | 0 | 0 |
| | 11-23 | 15-25 | 6.6-7.3 | 0 | 0 | 0 |
| | 23-48 | 10-20 | 6.6-7.3 | 0 | 0 | 0 |
| | 48-60 | 10-20 | 6.6-7.3 | 0 | 0 | 0 |
| 138: | | | | | | |
| Hackwood-------- | 0-11 | 20-30 | 6.6-7.3 | 0 | 0 | 0 |
| | 11-23 | 15-25 | 6.6-7.3 | 0 | 0 | 0 |
| | 23-48 | 10-20 | 6.6-7.3 | 0 | 0 | 0 |
| | 48-60 | 10-20 | 6.6-7.3 | 0 | 0 | 0 |
| Baconcamp------- | 0-4 | 20-30 | 6.1-7.3 | 0 | 0 | 0 |
| | 4-20 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 20-35 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 35-45 | --- | --- | --- | --- | --- |
| 139: | | | | | | |
| Hapgood--------- | 0-10 | 20-30 | 6.6-7.3 | 0 | 0 | 0 |
| | 10-23 | 15-25 | 6.6-7.3 | 0 | 0 | 0 |
| | 23-43 | 10-20 | 6.6-7.3 | 0 | 0 | 0 |
| | 43-53 | --- | --- | --- | --- | --- |
| 140: | | | | | | |
| Hart Camp------- | 0-3 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 3-9 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 9-19 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 19-29 | --- | --- | --- | --- | --- |
| | | | | | | |

Table 16.--Chemical Properties of the Soils--Continued

Table 16.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Cation \|exchange |capacity | $\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$ | $\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \text { ate } \end{aligned}$ | Salinity | $\begin{array}{\|l\|} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | \|meq/100 g| | pH | Pct | mmhos/cm | |
| 149: | | | | | | |
| Jimgreen------------ | 0-10 | 40-90 | 6.1-7.3 | 0 | 0 | 0 |
| | 10-12 | 10-20 | 6.1-7.3 | 0 | 0 | 0 |
| | 12-32 | 40-90 | 6.1-7.3 | 0 | 0 | 0 |
| | 32-44 | 40-90 | 6.1-7.3 | 0 | 0 | 0 |
| | 44-60 | 40-90 | 6.6-7.3 | 0 | 0 | 0 |
| 150: | | | | | | |
| Jimgreen------------ | 0-10 | 40-90 | 6.1-7.3 | 0 | 0 | 0 |
| | 10-12 | 10-20 | 6.1-7.3 | 0 | 0 | 0 |
| | 12-32 | 40-90 | 6.1-7.3 | 0 | 0 | 0 |
| | 32-44 | 40-90 | 6.1-7.3 | 0 | 0 | 0 |
| | 44-60 | 40-90 | 6.6-7.3 | 0 | 0 | 0 |
| Housefield----------- | 0-6 | 20-40 | 6.6-7.8 | 0 | 0 | 0 |
| | 6-36 | 20-40 | 6.6-7.8 | 0 | 0 | 0 |
| | 36-48 | 20-40 | 6.6-7.8 | 0 | 0 | 0 |
| | 48-60 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| 151: | | | | | | |
| Kegler-------------- \| | 0-10 | 5.0-15 | 6.6-7.8 | 0 | 0 | 0 |
| | 10-32 | 10-15 | 7.4-8.4 | 0 | 0 | 0 |
| | 32-37 | 10-15 | 7.4-8.4 | 2-5 | 0.0-2.0 | 0-2 |
| | 37-49 | --- | --- | --- | --- | --- |
| | 49-62 | 5.0-10 | 7.9-8.4 | 0 | 0.0-4.0 | 0-2 |
| 152: | | | | | | |
| Kerrfield----------- | 0-3 | 10-15 | 7.4-7.8 | 0 | 0 | 0 |
| | 3-12 | 10-15 | 7.4-7.8 | 0 | 0 | 0 |
| | 12-26 | 5.0-10 | 7.4-8.4 | 2-5 | 0 | 0 |
| | 26-33 | 0.0-5.0 | 8.5-9.0 | 2-5 | 0 | 2-8 |
| | 33-43 | --- | --- | --- | --- | --- |
| 153: | | | | | | |
| Klicker------------- | 0-3 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 3-13 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 13-24 | 10-20 | 6.1-7.3 | 0 | 0 | 0 |
| | 24-34 | --- | --- | --- | --- | --- |
| 154: | | | | | | |
| Klicker------------- | 0-3 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 3-13 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 13-24 | 10-20 | 6.1-7.3 | 0 | 0 | 0 |
| | 24-34 | --- | --- | --- | --- | --- |
| 155: | | | | | | |
| Krackle, north slopes | 0-4 | 20-30 | 6.6-7.3 | 0 | 0 | 0 |
| | 4-15 | 20-30 | 6.6-7.3 | 0 | 0 | 0 |
| | 15-30 | 20-30 | 6.6-7.3 | 0 | 0 | 0 |
| | 30-40 | --- | --- | --- | --- | --- |
| Krackle, south slopes | 0-4 | 20-30 | 6.6-7.3 | 0 | 0 | 0 |
| | 4-15 | 20-30 | 6.6-7.3 | 0 | 0 | 0 |
| | 15-30 | 20-30 | 6.6-7.3 | 0 | 0 | 0 |
| | 30-40 | --- | --- | --- | --- | --- |
| 156: | | | | | | |
| Krackle------------- \| | 0-4 | 20-30 | 6.6-7.3 | 0 | 0 | 0 |
| | 4-15 | 20-30 | 6.6-7.3 | 0 | 0 | 0 |
| | 15-30 | 20-30 | 6.6-7.3 | 0 | 0 | 0 |
| | 30-40 | --- | --- | --- | --- | --- |
| Baconcamp------------ | 0-4 | 20-30 | 6.1-7.3 | 0 | 0 | 0 |
| | 4-20 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 20-35 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 35-45 | --- | --- | --- | --- | --- |
| | | | | | | |

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation \|exchange capacity	$\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$	Calcium carbonate	Salinity	
	In	\|meq/100 g	pH	Pct	mmhos/cm	
156:						
Rock outcrop-	0-60	---	---	---	---	--
157:						
Krackle----------	0-4	20-30	6.6-7.3	0	0	0
	4-15	20-30	6.6-7.3	0	0	0
	15-30	20-30	6.6-7.3	0	0	0
	30-40	---	---	---	---	---
Baconcamp-------	0-4	20-30	6.1-7.3	0	0	0
	4-20	15-25	6.1-7.3	0	0	0
	20-35	15-25	6.1-7.3	0	0	0
	35-45	---	---	---	---	--
Rock outcrop--	0-60	---	---	---	-	---
158:						
Krackle---------	0-4	25-35	6.6-7.3	0	0	0
	4-15	20-30	6.6-7.3	0	0	0
	15-30	20-30	6.6-7.3	0	0	0
	30-40	---	---	---	---	---
Rock outcrop-	0-60	---	---	---	---	---
159:						
Krackle---------	0-4	25-35	6.6-7.3	0	0	0
	4-15	20-30	6.6-7.3	0	0	0
	15-30	20-30	6.6-7.3	0	0	0
	30-40	---	---	---	---	---
Baconcamp-------	0-4	20-30	6.1-7.3	0	0	0
	4-20	15-25	6.1-7.3	0	0	0
	20-35	15-25	6.1-7.3	0	0	0
	35-45	---	---	---	---	---
Hackwood---------	0-11	20-30	6.6-7.3	0	0	0
	11-23	15-25	6.6-7.3	0	0	0
	23-48	10-20	6.6-7.3	0	0	0
	48-60	10-20	6.6-7.3	0	0	0
160:						
Ladycomb--------	0-2	25-30	6.6-7.3	0	0	0
	2-8	25-35	6.6-7.3	0	0	0
	8-18	---	---	---	---	---
161:						
Lambranch-------	0-3	10-20	7.4-7.8	0	0	0
	3-7	15-25	7.4-7.8	0	0	0
	7-14	25-40	7.4-7.8	0	0	0
	14-19	15-25	7.4-7.8	0	0	0
	19-27	25-40	7.4-7.8	0	0	0
	27-60	10-20	7.4-7.8	0	0	0
162:						
Lambring--------	0-7	15-25	6.6-7.8	0	0	0
	7-12	10-20	6.6-7.8	0	0	0
	12-21	10-15	6.6-7.8	0	0	0
	21-60	10-15	6.6-7.8	0	0	0
Egyptcreek-	0-8	15-25	6.1-7.3	0	0	0
	8-18	10-20	6.1-7.3	0	0	0
	18-24	10-20	6.1-7.3	0	0	0
	24-34	---	---	---	---	---
Rock outcrop---------\| $0-60$						
		---	---	---	---	---

Table 16.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | \| Cation | exchange |capacity | $\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$ | $\begin{gathered} \mid \text { Calcium } \mid \\ \mid \text { carbon- } \mid \\ \mid \text { ate } \end{gathered}$ | Salinity | $\begin{array}{\|c} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | $\|\mathrm{meq} / 100 \mathrm{~g}\|$ | pH | Pct | mmhos/cm | |
| 163: | | | | | | |
| Lambring, thick | | | | | | |
| surface-------- | 0-10 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 10-12 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 12-21 | 10-15 | 6.6-7.8 | 0 | 0 | 0 |
| | 21-60 | 10-15 | 6.6-7.8 | 0 | 0 | 0 |
| | | | | | | |
| Lambring, thin | | | | | | |
| surface-------- | 0-7 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 7-12 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 12-21 | 10-15 | 6.6-7.8 | 0 | 0 | 0 |
| | 21-60 | 10-15 | 6.6-7.8 | 0 | 0 | 0 |
| | | | | | | |
| Rock outcrop- | 0-60 | --- | --- | --- | --- | -- |
| 164: | | | | | | |
| Lambring--------- | 0-7 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 7-12 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 12-21 | 10-15 | 6.6-7.8 | 0 | 0 | 0 |
| | 21-60 | 10-15 | 6.6-7.8 | 0 | 0 | 0 |
| Rubble land- | 0-60 | --- | --- | --- | --- | --- |
| 165: | | | | | | |
| Langslet--------- | 0-14 | 30-40 | 7.4-7.8 | 5-10 | 0 | 0 |
| | 14-23 | 25-30 | 7.4-7.8 | 5-10 | 0 | 0 |
| | 23-49 | 25-40 | 7.4-7.8 | 0 | 0 | 0 |
| | 49-62 | 20-25 | 7.4-7.8 | 0 | 0 | 0 |
| 166: | | | | | | |
| | | | | | | |
| Lava flows-- | 0-60 | --- | --- | - | --- | --- |
| 167: | | | | | | |
| Lava flows- | 0-60 | --- | --- | --- | --- | -- |
| Flank------------ | 0-1 | 5.0-10 | 7.4-7.8 | 0 | 0 | 0 |
| | 1-9 | 5.0-15 | 7.4-7.8 | 0 | 0 | 0 |
| | 9-19 | -- | \| --- | --- | --- | --- |
| 168: | | | | | | |
| Lawen------------ | 0-10 | 5.0-10 | 7.4-7.8 | 0 | 0 | 0 |
| | 10-15 | 5.0-10 | 7.4-8.4 | 0 | 0.0-2.0 | 0 |
| | 15-40 | 0.0-5.0 | 7.4-8.4 | 1-5 | 0.0-2.0 | 0 |
| | 40-60 | 0.0-5.0 | 7.4-8.4 | 0 | 0.0-2.0 | 0 |
| | | | | | | |
| 169 : | | | | | | |
| Leathers | 0-2 | 15-35 | 8.5-9.6 | 0 | 1.0-2.0 | 10-13 |
| | 2-9 | 15-35 | 8.5-9.6 | 0 | 1.0-2.0 | 13-25 |
| | 9-24 | 10-30 | 8.5-9.6 | 1-5 | 4.0-16.0 | 20-70 |
| | 24-28 | 10-20 | 8.5-9.6 | 1-5 | 4.0-16.0 | 20-70 |
| | 28-52 | 5.0-15 | 8.5-9.6 | 1-5 | 4.0-8.0 | 20-50 |
| | 52-61 | 2.0-5.0 | 8.5-9.6 | 0 | 1.0-4.0 | 13-25 |
| | | | | | | |
| 170: | | | | | | |
| Leathers--------- | | 15-35 | 8.5-9.6 | | 1.0-2.0 | 10-13 |
| | 2-9 | 15-35 | 8.5-9.6 | 0 | 1.0-2.0 | 13-25 |
| | 9-24 | 10-30 | 8.5-9.6 | 1-5 | 4.0-16.0 | 20-70 |
| | 24-28 | 10-20 | 8.5-9.6 | 1-5 | 4.0-16.0 | 20-70 |
| | 28-52 | 5.0-15 | 8.5-9.6 | 1-5 | 4.0-8.0 | 20-50 |
| | 52-61 | 2.0-5.0 | 8.5-9.6 | 0 | 1.0-4.0 | 13-25 |
| | | | | | | |
| 171: | | | | | | |
| Leemorris-------- | 0-5 | 25-35 | 6.1-7.3 | 0 | 0 | 0 |
| | 5-26 | 25-35 | 6.6-7.3 | 0 | 0 | 0 |
| | 26-30 | 35-50 | 6.6-7.3 | 0 | 0 | 0 |
| | 30-40 | --- | --- | --- \| | --- | --- |
| | | | | | | |

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange capacity	Soil reaction	Calcium\| carbonate	Salinity	```Sodium```
	In	meq/100 g\|	pH	Pct	mmhos/cm	
171:						
Buckwilder------	0-8	25-35	6.1-6.5	0	0	0
	8-21	50-70	6.6-7.3	0	0	0
	21-27	50-70	7.4-8.4	1-2	0	0
	27-37	---	---	---	--	---
172:						
Leemorris-------	0-5	25-35	6.1-7.3	0	0	0
	5-26	25-35	6.6-7.3	0	0	0
	26-30	35-50	6.6-7.3	0	0	0
	30-40	---	---	---	--	--
Buckwilder-------	0-8	25-35	6.1-6.5	0	0	0
	8-21	50-70	6.6-7.3	0	0	0
	21-27	50-70	7.4-8.4	1-2	0	0
	27-37	---	---	---	---	---
173:						
Legler----------	0-4	15-20	6.6-7.8	0	0	0
	4-45	10-20	7.4-8.4	0	0.0-2.0	0
	45-62	10-15	7.9-8.4	0-2	0.0-2.0	0
174:						
Locane----------	0-7	10-20	6.6-7.3	0	0	0
	7-15	20-35	6.6-7.3	0	0	0
	15-25	---	---	-	---	--
175:						
Lolak------------	0-3	5.0-15	7.4-8.4	0	0.0-2.0	13-25
	3-10	20-30	9.1-11.0\|	0-1	1.0-4.0	20-40
	10-28	30-40	9.1-11.0	1-5	1.0-4.0	20-40
	28-40	25-35	8.5-9.0	1-5	0.0-2.0	10-25
	40-60	20-30	8.5-9.0	0-1	0.0-2.0	5-15
176:						
Lolak------------	0-3	5.0-15	7.4-8.4	0	0.0-2.0	13-25
	3-10	20-30	9.1-11.0	0-1	1.0-4.0	20-40
	10-28	30-40	9.1-11.0	1-5	1.0-4.0	20-40
	28-40	25-35	8.5-9.0	1-5	0.0-2.0	10-25
	40-60	20-30	8.5-9.0	0-1	0.0-2.0	5-15
Ausmus-----------	0-2	10-20	8.5-9.0	2-15	1.0-4.0	10-20
	2-9	20-35	9.1-11.0	10-20	4.0-8.0	20-100
	9-16	20-35	9.1-11.0	10-20	4.0-16.0	100-200
	16-29	20-35	9.1-11.0	10-20	16.0-32.0	300-500
	29-69	20-35	9.1-11.0	1-5	16.0-32.0	300-500
177:						
Lonely----------	0-4	15-20	6.6-7.3	0	0	0
	4-16	15-20	6.6-7.8	0	0	0
	16-24	15-20	7.4-7.8	0	0	0
	24-34	---	---	---	---	---
Doyn------------	0-2	10-20	6.6-7.8	0	0	0
	2-8	10-20	7.4-8.4	0	0	0
	8-18	--	-	---	---	---
178:						
Lonely-----------	0-4	15-20	6.6-7.3	0	0	0
	4-16	15-20	6.6-7.8	0	0	0
	16-24	15-20	7.4-7.8	0	0	0
	24-34	---	-	---	---	---
Robson-----------	0-4	20-30	6.6-7.3	0	0	0
	4-13	30-45	6.6-7.8	0	0	0
	13-23	---	---	---	---	---

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange capacity	$\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$	$\begin{array}{\|l\|} \mid \text { Calcium } \\ \mid \text { carbon- } \mid \\ \mid \\ \text { ate } \end{array}$	Salinity	$\begin{array}{\|l\|} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$
	In	meq/100 g	pH	Pct	mmhos/cm	
179:						
Longcreek-------	0-7	15-25	6.6-7.3	0	0	0
	7-18	25-35	6.6-7.8	0	0	0
	18-28	---	---	---	---	---
Cleavage	0-7	20-30	6.6-7.8	0	0	0
	7-15	20-40	6.6-7.8	0	0	0
	15-25	---	---	---	---	---
180:						
Longcreek-------	0-7	15-25	6.6-7.3	0	0	0
	7-18	25-35	6.6-7.8	0	0	0
	18-28	---	---	---	---	---
Rock outcrop---	0-60	---	---	---	---	---
181:						
Loupence--------	0-2	15-25	6.6-7.8	0	0	0
	2-24	10-25	6.6-7.8	0	0	0
	24-49	10-20	6.6-7.8	0-1	0	0
	49-60	5.0-10	6.6-7.8	0-1	0	0
182:						
Madeline--------	0-2	10-20	6.6-7.8	0	0	0
	2-10	25-30	6.6-7.8	0	0	0
	10-19	30-45	6.6-7.8	0	0	0
	19-29	---	---	---	---	---
183:						
Madeline--------	0-2	10-20	6.6-7.8	0	0	0
	2-10	25-30	6.6-7.8	0	0	0
	10-19	30-45	6.6-7.8	0	0	0
	19-29	-	---	---	---	---
184:						
Madeline--------	0-2	15-25	6.6-7.8	0	0	0
	2-10	25-30	6.6-7.8	0	0	0
	10-19	30-45	6.6-7.8	0	0	0
	19-29	---	---	-	---	---
Ninemile--------	0-4	10-20	6.6-7.8	0	0	0
	4-16	35-45	6.6-7.8	0	0	0
	16-26	---	---	---	---	---
185:						
Madeline--------	0-2	10-20	6.6-7.8	0	0	0
	2-10	25-30	6.6-7.8	0	0	0
	10-19	30-45	6.6-7.8	0	0	0
	19-29	---	---	---	---	---
Rock outcrop---	0-60	---	---	--	---	---
186:						
Mahoon----------	0-3	15-25	6.6-7.8	0	0	0
	3-9	20-40	7.4-7.8	0	0	0
	9-18	30-50	7.4-8.4	0	0	0
	18-25	30-50	7.4-8.4	0	0	0
	25-35	---	---	---	---	---
187:						
Mahoon----------	0-3	15-25	6.6-7.8	0	0	0
	3-9	20-40	7.4-7.8	0	0	0
	9-18	30-50	7.4-8.4	0	0	0
	18-25	30-50	7.4-8.4	0	0	0
	25-35	---	---	---	---	---

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange capacity	Soil reaction	$\begin{gathered} \text { Calcium } \\ \text { carbon- } \\ \text { ate } \end{gathered}$	Salinity	$\begin{array}{\|l} \text { Sodium } \\ \text { adsorption } \\ \text { ratio } \end{array}$
	In	meq/100 g	pH	Pct	mmhos/cm	
187:						
Brezniak--------	0-3	15-25	6.6-7.3	0	0	0
	3-7	25-35	6.6-7.3	0	0	0
	7-10	25-35	6.6-7.3	0	0	0
	10-20	---	---	-	---	--
Longcreek-------	0-7	15-25	6.6-7.3	0	0	0
	7-18	25-35	6.6-7.8	0	0	0
	18-28	---	---	---	---	---
188:						
Mahoon----------	0-3	15-25	6.6-7.8	0	0	0
	3-9	20-40	7.4-7.8	0	0	0
	9-18	30-50	7.4-8.4	0	0	0
	18-25	30-50	7.4-8.4	0	0	0
	25-35	---	---	---	---	---
Cagle------------	0-4	20-30	6.6-7.8	0	0	0
	4-12	25-35	7.4-7.8	0	0	0
	12-24	25-35	7.4-7.8	0	0	0
	24-36	25-30	7.4-7.8	0	0	0
	36-46	---	---	---	---	---
189 :						
Mahoon-----------	0-3	15-25	6.6-7.8	0	0	0
	3-9	20-40	7.4-7.8	0	0	0
	9-18	30-50	7.4-8.4	0	0	0
	18-25	30-50	7.4-8.4	0	0	0
	25-35	-	---	--	---	---
Risley----------	0-3	10-20	6.6-7.8	0	0	0
	3-25	25-45	6.6-7.8	0	0	0
	25-37	15-25	7.4-8.4	2-5	0	0
	37-39	15-25	7.4-8.4	1-5	0	0
	39-49	---	---	-	---	---
190:						
Mahoon-----------	0-3	15-25	6.6-7.8	0	0	0
	3-9	20-40	7.4-7.8	0	0	0
	9-18	30-50	7.4-8.4	0	0	0
	18-25	30-50	7.4-8.4	0	0	0
	25-35	---	---	---	---	---
Cotant-----------	0-3	10-20	6.6-7.3	0	0	0
	3-13	25-35	6.6-7.3	0	0	0
	13-23	---	---	--	---	---
191:						
Mcbain-----------	0-5	6.0-9.0	8.5-9.0	10-15	16.0-30.0	50-125
	5-22	9.0-12	7.9-9.0	15-30	4.0-8.0	13-50
	22-27	15-20	7.9-9.0	15-30	4.0-8.0	13-50
	27-37	5.0-8.0	7.9-8.4	0-1	0.0-4.0	0-5
	37-43	15-18	7.9-8.4	0-1	0.0-4.0	0-5
	43-60	7.0-10	7.9-8.4	0-1	0.0-4.0	0-5
Ausmus-----------	0-2	10-20	8.5-9.0	2-15	1.0-4.0	10-20
	2-9	20-35	9.1-11.0	10-20	4.0-8.0	20-100
	9-16	20-35	9.1-11.0	10-20	4.0-16.0	100-200
	16-29	20-35	9.1-11.0	10-20	16.0-32.0	300-500
	29-69	20-35	9.1-11.0	1-5	16.0-32.0	300-500
192 :						
McConnel--------	0-3	5.0-10	7.4-8.4	0	0	0
	3-11	5.0-10	7.4-8.4	0	0	0
	11-62	2.0-5.0	7.4-9.0	2-5	0.0-4.0	0-4

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange \|capacity	$\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$	$\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \text { ate } \end{aligned}$	Salinity	$\begin{aligned} & \text { Sodium } \\ & \text { \|adsorption } \end{aligned}$ ratio	
	In	\|meq/100 g		pH	Pct	mmhos/cm	
193 :							
Merlin-------------- \|	0-7	15-25	6.1-7.8	0	0	0	
	7-12	20-30	6.6-7.8	0	0	0	
	12-18	40-50	6.6-7.8	0	0	0	
	18-29	---	---	---	---	---	
194:							
Merlin, very stony---	0-7	15-25	6.1-7.8	0	0	0	
	7-12	20-30	6.6-7.8	0	0	0	
	12-18	40-50	6.6-7.8	0	0	0	
	18-29	---	---	---	-	---	
Merlin, very cobbly--	0-7	15-25	6.1-7.8	0	0	0	
	7-12	20-30	6.6-7.8	0	0	0	
	12-18	40-50	6.6-7.8	0	0	0	
	18-29	---	---	---	---	---	
195:							
Merlin--------------	0-7	15-25	6.1-7.8	0	0	0	
	7-12	20-30	6.6-7.8	0	0	0	
	12-18	40-50	6.6-7.8	0	0	0	
	18-29	---	---	--	---	---	
Ateron-------------- \|	0-5	10-20	6.6-7.3	0	0	0	
	5-12	20-25	6.6-7.3	0	0	0	
	12-18	25-35	6.6-7.3	0	0	0	
	18-28	---	---	---	---	---	
196:							
Merlin-------------- \|	0-7	15-25	6.1-7.8	0	0	0	
	7-12	20-30	6.6-7.8	0	0	0	
	12-18	40-50	6.6-7.8	0	0	0	
	18-29	---	---	--	--	---	
Ateron--------------	0-5	10-20	6.6-7.3	0	0	0	
	5-12	20-25	6.6-7.3	0	0	0	
	12-18	25-35	6.6-7.3	0	0	0	
	18-28	---	---	---	---	---	
Rubble land---------- \|	0-60	---	---	---	--	--	
197:							
Merlin---------------	0-7	15-25	6.1-7.8	0	0	0	
	7-12	20-30	6.6-7.8	0	0	0	
	12-18	40-50	6.6-7.8	0	0	0	
	18-29	---	---	-	---	---	
Ateron-------------- \|	0-5	10-20	6.6-7.3	0	0	0	
	5-12	20-25	6.6-7.3	0	0	0	
	12-18	25-35	6.6-7.3	0	0	0	
	18-28	---	---	-	---	---	
Ticino--------------	0-9	15-25	6.1-7.3	0	0	0	
	9-26	10-20	6.1-7.8	0	0	0	
	26-29	---	---	---	---	---	
	29-39	---	---	---	---	---	
198:							
Merlin--------------	0-7	15-25	6.1-7.8	0	0	0	
	7-12	20-30	6.6-7.8	0	0	0	
	12-18	40-50	6.6-7.8	0	0	0	
	18-29	---	---	---	---	---	

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation \|exchange capacity	Soil reaction	$\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \text { ate } \end{aligned}$	Salinity	$\begin{array}{\|c} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$
	In	$\|m e q / 100 \mathrm{~g}\|$	pH	Pct	mmhos/cm	
198:						
Erakatak--------	0-7	15-25	6.6-7.3	0	0	0
	7-16	20-30	6.6-7.3	0	0	0
	16-25	25-35	6.6-7.3	0	0	0
	25-35	---	---	---	---	---
Teguro----------	0-2	15-25	6.6-7.8	0	0	0
	2-5	15-25	6.6-7.8	0	0	0
	5-14	10-20	6.6-7.8	0	0	0
	14-24	---	---	---	---	---
199:						
Merlin----------	0-7	15-25	6.1-7.8	0	0	0
	7-12	20-30	6.6-7.8	0	0	0
	12-18	40-50	6.6-7.8	0	0	0
	18-29	--	-	---	---	---
Observation-----	0-4	10-20	6.6-7.8	0	0	0
	4-8	10-15	6.6-7.8	0	0	0
	8-23	15-25	6.6-7.8	0	0	0
	23-33	---	---	---	---	---
200:						
Merlin----------	0-7	15-25	6.1-7.8	0	0	0
	7-12	20-30	6.6-7.8	0	0	0
	12-18	40-50	6.6-7.8	0	0	0
	18-29	---	---	---	---	---
Observation-----	0-4	10-20	6.6-7.8	0	0	0
	4-8	10-15	6.6-7.8	0	0	0
	8-23	15-25	6.6-7.8	0	0	0
	23-33	---	-	---	---	---
201:						
Merlin----------	0-7	15-25	6.1-7.8	0	0	0
	7-12	20-30	6.6-7.8	0	0	0
	12-18	40-50	6.6-7.8	0	0	0
	18-29	---	-	---	---	---
Rubble land------	0-60	--	-	---	---	---
202:						
Merlin----------	0-7	15-25	6.1-7.8	0	0	0
	7-12	20-30	6.6-7.8	0	0	0
	12-18	40-50	6.6-7.8	0	0	0
	18-29	---	---	---	---	---
						\|
Teguro----------	0-2	15-25	6.6-7.8	0	0	0
	2-5	15-25	6.6-7.8	0	0	0
	5-14	10-20	6.6-7.8	0	0	0
	14-24	---	---	---	---	---
						,
203:						
Merlin----------	0-7	15-25	6.1-7.8	0	0	0
	7-12	20-30	6.6-7.8	0	0	0
	12-18	40-50	6.6-7.8	0	0	0
	18-29	--	-	---	---	---
Teguro----------	0-2	15-25	6.6-7.8	0	0	0
	2-5	15-25	6.6-7.8	0	0	0
	5-14	10-20	6.6-7.8	0	0	0
	14-24	---	---	---	---	---

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange \|capacity	Soil	$\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \mid \end{aligned}$	Salinity	$\begin{array}{\|l\|l} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$
	In	meq/100 g	pH	PCt	mmhos/cm	
204:						
Mesman----------	0-4	0.0-5.0	7.9-8.4	0-1	2.0-8.0	5-20
	4-26	10-20	7.9-9.0	0-1	16.0-32.0	25-70
	26-62	5.0-15	7.9-8.4	0-1	16.0-32.0	20-70
205:						
Mesman-----------	0-4	0.0-10	7.4-8.4	0-1	2.0-8.0	5-30
	4-26	10-20	7.9-9.0	0-1	16.0-32.0	25-70
	26-62	5.0-15	7.9-8.4	0-1	16.0-32.0	20-70
206:						
Mesman----------	0-4	0.0-10	7.4-8.4	0-1	2.0-8.0	5-30
	4-26	10-20	7.9-9.0	0-1	16.0-32.0	25-70
	26-62	5.0-15	7.9-8.4	0-1	16.0-32.0	20-70
Norad-----------	0-3	10-15	6.6-7.3	0	0	0
	3-23	15-25	6.6-8.4	0	0	0
	23-34	15-20	6.6-8.4	0	0	0
	34-61	15-20	6.6-8.4	0	0.0-2.0	0
207:						
Middlebox--------	0-4	10-15	6.6-7.8	0	0	0
	4-10	10-25	6.6-7.8	0	0	0
	10-35	10-25	6.6-7.8	0	0	0
	35-45	---	---	---	---	--
208:						
Middlebox, north slopes						
	0-4	10-15	6.6-7.8	0	0	0
	4-10	10-25	6.6-7.8	0	0	0
	10-35	10-25	6.6-7.8	0	0	0
	35-45	---	---	---	---	---
Middlebox, south slopes	0-4	10-15	6.6-7.8	0	0	0
	4-10	10-25	6.6-7.8	0	0	0
	10-35	10-25	6.6-7.8	0	0	0
	35-45	---	---	---	---	---
209:						
Minam------------	0-3	20-30	6.6-7.3	0	0	0
	3-29	15-25	6.6-7.3	0	0	0
	29-39	15-25	6.6-7.3	0	0	0
	39-52	10-20	6.6-7.3	0	0	0
	52-62	5.0-15	6.6-7.3	0	0	0
210:						
Minam-----------	0-3	20-30	6.6-7.3	0	0	0
	3-29	15-25	6.6-7.3	0	0	0
	29-39	15-25	6.6-7.3	0	0	0
	39-52	10-20	6.6-7.3	0	0	0
	52-62	5.0-15	6.6-7.3	0	0	0
Welch-----------	0-5	25-35	6.1-7.3	0	0	0
	5-60	20-40	6.1-7.8	0	0	0
211:						
Modoc------------	0-2	5.0-10	6.6-7.3	0	0	0
	2-13	10-15	6.6-7.3	0	0	0
	13-22	10-15	6.6-7.3	0	0	0
	22-25	15-20	6.6-7.3	0	0	0
	25-41	---	---	---	---	---
	41-60	3.0-8.0	7.4-7.8	1-2	0.0-2.0	0

Table 16.--Chemical Properties of the Soils--Continued

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange capacity	$\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$	Calcium carbonate	Salinity	Sodium adsorption ratio
	In	meq/100 g\|	pH	Pct	mmhos/cm	
221:						
Ninemile--------	0-4	20-30	6.6-7.8	0	0	0
	4-16	35-45	6.6-7.8	0	0	0
	16-26	--	---	---	---	--
Doyn------------	0-2	10-20	6.6-7.8	0	0	0
	2-8	10-20	7.4-8.4	0	0	0
	8-18	-	---	---	---	---
222:						
Ninemile--------	0-4	10-20	6.6-7.8	0	0	0
	4-16	35-45	6.6-7.8	0	0	0
	16-26	-	---	---	---	---
Edemaps----------	0-7	20-30	6.6-7.8	0	0	0
	7-18	30-45	6.6-7.8	0	0	0
	18-25	30-45	7.4-8.4	0	0	0
	25-30	--	---	-	---	---
	30-40	---	---	-	---	---
223:						
Ninemile--------	0-4	20-30	6.6-7.8	0	0	0
	4-16	35-45	6.6-7.8	0	0	0
	16-26	---	---	---	---	---
Madeline--------	0-2	15-25	6.6-7.8	0	0	0
	2-10	25-30	6.6-7.8	0	0	0
	10-19	30-45	6.6-7.8	0	0	0
	19-29	---	---	---	---	---
224:						
Ninemile--------	0-4	20-30	6.6-7.8	0	0	0
	4-16	35-45	6.6-7.8	0	0	0
	16-26	-	---	---	---	---
Pearlwise-------	0-6	15-25	6.1-7.3	0	0	0
	6-22	10-20	6.1-7.3	0	0	0
	22-32	-	---	---	---	---
225 :						
Ninemile-------	0-4	10-20	6.6-7.8	0	0	0
	4-16	35-45	6.6-7.8	0	0	0
	16-26	---	---	---	---	---
Reluctan--------	0-2	10-20	6.6-7.8	0	0	0
	2-9	15-25	7.4-8.4	0	0	0
	9-26	15-25	7.4-8.4	0	0	0
	26-36	---	---	---	---	---
226 :						
Ninemile-------	0-4	10-20	6.6-7.8	0	0	0
	4-16	35-45	6.6-7.8	0	0	0
	16-26	---	---	---	---	---
Reluctan--------	0-2	10-20	6.6-7.8	0	0	0
	2-9	15-25	7.4-8.4	0	0	0
	9-26	15-25	7.4-8.4	0	0	0
	26-36	---	---	---	---	---
Rubble land-----227:	0-60	---	-	---	---	---
	227:					
Ninemile--------	0-4	10-20	6.6-7.8	0	0	0
	4-16	35-45	6.6-7.8	0	0	0
	16-26	---	---	---	---	---

Table 16.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Cation \|exchange |capacity | Soil reaction | $\begin{array}{\|c\|} \mid \text { Calcium } \mid \\ \mid \text { carbon- } \mid \\ \text { ate } \end{array}$ | Salinity | $\begin{array}{\|c} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | \|meq/100 g | pH | Pct | mmhos/cm | |
| 227: | | | | | | |
| Rock outcrop--------- | 0-60 | --- | --- | -- | --- | -- |
| 228: | | | | | | |
| Ninemile------------\| | 0-4 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 4-16 | 35-45 | 6.6-7.8 | 0 | 0 | 0 |
| | 16-26 | -- | --- | --- | --- | -- |
| Rubble land---------- | 0-60 | --- | --- | --- | --- | -- |
| 229: | | | | | | |
| Ninemile------------ \| | 0-4 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 4-16 | 35-45 | 6.6-7.8 | 0 | 0 | 0 |
| | 16-26 | --- | --- | --- | --- | --- |
| Westbutte----------- \| | 0-12 | 15-25 | 6.6-7.3 | 0 | 0 | 0 |
| | 12-24 | 10-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 24-34 | - | --- | --- | --- | --- |
| 230: | | | | | | |
| Ninemile, very cobbly\| | 0-4 | 20-30 | 6.6-7.8 | 0 | 0 | 0 |
| | 4-16 | 35-45 | 6.6-7.8 | 0 | 0 | 0 |
| | 16-26 | -- | --- | --- | --- | --- |
| Westbutte----------- \| | 0-12 | 15-25 | 6.6-7.3 | 0 | 0 | 0 |
| | 12-24 | 10-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 24-34 | --- | --- | --- | --- | --- |
| Ninemile, extremely | | | | | | |
| stony--------------- \| | 0-4 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 4-16 | 35-45 | 6.6-7.8 | 0 | 0 | 0 |
| | 16-26 | --- | --- | --- | --- | --- |
| 231: | | | | | | |
| Ninemile, very cobbly\| | 0-4 | 20-30 | 6.6-7.8 | 0 | 0 | 0 |
| | 4-16 | 35-45 | 6.6-7.8 | 0 | 0 | 0 |
| | 16-26 | --- | --- | --- | --- | --- |
| Ninemile, extremely | | | | | | |
| stony---------------\| | 0-4 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 4-16 | 35-45 | 6.6-7.8 | 0 | 0 | 0 |
| | 16-26 | --- | --- | --- | --- | --- |
| 232: | | | | | | |
| Ninemile------------ \| | 0-4 | 20-30 | 6.6-7.8 | 0 | 0 | 0 |
| | 4-16 | 35-45 | 6.6-7.8 | 0 | 0 | 0 |
| | 16-26 | - | --- | --- | --- | --- |
| Felcher-------------- | 0-10 | 15-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 10-22 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 22-32 | --- | --- | --- | --- | --- |
| 233 : | | | | | | |
| Noname-------------- \| | 0-3 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 3-12 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 12-22 | - | --- | --- | --- | --- |
| Dickle-------------- | 0-3 | 25-35 | 6.1-7.3 | 0 | 0 | 0 |
| | 3-14 | 20-30 | 6.1-7.3 | 0 | 0 | 0 |
| | 14-24 | --- | --- | --- | --- | --- |
| 234: | | | | | | |
| Noname--------------- \| | 0-3 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 3-12 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 12-22 | --- | --- | --- \| | --- | --- |
| | | | | | | |

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange capacity	$\begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}$	$\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$	Salinity	$\left\lvert\, \begin{gathered} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{gathered}\right.$
	In	meq/100 g	pH	Pct	mmhos/cm	
234:						
Duff------------	0-8	20-30	6.6-7.3	0	0	0
	8-24	15-25	6.6-7.3	0	0	0
	24-43	10-20	6.6-7.3	0	0	0
	43-53	---	---	---	---	---
Rock outcrop-	0-60	-	-	-	---	---
235:						
Norad------------	0-3	10-15	6.6-7.3	0	0	0
	3-23	15-25	6.6-8.4	0	0	0
	23-34	15-20	6.6-8.4	0	0	0
	34-61	15-20	6.6-8.4	0	0.0-2.0	0
236:						
Norad------------	0-3	10-15	6.6-7.3	0	0	0
	3-23	15-25	6.6-8.4	0	0	0
	23-34	15-20	6.6-8.4	0	0	0
	34-61	15-20	6.6-8.4	0	0.0-2.0	0
Spangenburg------	0-2	15-20	6.6-7.8	0	0	0
	2-15	30-45	7.4-8.4	0	0	0
	15-34	20-30	7.4-8.4	1-3	0.0-2.0	0
	34-60	10-20	7.4-8.4	0	0.0-2.0	0
237:						
Nuss------------	0-4	10-20	6.6-7.8	0	0	0
	4-12	10-20	6.6-7.8	0	0	0
	12-15	10-20	6.6-7.8	0	0	0
	15-25	---	--	---	---	---
238:						
Nuss-------------	0-4	10-20	6.6-7.8	0	0	0
	4-12	10-20	6.6-7.8	0	0	0
	12-15	10-20	6.6-7.8	0	0	0
	15-25	-	---	---	---	---
Merlin----------	0-7	15-25	6.1-7.8	0	0	0
	7-12	20-30	6.6-7.8	0	0	0
	12-18	40-50	6.6-7.8	0	0	0
	18-29	-	---	---	---	---
239 :						
Nuss------------	0-4	10-20	6.6-7.8	0	0	0
	4-12	10-20	6.6-7.8	0	0	0
	12-15	10-20	6.6-7.8	0	0	0
	15-25	---	---	---	---	---
Rock outcrop----	0-60	---	---	---	---	---
240:						
Observation-----	0-4	10-20	6.6-7.8	0	0	0
	4-8	10-15	6.6-7.8	0	0	0
	8-23	15-25	6.6-7.8	0	0	0
	23-33	---	---	---	---	---
241:						
Observation-----	0-4	10-20	6.6-7.8	0	0	0
	4-8	10-15	6.6-7.8	0	0	0
	8-23	15-25	6.6-7.8	0	0	0
	23-33	---	---	---	---	---
Rock outcrop--------- \|	0-60	---	---	--- \|	---	---

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange capacity	$\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$	\|Calcium carbonate	Salinity	
	In	$\|\mathrm{meq} / 100 \mathrm{~g}\|$	pH	Pct	mmhos/cm	
242:						
Observation-----	0-4	10-20	6.6-7.8	0	0	0
	4-8	10-15	6.6-7.8	0	0	0
	8-23	15-25	6.6-7.8	0	0	0
	23-33	---	---	---	---	---
Royst------------	0-3	15-25	6.6-7.3	0	0	0
	3-7	15-25	6.6-7.3	0	0	0
	7-14	25-30	6.6-7.3	0	0	0
	14-22	25-30	6.6-7.3	0	0	0
	22-23	-	---	--	---	---
	23-33	---	---	---	---	--
Merlin-----------	0-7	15-25	6.1-7.8	0	0	0
	7-12	20-30	6.6-7.8	0	0	0
	12-18	40-50	6.6-7.8	0	0	0
	18-29	-	---	---	---	---
243:						
Observation-----	0-4	10-20	6.6-7.8	0	0	0
	4-8	10-15	6.6-7.8	0	0	0
	8-23	15-25	6.6-7.8	0	0	0
	23-33	---	---	---	---	---
Teguro----------	0-2	15-25	6.6-7.8	0	0	0
	2-5	15-25	6.6-7.8	0	0	0
	5-14	10-20	6.6-7.8	0	0	0
	14-24	-	---	---	---	---
244:						
Observation-----	0-4	10-20	6.6-7.8	0	0	0
	4-8	10-15	6.6-7.8	0	0	0
	8-23	15-25	6.6-7.8	0	0	0
	23-33	---	---	---	---	---
Lambring--------	0-7	15-25	6.6-7.8	0	0	0
	7-12	10-20	6.6-7.8	0	0	0
	12-21	10-15	6.6-7.8	0	0	0
	21-60	10-15	6.6-7.8	0	0	0
Rock outcrop-	0-60	---	---	---	---	---
245:						
Olac-------------	0-4	10-15	7.4-8.4	0	0	0
	4-13	15-25	7.4-8.4	0	0	0
	13-23	-	---	---	---	---
Atlow------------	0-3	10-15	7.4-7.8	0	0	0
	3-11	15-20	7.4-7.8	0	0	0
	11-21	-	-	---	---	---
246:						
Opie------------	0-7	15-20	9.1-11.0	1-2	16.0-30.0	2-8
	7-10	15-20	9.1-11.0	1-2	16.0-30.0	2-8
	10-16	10-15	8.5-9.0	2-5	8.0-16.0	5-10
	16-26	10-20	8.5-9.0	2-5	8.0-16.0	5-10
	26-44	10-15	8.5-9.0	2-5	8.0-16.0	5-10
	44-64	5.0-10	7.9-8.4	0-2	2.0-4.0	0-5
247:						
Oreneva---------	0-2	10-15	6.6-7.8	0	0	0
	2-10	10-15	6.6-7.8	0	0	0
	10-21	10-15	7.4-8.4	0	0	0
	21-31	---	---	--- \|	---	---

Table 16.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Cation \|exchange |capacity | Soil reaction | $\begin{gathered} \text { Calcium } \mid \\ \mid \text { carbon- } \\ \mid \text { ate } \end{gathered}$ | Salinity | $\begin{array}{\|l} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | $\|\mathrm{meq} / 100 \mathrm{~g}\|$ | pH | Pct | mmhos/cm | |
| 248: | 0-6 | 5.0-10 | 7.9-8.4 | 1-2 | 2.0-4.0 | 1-4 |
| | 6-29 | 5.0-10 | 8.5-9.0 | 4-6 | 2.0-4.0 | 2-8 |
| | 29-51 | 0.0-10 | 8.5-9.0 | 5-8 | 2.0-4.0 | 2-8 |
| | 51-60 | 0.0-10 | 8.5-9.0 | 0-1 | 2.0-4.0 | 2-8 |
| 249 : | | | | | | |
| Outerkirk------- | 0-4 | 5.0-10 | 7.9-8.4 | 1-2 | 0 | 1-4 |
| | 4-27 | 5.0-10 | 7.9-8.4 | 1-2 | 0.0-2.0 | 1-4 |
| | 27-42 | 0.0-10 | 8.5-9.0 | 5-8 | 0.0-2.0 | 2-8 |
| | 42-60 | 15-20 | 8.5-9.0 | 0-1 | 0.0-2.0 | 2-8 |
| 250: | | | | | | |
| Outerkirk------- | 0-6 | 5.0-10 | 7.9-8.4 | 1-2 | 2.0-4.0 | 1-4 |
| | 6-29 | 5.0-10 | 8.5-9.0 | 4-6 | 2.0-4.0 | 2-8 |
| | 29-51 | 0.0-10 | 8.5-9.0 | 5-8 | 2.0-4.0 | 2-8 |
| | 51-60 | 0.0-10 | 8.5-9.0 | 0-1 | 2.0-4.0 | 2-8 |
| Defenbaugh------ | 0-5 | 10-15 | 7.9-8.4 | 1-2 | 2.0-8.0 | 1-4 |
| | 5-29 | 10-20 | 7.4-8.4 | 0-2 | 0.0-2.0 | 0 |
| | 29-60 | 10-15 | 7.4-8.4 | 0 | 0 | 0 |
| 251: | | | | | | |
| Ozamis----------- | 0-11 | 15-25 | 7.4-8.4 | 0 | 0.0-2.0 | 0 |
| | 11-50 | 15-20 | 6.6-8.4 | 0 | 0.0-2.0 | 0 |
| | 50-60 | 5.0-15 | 6.6-8.4 | 0 | 0 | 0 |
| | | | | | | |
| 252: | | | | | | |
| Pearlwise-------- | 0-6 | 10-20 | 6.1-7.3 | 0 | 0 | 0 |
| | 6-22 | 10-20 | 6.1-7.3 | 0 | 0 | 0 |
| | 22-32 | --- | --- | --- | --- | --- |
| | | | | | | |
| 253: | | | | | | |
| Pernty---------- | 0-3 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 3-8 | 20-30 | 6.6-7.8 | 0 | 0 | 0 |
| | 8-15 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 15-25 | -- | --- | --- | --- | --- |
| | | | | | | |
| 254: | | | | | | |
| Pernty---------- | 0-3 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 3-8 | 20-30 | 6.6-7.8 | 0 | 0 | 0 |
| | 8-15 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 15-25 | --- | --- | --- | --- | --- |
| | | | | | | |
| 255: | | | | | | |
| Pernty---------- | 0-3 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 3-8 | 20-30 | 6.6-7.8 | 0 | 0 | 0 |
| | 8-15 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 15-25 | - | --- | --- | --- | --- |
| | | | | | | |
| 256: | | | | | | |
| Pernty---------- | 0-3 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 3-8 | 20-30 | 6.6-7.8 | 0 | 0 | 0 |
| | 8-15 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 15-25 | --- | --- | --- | --- | --- |
| | | | | | | |
| Rock outcrop----- | 0-60 | - | - | --- | --- | --- |
| | | | | | | |
| 257: | | | | | | |
| Pernty---------- | 0-3 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 3-8 | 20-30 | 6.6-7.8 | 0 | 0 | 0 |
| | 8-15 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 15-25 | --- | --- | --- | --- | --- |
| | | | | | | |

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation \|exchange capacity	$\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$	$\begin{aligned} & \mid \text { Calcium } \\ & \mid \text { carbon- } \mid \\ & \text { ate } \end{aligned}$	Salinity	$\begin{array}{\|c} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$
	In	meq/100 g	pH	Pct	mmhos/cm	
257:						
Westbutte-------	0-12	15-25	6.6-7.3	0	0	0
	12-24	10-25	6.6-7.8	0	0	0
	24-34	---	---	--	---	---
Ninemile---------	0-4	20-30	6.6-7.8	0	0	0
	4-16	35-45	6.6-7.8	0	0	0
	16-26	-	---	-	---	---
258:						
Pits--	-	---	---	-	---	---
259:						
Playas	0-60	---	8.5-11.0	\| ---	16.0-32.0	70-999
260:						
Playas	0-60	-	8.5-11.0	-	16.0-32.0	70-999
Thenarrows-------	0-3	5.0-15	8.5-9.5	2-5	2.0-4.0	13-25
	3-14	5.0-10	8.5-9.5	5-10	2.0-4.0	13-25
	14-22	5.0-10	8.5-9.5	10-20	1.0-2.0	13-25
	22-31	5.0-10	8.5-9.5	10-20	1.0-2.0	10-20
	31-54	2.0-10	8.5-9.5	2-15	1.0-2.0	5-15
	54-60	2.0-5.0	7.9-9.5	2-5	0.0-2.0	2-5
261:						
Poall-----------	0-8	15-20	7.4-8.4	0	0	0
	8-17	25-35	7.4-8.4	0	0	0
	17-33	20-25	7.4-8.4	0	0	0
	33-65	20-25	7.9-9.0	1-5	0.0-2.0	0-2
262 :						
Poall-----------	0-8	15-20	7.4-8.4	0	0	0
	8-17	25-35	7.4-8.4	0	0	0
	17-33	20-25	7.4-8.4	0	0	0
	33-65	20-25	7.9-9.0	1-5	0.0-2.0	0-2
Gumble----------	0-3	10-20	7.4-7.8	0	0	0
	3-8	10-20	7.4-7.8	0	0	0
	8-14	25-35	7.4-8.4	0	0	0
	14-16	20-25	7.9-8.4	0	0	0
	16-26	---	---	---	---	---
263:						
Pomerening------	0-4	2.0-5.0	7.4-7.8	0	0	0
	4-9	1.0-5.0	7.4-7.8	0	0	0
	9-62	1.0-5.0	7.4-8.4	0-1	0	0
264 :						
Pomerening------	0-4	2.0-10	7.4-7.8	0	0	0
	4-9	1.0-5.0	7.4-7.8	0	0	0
	9-62	1.0-5.0	7.4-8.4	0-1	0	0
Flank-----------	0-1	5.0-10	7.4-7.8	0	0	0
	1-9	5.0-15	7.4-7.8	0	0	0
	9-19	---	---	---	---	---
Lava flows----------\| $0-60$		-	-	--	---	---
265 :						
Porterfield------	0-6	10-15	6.6-7.8	0	0	0
	6-14	10-20	6.6-7.8	0	0	0
	14-24	-	---	---	---	---

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange \|capacity	$\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$	Calcium carbonate	Salinity	Sodium adsorption ratio
	In	\|meq/100 g	pH	Pct	mmhos/cm	
266:						
Porterfield------	0-6	10-15	6.6-7.8	0	0	0
	6-14	10-20	6.6-7.8	0	0	0
	14-24	---	---	--	---	---
267:						
Porterfield------	0-6	10-15	6.6-7.8	0	0	0
	6-14	10-20	6.6-7.8	0	0	0
	14-24	-	---	---	---	--
Tincan	0-10	15-25	6.6-7.3	0	0	0
	10-16	15-25	6.6-7.3	0	0	0
	16-26	---	---	---	---	---
Rock outcrop-	0-60	---	---	---	-	---
268:						
Poujade---------	0-4	10-20	6.6-7.8	0	0	0-2
	4-6	10-20	7.4-8.4	0	0	1-5
	6-13	20-40	9.1-11.0\|	1-5	1.0-4.0	13-50
	13-40	20-40	9.1-11.0\|	1-5	4.0-8.0	50-170
	40-65	10-30	8.5-11.0\|	1-5	1.0-4.0	30-170
269:						
Poujade---------	0-4	10-20	6.6-7.8	0	0	0-2
	4-6	10-20	7.4-8.4	0	0	1-5
	6-13	20-40	9.1-11.0	1-5	1.0-4.0	13-50
	13-40	20-40	9.1-11.0\|	1-5	4.0-8.0	50-170
	40-65	10-30	8.5-11.0\|	1-5	1.0-4.0	30-170
270:						
Poujade---------	0-4	10-20	6.6-7.8	0	0	0-2
	4-6	10-20	7.4-8.4	0	0	1-5
	6-13	20-40	9.1-11.0	1-5	1.0-4.0	13-50
	13-40	20-40	9.1-11.0	1-5	4.0-8.0	50-170
	40-65	10-30	8.5-11.0\|	1-5	1.0-4.0	30-170
Ausmus----------	0-2	10-20	8.5-9.0	2-15	1.0-4.0	10-20
	2-9	20-35	9.1-11.0	10-20	4.0-8.0	20-100
	9-16	20-35	9.1-11.0	10-20	4.0-16.0	100-200
	16-29	20-35	9.1-11.0	10-20	16.0-32.0	300-500
	29-69	20-35	9.1-11.0\|	1-5	16.0-32.0	300-500
271:						
Raz-------------	0-2	5.0-10	7.4-7.8	0	0	0
	2-7	10-20	7.4-8.4	0-2	0	0
	7-12	10-20	7.9-8.4	1-3	0	0
	12-23	---	---	---	---	---
	23-33	---	---	---	---	--
272:						
Raz-------------	0-2	10-15	7.4-7.8	0	0	0
	2-7	10-20	7.4-8.4	0-2	0	0
	7-12	10-20	7.9-8.4	1-3	0	0
	12-23	---	---	---	---	--
	23-33	---	---	---	-	---
Brace	0-6	8.0-13	6.6-7.8	0	0	0
	6-13	9.0-18	7.4-7.8	0	0	0
	13-32	5.0-13	7.4-8.4	1-3	0	0
	32-36	---	---	---	---	---
	36-46	---	---	---	--	---

Table 16.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Cation \|exchange |capacity | Soil reaction | $\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \text { ate } \end{aligned}$ | Salinity | $\begin{array}{\|c} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | \|meq/100 g | pH | Pct | mmhos/cm | |
| 273: | | | | | | |
| Raz | 0-2 | 10-15 | 7.4-7.8 | 0 | 0 | 0 |
| | 2-7 | 10-20 | 7.4-8.4 | 0-2 | 0 | 0 |
| | 7-12 | 10-20 | 7.9-8.4 | 1-3 | 0 | 0 |
| | 12-23 | --- | --- | --- | --- | --- |
| | 23-33 | --- | --- | --- | --- | --- |
| Brace- | 0-6 | 8.0-13 | 6.6-7.8 | 0 | 0 | 0 |
| | 6-13 | 9.0-18 | 7.4-7.8 | 0 | 0 | 0 |
| | 13-32 | 5.0-13 | 7.4-8.4 | 1-3 | 0 | 0 |
| | 32-36 | --- | --- | --- | --- | -- |
| | 36-46 | --- | --- | --- | --- | --- |
| 274: | | | | | | |
| Reallis--------- | 0-9 | 5.0-10 | 7.4-7.8 | 0 | 0 | 0 |
| | 9-17 | 5.0-10 | 7.4-7.8 | 0 | 0 | 0 |
| | 17-27 | 5.0-10 | 7.4-8.4 | 1-2 | 0.0-2.0 | 0 |
| | 27-60 | 0.0-10 | 7.4-8.4 | 1-5 | 0.0-2.0 | 0 |
| 275: | | | | | | |
| Reallis---------- | 0-9 | 5.0-10 | 7.4-7.8 | 0 | 0 | 0 |
| | 9-17 | 5.0-10 | 7.4-7.8 | 0 | 0 | 0 |
| | 17-27 | 5.0-10 | 7.4-8.4 | 1-2 | 0.0-2.0 | 0 |
| | 27-60 | 0.0-10 | 7.4-8.4 | 1-5 | 0.0-2.0 | 0 |
| 276: | | | | | | |
| Reese------------ | 0-4 | --- | 9.1-9.6 | 5-15 | 16.0-32.0 | 100-200 |
| | 4-10 | --- | 9.1-9.6 | 5-15 | 16.0-32.0 | 100-200 |
| | 10-33 | --- | 9.1-9.6 | 15-30 | 2.0-16.0 | 30-140 |
| | 33-44 | --- | 8.5-9.6 | 15-30 | 0.0-2.0 | 10-30 |
| | 44-60 | --- | 8.5-9.6 | 15-30 | 0.0-2.0 | 5-30 |
| 277: | | | | | | |
| Reluctan-------- | 0-2 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 2-9 | 15-25 | 7.4-8.4 | 0 | 0 | 0 |
| | 9-26 | 15-25 | 7.4-8.4 | 0 | 0 | 0 |
| | 26-36 | --- | --- | --- | - | --- |
| 278: | | | | | | |
| Reluctan--------- | 0-2 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 2-9 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 9-15 | 15-25 | 7.4-8.4 | 0 | 0 | 0 |
| | 15-26 | 15-25 | 7.4-8.4 | 0 | 0 | 0 |
| | 26-36 | --- | --- | --- | --- | --- |
| 279 : | | | | | | |
| Riddleranch------ | 0-7 | 10-15 | 6.6-7.3 | 0 | 0 | 0 |
| | 7-16 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 16-27 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 27-37 | --- | --- | --- | --- | --- |
| Lambring | 0-7 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 7-12 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 12-21 | 10-15 | 6.6-7.8 | 0 | 0 | 0 |
| | 21-60 | 10-15 | 6.6-7.8 | 0 | 0 | 0 |
| Rock outcrop- | 0-60 | --- | --- | --- | --- | --- |
| 280: | | | | | | |
| Riddleranch----- | 0-7 | 10-20 | 6.6-7.3 | 0 | 0 | 0 |
| | 7-16 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 16-27 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 27-37 | --- | --- | --- | --- | --- |
| Rock outcrop- | 0-60 | - | --- | --- | --- | --- |

Table 16.--Chemical Properties of the Soils--Continued

Table 16.--Chemical Properties of the Soils--Continued

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation \|exchange capacity	$\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$	$\left\lvert\, \begin{gathered} \text { Calcium } \\ \mid \text { carbon- } \mid \\ \text { ate } \end{gathered}\right.$	Salinity	$\begin{array}{\|c} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$
	In	\|meq/100 g	pH	Pct	mmhos/cm	
294 :						
Nuss-------------	0-4	10-20	6.6-7.8	0	0	0
	4-12	10-20	6.6-7.8	0	0	0
	12-15	10-20	6.6-7.8	0	0	0
	15-25	-	---	---	---	---
Ateron----------	0-5	10-20	6.6-7.3	0	0	0
	5-12	20-25	6.6-7.3	0	0	0
	12-18	25-35	6.6-7.3	0	0	0
	18-28	---	---	---	---	---
295:						
Sagehen---------	0-10	10-20	6.6-7.8	0	0	0
	10-19	10-20	6.6-7.8	0	0	0
	19-29	-	---	---	---	---
296:						
Sagehen---------	0-10	10-20	6.6-7.8	0	0	0
	10-19	10-20	6.6-7.8	0	0	0
	19-29	---	---	--	---	---
Rock outcrop-	0-60	---	---	-	---	---
297:						
Sandgap---------	0-2	1.0-5.0	6.6-7.3	0	0	0
	2-19	1.0-3.0	6.6-7.8	0	0	0
	19-30	1.0-3.0	7.4-8.4	1-5	0	0
	30-45	1.0-3.0	7.4-8.4	0	0	0
	45-60	1.0-3.0	7.4-8.4	0	0	0
298:						
Sandgap---------	0-2	1.0-5.0	6.6-7.3	0	0	0
	2-19	1.0-3.0	6.6-7.8	0	0	0
	19-30	1.0-3.0	7.4-8.4	1-5	0	0
	30-45	1.0-3.0	7.4-8.4	0	0	0
	45-60	1.0-3.0	7.4-8.4	0	0	0
299:						
Seharney--------	0-2	10-15	6.6-7.3	0	0	0
	2-5	10-15	6.6-7.3	0	0	0
	5-11	10-15	6.6-7.8	0	0	0
	11-17	10-15	7.4-7.8	0	0	0
	17-24	---	---	---	---	---
	24-34	-	---	-	---	---
300:						
Skedaddle-------	0-3	15-20	7.4-7.8	0	0	0
	3-8	10-15	7.4-7.8	0	0	0
	8-11	10-15	7.4-7.8	0	0	0
	11-21	--	---	---	---	---
Atlow-----------	0-3	10-15	7.4-7.8	0	0	0
	3-11	15-20	7.4-7.8	0	0	0
	11-21	---	---	---	---	---
Rock outcrop-	0-60	---	---	---	---	---
301:						
Skedaddle-------	0-3	15-20	7.4-7.8	0	0	0
	3-8	10-15	7.4-7.8	0	0	0
	8-11	10-15	7.4-7.8	0	0	0
	11-21	---	---	--- \|	---	---

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation \|exchange capacity	Soil reaction	Calcium carbonate	Salinity	$\begin{array}{\|c} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$
	In	\|meq/100 g	pH	Pct	mmhos/cm	
301:						
Atlow----------------	0-3	10-15	7.4-7.8	0	0	0
	3-11	15-20	7.4-7.8	0	0	0
	11-21	-	---	--	---	---
Rock outcrop---------	0-60	---	---	---	--	--
302:						
Skedaddle-----------	0-3	15-20	7.4-7.8	0	0	0
	3-8	10-15	7.4-7.8	0	0	0
	8-11	10-15	7.4-7.8	0	0	0
	11-21	---	---	---	---	---
Rock outcrop---------	0-60	---	---	---	--	--
303:						
Skedaddle, south						
slopes--------------	0-3	5.0-10	7.4-7.8	0	0	0
	3-8	10-15	7.4-7.8	0	0	0
	8-11	10-15	7.4-7.8	0	0	0
	11-21	---	---	---	--	---
Skedaddle, north						
slopes--------------	0-3	15-20	7.4-7.8	0	0	0
	3-8	10-15	7.4-7.8	0	0	0
	8-11	10-15	7.4-7.8	0	0	0
	11-21	---	---	---	---	---
304:						
Skidoosprings--------	0-11	5.0-15	8.5-11.0	2-5	2.0-10.0	30-90
	11-23	5.0-10	8.5-11.0	2-5	2.0-10.0	60-350
	23-30	5.0-10	8.5-11.0	2-5	2.0-10.0	60-350
	30-41	5.0-10	8.5-11.0	2-5	2.0-4.0	10-30
	41-49	---	-	---	---	---
	49-60	1.0-5.0	8.5-9.0	0	2.0-4.0	10-20
305:						
Skidoosprings--------	0-11	5.0-15	8.5-11.0	2-5	2.0-10.0	30-90
	11-23	5.0-10	8.5-11.0	2-5	2.0-10.0	60-350
	23-30	5.0-10	8.5-11.0	2-5	2.0-10.0	60-350
	30-41	5.0-10	8.5-11.0	2-5	2.0-4.0	10-30
	41-49	---	---	---	---	---
	49-60	1.0-5.0	8.5-9.0	0	2.0-4.0	10-20
306:						
Skunkfarm------------	0-2	15-20	7.4-7.8	0	0.0-2.0	0
	2-13	15-20	7.4-8.4	0	0.0-2.0	0
	13-18	15-20	7.4-8.4	0	0.0-2.0	0
	18-29	10-15	7.4-8.4	0	0.0-2.0	0
	29-60	5.0-10	7.4-8.4	0	0.0-2.0	0
Cumulic Haploxerolls	0-25	---	6.6-7.8	---	0	---
	25-60	---	---	---	0	--
307 :						
Skunkfarm-----------	0-2	15-20	7.4-7.8	0	0.0-2.0	0
	2-13	15-20	7.4-8.4	0	0.0-2.0	0
	13-18	15-20	7.4-8.4	0	0.0-2.0	0
	18-29	10-15	7.4-8.4	0	0.0-2.0	0
	29-60	5.0-10	7.4-8.4	0	0.0-2.0	0
Doubleo--------------	0-3	15-25	7.4-8.4	2-5	0	0
	3-10	25-35	7.4-8.4	1-2	0	0
	10-20	30-40	7.4-8.4	1-2	0	0
	20-28	20-25	7.4-8.4	2-5	0	0
	28-45	5.0-10	7.4-8.4	1-2	0	0
	45-60	5.0-10	7.4-8.4	1-2	0	0

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange \|capacity	$\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$	$\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$	Salinity	$\begin{aligned} & \text { Sodium } \\ & \text { \|adsorption } \end{aligned}$ ratio
	In	meq/100 g\|	pH	Pct	mmhos/cm	
308:						
Skunkfarm--------	0-2	15-20	7.4-7.8	0	0.0-2.0	0
	2-13	15-20	7.4-8.4	0	0.0-2.0	0
	13-18	15-20	7.4-8.4	0	0.0-2.0	0
	18-29	10-15	7.4-8.4	0	0.0-2.0	0
	29-60	5.0-10	7.4-8.4	0	0.0-2.0	0
Mcbain----------	0-5	6.0-9.0	8.5-9.0	10-15	16.0-30.0	50-125
	5-22	9.0-12	7.9-9.0	15-30	4.0-8.0	13-50
	22-27	15-20	7.9-9.0	15-30	4.0-8.0	13-50
	27-37	5.0-8.0	7.9-8.4	0-1	0.0-4.0	0-5
	37-43	15-18	7.9-8.4	0-1	0.0-4.0	0-5
	43-60	7.0-10	7.9-8.4	0-1	0.0-4.0	0-5
Doubleo-	0-3	15-25	7.4-8.4	2-5	0	0
	3-10	25-35	7.4-8.4	1-2	0	0
	10-20	30-40	7.4-8.4	1-2	0	0
	20-28	20-25	7.4-8.4	2-5	0	0
	28-45	5.0-10	7.4-8.4	1-2	0	0
	45-60	5.0-10	7.4-8.4	1-2	0	0
309 :						
Skunkfarm--------	0-2	15-20	7.4-7.8	0	0.0-2.0	0
	2-13	15-20	7.4-8.4	0	0.0-2.0	0
	13-18	15-20	7.4-8.4	0	0.0-2.0	0
	18-29	10-15	7.4-8.4	0	0.0-2.0	0
	29-60	5.0-10	7.4-8.4	0	0.0-2.0	0
Skidoosprings----	0-11	5.0-15	8.5-11.0\|	2-5	2.0-10.0	30-90
	11-23	5.0-10	8.5-11.0	2-5	2.0-10.0	60-350
	23-30	5.0-10	8.5-11.0	2-5	2.0-10.0	60-350
	30-41	5.0-10	8.5-11.0	2-5	2.0-4.0	10-30
	41-49	-	---	---	---	---
	49-60	1.0-5.0	8.5-9.0	0	2.0-4.0	10-20
310:						
Spangenburg------	0-2	20-25	6.6-7.8	0	0	0
	2-15	30-45	7.4-8.4	0	0	0
	15-34	20-30	7.4-8.4	1-3	0.0-2.0	0
	34-60	10-20	7.4-8.4	0	0.0-2.0	0
311:						
Spangenburg------	0-10	20-25	6.6-7.8	0	0	0
	10-15	30-45	7.4-8.4	0	0	0
	15-34	20-30	7.4-8.4	1-3	0.0-2.0	0
	34-60	10-20	7.4-8.4	0	0.0-2.0	0
312:						
Spangenburg-----	0-10	20-25	6.6-7.8	0	0	0
	10-15	30-45	6.6-8.4	0	0	0
	15-34	20-30	7.4-8.4	1-3	0.0-2.0	0
	34-60	10-20	7.4-8.4	0	0.0-2.0	0
$313:$						
Srednic---------	0-2	10-20	6.6-7.3	0	0	0
	2-17	15-25	7.4-7.8	0	0	0
	17-25	15-25	7.4-8.4	1-2	0	0
	25-27	-	---	---	---	---
	27-30	---	---	-	---	---
	30-40	---	---	---	---	---
Aval------------	0-2	10-20	6.6-7.3	0	0	0
	2-18	15-25	7.4-7.8	0	0	0
	18-28	---	---	--- \|	---	---

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange capacity	$\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$	$\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$	Salinity	$\begin{array}{\|c} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$
	In	meq/100 g	pH	Pct	mmhos/cm	
314:						
Stampede---------	0-3	15-25	6.6-7.8	0	0	0
	3-11	20-30	6.6-7.8	0	0	0
	11-19	30-40	6.6-7.8	0	0	0
	19-23	10-20	6.6-7.8	0-2	0	0
	23-33	--	--	2-5	---	--
	33-60	5.0-10	7.4-8.4	0-2	0.0-2.0	0
315:						
Swaler----------	0-10	10-20	6.6-7.3	0	0	0
	10-27	25-35	6.6-8.4	0	0.0-2.0	0
	27-60	20-30	6.6-8.4	0	0.0-2.0	0
316:						
Swaler----------	0-10	10-20	6.6-7.3	0	0	0
	10-27	25-35	6.6-8.4	0	0.0-2.0	0
	27-60	20-30	6.6-8.4	0	0.0-2.0	0
Swalesilver-----	0-6	10-20	6.6-7.8	0	0	0
	6-23	30-50	7.4-8.4	0	0.0-2.0	0
	23-61	10-20	7.4-9.0	0-2	2.0-4.0	0
317:						
Swalesilver-----	0-6	10-20	6.6-7.8	0	0	0
	6-23	30-50	7.4-8.4	0	0.0-2.0	0
	23-61	10-20	7.4-9.0	0-2	2.0-4.0	0
318:						
Swalesilver-----	0-6	10-20	6.6-7.8	0	0	0
	6-23	30-50	7.4-8.4	0	0.0-2.0	0
	23-61	10-20	7.4-9.0	0-2	2.0-4.0	0
319:						
Swalesilver-----	0-6	10-20	6.6-7.8	0	0	0
	6-23	30-50	7.4-8.4	0	0.0-2.0	0
	23-61	10-20	7.4-9.0	0-2	2.0-4.0	0
320:						
Teguro----------	0-2	15-25	6.6-7.8	0	0	0
	2-5	15-25	6.6-7.8	0	0	0
	5-14	10-20	6.6-7.8	0	0	0
	14-24	---	---	-	---	---
321:						
Teguro----------	0-2	15-25	6.6-7.8	0	0	0
	2-5	15-25	6.6-7.8	0	0	0
	5-14	10-20	6.6-7.8	0	0	0
	14-24	---	---	---	---	---
322:						
Teguro----------	0-2	15-25	6.6-7.8	0	0	0
	2-5	15-25	6.6-7.8	0	0	0
	5-14	10-20	6.6-7.8	0	0	0
	14-24	-	---	--- \|	---	---
				\|		
323:						
Teguro----------	0-2	15-25	6.6-7.8	0	0	0
	2-5	15-25	6.6-7.8	0	0	0
	5-14	10-20	6.6-7.8	0 \|	0	0
	14-24	-	-	---	---	---
Anatone, moist---	0-8	15-20	6.1-7.3	0	0	0
	8-14	15-20	6.1-7.3	0	0	0
	14-24	-	---	--- \|	---	---

Table 16.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | \| Cation |exchange |capacity | Soil | \|Calcium |carbonate | Salinity | $\begin{array}{\|l\|l} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | \|meq/100 g| | pH | Pct | mmhos/cm | |
| 324: | | | | | | |
| Teguro---------- | 0-2 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 2-5 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 5-14 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 14-24 | --- | --- | --- | -- | --- |
| Ateron | 0-5 | 10-20 | 6.6-7.3 | 0 | 0 | 0 |
| | 5-12 | 20-25 | 6.6-7.3 | 0 | 0 | 0 |
| | 12-18 | 25-35 | 6.6-7.3 | 0 | 0 | 0 |
| | 18-28 | --- | --- | --- | --- | --- |
| 325: | | | | | | |
| Thenarrows------- | 0-3 | 5.0-15 | 8.5-9.5 | 2-5 | 2.0-4.0 | 13-25 |
| | 3-14 | 5.0-10 | 8.5-9.5 | 5-10 | 2.0-4.0 | 13-25 |
| | 14-22 | 5.0-10 | 8.5-9.5 | 10-20 | 1.0-2.0 | 13-25 |
| | 22-31 | 5.0-10 | 8.5-9.5 | 10-20 | 1.0-2.0 | 10-20 |
| | 31-54 | 2.0-10 | 8.5-9.5 | 2-15 | 1.0-2.0 | 5-15 |
| | 54-60 | 2.0-5.0 | 7.9-9.5 | 2-5 | 0.0-2.0 | 2-5 |
| Duckclub-------- | 0-5 | 5.0-10 | 7.9-9.0 | 5-10 | 2.0-8.0 | 13-30 |
| | 5-27 | 5.0-10 | 7.9-9.0 | 5-10 | 2.0-8.0 | 13-30 |
| | 27-32 | 5.0-10 | 8.5-9.0 | 5-10 | 1.0-4.0 | 13-30 |
| | 32-41 | 5.0-15 | 8.5-9.0 | 5-10 | 1.0-4.0 | 13-30 |
| | 41-63 | 5.0-10 | 8.5-9.0 | 5-10 | 0.0-2.0 | 5-15 |
| 326: | | | | | | |
| Thenarrows------ | 0-3 | 5.0-15 | 8.5-9.5 | 2-5 | 2.0-4.0 | 13-25 |
| | 3-14 | 5.0-10 | 8.5-9.5 | 5-10 | 2.0-4.0 | 13-25 |
| | 14-22 | 5.0-10 | 8.5-9.5 | 10-20 | 1.0-2.0 | 13-25 |
| | 22-31 | 5.0-10 | 8.5-9.5 | 10-20 | 1.0-2.0 | 10-20 |
| | 31-54 | 2.0-10 | 8.5-9.5 | 2-15 | 1.0-2.0 | 5-15 |
| | 54-60 | 2.0-5.0 | 7.9-9.5 | 2-5 | 0.0-2.0 | 2-5 |
| Duckclub-------- | 0-5 | 5.0-10 | 7.9-9.0 | 5-10 | 2.0-8.0 | 13-30 |
| | 5-27 | 5.0-10 | 7.9-9.0 | 5-10 | 2.0-8.0 | 13-30 |
| | 27-32 | 5.0-10 | 8.5-9.0 | 5-10 | 1.0-4.0 | 13-30 |
| | 32-41 | 5.0-15 | 8.5-9.0 | 5-10 | 1.0-4.0 | 13-30 |
| | 41-63 | 5.0-10 | 8.5-9.0 | 5-10 | 0.0-2.0 | 5-15 |
| Dentdraw-------- | 0-6 | 5.0-15 | 8.5-9.5 | 5-10 | 2.0-4.0 | 13-25 |
| | 6-9 | 5.0-15 | 8.5-9.5 | 5-10 | 2.0-4.0 | 13-25 |
| | 9-18 | 5.0-10 | 8.5-9.5 | 5-10 | 2.0-4.0 | 13-25 |
| | 18-27 | 10-15 | 8.5-9.5 | 2-5 | 1.0-2.0 | 13-25 |
| | 27-42 | 5.0-10 | 8.5-9.5 | 2-5 | 1.0-2.0 | 5-15 |
| | 42-60 | 2.0-5.0 | 7.9-9.0 | 2-5 | 0.0-2.0 | 2-5 |
| 327: | | | | | | |
| Thenarrows------ | 0-3 | 5.0-15 | 8.5-9.5 | 2-5 | 2.0-4.0 | 13-25 |
| | 3-14 | 5.0-10 | 8.5-9.5 | 5-10 | 2.0-4.0 | 13-25 |
| | 14-22 | 5.0-10 | 8.5-9.5 | 10-20 | 1.0-2.0 | 13-25 |
| | 22-31 | 5.0-10 | 8.5-9.5 | 10-20 | 1.0-2.0 | 10-20 |
| | 31-54 | 2.0-10 | 8.5-9.5 | 2-15 | 1.0-2.0 | 5-15 |
| | 54-60 | 2.0-5.0 | 7.9-9.5 | 2-5 | 0.0-2.0 | 2-5 |
| Duckclub-------- | 0-5 | 5.0-10 | 7.9-9.0 | 5-10 | 2.0-8.0 | 13-30 |
| | 5-27 | 5.0-10 | 7.9-9.0 | 5-10 | 2.0-8.0 | 13-30 |
| | 27-32 | 5.0-10 | 8.5-9.0 | 5-10 | 1.0-4.0 | 13-30 |
| | 32-41 | 5.0-15 | 8.5-9.0 | 5-10 | 1.0-4.0 | 13-30 |
| | 41-63 | 5.0-10 | 8.5-9.0 | 5-10 | 0.0-2.0 | 5-15 |
| Sandgap--------- | 0-2 | 1.0-5.0 | 6.6-7.3 | 0 | 0 | 0 |
| | 2-19 | 1.0-3.0 | 6.6-7.8 | 0 | 0 | 0 |
| | 19-30 | 1.0-3.0 | 7.4-8.4 | 1-5 | 0 | 0 |
| | 30-45 | 1.0-3.0 | 7.4-8.4 | 0 | 0 | 0 |
| | 45-60 | 1.0-3.0 | 7.4-8.4 | 0 | 0 | 0 |
| | | | | | | |

Table 16.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Cation exchange \|capacity | Soil reaction | \|Calcium |carbonate | Salinity | $\begin{array}{\|l} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | $\|\mathrm{meq} / 100 \mathrm{~g}\|$ | pH | Pct | mmhos/cm | |
| 328: | | | | | | |
| Ticino---------- | 0-9 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 9-26 | 10-20 | 6.1-7.8 | 0 | 0 | 0 |
| | 26-29 | --- | --- | --- | --- | --- |
| | 29-39 | --- | --- | --- | --- | --- |
| Merlin---------- | 0-7 | 15-25 | 6.1-7.8 | 0 | 0 | 0 |
| | 7-12 | 20-30 | 6.6-7.8 | 0 | 0 | 0 |
| | 12-18 | 40-50 | 6.6-7.8 | 0 | 0 | 0 |
| | 18-29 | --- | --- | -- | --- | --- |
| 329 : | | | | | | |
| Ticino---------- | 0-9 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 9-26 | 10-20 | 6.1-7.8 | 0 | 0 | 0 |
| | 26-29 | --- | --- | --- | --- | --- |
| | 29-39 | - | --- | - | --- | --- |
| Observation----- | 0-4 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 4-8 | 10-15 | 6.6-7.8 | 0 | 0 | 0 |
| | 8-23 | 15-25 | 6.6-7.8 | 0 | 0 | 0 |
| | 23-33 | --- | --- | --- | --- | --- |
| 330 : | | | | | | |
| Ticino---------- | 0-9 | 15-25 | 6.1-7.3 | 0 | 0 | 0 |
| | 9-26 | 10-20 | 6.1-7.8 | 0 | 0 | 0 |
| | 26-29 | --- | --- | --- | --- | --- |
| | 29-39 | --- | --- | --- | --- | -- |
| Rock outcrop- | 0-60 | --- | --- | - | --- | --- |
| 331: | | | | | | |
| Toll------------ | 0-5 | 1.0-5.0 | 6.6-7.8 | 0 | 0 | 0 |
| | 5-13 | 1.0-5.0 | 6.6-7.8 | 0 | 0 | 0 |
| | 13-60 | 1.0-5.0 | 6.6-7.8 | 0 | 0 | 0 |
| 332 : | | | | | | |
| Toll------------ | 0-5 | 1.0-5.0 | 6.6-7.8 | 0 | 0 | 0 |
| | 5-13 | 1.0-5.0 | 6.6-7.8 | 0 | 0 | 0 |
| | 13-60 | 1.0-5.0 | 6.6-7.8 | 0 | 0 | 0 |
| Nevador--------- | 0-3 | 10-15 | 7.4-7.8 | 0 | 0 | 0 |
| | 3-7 | 15-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 7-18 | 20-25 | 7.9-8.4 | 0 | 0.0-2.0 | 0 |
| | 18-32 | 5.0-10 | 7.9-8.4 | 1-5 | 0.0-2.0 | 0 |
| | 32-62 | 5.0-10 | 7.9-8.4 | 1-5 | 0.0-2.0 | 0 |
| 333: | | | | | | |
| Torriorthents--- | 0-7 | --- | --- | --- | --- | --- |
| | 7-17 | --- | --- | --- | --- | --- |
| Gumble---------- | 0-3 | 10-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 3-8 | 10-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 8-14 | 25-35 | 7.4-8.4 | 0 | 0 | 0 |
| | 14-16 | 20-25 | 7.9-8.4 | 0 | 0 | 0 |
| | 16-26 | --- | --- | --- | --- | --- |
| 334: | | | | | | |
| Tumtum---------- | 0-2 | 15-20 | 7.4-8.4 | 0 | 0 | 0 |
| | 2-12 | 25-30 | 7.4-8.4 | 0 | 0.0-2.0 | 0 |
| | 12-25 | --- | --- | --- | --- | --- |
| | 25-60 | 5.0-10 | 7.9-8.4 | 1-5 | 0.0-2.0 | 0-2 |
| 335: | | | | | | |
| Tumtum---------- | 0-2 | 15-20 | 7.4-8.4 | 0 | 0 | 0 |
| | 2-12 | 25-30 | 7.4-8.4 | 0 | 0.0-2.0 | 0 |
| | 12-25 | --- | --- | --- | --- | --- |
| | 25-60 | 5.0-10 | 7.9-8.4 | 1-5 | 0.0-2.0 | 0-2 |

Table 16.--Chemical Properties of the Soils--Continued

| Map symbol and soil name | Depth | Cation \|exchange |capacity | $\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$ | Calcium carbonate | Salinity | $\begin{array}{\|l} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | In | meq/100 g\| | pH | Pct | mmhos/cm | |
| 336: | | | | | | |
| Turpin---------- | 0-4 | 15-20 | 7.9-9.0 | 0-2 | 2.0-8.0 | 5-10 |
| | 4-8 | 10-15 | 7.9-9.0 | 0-2 | 2.0-8.0 | 10-50 |
| | 8-13 | 15-20 | 9.1-11.0\| | 1-5 | 2.0-8.0 | 100-200 |
| | 13-38 | 10-15 | 9.1-11.0\| | 2-10 | 8.0-16.0 | 200-300 |
| | 38-48 | 10-15 | 9.1-11.0\| | 0-2 | 8.0-16.0 | 200-300 |
| | 48-60 | 10-15 | 9.1-11.0\| | 0-2 | 8.0-16.0 | 200-300 |
| | | | | | | |
| 337: | | | | | | |
| Vanwyper-------- | 0-3 | 20-30 | 6.6-7.3 | 0 | 0 | 0 |
| | 3-15 | 25-40 | 6.6-7.8 | 0 | 0 | 0 |
| | 15-24 | 20-35 | 6.6-7.8 | 0 | 0 | 0 |
| | 24-34 | --- | - | --- | --- | --- |
| | | | | | | |
| Rock outcrop- | 0-60 | --- | --- | --- | --- | --- |
| 338: | | | | | | |
| Vergas---------- | 0-6 | 10-20 | 6.6-7.3 | 0 | 0 | 0 |
| | 6-14 | 15-20 | 6.6-7.3 | 0 | 0 | 0 |
| | 14-20 | 2.0-5.0 | 7.4-8.4 | 0-2 | 0 | 0 |
| | 20-62 | 1.0-5.0 | 7.4-8.4 | 0-2 | 0 | 0 |
| | | | | | | |
| 339 : | | | | | | |
| Vil------------- | 0-6 | 10-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 6-9 | 10-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 9-13 | 10-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 13-16 | 10-20 | 7.4-7.8 | 0 | 0 | 0 |
| | 16-37 | --- | --- | --- | --- | --- |
| | 37-60 | 5.0-10 | 7.9-8.4 | 1-5 | 0.0-2.0 | 0 |
| | | | | | | |
| 340: | | | | | | |
| Vining---------- | 0-2 | 5.0-10 | 6.6-7.8 | 0 | 0 | 0 |
| | 2-13 | 5.0-10 | 6.6-7.8 | 0 | 0 | 0 |
| | 13-29 | 5.0-10 | 6.6-7.8 | 1-3 | 0 | 0 |
| | 29-39 | - | --- | --- | --- | --- |
| | | | | | | |
| 341: | | | | | | |
| Vining---------- | 0-2 | 2.0-5.0 | 6.6-7.8 | 0 | 0 | 0 |
| | 2-13 | 5.0-10 | 6.6-7.8 | 0 | 0 | 0 |
| | 13-29 | 5.0-10 | 6.6-7.8 | 1-3 | 0 | 0 |
| | 29-39 | --- | --- | --- | --- | --- |
| | | | | | | |
| Tuffo----------- | 0-2 | 2.0-5.0 | 7.4-7.8 | 0 | 0 | 0 |
| | 2-7 | 2.0-5.0 | 7.4-7.8 | 0 | 0 | 0 |
| | 7-17 | --- | - | --- | --- | --- |
| | | | | | | |
| 342: | | | | | | |
| Vitale---------- | 0-3 | 10-20 | 6.1-7.3 | 0 | 0 | 0 |
| | 3-12 | 10-15 | 6.1-7.3 | 0 | 0 | 0 |
| | 12-26 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 26-36 | - | \| --- | --- | --- | --- |
| | | | | | | |
| 343: | | | | | | |
| Vitale---------- | 0-3 | 10-20 | 6.1-7.3 | 0 | 0 | 0 |
| | 3-12 | 10-15 | 6.1-7.3 | 0 | 0 | 0 |
| | 12-26 | 10-20 | 6.6-7.8 | 0 | 0 | 0 |
| | 26-36 | --- | --- | --- | --- | --- |
| | | | | | | |
| Merlin---------- | 0-7 | 15-25 | 6.1-7.8 | 0 | 0 | 0 |
| | 7-12 | 20-30 | 6.6-7.8 | 0 | 0 | 0 |
| | 12-18 | 40-50 | 6.6-7.8 | 0 | 0 | 0 |
| | 18-29 | --- | --- | --- | --- | --- |
| | | | | | | |

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	$\begin{array}{\|l} \text { \| Cation } \\ \text { \| exchange } \\ \text { \| capacity } \end{array}$	$\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$	$\begin{aligned} & \mid \text { Calcium } \\ & \mid \text { carbon- } \mid \\ & \text { ate } \end{aligned}$	Salinity	$\left\lvert\, \begin{gathered} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{gathered}\right.$
	In	\|meq/100 g	pH	Pct	mmhos/cm	
344:						
Vitale----------	0-3	10-20	6.1-7.3	0	0	0
	3-12	10-15	6.1-7.3	0	0	0
	12-26	10-20	6.6-7.8	0	0	0
	26-36	---	---	--	---	--
Merlin-	0-7	15-25	6.1-7.8	0	0	0
	7-12	20-30	6.6-7.8	0	0	0
	12-18	40-50	6.6-7.8	0	0	0
	18-29	---	---	--	---	---
Doyn-------------	0-2	10-20	6.6-7.8	0	0	0
	2-8	10-20	7.4-8.4	0	0	0
	8-18	---	---	--	---	---
345:						
Vitale-----------	0-3	10-20	6.1-7.3	0	0	0
	3-12	10-15	6.1-7.3	0	0	0
	12-26	10-20	6.6-7.8	0	0	0
	26-36	---	---	--	---	---
Observation------	0-4	10-20	6.6-7.8	0	0	0
	4-8	10-15	6.6-7.8	0	0	0
	8-23	15-25	6.6-7.8	0	0	0
	23-33	---	---	--	---	---
346:						
Vitale----------	0-3	10-20	6.1-7.3	0	0	0
	3-12	10-15	6.1-7.3	0	0	0
	12-26	10-20	6.6-7.8	0	0	0
	26-36	---	---	---	---	---
Rock outcrop-	0-60	---	---	---	---	---
347:						
Voltage----------	0-4	5.0-10	7.9-8.4	1-5	2.0-8.0	1-5
	4-38	5.0-10	7.9-8.4	15-30	4.0-8.0	5-10
	38-64	0.0-5.0	7.9-9.0	2-10	0.0-2.0	5-10
348:						
Voltage----------	0-4	5.0-10	7.9-8.4	1-5	2.0-8.0	1-5
	4-38	5.0-10	7.9-8.4	15-30	4.0-8.0	5-10
	38-64	0.0-5.0	7.9-9.0	2-10	0.0-2.0	5-10
Crowcamp--------	0-3	20-25	6.6-7.8	0	0	0
	3-30	35-50	7.4-8.4	0-1	0	0
	30-53	10-20	7.9-8.4	0-3	0.0-2.0	0
	53-68	10-20	7.9-8.4	0	0.0-2.0	0
349 :						
Voltage---------	0-4	15-20	7.9-8.4	1-5	2.0-8.0	1-5
	4-38	5.0-10	7.9-8.4	15-30	4.0-8.0	5-10
	38-64	0.0-5.0	7.9-9.0	2-10	0.0-2.0	5-10
Crowcamp--------	0-3	25-30	6.6-7.8	0	0	0
	3-30	35-50	7.4-8.4	0-1	0	0
	30-53	10-20	7.9-8.4	0-3	0.0-2.0	0
	53-68	10-20	7.9-8.4	0	0.0-2.0	0
350:						
Voltage----------	0-4	5.0-10	7.9-8.4	1-5	2.0-8.0	1-5
	4-38	5.0-10	7.9-8.4	15-30	4.0-8.0	5-10
	38-64	0.0-5.0	7.9-9.0	2-10	0.0-2.0	5-10
Widowspring-----	0-22	15-20	6.6-7.8	0	0	0
	22-43	10-20	6.6-7.8	0	0	0
	43-63	10-15	6.6-7.8	0	0	0

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange \|capacity	$\left\lvert\, \begin{gathered} \text { Soil } \\ \text { reaction } \end{gathered}\right.$	$\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \mid \text { ate } \end{aligned}$	Salinity	$\begin{array}{\|l} \mid \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$
	In	meq/100 g	pH	Pct	mmhos/cm	
351:						
Wagontire------------	0-5	20-25	6.6-7.3	0	0	0
	5-15	30-35	6.6-7.8	0	0	0
	15-40	---	---	---	---	---
	40-60	5.0-10	7.4-7.8	1-2	0	0
352:						
Wagontire-----------	0-5	20-25	6.6-7.3	0	0	0
	5-15	30-35	6.6-7.8	0	0	0
	15-40	---	---	--	---	-
	40-60	5.0-10	7.4-7.8	1-2	0	0
Vil-----------------	0-6	10-20	7.4-7.8	0	0	0
	6-9	10-20	7.4-7.8	0	0	0
	9-13	10-20	7.4-7.8	0	0	0
	13-16	10-20	7.4-7.8	0	0	0
	16-37	---	---	---	---	---
	37-60	5.0-10	7.9-8.4	1-5	0.0-2.0	0
353:						
Waspo---------------	0-3	60-75	7.4-8.4	0-1	0.0-1.0	0-1
	3-25	60-75	7.4-8.4	0-3	0.0-1.0	0-5
	25-35	---	---	---	--	---
Poall---------------	0-8	15-20	7.4-8.4	0	0	0
	8-17	25-35	7.4-8.4	0	0	0
	17-33	20-25	7.4-8.4	0	0	0
	33-65	20-25	7.9-9.0	1-5	0.0-2.0	0-2
354:						
Water--------------- \|	---	---	---	---	---	---
355:						
Welch---------------	0-9	25-35	6.1-7.3	0	0	0
	9-60	20-40	6.1-7.8	0	0	0
356:						
Welch---------------	0-9	25-35	6.1-7.3	0	0	0
	9-60	20-40	6.1-7.8	0	0	0
357:						
Welch---------------	0-5	25-35	6.1-7.3	0	0	0
	5-60	20-40	6.1-7.8	0	0	0
Roschene------------ \|	0-5	25-35	7.4-8.4	0-1	0	0
	5-18	20-35	7.4-8.4	0	0	0
	18-36	20-40	6.6-7.8	0	0	0
	36-62	20-30	6.6-7.8	0	0	0
Cumulic Haploxerolls	0-25	---	6.6-7.8	---	0	--
	25-60	---	---	--	0	---
358:						
Wenas--------------- \|	0-10	20-30	6.6-7.8	0-2	0	0
	10-21	10-20	6.6-7.8	0	0	0
	21-34	10-20	6.6-7.8	0	0	0
	34-53	10-15	6.6-7.8	0	0	0
	53-63	5.0-10	6.6-7.8	0	0	0
	63-67	1.0-5.0	6.6-7.8	0	0	0
Loupence------------ \|	0-2	15-25	6.6-7.8	0	0	0
	2-24	10-25	6.6-7.8	0	0	0
	24-49	10-20	6.6-7.8	0-1	0	0
	49-60	5.0-10	6.6-7.8	0-1	0	0

Table 16.--Chemical Properties of the Soils--Continued

Map symbol and soil name	Depth	Cation exchange capacity	$\begin{array}{\|c} \text { Soil } \\ \text { reaction } \end{array}$	$\begin{aligned} & \mid \text { Calcium } \mid \\ & \mid \text { carbon- } \mid \\ & \text { ate } \end{aligned}$	Salinity	$\begin{array}{\|l} \text { Sodium } \\ \mid \text { adsorption } \\ \text { ratio } \end{array}$
	In	meq/100 g	pH	Pct	mmhos/cm	
358:						
Cumulic Haploxerolls	0-25	---	6.6-7.8	---	0	---
	25-60	---	---	---	0	---
359:						
Westbutte------------	0-12	15-25	6.6-7.3	0	0	0
	12-24	10-25	6.6-7.8	0	0	0
	24-34	---	---	---	---	--
360:						
Westbutte------------	0-12	15-25	6.6-7.3	0	0	0
	12-24	10-25	6.6-7.8	0	0	0
	24-34	---	---	---	---	--
361:						
Westbutte------------	0-12	15-25	6.6-7.3	0	0	0
	12-24	10-25	6.6-7.8	0	0	0
	24-34	---	---	-	---	--
Bocker---------------	0-3	10-20	6.1-7.3	0	0	0
	3-7	10-20	6.1-7.3	0	0	0
	7-17	-	---	---	---	---
362:						
Westbutte------------	0-12	15-25	6.6-7.3	0	0	0
	12-24	10-25	6.6-7.8	0	0	0
	24-34	---	---	--	---	---
Lambring------------	0-7	15-25	6.6-7.8	0	0	0
	7-12	10-20	6.6-7.8	0	0	0
	12-21	10-15	6.6-7.8	0	0	0
	21-60	10-15	6.6-7.8	0	0	0
Rock outcrop--------	0-60	---	---	-	---	---
363:						
Westbutte------------	0-12	15-25	6.6-7.3	0	0	0
	12-24	10-25	6.6-7.8	0	0	0
	24-34	---	---	---	---	---
Rock outcrop--------	0-60	---	---	-	---	---
364:						
Westbutte------------	0-12	15-25	6.6-7.3	0	0	0
	12-24	10-25	6.6-7.8	0	0	0
	24-34	---	---	---	---	---
Rock outcrop---------	0-60	---	---	---	---	---
365:						
Westbutte-----------	0-12	15-25	6.6-7.3	0	0	0
	12-24	10-25	6.6-7.8	0	0	0
	24-34	---	---	---	---	---
Lambring-------------	0-7	15-25	6.6-7.8	0	0	0
	7-12	10-20	6.6-7.8	0	0	0
	12-21	10-15	6.6-7.8	0	0	0
	21-60	10-15	6.6-7.8	0	0	0
Rock outcrop---------	0-60	-	---	---	---	---
366:						
Westbutte-----------	0-12	15-25	6.6-7.3	0	0	0
	12-24	10-25	6.6-7.8	0	0	0
	24-34	---	-	---	---	---

Table 16.--Chemical Properties of the Soils--Continued

(Depths of layers are in feet. See text for definitions of terms used in this table. Estimates of the frequency of ponding and flooding apply to the whole year rather than to individual months. Absence of an entry indicates that the feature is not a concern. The symbol > means more than; < means less than)

Map symbol and soil name	\|Hydro- logic group	Month	Water table		Ponding			Flooding			
			$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	\mid Surface \mid \mid water \mid \mid depth \mid	Duration	\| Frequency	Duration	Frequency		
			Ft	Ft	Ft						
1:											
Actem-	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
2:											
Actem-	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
3 :											
Actem---------------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Robson-------------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
4:											
Alvodest-----------	D										
		\| January	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\| February	$\|0.0-1.0\|$	>6.0	$\|0.0-0.5\|$	Long	Frequent	---	None		
		\| March	\|0.0-1.0		>6.0	$\|0.0-0.5\|$	Long	Frequent	---	None	
		\|April	\|2.5-3.5		>6.0	$\|0.0-0.5\|$	Long	Frequent	---	None	
		\|December	$\mid 0.0-1.0$	>6.0	$\|0.0-0.5\|$	Long	Frequent	--	None		
5:											
Alvodest-----------	D										
		\| January	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\| February	\|0.0-1.0		>6.0	$\|0.0-0.5\|$	Long	Frequent	---	None	
		\|March	\|0.0-1.0		>6.0	$\|0.0-0.5\|$	Long	Frequent	---	None	
		\|April	2.5-3.5	>6.0	$\|0.0-0.5\|$	Long	Frequent	---	None		
		December	$\|0.0-1.0\|$	>6.0	$\|0.0-0.5\|$	Long	Frequent	--	None		
Playas-------------	D										
		\| January	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None
		\|February	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None
		\|March	$\|0.0-1.0\|$	>6.0	$\|0.0-1.0\|$	Long	Frequent	---	None		
		April	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None
		\|May	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None
		\|June	$\|1.0-6.0\|$	>6.0	\|0.0-1.0		Long	Frequent	--	None	
		\|July	\|1.0-6.0		>6.0	$\|0.0-1.0\|$	Long	Frequent	---	None	
		\|August	$\|1.0-6.0\|$	>6.0	\|0.0-1.0		Long	Frequent	--	None	
		\|September	\|1.0-6.0		>6.0	$\|0.0-1.0\|$	Long	Frequent	---	None	
		\|October	$\|1.0-6.0\|$	>6.0	---	---	None	--	None		
		November	$\|1.0-6.0\|$	>6.0	---	---	None	---	None		
		\| December	$\|0.0-1.0\|$	>6.0	\|0.0-1.0		Long	Frequent	--	None	
6:											
Alyan--------------	C										
		\|Jan-Dec	--- \|	-	--- \|	---	None	---	None		
7:											
Anatone------------	D	\|Jan-Dec	---	---	-	---	None	---	None		
8:											
Anatone, moist------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Anatone------------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		

Table 17.--Water Features--Continued

Map symbol and soil name	\|Hydrologic group	Month	Water table		Ponding			Flooding	
			$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	\mid Surface \mid water depth	Duration	\|Frequency	Duration	Frequency
			Ft	Ft	Ft				
9:									
Anatone-------------	D								
		Jan-Dec	---	---	---	---	None	---	None
Teguro--------------	D								
		Jan-Dec	---	---	---	---	None	---	None
Observation---------	C								
		Jan-Dec	---	---	---	---	None	---	None
10:									
Anatone, moist-----	D								
		\|Jan-Dec	---	---	---	---	None	---	None
Egyptcreek---------	c								
		Jan-Dec	---	---	---	---	None	---	None
Rock outcrop-------	D								
		Jan-Dec	---	---	---	---	None	---	None
11:									
Anatone, moist-----	D								
		Jan-Dec	---	---	---	---	None	---	None
Minam--------------	B								
		Jan-Dec	---	---	---	---	None	---	None
Rock outcrop--------	D								
		\|Jan-Dec	---	---	-	---	None	---	None
12:									
Anatone------------	D								
		\|Jan-Dec	---	---	---	---	None	---	None
Teguro-------------	D								
		Jan-Dec	---	---	---	---	None	---	None
Rock outcrop-------	D								
		Jan-Dec	---	---	---	---	None	---	None
13:									
Anatone-------------	D								
		\|Jan-Dec	---	---	---	---	None	---	None
	B								
Westbutte-----------		Jan-Dec	---	---	---	---	None	---	None
Rock outcrop-------	D								
		Jan-Dec	---	---	---	---	None	---	None
	14:								
Anawalt-------------	D						\|		
		\|Jan-Dec	---	---	---	---	None	---	None
15:									
Anawalt-------------	D								
		\|Jan-Dec	---	---	---	---	None	---	None
Lonely--------------	c								
		\|Jan-Dec	---	---	---	---	None	---	None
16:									
Anawalt------------	D								
		\|Jan-Dec	---	---	---	---	None	---	None

Table 17.--Water Features--Continued

Map symbol and soil name	\|Hydro	logic group	Month	Water table		Ponding			Flooding		
			$\begin{aligned} & \text { Upper } \\ & \hline \text { limit } \end{aligned}$	Lower limit	\mid Surface \mid \mid water \mid depth $\|$	Duration	\| Frequency	Duration	Frequency		
			Ft	Ft	Ft						
16:											
Oreneva-	C										
		\|Jan-Dec	---	---	---	---	None	---	None		
17:											
Anawalt------------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Raz----------------	D										
		\|Jan-Dec	-	---	-	---	None	---	None		
18:											
Ateron	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
19:											
Ateron-------------	D										
		\|Jan-Dec	-	---	-	---	None	---	None		
Rubble land--------	A										
		\|Jan-Dec	---	---	---	---	None	---	None		
20:											
Ateron-------------	D										
	\|	\|Jan-Dec	---	---	--	---	None	---	None		
Observation--------	C										
	\|	\|Jan-Dec	---	---	---	---	None	---	None		
21:											
Atlow--------------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
22:											
Atlow--------------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Rock outcrop--------	D										
		\|Jan-Dec	---	--	---	---	None	---	None		
23:											
Atlow--------------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Rock outcrop-------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
	24:										
Atlow-	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
	D										
Skedaddle----------		\|Jan-Dec	---	-	---	---	None	---	None		
	25:										
Ausmus-------------	D										
		\| March	\|2.5-4.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|April	\|3.0-4.0		>6.0	\|0.0-0.5		Long	Frequent	--	None
		\|May	\|4.0-5.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
26:											
Ausmus-------------	D										
		\|March	\|2.5-4.0		>6.0	\|0.0-0.5		--	Rare	---	None
		\|April	\|3.0-4.0		>6.0	\|0.0-0.5		---	Rare	---	None
		\| May	\|4.0-5.0		>6.0	\|0.0-0.5		---	Rare	---	None

Table 17.--Water Features--Continued

Table 17.--Water Features--Continued

Map symbol and soil name	\|Hydrologic group	Month	Water table		Ponding			Flooding			
			$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	\mid Surface water depth$\|$	Duration	\|Frequency	Duration	Frequency		
			Ft	Ft	Ft						
35:											
Krackle-------------	B										
		\|Jan-Dec	---	---	---	---	None	---	None		
Rock outcrop-------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
36:											
Berdugo	C										
		\|Jan-Dec	---	---	---	---	None	---	None		
37:											
Berdugo	c										
		\|Jan-Dec	---	---	---	---	None	---	None		
Catlow	B										
		\|Jan-Dec	---	---	---	---	None	--	None		
38:											
Bigfrog------------	D										
		\|Jan-Dec	---	---	---	---	None	--	None		
Brock--------------	D										
		\|Jan-Dec	---	-	---	---	None	---	None		
39 :											
Bocker-------------	D										
		\|Jan-Dec	---	-	---	---	None	---	None		
Westbutte-----------	B										
		\|Jan-Dec	-	-	---	-	None	---	None		
40:											
Boravall-----------	D										
			\|4.0-5.0			\|0.0-0.5			Frequent	---	None
		\| February	\|3.5-5.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\| March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|April	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|May	\|1.5-3.0		>6.0	-	--	None	---	None	
		\| June	\|2.5-4.0		>6.0	---	---	None	---	None	
		\|July	\|3.0-4.0		>6.0	---	---	None	---	None	
		\| August	\|4.0-5.0		>6.0	---	---	None	---	None	
		\| September	$\|4.0-5.0\|$	>6.0	---	---	None	---	None		
		\| December	\|4.0-5.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
Playas-------------	D										
		\| January	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None
		\| February	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None
		\| March	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None
		\|April	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None
		\|May	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None
		\|June	$\|1.0-6.0\|$	>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|July	$\|1.0-6.0\|$	>6.0	\|0.0-1.0		Long	Frequent	-	None	
		\|August	$\|1.0-6.0\|$	>6.0	\|0.0-1.0		Long	Frequent	--	None	
		\| September	$\|1.0-6.0\|$	>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|October	\|1.0-6.0		>6.0	---	---	None	---	None	
		\| November	$\|1.0-6.0\|$	>6.0	---	---	None	-	None		
		\| December	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	--	None
41:											
Borobey-	C										
		\|Jan-Dec	---	---	---	---	None	---	None		

Table 17.--Water Features--Continued

Table 17.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding	
	\|Hydrologic group		Upper limit	Lower limit	\mid Surface \mid \mid water \mid depth$\|$	Duration	\|Frequency	Duration	Frequency
			Ft	Ft	Ft				
50:									
Bucklake----------------- \|	D								
		\|Jan-Dec	---	-	-	---	None	---	None
51:									
Bucklake----------------- \|	D								
		\|Jan-Dec	---	---	---	---	None	---	None
Mahoon-------------------\|	D								
		\|Jan-Dec	---	---	---	---	None	---	None
Rubble land--------------\|	A								
		\|Jan-Dec	---	---	-	---	None	---	None
52 :									
Calderwood--------------- \|	D								
		\|Jan-Dec	---	---	---	---	None	---	None
53:									
Calderwood---------------	D								
		\|Jan-Dec	---	---	---	---	None	---	None
McConnel------------------ \|	A								
		\|Jan-Dec	---	---	---	---	None	---	None
54:									
Carryback----------------	C								
		\|Jan-Dec	---	---	--- \|	---	None	---	None
55: \|									
Carryback----------------\|	C								
		\|Jan-Dec	---	---	---	---	None	---	None
56:									
Carryback----------------\|	C								
		\|Jan-Dec	---	---	---	---	None	---	None
57:									
Carryback----------------\|	C								
		\|Jan-Dec	---	---	---	---	None	---	None
58:									
Carryback, thin surface---\|	C								
		\|Jan-Dec	---	---	---	---	None	---	None
Carryback, thick surface--\|	C								
		\|Jan-Dec	---	---	---	---	None	---	None
59 :									
Carryback, thin surface---\|	C								
		\|Jan-Dec	---	---	---	---	None	---	None
Carryback, south slopes---\|	C								
		\|Jan-Dec	---	---	---	---	None	---	None
Carryback, north slopes---\|	C								
		\|Jan-Dec	---	---	---	---	None	---	None
60:									
Carryback, south slopes---\|	C								
		\|Jan-Dec	---	---	---	---	None	---	None
Carryback, north slopes---\|	C								
		\|Jan-Dec	---	---	--- \|	---	None	---	None

Table 17.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding			
	$\begin{aligned} & \text { \|Hydro- } \\ & \text { \|logic } \\ & \text { \|group } \end{aligned}$		Upper limit	Lower limit	\mid Surface \mid water depth$\|$	Duration	Frequency	Duration	Frequency		
			Ft	$F t$	Ft						
61:											
Carryback----------	C										
		\|Jan-Dec	---	---	---	---	None	---	None		
Pearlwise	B										
		\|Jan-Dec	-	--	-	---	None	--	None		
62 :											
Carryback----------	-										
		\|Jan-Dec	---	---	---	---	None	--	None		
Pearlwise----------	- ${ }^{\text {B }}$										
		\|Jan-Dec	-	---	-	-	None	---	None		
Rock outcrop--------	D										
		\| Jan-Dec	---	---	---	---	None	---	None		
63 :											
Carryback----------	C		\|								
		\|Jan-Dec	-	--	---	---	None	---	None		
Dickle	D										
	1	\|Jan-Dec	---	---	---	---	None	---	None		
64 :											
Carvix	B										
		\|Jan-Dec	---	---	---	---	None	---	None		
65:											
Clamp--------------	D										
		\|Jan-Dec	-	-	-	---	None	---	None		
Baconcamp----------	- C										
		\|Jan-Dec	-	-	-	---	None	---	None		
Hackwood------------	- ${ }^{\text {B }}$										
		\|Jan-Dec	-	---	-	---	None	---	None		
66:											
Coztur-------------	D										
	1	\|Jan-Dec	---	---	---	---	None	---	None		
67 :											
Crowcamp----------------\| D											
			\|2.5-3.5		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|April	\|2.5-3.5		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\| May	\|5.0-5.5		>6.0	---	---	None	---	None	
68:											
Crowcamp----------------\| D											
		\| March	\|2.5-3.5		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|April	\|2.5-3.5		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|May	\|5.0-5.5		>6.0	---	---	None	---	None	
Ausmus-------------------\| D											
		\| March	\|2.5-4.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|April	\|3.0-4.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|May	\|4.0-5.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
Poujade------------	- ${ }^{\text {B }}$						I				
		\|March	\|2.5-4.0		>6.0	---	---	None	---		
		\|April	\|2.5-4.0		>6.0	--- \|	---	None	---	None	
		\| May	\|3.5-4.0		>6.0	--- \|	---	None	---	None	

Table 17.--Water Features--Continued

Table 17.--Water Features--Continued

Table 17.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding	
	Hydrologic group		$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	\mid Surface \mid \mid water \mid depth $\|$	Duration	Frequency	Duration	Frequency
			Ft	Ft	Ft				
92 :									
Edemaps-------------	- ${ }^{\text {c }}$								
		\|Jan-Dec	---	---	---	---	None	---	None
Carryback----------	C								
		\|Jan-Dec	---	--	---	---	None	---	None
93:									
Enko---------------	A								
		\|Jan-Dec	---	---	-	---	None	---	None
94:									
Enko-	A								
		\|Jan-Dec	---	---	-	---	None	---	None
Catlow-------------	\| ${ }^{\text {B }}$								
		\|Jan-Dec	-	---	---	---	None	---	None
95:									
Enko---------------	A								
		\|Jan-Dec	---	--	---	---	None	---	None
Catlow-------------	B								
		\|Jan-Dec	---	---	---	---	None	---	None
96:									
Enko---------------	A								
		\|Jan-Dec	---	---	---	--	None	---	None
	B								
Catlow-------------		\|Jan-Dec	---	---	---	---	None	---	None
97 :									
Erakatak------------	C								
		\|Jan-Dec	---	---	---	---	None	---	None
98:									
Erakatak------------	C								
		\|Jan-Dec	---	---	---	---	None	---	None
Lambring-----------	B								
		\|Jan-Dec	---	---	---	---	None	---	None
Rock outcrop--------	D								
		\|Jan-Dec	-	--	---	---	None	---	None
99 :									
Erakatak------------	-								
		\|Jan-Dec	---	---	---	---	None	---	None
Merlin-------------	D								
		\|Jan-Dec	---	---	---	---	None	---	None
Westbutte----------	B								
		\|Jan-Dec	---	---	---	---	None	---	None
100:									
Erakatak-----------	C								
		\|Jan-Dec	---	---	---	---	None	---	None
	D								
Rock outcrop-		\|Jan-Dec	---	---	---	---	None	---	None

Table 17.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding	
	$\begin{aligned} & \text { \|Hydro- } \\ & \text { \|logic } \\ & \text { \|group } \end{aligned}$		Upper limit	Lower limit	\mid Surface \mid water depth	Duration	\|Frequency	Duration	Frequency
			Ft	Ft	Ft				
101:									
Erakatak------------	C								
		\|Jan-Dec	---	---	---	---	None	---	None
Ninemile------------	D								
		\| Jan-Dec	---	---	---	---	None	---	None
Hapgood-	B								
		\|Jan-Dec	---	---	---	---	None	---	None
102:									
Felcher	B								
		- Jan-Dec	---	---	---	---	None	---	None
103:									
Felcher------------	B								
		\|Jan-Dec	--	-	-	---	None	---	None
Rock outcrop-------	D								
		\| Jan-Dec	---	---	---	---	None	---	None
104:									
Felcher------------	B								
		\|Jan-Dec	---	---	---	---	None	---	None
Rock outcrop-	D								
		\|Jan-Dec	---	---	---	---	None	---	None
Brezniak-----------	D								
		\| Jan-Dec	---	---	---	---	None	---	None
105:									
Felcher-------------	B								
		\|Jan-Dec	---	---	---	---	None	---	None
Rock outcrop--------	D								
		\|Jan-Dec	---	---	---	---	None	---	None
Westbutte-	B								
		\| Jan-Dec	---	---	---	---	None	---	None
106:									
Felcher	B								
		\|Jan-Dec	---	---	---	---	None	---	None
Sagehen-------------	D								
		\|Jan-Dec	---	---	---	---	\| None	---	None
107:									
Felcher------------	B								
		\|Jan-Dec	---	---	---	---	None	---	None
Sagehen------------	D						I		
		\| Jan-Dec	---	---	---	---	\| None	---	None
							,		
108:							\|		
Felcher-	B						\|		
		\| Jan-Dec	---	---	---	---	\| None	---	None
Fitzwater-	B						\|		
		\|Jan-Dec	---	---	---	---	\| None	---	None
Rock outcrop-	D				\|		\|		
		\|Jan-Dec	---	---	---	---	\| None	---	None

Table 17.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding			
	\|Hydrologic group		$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	\mid Surface \mid water depth	Duration	\|Frequency	Duration	Frequency		
			Ft	$F t$	Ft						
109 :											
Felcher------------------ \|	B										
		\|Jan-Dec	---	---	---	---	None	--	None		
Pernty-------------------	D										
		\|Jan-Dec	-	---	---	---	None	--	None		
Ninemile------------------	D										
		\|Jan-Dec	-	---	-	-	None	---	None		
110:											
Felcher-------------------	B										
		\|Jan-Dec	---	---	-	---	None	---	None		
Westbutte-----------------	B										
		\|Jan-Dec	---	---	---	---	None	---	None		
111:											
Final--------------------	D										
		\|May	\|1.0-2.5		>6.0	---	---	None	---	None	
		\|June	\|1.0-2.5		>6.0	-	---	None	---	None	
112:											
Fitzwater----------------	B										
		\|Jan-Dec	---	---	-	-	None	---	None		
Hapgood, thick surface----	B										
		\|Jan-Dec	---	---	---	---	None	---	None		
Hapgood, thin surface-----	B										
		\|Jan-Dec	---	--	---	---	None	---	None		
113:											
Fitzwater----------------	B										
		\|Jan-Dec	---	---	-	---	None	---	None		
Rock outcrop-------------	D										
		\|Jan-Dec	---	-	---	---	None	---	None		
114:											
Flank-------------------- \|	D										
		\|Jan-Dec	---	-	---	---	None	---	None		
Lava flows----------------	D										
		\|Jan-Dec	---	---	-	-	None	---	None		
115:											
Fourwheel---------------- \|	D	\|Jan-Dec	---	---	---	---	None	---	None		
116:											
Fourwheel----------------- \|	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
117:											
Freznik-------------------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Fury---------------------	D										
		\| February	\|3.0-4.0		>6.0	---	---	None	---	None	
		\|March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|April	\|0.0-1.0		>6.0	$\|0.0-0.5\|$	Long	Frequent	---	None	
		\|May	\|0.0-1.0		>6.0	$\|0.0-0.5\|$	Long	Frequent	---	None	
		\|June	\|2.5-3.5		>6.0	---	---	None	---	None	

Table 17.--Water Features--Continued

Map symbol and soil name	$\begin{aligned} & \mid \text { Hydro- } \\ & \mid \text { logic } \\ & \mid \text { group } \end{aligned}$	Month	Water table		Ponding			Flooding			
			Upper limit	Lower limit	\mid Surface \mid water depth	Duration	\| Frequency	Duration	Frequency		
			Ft	Ft	Ft						
Fury---------------	D										
		\| February	\|3.0-4.0		>6.0	---	---	None	---	None	
		\mid March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|April	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\| May	\|0.0-1.0		>6.0	---	---	None	---	None	
		\| June	\|2.5-3.5		>6.0	-	-	None	-	None	
120:											
Fury	D										
		\| February	\|3.0-4.0		>6.0	---	---	None	---	None	
		\| March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|April	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\| May	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\| June	\|2.5-3.5		>6.0	-	---	None	--	None	
Degarmo------------	D										
		\| March	\|1.0-2.5		>6.0	\|0.0-0.5		---	Rare	---	None
		\|April	$\|1.0-2.5\|$	>6.0	\|0.0-0.5		---	Rare	---	None	
		\| May	$\|1.0-2.5\|$	>6.0	\|0.0-0.5		---	Rare	---	None	
		\|June	\|1.0-2.5		>6.0	-	---	None	---	None	
121:											
Fury--------------	D										
		\| February	\|3.0-4.0		>6.0	---	---	None	---	None	
		\| March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|April	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|May	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\| June	\|2.5-3.5		>6.0	---	---	None	---	None	
Housefield----------	D										
		\| January	\|2.5-3.5		>6.0	---	---	None	---	None	
		\| February	\|1.5-2.5		>6.0	---	---	None	---	None	
		\|March	\|0.0-1.0		>6.0	\|0.0-3.0		Long	Frequent	---	None
		\|April	\|0.0-1.0		>6.0	\|0.0-3.0		Long	Frequent	---	None
		May	\|0.0-1.0		>6.0	\|0.0-3.0		Long	Frequent	---	None
		\| June	\|0.0-1.0		>6.0	\|0.0-3.0		Long	Frequent	---	None
		\|July	\|0.0-1.0		>6.0	\|0.0-3.0		Long	Frequent	---	None
		\|August	\|1.5-2.5		>6.0	---	-	None	---	None	
		\| September	\|2.5-3.5		>6.0	---	---	None	---	None	
		\|October	\|2.5-3.5		>6.0	-	---	None	---	None	
		\| November	\|2.5-3.5		>6.0	---	---	None	---	None	
		\| December	\|2.5-3.5		>6.0	---	---	None	---	None	
122 :											
Fury---------------	D										
		\| February	\|3.0-4.0		>6.0	---	---	None	---	None	
		\|March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|April	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		May	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\| June	\|2.5-3.5		>6.0	---	---	None	---	None	
Housefield---------	D										
		\| January	\|2.5-3.5		>6.0	---	---	None	---	None	
		\| February	\|1.5-2.5		>6.0	---	---	None	---	None	
		\|March	\|0.0-1.0		>6.0	\|0.0-3.0		Long	Frequent	--	None
		\|April	\|0.0-1.0		>6.0	\|0.0-3.0		Long	Frequent	---	None
		\|May	\|0.0-1.0		>6.0	\|0.0-3.0		Long	Frequent	---	None
		\| June	\|0.0-1.0		>6.0	\|0.0-3.0		Long	Frequent	---	None
		\|July	\|0.0-1.0		>6.0	\|0.0-3.0		Long	Frequent	---	None
		\|August	\|1.5-2.5		>6.0	---	---	None	---	None	
		\| September	\|2.5-3.5		>6.0	---	---	None	---	None	
		\|October	\|2.5-3.5		>6.0	--- \|	---	None	-	None	
		\| November	\|2.5-3.5		>6.0	-	---	None	---	None	
		\| December	\|2.5-3.5		>6.0	---	---	None	---	None	

Table 17.--Water Features--Continued

Map symbol and soil name	\|Hydro- \|logic group	Month	Water table		Ponding			Flooding				
			$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	$\begin{array}{\|l\|} \hline \text { Surface } \mid \\ \mid \text { water } \\ \text { depth } \end{array}$	Duration	\|Frequency	Duration	Frequency			
			$F t$	Ft	Ft							
122 :												
Skidoosprings------	D											
		\|March	\|2.5-3.5		>6.0	-	---	None	---	None		
		\|April	$\|0.0-1.0\|$	>6.0	\|0.0-0.5		Long	\|Occasional		---	None	
		\| May	\|2.0-3.0		>6.0	--- \|	---	None	---	None		
$123:$												
Fury----------------	D											
		\| February	\|3.0-4.0		>6.0		---	None	---	None		
		\mid March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None	
		\|April	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None	
		\|May	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None	
		\|June	\|2.5-3.5		>6.0	---	---	None	---	None		
Opie---------------	D											
		\| February	\|3.0-4.0		>6.0	--- \|	---	None	---	None		
		\mid March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	\|Occasional		--	None
		April	\|0.0-1.0		>6.0	\|0.0-0.5		Long	\|Occasional		---	None
		\| May	\|0.0-1.0		>6.0	\|0.0-0.5		Long	\|Occasional		---	None
		\|June	\|2.5-3.5		>6.0	---	---	None	---	None		
124:												
Fury---------------	D											
		\| February	\|3.0-4.0		>6.0	---	---	None	---	None		
		\| March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None	
		\|April	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None	
		\|May	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None	
		\| June	\|2.5-3.5		>6.0	--	---	None	---	None		
Skidoosprings------	D											
		\| March	\|2.5-3.5		>6.0	---	---	None	---	None		
		\|April	$\|0.0-1.0\|$	>6.0	\|0.0-0.5		Long	\|Occasional		---	None	
		\|May	\|2.0-3.0		>6.0	--- \|	---	None	---	None		
Opie---------------	D											
		\| February	\|3.0-4.0		>6.0	---	---	None	---	None		
		\|March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	\|Occasional		---	None
		\|April	\|0.0-1.0		>6.0	\|0.0-0.5		Long	\|Occasional		---	None
		\| May	\|0.0-1.0		>6.0	\|0.0-0.5		Long	\|Occasional		---	None
		\|June	\|2.5-3.5		>6.0	-	---	None \|	---	None		
125:												
Fury	D											
		\| February	\|3.0-4.0		>6.0	---	---	None	---	None		
		\|March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None	
		\|April	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None	
		\|May	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None	
		\| June	\|2.5-3.5		>6.0	--- \|	---	None	---	None		
Widowspring---------	\| B											
		\| January	\|3.0-5.0		>6.0	--- \|	---	None	-	None		
		\|February	$\|3.0-5.0\|$	>6.0	---	---	None	---	None			
		\|March	\|3.0-5.0		>6.0	\|0.0-0.5		---	Rare	---	None	
		\|April	\|3.0-5.0		>6.0	\|0.0-0.5		---	Rare	---	None	
		\|May	\|3.0-5.0		>6.0	\|0.0-0.5		---	Rare	---	None	
		\|June	\|3.0-5.0		>6.0	---	---	None	---	None		
		\|July	\|3.0-5.0		>6.0	---	---	None	--	None		
		\| November	\|3.0-5.0		>6.0	---	---	None	---	None		
		\| December	\|3.0-5.0		>6.0	--- \|	---	None	---	None		
126:												
Gaib	D											
		\|Jan-Dec	---	---	--- \|	---	None	---	None			

Table 17.--Water Features--Continued

Map symbol and soil name	\|Hydro- logic group	Month	Water table		Ponding			Flooding			
			Upper limit	Lower limit	$\begin{array}{\|l\|} \mid \text { Surface } \\ \mid \text { water } \\ \text { depth } \end{array}$	Duration	\| Frequency	Duration	Frequency		
			Ft	Ft	Ft						
127:											
Gaib---------------	D		\|								
		\| Jan-Dec	---	---	---	---	None	---	None		
			\|								
Ateron--------------	D										
		\| Jan-Dec	-	-	---	---	None	---	None		
	128:										
Gaib-	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Rock outcrop-	D										
		\| Jan-Dec	---	---	---	---	None	---	None		
	129:										
Gilispie-----------	D										
		\|Jan-Dec	-	---	---	---	None	---	None		
			\|								
Noname-	D		\|								
		\| Jan-Dec	---	--	---	---	None	---	None		
130:											
Gochea	B										
		\|Jan-Dec	-	---	-	---	None	---	None		
131:											
Goldrun-------------	A										
		\| Jan-Dec	---	---	---	---	None	---	None		
Alvodest-----------	D										
		\| January	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\| February	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\mid March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	--	None
		\|April	\|2.5-3.5		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\| December	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
132:											
Gradon-------------	-										
		\| Jan-Dec	---	-	---	---	None	---	None		
133:											
Guano---------------	D										
		\|Jan-Dec	---	-	---	---	None	---	None		
134:											
Gumble--------------	D										
		\| Jan-Dec	---	---	---	---	None	---	None		
135: \|											
Gumble-	D										
		\| Jan-Dec	---	---	---	---	None	---	None		
136:											
Gumble-	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Mahoon-	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Cagle-	C		1								
		\| Jan-Dec	---	---	---	---	None	---	None		
137 :											
Hackwood------------	B										
		\|Jan-Dec	---	---	--- \|	---	None	---	None		

Table 17.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding			
	\|Hydro	logic	group		$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	\mid Surface \mid water $\left\|\begin{array}{l}\text { depth }\end{array}\right\|$	Duration	\|Frequency	Duration	Frequency
			Ft	Ft	Ft						
138:											
Hackwood------------	B										
		\|Jan-Dec	---	---	---	---	None	---	None		
Baconcamp----------	C										
		\|Jan-Dec	---	---	---	---	None	---	None		
139 :											
Hapgood------------	B										
		\|Jan-Dec	\| ---	---	---	---	None	---	None		
140:											
Hart Camp	D										
		\|Jan-Dec	\| ---	---	---	---	None	---	None		
141:											
Hart Camp	D										
		\|Jan-Dec	\| ---	---	---	---	None	---	None		
142:											
Helphenstein--------		\|January	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\| February	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|April	\|3.5-4.5		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|December	$\|0.0-1.0\|$	>6.0	\|0.0-0.5		Long	Frequent	---	None	
Goldrun------------	A										
		\|Jan-Dec	--- \|	---	--	-	None	--	None		
143:											
Homefield----------	D										
		\| January	\|2.5-3.5		>6.0	---	---	None	---	None	
		\|February	\|1.5-2.5		>6.0	---	---	None	-	None	
		\mid March	$\|0.0-1.0\|$	>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|April	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None
		\|May	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None
		\|June	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None
		\|July	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None
		\|August	\|1.5-2.5		>6.0	---	---	None	---	None	
		\| September	\|2.5-3.5		>6.0	---	---	None	---	None	
		\| October	\|2.5-3.5		>6.0	---	---	None	---	None	
		\| November	\|2.5-3.5		>6.0	---	---	None	-	None	
		December	\|2.5-3.5		>6.0	---	---	None	-	None	
144 :											
Housefield---------	D										
		\| January	\|0.0-1.0		>6.0	---	---	None	---	None	
		\| February	\|0.0-1.0		>6.0	---	---	None	---	None	
		\|March	\|0.0-1.0		>6.0	\|0.0-3.0		Long	Frequent	--	None
		\|April	\|0.0-1.0		>6.0	\|0.0-3.0		Long	Frequent	-	None
		\|May	\|0.0-1.0		>6.0	\|0.0-3.0		Long	Frequent	---	None
		\|June	\|0.0-1.0		>6.0	\|0.0-3.0		Long	Frequent	---	None
		\|July	\|0.5-1.5		>6.0	--- \|	---	None	---	None	
		\|August	\|2.5-3.5		>6.0	---	---	None	--	None	
		\| September	\|2.5-3.5		>6.0	---	---	None	---	None	
		\| October	\|1.5-2.5		>6.0	---	---	None	---	None	
		\| November	\|1.5-2.5		>6.0	---	---	None	---	None	
		\| December	\|0.0-1.0		>6.0	---	---	None	---	None	

Table 17.--Water Features--Continued

Map symbol and soil name	Hydro- logic group	Month	Water table		Ponding			Flooding				
			Upper limit	Lower limit	\mid Surface \mid water depth$\|$	Duration	Frequency	Duration	Frequency			
			$F t$	$F t$	$F t$							
145:Housefield---------------- ${ }^{\text {\| }}$ D												
		January	2.5-3.5	>6.0	---	---	None	---	None			
		\| February	\|1.5-2.5		>6.0	---	---	None	---	None		
		\| March	0.0-1.0\|	>6.0	0.0-3.0\|	Long	Frequent	---	None			
		April	\|0.0-1.0		>6.0	0.0-3.0\|	Long	Frequent	---	None		
		\|May	0.0-1.0\|	>6.0	0.0-3.0\|	Long	Frequent	---	None			
		\|June	0.0-1.0\|	>6.0	0.0-3.0\|	Long	Frequent	---	None			
		\| July	0.0-1.0	>6.0	0.0-3.0\|	Long	Frequent	---	None			
		\|August	1.5-2.5	>6.0	-	---	None	---	None			
		\| September	2.5-3.5\|	>6.0	---	---	None	---	None			
		\| October	\|2.5-3.5		>6.0	-	---	None	---	None		
		\| November	\|2.5-3.5		>6.0	-	---	None	---	None		
		\| December	\|2.5-3.5		>6.0	-	---	None	---	None		
Doubleo------------	D											
		\| March	\|0.0-2.5		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|April	$\|0.0-2.5\|$	>6.0	\|0.0-1.0		Long	Frequent	---	None		
		\|May	$\|0.0-2.5\|$	>6.0	\|0.0-1.0		Long	Frequent	---	None		
		\|June	\|0.0-2.5		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		July	\|0.0-2.5		>6.0	\|0.0-1.0		Long	Frequent	---	None	
146:												
Icene---------------	C											
		February	\|2.5-3.5		>6.0	\|0.0-0.5		Brief	\|Occasional		---	None
		\| March	\|2.5-3.5		>6.0	\|0.0-0.5		Brief	\|Occasional		---	None
		\| April	\|4.0-5.0		>6.0	\|0.0-0.5		Brief	\|Occasional		---	None
Playas------------	-											
		\| January	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\| February	$\|0.0-1.0\|$	>6.0	\|0.0-1.0		Long	Frequent	---	None		
		\| March	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|April	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|May	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|June	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|July	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|August	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		September	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		October	\|1.0-6.0		>6.0	--- \|	---	None	---	None		
		\| November	\|1.0-6.0		>6.0	---	-	None	---	None		
		December	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
147:												
Icene---------------	C											
		\| February	\|2.5-3.5		>6.0	\|0.0-0.5		---	Rare	---	None	
		\|March	\|2.5-3.5		>6.0	\|0.0-0.5		---	Rare	---	None	
		\|April	\|4.0-5.0		>6.0	\|0.0-0.5		---	Rare	---	None	
Playas-------------	D											
		\| January	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\| February	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\| March	$\|0.0-1.0\|$	>6.0	\|0.0-1.0		Long	Frequent	---	None		
		\|April	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|May	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|June	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|July	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	-	None	
		\|August	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\| September	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|October	\|1.0-6.0		>6.0	---	---	None	---	None		
		\| November	$\|1.0-6.0\|$	>6.0	---	---	None	---	None			
		\| December	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
148:												
Jesse Camp	B											
		\|Jan-Dec	---	---	---	---	None	---	None			

Table 17.--Water Features--Continued

Table 17.--Water Features--Continued

Table 17.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding		
	\|Hydro-			Upper	Lower	Surface\|	Duration	\| Frequency	Duration	Frequency
	\|logic	group		limit	limit	water depth				
			$F t$	$F t$	$F t$					
164:										
Lambring	B									
		\| Jan-Dec	---	---	---	---	None	---	None	
Rubble land---------	A									
		\| Jan-Dec	---	---	---	---	None	---	None	
165:										
Langslet-----------	D									
		\| January	$\|4.0-5.0\|$	>6.0	--	---	None	---	None	
		\| February	\|2.0-3.0		>6.0	---	---	None	---	None
		\| March	\|2.0-3.0		>6.0	---	---	None	--	None
		\|April	$\|3.0-4.0\|$	>6.0	--	--	None	---	None	
		\| December	$\|4.0-5.0\|$	>6.0	---	---	None	---	None	
166:										
Lava flows---------	D									
		\|Jan-Dec	---	---	---	---	None	---	None	
167:										
Lava flows---------	D									
		\|Jan-Dec	---	---	---	---	None	---	None	
Flank--	D									
		\|Jan-Dec	---	---	---	---	None	---	None	
168:										
Lawen----------------	B									
	\|	\|Jan-Dec	---	---	---	---	None	---	None	
169:										
Leathers------------	B									
		\|Jan-Dec	--	---	---	---	None	---	None	
170:										
Leathers------------	B									
		\|Jan-Dec	---	---	---	---	None	---	None	
171:										
Leemorris----------	C									
		\|Jan-Dec	---	---	---	---	None	---	None	
Buckwilder---------	-									
		\|Jan-Dec	---	---	---	---	None	---	None	
172:										
Leemorris----------	C									
		\|Jan-Dec	---	---	---	---	None	---	None	
Buckwilder---------	D									
		\|Jan-Dec	---	---	---	---	None	---	None	
173:										
Legler-	B									
		\| March	---	---	---	---	None	---	Rare	
		\|April	---	---	---	---	None	---	Rare	
		\|May	---	---	---	---	None	---	Rare	
		\|June	---	---	---	---	None	---	Rare	
174:										
Locane------------	D									
		\|Jan-Dec	---	---	---	---	None	---	None	

Table 17.--Water Features--Continued

Map symbol and soil name	\|Hydrologic group	Month	Water table		Ponding			Flooding												
			$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	\mid Surface \mid water depth	Duration	\|Frequency	Duration	Frequency											
			Ft	Ft	Ft															
175:																				
Lolak-------------	D																			
		\| February	\|4.5-5.5		---		---	None	---	None										
		March	$\|0.0-1.0\|$	>6.0	\|0.0-1.0		Long	Frequent	---	None										
		\| April	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None									
		\| May	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None									
		\|June	\|3.0-4.0		>6.0	---	---	None	---	None										
176:																				
Lolak-------------	D																			
		\| February	\|4.5-5.5		---	---	---	None	---	None										
		\mid March	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None									
		\| April	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None									
		\| May	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None									
		\|June	\|3.0-4.0		>6.0	---	---	None	---	None										
	D																			
Ausmus-------------		March	\|2.5-4.0		>6.0	\|0.0-0.5		Long	Frequent	---	None									
		\| April	\|3.0-4.0		>6.0	$\|0.0-0.5\|$	Long	Frequent	---	None										
		\| May	\|4.0-5.0		>6.0	\|0.0-0.5		Long	Frequent	---	None									
177:																				
Lonely-------------	C																			
		\|Jan-Dec	---	---	---	--	None	---	None											
Doyn---------------	D																			
		\|Jan-Dec	---	---	---	---	None	--	None											
178:																				
Lonely-------------	C																			
		\|Jan-Dec	--- \|	---	---	---	None	---	None											
Robson--------------	D																			
		\|Jan-Dec	---	---	---	---	None	---	None											
179:																				
Longcreek----------	D																			
		\|Jan-Dec	---	---	---	--	None	---	None											
Cleavage-----------	D																			
		\|Jan-Dec	---	---	---	---	None	---	None											
	180:																			
Longcreek----------	D																			
		\|Jan-Dec	---	---	---	---	None	---	None											
	D																			
Rock outcrop-------		\|Jan-Dec	-	---	---	-	None	---	None											
	181:																			
Loupence-----------	-																			
		\| February	\|3.5-5.0		>6.0	---	---	None	---	None										
		\mid March	\|3.5-5.0		>6.0	-	---	None	Brief	Occasional										
		\| April	\|3.5-5.0		>6.0	---	---	None	Brief	Occasional										
		\|May	\|3.5-5.0		>6.0	---	---	None	Brief	Occasional										
		\|June	\|3.5-5.0		>6.0	---	---	None	---	None										
182:																				
Madeline-----------	D																			
		\|Jan-Dec	---	---	---	---	None	---	None											
183: \|																				
Madeline-----------		\|Jan-Dec	---	---	---	---	None	---	None											

Table 17.--Water Features--Continued

Map symbol and soil name	\|Hydro	logic group	Month	Water table		Ponding			Flooding		
			$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	\mid Surface \mid \mid water \mid \mid depth $\|$	Duration	\|Frequency	Duration	Frequency		
			Ft	Ft	Ft						
184:											
Madeline-----------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Ninemile------------	D										
		\|Jan-Dec	---	---	--- \|	---	None	---	None		
185:											
Madeline------------	D										
		\|Jan-Dec	---	---	--- \|	---	None	---	None		
Rock outcrop-------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
186:											
Mahoon	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
187:											
Mahoon-------------	D										
		Jan-Dec	---	---	---	---	None	---	None		
Brezniak------------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Longcreek-----------	D										
		Jan-Dec	---	---	---	---	None	---	None		
188:											
Mahoon-------------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Cagle--------------	C										
		\|Jan-Dec	---	---	---	---	None	---	None		
189:											
Mahoon-------------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Risley-------------	D										
		\|Jan-Dec	---	---	--	---	None	---	None		
190:											
Mahoon--------------	D										
		\|Jan-Dec	---	---	--- \|	---	None	---	None		
Cotant-------------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
191:											
Mcbain-------------	B										
		\|April	\|2.5-5.0		>6.0	-	-	None	--	None	
		\|May	\|2.5-5.0		>6.0	---	---	None	---	None	
	D										
Ausmus-------------		\|March	\|2.5-4.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|April	\|3.0-4.0		>6.0	\|0.0-0.5		Long	Frequent	-	None
		\|May	\|4.0-5.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
192:											
McConnel------------	A										
		\|Jan-Dec	---	---	---	---	None	---	None		

Table 17.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding			
	\|Hydro-			Upper	Lower	\|Surface		Duration	\| Frequency	Duration	Frequency
	$\text { \|logic } \mid$		limit	limit	water depth						
			Ft	Ft	$F t$						
193:											
Merlin-------------	D										
		\|Jan-Dec	-	-	---	---	None	---	None		
194:											
Merlin, very stony--	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Merlin, very cobbly-	D										
		\| Jan-Dec	---	---	---	---	None	---	None		
195:											
Merlin	D										
	1 \|	\|Jan-Dec	---	---	---	---	None	---	None		
Ateron-------------	D										
		\|Jan-Dec	---	--	---	---	None	---	None		
196:											
Merlin-------------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Ateron-------------	D										
		\| Jan-Dec	---	---	---	---	None	---	None		
Rubble land---------	A										
		\| Jan-Dec	---	---	---	---	None	---	None		
197 :											
Merlin--------------	D										
		\| Jan-Dec	---	---	---	---	None	---	None		
Ateron-------------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Ticino-------------	-										
	1	\|Jan-Dec	---	---	---	---	None	---	None		
198 :											
Merlin-	D										
		\| Jan-Dec	---	---	---	---	None	---	None		
Erakatak-----------	-										
		\| Jan-Dec	---	---	---	---	None	---	None		
Teguro-------------	- D										
		\| Jan-Dec	---	---	---	---	None	---	None		
199 :											
Merlin--------------	D										
		\| Jan-Dec	---	---	---	---	None	---	None		
Observation---------	-										
		\| Jan-Dec	---	---	---	---	None	---	None		
200:											
Merlin	D										
		\| Jan-Dec	---	---	---	---	None	---	None		
Observation-	C										
		\| Jan-Dec	---	---	--- \|	---	None	---	None		

Table 17.--Water Features--Continued

Table 17.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding			
	\|Hydro-		Upper	Lower	\|Surface	Duration	\| Frequency	Duration	Frequency		
	\|logic		limit	limit	water						
	\|group				depth						
			$F t$	$F t$	Ft						
248:											
Outerkirk----------	B										
		Jan-Dec	---	---	---	---	None	---	None		
249:											
Outerkirk----------	B		-								
		\|Jan-Dec	\| ---	---	---	---	None	---	None		
			\|								
250:											
Outerkirk-----------	B										
		Jan-Dec	\| ---	---	---	---	None	---	None		
			,								
Defenbaugh---------	B		\|								
		Jan-Dec	---	---	---	---	None	---	None		
			\|								
251:											
Ozamis-------------	D										
		\| March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	Frequent	--	None
		\|April	$\|0.0-1.0\|$	>6.0	$\|0.0-0.5\|$	Long	Frequent	---	None		
		\| May	$\|0.0-1.0\|$	>6.0	$\|0.0-0.5\|$	Long	Frequent	---	None		
		\|June	\|1.5-2.5		>6.0	---	---	None	---	None	
252:											
Pearlwise-----------	B										
		Jan-Dec	---	---	---	---	None	---	None		
			1								
253:											
Pernty-------------	D		1								
		Jan-Dec	---	---	---	---	None	---	None		
			1								
254:											
Pernty-------------	D		\|								
		\|Jan-Dec	---	---	---	---	None	---	None		
			\|								
255:											
Pernty-------------	D		1								
		- Jan-Dec	---	---	---	---	None	---	None		
		Jan-Dec	\cdots								
256:											
Pernty-------------	D		\|		1						
		\|Jan-Dec	\| ---	---	---	---	\| None	---	None		
			\|				\|				
Rock outcrop-------	D		\|				\|				
		Jan-Dec	\| ---	---	---	---	\| None	---	None		
			\|		-						
257:											
Pernty-------------	D		\|				\|				
		Jan-Dec	---	---	---	---	None	---	None		
			\|								
Westbutte-----------	B		\|				\|				
		Jan-Dec	\| ---	---	---	---	None	---	None		
			\|		1		\|				
Ninemile-	D		\|		1		,				
		\|Jan-Dec	\| ---		---	--- \|	---	None	---	None	
		Jan-Dec	-	--		--	None	---	None		
258:											
Pits	---		\|								
		Jan-Dec	\mid--- \mid	---	--- \|	---	None	---	None		

Table 17.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding				
	$\begin{aligned} & \text { \| Hydro- } \\ & \text { \|logic } \\ & \text { \| group } \end{aligned}$		Upper limit	Lower limit	$\begin{array}{\|l\|} \mid \text { Surface } \mid \\ \mid \text { water } \\ \text { depth } \end{array}$	Duration	\| Frequency	Duration	Frequency			
			Ft	$F t$	$F t$							
		\| January	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\| February	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	--	None	
		\|March	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		April	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		May	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\| June	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	-	None	
		\|July	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
	\|	\|August	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\| September	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|October	\|1.0-6.0		>6.0	---	---	None	---	None		
		\| November	\|1.0-6.0		>6.0		---	None	---	None		
		\| December	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
260 :												
Playas-----------------\| D												
		\| January	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\| February	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|March	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	-	None	
		April	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|May	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|June	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|July	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	--	None	
		\| August	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\| September	\|1.0-6.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|October	\|1.0-6.0		>6.0	--	---	None	---	None		
		\| November	\|1.0-6.0		>6.0	---	---	None	--	None		
		\| December	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
Thenarrows----------	D											
		\| March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	\|Occasional		---	None
		\|April	\|0.0-1.0		>6.0	\|0.0-0.5		Long	\|Occasional		---	None
		\|May	\|0.0-1.0		>6.0	\|0.0-0.5		Long	\|Occasional		---	None
		\| June	\|2.0-3.0		>6.0	,	--	None	---	None		
261:												
Poall--------------	D											
		\| Jan-Dec	---	---	,	-	None	---	None			
262:												
Poall--------------	D											
		\| Jan-Dec	---	--	,	---	None	---	None			
Gumble-------------	D											
		\| Jan-Dec	---	-	---	---	None	---	None			
263:												
Pomerening---------	A											
		\| Jan-Dec	---	---	--- \|	---	None	---	None			
264:												
Pomerening----------	A											
		\| Jan-Dec	---	---	---	---	None	---	None			
Flank--------------	D											
		\| Jan-Dec	---	---	--- \|	---	None	---	None			
Lava flows-	D											
		\|Jan-Dec	--- \|	---	--- \|	---	None	---	None			
		Jan-Dec	---	---	---	---	None	---	None			
265:												
Porterfield---------	D											
		\|Jan-Dec		---		---	None \|	---	None			
					\|							

Table 17.--Water Features--Continued

Map symbol and soil name	\|Hydro	logic group	Month	Water table		Ponding			Flooding		
			$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	\mid Surface \mid water depth $\|$	Duration	\|Frequency	Duration	Frequency		
			Ft	Ft	Ft						
266:											
Porterfield-	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
267:											
Porterfield--------	D										
		\|Jan-Dec	---	---	---	-	None	---	None		
Tincan-------------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Rock outcrop-------	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
268:											
Poujade------------	B										
			\|2.5-4.0		>6.0	---	---	None	--	None	
		\|April	\|2.5-4.0		>6.0	--	---	None	---	None	
		\| May	\|3.5-4.0		>6.0	---	---	None	---	None	
269 :											
Poujade------------	B										
			\|2.5-4.0		>6.0	---	---	None	---	None	
		\| April	\|2.5-4.0		>6.0	---	---	None	---	None	
		\| May	\|3.5-4.0		>6.0	---	---	None	--	None	
270:											
Poujade-------------	B										
			\|2.5-4.0		>6.0	---	---	None	---	None	
		\|April	\| 2.5-4.0		>6.0	---	---	None	---	None	
		\| May	\|3.5-4.0		>6.0	--- \|	-	None	--	None	
Ausmus-------------	D										
		March	\|2.5-4.0		>6.0	\|0.0-0.5		Long	Frequent	---	None
		\| April	\|3.0-4.0		>6.0	$\|0.0-0.5\|$	Long	Frequent	---	None	
		\|May	$\|4.0-5.0\|$	>6.0	\|0.0-0.5		Long	Frequent	---	None	
271:											
Raz	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
272 :											
Raz	D										
		\|Jan-Dec	---	-	---	---	None	---	None		
Brace--------------	C										
		\|Jan-Dec	---	---	---	---	None	---	None		
273:											
Raz	D										
		\|Jan-Dec	---	---	---	---	None	---	None		
Brace---------------	C										
		\|Jan-Dec	---	---	--	---	None	---	None		
	274:										
Reallis------------	B										
		\|Jan-Dec	---	---	---	---	None	---	None		
	275:										
Reallis------------		\|Jan-Dec	---	---	---	---	None	---	None		

Table 17.--Water Features--Continued

Table 17.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding	
	$\begin{aligned} & \text { \|Hydro- } \\ & \text { \|logic } \\ & \text { \|group } \end{aligned}$		Upper limit	Lower limit	Surface water depth	Duration	\|Frequency	Duration	Frequency
			Ft	Ft	Ft				
285:									
Gumble	D								
		\|Jan-Dec	---	---	---	---	None	---	None
Torriorthents------	- D								
		\|Jan-Dec	---	---	---	---	None	---	None
286:									
Risley-------------	D								
		\| Jan-Dec	---	---	---	---	None	---	None
Rock outcrop-------	- D								
		\| Jan-Dec	---	---	---	---	None	---	None
287 :									
Robson	D								
		\|Jan-Dec	---	---	---	---	None	---	None
Anawalt-	D								
		\|Jan-Dec	---	---	---	---	None	---	None
288:									
Robson-------------	D								
		\|Jan-Dec	---	---	---	---	None	---	None
Fourwheel----------	D								
		\|Jan-Dec	-	---	---	---	None	---	None
289 :									
Robson-------------	D								
		\| Jan-Dec	---	---	---	---	None	---	None
Felcher	B								
		\|Jan-Dec	---	---	---	---	None	---	None
290 :									
Roca	D								
		\| Jan-Dec	---	---	---	---	None	---	None
291:									
Rock outcrop	D								
	\|	\|Jan-Dec	---	---	---	---	None	---	None
Rubble land-	A								
		\| Jan-Dec	---	---	---	---	None	---	None
292 :									
Rock outcrop-------	D								
		\| Jan-Dec	---	---	---	---	None	---	None
Baconcamp-	C								
		\|Jan-Dec	---	---	---	---	None	---	None
293 :									
Royst	C								
		\|Jan-Dec	---	---	---	---	None	---	None
Merlin-	D								
		\| Jan-Dec	---	---	---	---	None	---	None
294:									
Rubble land-	A								
		\|Jan-Dec	---	---	--- \|	---	None	---	None

Table 17.--Water Features--Continued

Table 17.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding				
	\|Hydro	logic group		$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	Surface \mid \mid water depth $\|$	Duration	\|Frequency	Duration	Frequency		
			Ft	Ft	Ft							
303:												
Skedaddle, south slopes---\|	D											
		\|Jan-Dec	---	---	---	---	None	---	None			
Skedaddle, north slopes---\|	D											
		\|Jan-Dec	-	---	---	---	None	--	None			
304:												
Skidoosprings------------	D											
		\| March	\|2.5-3.5		>6.0	---	---	None	---	None		
		\|April	\|0.0-1.0		>6.0	\|0.0-0.5		Long	\|Occasional		---	None
		\|May	\|2.0-3.0		>6.0	\| ---		---	None	---		
305:												
Skidoosprings------------	D											
		\| March	\|2.5-3.5		>6.0	---	---	None	---	None		
		\| April	$\|0.0-1.0\|$	>6.0	\|0.0-0.5		---	Rare	---	None		
		\|May	\|2.0-3.0		>6.0	--	---	None	---	None		
306:												
Skunkfarm----------------	D											
		\mid March	\|1.0-2.0		>6.0	---	---	None	---	None		
		\| April	$\|0.0-2.5\|$	>6.0	\|0.0-0.5		Brief	\|Occasional		---	None	
		\| May	\|2.0-2.5		>6.0	--- \|	---	None	---	None		
Cumulic Haploxerolls------	B											
		\|March	\|2.0-4.0		>6.0	\|0.0-0.5		Brief	Frequent	---	None	
		\| April	\|2.0-4.0		>6.0	\|0.0-0.5		Brief	Frequent	---	None	
		\|May	\|4.0-5.0		>6.0	\|0.0-0.5		Brief	Frequent	---	None	
	307:											
Skunkfarm-----------------	D											
		\| March	\|1.0-2.0		>6.0	---	---	None	---	None		
		\|April	\|0.0-2.5		>6.0	\|0.0-0.5		Brief	\|Occasional		---	None
		\|May	\|2.0-2.5		>6.0	---	--	\| None	---	None		
Doubleo------------------	D											
		\|March	\|0.0-2.5		>6.0	\|0.0-1.0		Long	Frequent	--	None	
		\| April	$\|0.0-2.5\|$	>6.0	\|0.0-1.0		Long	Frequent	---	None		
		\| May	$\|0.0-2.5\|$	>6.0	\|0.0-1.0		Long	Frequent	---	None		
		\|June	$\|0.0-2.5\|$	>6.0	\|0.0-1.0		Long	Frequent	--	None		
		\|July	\|0.0-2.5		>6.0	\|0.0-1.0		Long	Frequent	---	None	
	308:											
Skunkfarm---------------- \|	D											
		March	\|1.0-2.0		>6.0	---	---	None	---	None		
		\| April	$\|0.0-2.5\|$	>6.0	\|0.0-0.5		Brief	\|Occasional		---	None	
		\| May	\|2.0-2.5		>6.0	--- \|	---	None	---	None		
Mcbain-------------------- \|	B											
		\| April	\|2.5-5.0		>6.0	---	---	None	---	None		
		\| May	\|2.5-5.0		>6.0	---	---	None	--	None		
Doubleo------------------ \|	D											
		\mid March	\|0.0-2.5		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|April	\|0.0-2.5		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\| May	$\|0.0-2.5\|$	>6.0	\|0.0-1.0		Long	Frequent	--	None		
		\|June	\|0.0-2.5		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\|July	$\|0.0-2.5\|$	>6.0	\|0.0-1.0		Long	Frequent	--	None		
309:												
Skunkfarm---------------- \|	D											
		\mid March	\|1.0-2.0		>6.0	---	---	None	-	None		
		\|April	$\|0.0-2.5\|$	>6.0	\|0.0-0.5		Brief	\|Occasional		---	None	
		\| May	\|2.0-2.5		>6.0	---	---	None \|	---	None		

Table 17.--Water Features--Continued

Map symbol and soil name	Hydrologic group	Month	Water table		Ponding			Flooding				
			$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	\mid Surface \mid water \mid depth$\|$	Duration	\| Frequency	Duration	Frequency			
			$F t$	Ft	$F t$							
309 :												
Skidoosprings------	D											
		\| March	\|2.5-3.5		>6.0	-	---	None	---	None		
		\|April	\| 0.0-1.0		>6.0	\|0.0-0.5		Long	\|Occasional		---	None
		\| May	\|2.0-3.0		>6.0	---	---	None	---	None		
310:												
Spangenburg--------	C											
		\|Jan-Dec	---	---	---	---	None	---	None			
311:												
Spangenburg--------	C											
		\|Jan-Dec	--- \|	\| ---	---	---	None	---	None			
312 :												
Spangenburg--------	c											
		\|Jan-Dec	--- \|	\| ---	---	---	None	---	None			
313:												
Srednic------------	c											
		\|Jan-Dec	--- \|	\| ---	---	---	None	---	None			
	D											
Aval-		\|Jan-Dec	---	-	---	---	None	---	None			
	314:											
Stampede------------	D											
		\|Jan-Dec	---	-	---	---	None	---	None			
315:												
Swaler-------------	D											
		\| March	-	---	\|0.0-0.5		--	Rare	---	None		
		\|April	--- \|	---	$\|0.0-0.5\|$	---	Rare	---	None			
		\|May	---	--	$\|0.0-0.5\|$	---	Rare	--	None			
316:												
Swaler-------------	D											
		March	---	---	\|0.0-0.5		---	Rare	---	None		
		\|April	---	---	$\|0.0-0.5\|$	---	Rare	--	None			
		\| May	---	--- \|0.	$\|0.0-0.5\|$	--	Rare	--	None			
Swalesilver---------	D											
		\| February	\|0.0-0.5		\|0.5-1.0		\| ---		---	None	---	None
		\|March	\|0.0-0.5		$\|0.5-1.0\|$	$\|0.0-1.0\|$	Long	Frequent	---	None		
		\|April	\|0.0-0.5		$\|0.5-1.0\|$	$\|0.0-1.0\|$	Long	Frequent	---	None		
		\| May	\|0.0-0.5		\|0.5-1.0		$\|0.0-1.0\|$	Long	Frequent	--	None	
317:												
Swalesilver--------	D											
		\|February	\|0.0-0.5		\|0.5-1.0			---		---	None	
		\mid March	\|0.0-0.5		$\|0.5-1.0\|$	$\|0.0-1.0\|$	Long	Frequent	---	None		
		\|April	\|0.0-0.5		$\|0.5-1.0\|$	$\|0.0-1.0\|$	Long	Frequent	---	None		
		\|May	\|0.0-0.5		\|0.5-1.0		$\|0.0-1.0\|$	Long	Frequent	---	None	
318:												
Swalesilver---------	D											
		\|February	\|0.0-0.5		$\|0.5-1.0\|$	---	---	None	---	None		
		\|March	\|0.0-0.5		$\|0.5-1.0\|$	$\|0.0-0.5\|$	---	Rare	---	None		
		\|April	\|0.0-0.5		\|0.5-1.0		$\|0.0-0.5\|$	---	Rare	---	None	
		\| May	$\|0.0-0.5\|$	$\|0.5-1.0\|$	$\|0.0-0.5\|$	---	Rare	---	None			

Table 17.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding				
	\|Hydro-			Upper	Lower	\|Surface		Duration	Frequency	Duration	Frequency	
	logic		limit	limit	water							
	group				depth							
			$F t$	$F t$	Ft							
319:												
Swalesilver--------	D											
		\| February	0.0-0.5	0.5-1.0\|	---	--	None	--	None			
		\mid March	0.0-0.5	0.5-1.0	\|0.0-0.5		---	Rare	---	None		
		\|April	0.0-0.5	0.5-1.0	\|0.0-0.5		---	Rare	--	None		
		\|May	$\|0.0-0.5\|$	0.5-1.0	$\|0.0-0.5\|$	---	Rare	---	None			
320:												
Teguro-------------	D											
		\| Jan-Dec	---	---	---	---	None	---	None			
321:												
Teguro-------------	D											
		\|Jan-Dec	---	---	---	---	None	---	None			
322:												
Teguro-------------	D											
		\|Jan-Dec	---	---	---	---	None	---	None			
323:												
Teguro-------------	- D											
		\|Jan-Dec	---	---	-	-	None	-	None			
Anatone, moist-----	- D											
		\| Jan-Dec	---	---	---	---	None	---	None			
		Jan-Dec	-	-	-	-	None	-	None			
324:												
Teguro--------------	D											
		\| Jan-Dec	---	---	---	---	None	---	None			
Ateron	D											
		\| Jan-Dec	---	---	---	---	None	---	None			
325:												
Thenarrows---------	D											
		\| March	$\|0.0-1.0\|$	>6.0	\|0.0-0.5		Long	\|Occasional		---	None	
		\|April	$\|0.0-1.0\|$	>6.0	\|0.0-0.5		Long	\|Occasional		---	None	
		\|May	\|0.0-1.0		>6.0	\|0.0-0.5		Long	\|Occasional		---	None
		\| June	$\|2.0-3.0\|$	>6.0	---	---	None	---	None			
Duckclub-----------	- C				\|							
		\|March	\|2.0-4.0		>6.0	\|0.0-0.5		---	Rare	---	None	
		\|April	\|2.0-4.0		>6.0	$\|0.0-0.5\|$	---	Rare	---	None		
		\|May	\|2.0-4.0		>6.0	\|0.0-0.5		---	Rare	---	None	
		\| June	\|2.0-4.0		>6.0	\| ---		---	None	---	None	
					\|							
326:												
Thenarrows---------	- D											
		\mid March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	\|Occasional		---	None
		\|April	$\|0.0-1.0\|$	>6.0	\|0.0-0.5		Long	\|Occasional		---	None	
		\|May	$\|0.0-1.0\|$	>6.0	$\|0.0-0.5\|$	Long	\|Occasional		---	None		
		\| June	\|2.0-3.0		>6.0	--- \|	---	None	---	None		
Duckclub-	C											
		\|March	\|2.0-4.0		>6.0	\|0.0-0.5		---	Rare	---	None	
		\|April	\|2.0-4.0		>6.0	\|0.0-0.5		---	Rare	---	None	
		\|May	$\|2.0-4.0\|$	>6.0	\|0.0-0.5		---	Rare	---	None		
		\| June	\|2.0-4.0		>6.0	---	---	None	---	None		
					\|							

Table 17.--Water Features--Continued

Map symbol and soil name	$\begin{aligned} & \text { \|Hydro- \| } \\ & \text { \|logic } \\ & \text { \| group } \end{aligned}$	Month	Water table		Ponding			Flooding				
			$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	\mid Surface \mid water depth$\|$	Duration	\|Frequency	Duration	Frequency			
			Ft	Ft	Ft							
326:Dentdraw----------------- ${ }^{\text {a }}$ D												
		\| February	\|1.0-3.0		>6.0	---	---	None	---	None		
		\| March	\|0.0-1.0		>6.0	$\|0.0-1.0\|$	Long	Frequent	---	None		
		\| April	\|0.0-1.0		>6.0	\|0.0-1.0		Long	Frequent	---	None	
		\| May	\|0.0-1.0		>6.0	$\|0.0-1.0\|$	Long	Frequent	---	None		
		\|June	\|1.0-2.0		>6.0	---	---	None	---	None		
		\|July	\|1.0-2.0		>6.0	---	---	None	---	None		
		\|August	$\|1.0-3.0\|$	>6.0	---	--	None	---	None			
327 :												
Thenarrows----------	D											
		\| March	\|0.0-1.0		>6.0	\|0.0-0.5		Long	\|Occasional		---	None
		\| April	\|0.0-1.0		>6.0	$\|0.0-0.5\|$	Long	\|Occasional		---	None	
		\|May	\|0.0-1.0		>6.0	$\|0.0-0.5\|$	Long	\|Occasional		---	None	
		\| June	\|2.0-3.0		>6.0	\| ---		---	None	---	None	
Duckclub-----------	C											
		\| March	\|2.0-4.0		>6.0	\|0.0-0.5		--	Rare	---	None	
		\|April	\|2.0-4.0		>6.0	$\|0.0-0.5\|$	--	Rare	---	None		
		\|May	\|2.0-4.0		>6.0	$\|0.0-0.5\|$	---	Rare	---	None		
		\| June	\|2.0-4.0		>6.0	--- \|	---	None	---	None		
Sandgap------------	A	\|Jan-Dec	---	---	---	---	None	---	None			
328:												
Ticino-------------	C											
		\|Jan-Dec	---	---	---	-	None	---	None			
Merlin-------------	D											
		\|Jan-Dec	---	---	--	---	None	---	None			
329:												
Ticino-------------	c											
		\|Jan-Dec	---	--	--- \|	---	None	---	None			
Observation---------	C											
		\|Jan-Dec	-	---	---	---	None	---	None			
330:												
Ticino-------------	c											
		\|Jan-Dec	---	---	-	---	None	---	None			
Rock outcrop-------	D											
		\|Jan-Dec	---	---	-	--	None	---	None			
331 :												
Toll---------------	A											
		\|Jan-Dec	---	---	---	---	None	---	None			
332 :												
Toll---------------	A											
		\|Jan-Dec	---	-	---	---	None	---	None			
Nevador------------	B											
		\|Jan-Dec	---	---	---	---	None \|	---	None			
333 :												
Torriorthents-------	D											
		\|Jan-Dec	---	---	---	---	None \|	---	None			
	D											
Gumble-------------		\|Jan-Dec	---	---	---	---	None \|	---	None			

Table 17.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding												
	\|Hydro	logic	group		$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	\mid Surface \mid water \mid depth$\|$	Duration	\|Frequency	Duration	Frequency									
			Ft	Ft	$F t$															
334:																				
Tumtum--	D																			
		\|Jan-Dec	---	---	---	---	None	---	None											
335:																				
Tumtum---	D																			
		Jan-Dec	---	-	---	---	None	---	None											
336:																				
Turpin-------------	C																			
		\| February	\|4.0-6.0		>6.0	\|0.0-0.5		Brief	\|Occasional		---									
		\|March	\|4.0-6.0		>6.0	$\|0.0-0.5\|$	Brief	\|Occasional	---	None										
		\| April	$\|4.0-6.0\|$	>6.0	\|0.0-0.5		Brief	\|Occasional		--	None									
337:																				
Vanwyper------------	D																			
		\|Jan-Dec	---	---	---	---	None	---	None											
Rock outcrop-------	D																			
		\|Jan-Dec	---	---	---	---	None	---	None											
338:																				
Vergas-------------	C																			
		\|Jan-Dec	---	---	---	---	None	---	None											
339 :																				
Vil----------------	D																			
		\|Jan-Dec	---	---	---	---	None	---	None											
	340:																			
Vining--------------	C																			
		Jan-Dec	---	---	---	---	None	---	None											
341:																				
Vining-------------	C																			
		\|Jan-Dec	---	---	---	---	None	---	None											
Tuffo--------------	D	\|Jan-Dec	---	-	--	---	None	---	None											
342 :																				
Vitale-------------	C																			
		\|Jan-Dec	---	---	---	---	None	---	None											
343:																				
Vitale-------------	C																			
		\|Jan-Dec	---	---	---	---	None	---	None											
Merlin-------------	D																			
		\|Jan-Dec	---	---	---	---	None	---	None											
	344:																			
Vitale-------------	c																			
		Jan-Dec	---	---	---	---	None	---	None											
	D																			
Merlin-------------		\|Jan-Dec	---	---	---	---	None	---	None											
Doyn---------------	D																			
		\|Jan-Dec	---	---	---	---	None	---	None											
345:																				
Vitale-------------		\|Jan-Dec	---	---	---	---	None	---	None											

Table 17.--Water Features--Continued

Map symbol and soil name		Month	Water table		Ponding			Flooding		
	$\begin{aligned} & \mid \text { Hydro- } \\ & \mid \text { logic } \\ & \mid \text { group } \end{aligned}$		$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower limit	$\begin{array}{\|l\|} \mid \text { Surface } \\ \mid \text { water } \\ \mid \text { depth } \end{array}$	Duration	\| Frequency	Duration	Frequency	
			$F t$	Ft	$F t$					
345 :										
Observation---------	C									
		\|Jan-Dec	---	--	---	---	None	---	None	
346:										
Vitale-------------	C									
		\|Jan-Dec	---	---	---	---	None	---	None	
Rock outcrop--------	D									
		\| Jan-Dec	---	-	-	---	None	---	None	
347:										
Voltage-------------	B									
		\| Jan-Dec	---	---	-	---	None	---	None	
348:										
Voltage------------	B									
		\| Jan-Dec	---	-	---	---	None	---	None	
Crowcamp------------	D									
		\| March	2.5-3.5\|	>6.0	\|0.0-0.5		Long	Frequent	---	None
		\|April	2.5-3.5\|	>6.0	\|0.0-0.5		Long	Frequent	-	None
		\| May	\|5.0-5.5		>6.0	---	---	None	---	None
349:										
Voltage------------	B									
		\|Jan-Dec	---	---	-	---	None	---	None	
Crowcamp------------	D									
		\| March	2.5-3.5\|	>6.0	\|0.0-0.5		-	Rare	--	None
		\|April	2.5-3.5\|	>6.0	\|0.0-0.5		---	Rare	---	None
		\|May	\|5.0-5.5		>6.0	---	---	None	--	None
350 :										
Voltage-------------	B									
		\| Jan-Dec	---	-	---	---	None	---	None	
Widowspring---------	B									
		\| January	3.0-5.0\|	>6.0	---	---	None	---	None	
		\| February	3.0-5.0\|	>6.0	--- \|	---	None	---	None	
		\|March	3.0-5.0\|	>6.0	\|0.0-0.5		---	Rare	---	None
		\|April	3.0-5.0\|	>6.0	$\|0.0-0.5\|$	---	Rare	---	None	
		\|May	3.0-5.0\|	>6.0	\|0.0-0.5		---	Rare	---	None
		\|June	3.0-5.0\|	>6.0	---	---	None	---	None	
		\|July	3.0-5.0\|	>6.0	---	---	None	---	None	
		\| November	3.0-5.0\|	>6.0	---	---	None	---	None	
		\| December	3.0-5.0\|	>6.0	---	---	None	---	None	
351:										
Wagontire----------	D									
		\| Jan-Dec	---	---	---	---	None	---	None	
352:										
Wagontire----------	D									
		\| Jan-Dec	--- \|	---	---	---	None	---	None	
Vil----------------	D									
		\| Jan-Dec	---	---	---	---	None	---	None	
353 :										
Waspo-	D									
		\| Jan-Dec	--- \|	---	---	---	None	---	None	
Poall-	D									
		\|Jan-Dec	--- \|	---	--- \|	---	None	---	None	

Table 17.--Water Features--Continued

Table 17.--Water Features--Continued

Table 17.--Water Features--Continued

Map symbol and soil name	\| Hydro-\|logic\|group	Month	Water table		Ponding			Flooding			
			$\begin{aligned} & \text { Upper } \\ & \text { limit } \end{aligned}$	Lower	\|Surface \mid water \mid depth $\|$	Duration	\|Frequency	Duration	Frequency		
			Ft	Ft	Ft						
367 :											
Westbutte-----------	B										
		Jan-Dec	---	---	---	---	None	---	None		
Lambring------------	B										
		Jan-Dec	---	---	---	---	None	---	None		
Rock outcrop-------	D										
		Jan-Dec	---	---	---	---	None	---	None		
368:											
Westbutte----------	B										
		Jan-Dec	---	---	---	---	None	---	None		
Observation---------	C										
		Jan-Dec	---	---	---	---	None	---	None		
369 :											
Westbutte----------	B										
		\|Jan-Dec	---	---	---	---	None	---	None		
Rock outcrop-------	D										
		Jan-Dec	---	-	---	---	None	---	None		
Pernty-------------	D										
		Jan-Dec	---	---	---	---	None	---	None		
370 :											
Widowspring--------	B										
		\| January	\|3.0-5.0		>6.0	---	---	None	---	None	
		\| February	\|3.0-5.0		>6.0	---	--	None	---	None	
		March	\|3.0-5.0		>6.0	\|0.0-0.5		--	Rare	---	None
		April	$\|3.0-5.0\|$	>6.0	$\|0.0-0.5\|$	--	Rare	---	None		
		May	\|3.0-5.0		>6.0	$\|0.0-0.5\|$	---	Rare	---	None	
		\|June	\|3.0-5.0		>6.0	---	---	None	---	None	
		\|July	\|3.0-5.0		>6.0	---	---	None	---	None	
		\| November	$\|3.0-5.0\|$	>6.0	---	--	None	---	None		
		December	\|3.0-5.0		>6.0	---	---	None	---	None	
371:											
Windybutte---------	B										
		Jan-Dec	---	-	---	---	None	---	None		
372:											
Wolverine----------	A										
		Jan-Dec	---	---	---	---	None	---	None		
373:											
Denied access------	---										
		Jan-Dec	---	---	---	---	---	---	---		

(See text for definitions of terms used in this table. Absence of an entry indicates that the feature is not a concern)

Table 18.--Soil Features--Continued

Map symbol and soil name	Restrictive layer				Subsidence		Potential for	Risk of corrosion		
		Depth						Uncoated		
	Kind	\|to top	Thickness	Hardness	\|Initial		Total	frost action	steel	Concrete
		In	In		In	In				
13:										
Westbutte-	Bedrock (lithic)	20-40	-	Indurated	0	---	\| Moderate	Moderate	Low	
Rock outcrop-	Bedrock (lithic)	0-0	---	Indurated	0	-	---	---	---	
14:										
Anawalt	Bedrock (lithic)	12-20	---	Indurated	0	---	\|Moderate	\|High	\| Low	
$15:$										
Anawalt-	Bedrock (lithic)	12-20	---	Indurated	0	---	\|Moderate	\| High	\| Low	
Lonely-	Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	\|Moderate	\| Low	
16:										
Anawalt-	Bedrock (lithic)	12-20	---	Indurated	0	---	\| Moderate	\| High	Low	
Oreneva-	Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	\| High	\| Low	
17:										
Anawalt-	Bedrock (lithic)	12-20	---	\| Indurated	0	--	\|Moderate	\|High	\| Low	
Raz--------------	Duripan	10-18	3-18	Indurated	0	---	\|Moderate	\|High	\| Low	
	Bedrock (lithic)	$20-40$	---	Indurated						
18:										
Ateron-	Bedrock (lithic)	10-20	---	Indurated	0	---	\|Moderate	Moderate	\| Low	
$19:$										
Ateron--	Bedrock (lithic)	10-20	-	Indurated	0	---	\| Moderate	Moderate	Low	
Rubble land--	---	---	--	---	0	-	--	---	---	
$20:$										
Ateron	Bedrock (lithic)	10-20	---	Indurated	0	---	\|Moderate	Moderate	\| Low	
Observation-	Bedrock (lithic)	20-40	---	Indurated	0	---	\|Moderate	Moderate	\| Low	
21:										
Atlow--	Bedrock (lithic)	10-20	---	Indurated	0	---	\|Moderate	Moderate	\| Low	
22:										
Atlow-	Bedrock (lithic)	10-20	-	Indurated	0	---	\|Moderate	Moderate	\| Low	
Rock outcrop-	Bedrock (lithic)	0-0	---	Indurated	0	---	---	---	---	
$23:$										
Atlow	Bedrock (lithic)	10-20	---	Indurated	0	---	\|Moderate	Moderate	\| Low	
Rock outcrop-	\|Bedrock (lithic)	0-0	---	Indurated	0	---	---	---	---	
$24:$										
Atlow	\|Bedrock (lithic)	10-20	---	Indurated	0	---	\|Moderate	Moderate	\| Low	
Skedaddle-	\|Bedrock (lithic)	7-12	---	Indurated	0	---	\| Moderate	Moderate	\| Low	
25:										
Ausmus----------	--	---	--	---	0	---	\| Moderate	\| High	\| High	
$26:$										
Ausmus-----------	---	---	---	---	0	---	\| Moderate	\| High	\| High	
27:										
Baconcamp------	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\| Moderate	Moderate	\| Low	
28:										
Baconcamp-------	\|Bedrock (lithic)	20-40	---	Indurated	0 -	---	\|Moderate	Moderate	\| Low	

Table 18.--Soil Features--Continued

Map symbol and soil name	Restrictive layer				Subsidence		Potential for	Risk of corrosion	
	Kind	$\begin{aligned} & \text { \| Depth } \\ & \text { \| to top } \end{aligned}$	\|Thickness	Hardness	\|Initial	Total		Uncoated steel	Concrete
							frost action		
		In	In		In	In			
28:									
Clamp-	\|Bedrock (lithic)	4-14	---	Indurated	0	--	Moderate	Moderate	Low
29:									
Baconcamp	\|Bedrock (lithic)	20-40	---	Indurated	0	--	\|Moderate	Moderate	\| Low
Clamp-	\|Bedrock (lithic)	4-14	---	Indurated	0	---	\|Moderate	Moderate	Low
$30:$									
Baconcamp-	\|Bedrock (lithic)	20-40	---	Indurated	0	--	\|Moderate	Moderate	\| Low
Clamp-	\|Bedrock (lithic)	4-14	--	Indurated	0	---	\|Moderate	Moderate	\|Low
Rock outcrop-	\|Bedrock (lithic)	0-0	---	Indurated	0	--	--	---	---
31:									
Baconcamp	\|Bedrock (lithic)	20-40	---	Indurated	0	--	\|Moderate	Moderate	\| Low
Rock outcrop-	\|Bedrock (lithic)	0-0	--	Indurated	0	---	--	---	---
32 :									
Baconcamp-	\|Bedrock (lithic)	20-40	--	Indurated	0	---	\|Moderate	Moderate	Low
Rock outcrop-	\|Bedrock (lithic)	0-0	---	Indurated	0	---	--	---	---
$33:$									
Baconcamp-	\|Bedrock (lithic)	20-40	---	Indurated	0	--	\|Moderate	Moderate	\| Low
Rock outcrop-	\|Bedrock (lithic)	0-0	---	Indurated	0	---	---	---	---
Hackwood--------	--	---	---	---	0	---	\|Moderate	Moderate	\|Low
34 :									
Baconcamp--	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\|Moderate	Moderate	\| Low
Hapgood----	\|Bedrock (lithic)	40-60	---	Indurated	0	---	\|Moderate	Moderate	Low
Rock outcrop---	\|Bedrock (lithic)	0-0	--	Indurated	0	---	-	---	---
35:									
Baconcamp-	\|Bedrock (lithic)	20-40	--	Indurated	0	---	\|Moderate	Moderate	\| Low
Krackle-	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\|Moderate	Moderate	\|Low
Rock outcrop---	\|Bedrock (lithic)	0-0	---	Indurated	0	---	---	---	---
36:									
Berdugo----------	---	---	---	---	0	---	\|Moderate	High	\| Low
37 :									
Berdugo---------	-	-	-	-	0	--	\|Moderate	\|High	\| Low
Catlow---------	---	---	---	---	0	---	\|Low	\|High	\| Low
38:									
Bigfrog-	Duripan	8-18	6-20	Indurated	0	---	\|Moderate	High	\| Low
Brock-	Duripan	8-18	4-12	Indurated	0	---	\|Moderate	\| High	\| Low
39 :									
Bocker-	\|Bedrock (lithic)	4-10	-	Indurated	0	---	\|Moderate	Moderate	\| Low
Westbutte--------	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\|Moderate	Moderate	\|Low
40:									
Boravall---------	-	-	---	--	0	---	\| High	High	\| High

Table 18.--Soil Features--Continued

Table 18.--Soil Features--Continued

Map symbol and soil name	Restrictive layer				Subsidence		Potential for	Risk of corrosion		
		Depth		Hardness	\|Initial		Total		Uncoated steel	Concrete
	Kind	\| to top	\|Thickness				\|frost action			
		In	In		In	In				
53:										
Calderwood-	\|Bedrock (lithic)	12-20	---	Indurated	0	---	\|Low	Moderate	Low	
McConnel--------------- \|	---	---	---	---	0	---	\| Low	High	Low	
54:										
Carryback	\|Bedrock (lithic)	20-40	--	Indurated	0	--	Moderate	Moderate	Low	
$55:$										
Carryback	\|Bedrock (lithic)	20-40	-	Indurated	0	---	\|Moderate	Moderate	Low	
$56:$										
Carryback	\|Bedrock (lithic)	20-40	-	Indurated	0	-	Moderate	Moderate	Low	
57:										
Carryback------------- \|	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\| Moderate	Moderate	Low	
58:										
Carryback, thin surface	\|Bedrock (lithic)	20-40	---	Indurated	0	---	Moderate	Moderate	Low	
Carryback, thick										
surface	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\|Moderate	Moderate	Low	
59:										
Carryback, thin surface	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\|Moderate	Moderate	Low	
Carryback, south slopes	Bedrock (lithic)	20-40	---	Indurated	0	---	Moderate	Moderate	Low	
Carryback, north slopes\|	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\|Moderate	Moderate	Low	
$60:$										
Carryback, south slopes	\|Bedrock (lithic)	20-40	-	Indurated	0	---	\|Moderate	Moderate	Low	
Carryback, north slopes	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\|Moderate	Moderate	Low	
61:										
Carryback------------- \|	\|Bedrock (lithic)	20-40	-	Indurated	0	---	\| Moderate	Moderate	Low	
Pearlwise------------- \|	\|Bedrock (lithic)	20-40	---	Indurated	0	--	\| Moderate	Moderate	Low	
62 :										
Carryback-------------	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\| Moderate	Moderate	Low	
Pearlwise-------------	\|Bedrock (lithic)	20-40	---	Indurated	0	-	\| Moderate	Moderate	Low	
Rock outcrop---------- \|	\|Bedrock (lithic)	0-0	---	Indurated	0	---	---	---	---	
63:										
Carryback------------- \|	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\| Moderate	Moderate	Low	
Dickle---------------- \|	\|Bedrock (lithic)	10-20	---	Indurated	0	---	\|Moderate	Moderate	Low	
$64:$										
Carvix	---	---	---	---	0	---	\| Low	High	Low	
65:										
Clamp-----------------	\|Bedrock (lithic)	4-14	---	Indurated	0	---	\|Moderate	Moderate	Low	
Baconcamp------------- \|	\|Bedrock (lithic)	20-40	-	Indurated	0	---	\| Moderate	Moderate	\| Low	
Hackwood--------------- \|	-	-	-	---	0	---	\| Moderate	Moderate	\| Low	
66:										
Coztur---------------- \|	\|Bedrock (lithic)	14-20	---	Indurated	0	---	\|Moderate	High	\| Low	

Table 18.--Soil Features--Continued

Table 18.--Soil Features--Continued

Map symbol and soil name	Restrictive layer				Subsidence		Potential for	Risk of corrosion			
		Depth						Uncoated			
	Kind	\|to top	\|Thickness		Hardness	\|Initial		Total	frost action	steel	Concrete
		In	In		In	In					
81:											
Doyn-	\|Bedrock (lithic)	4-10	---	\| Indurated	0	---	\|Low	Moderate	\| Low		
Merlin-	\|Bedrock (lithic)	10-20	---	Indurated	0	---	\| Moderate	Moderate	\| Low		
82 :											
Doyn	\|Bedrock (lithic)	4-10	---	Indurated	0	---	\| Low	Moderate	\| Low		
Arcia---	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\|Moderate	Moderate	\| Low		
83:											
Drewsey---	---	---	---	-	0	---	\|Low	\| High	\| Low		
84:											
Drewsey--------	---	---	---	---	0	---	\|Low	\| High	\| Low		
85:											
Drewsey--	---	---	---	---	0	---	\|Low	\| High	\| Low		
Torriorthents-	\| Bedrock	4-14	---	$\begin{aligned} & \mid \text { Moderately } \\ & \text { cemented } \end{aligned}$	0	-	\| Low	---	---		
Gumble--	$\begin{aligned} & \text { \|Bedrock } \\ & \mid \text { (paralithic) } \end{aligned}$	14-20	---	$\begin{aligned} & \mid \text { Moderately } \\ & \mid \text { cemented } \end{aligned}$	0	---	\| Low	\| High	\| Low		
86:											
Droval----	---	---	---	---	0	--	\| High	High	\| High		
87:											
Duff-	\|Bedrock (lithic)	40-60	-	Indurated	0	---	\| Moderate	\| Moderate	\| Low		
88:											
Duff-	\|Bedrock (lithic)	40-60	--	Indurated	0	---	\| Moderate	Moderate	Low		
Clamp-	\|Bedrock (lithic)	4-14	---	Indurated	0	---	\|Moderate	Moderate	\| Low		
89 :											
Duff-	\|Bedrock (lithic)	40-60	---	Indurated	0	---	\|Moderate	Moderate	\| Low		
Clamp--	\|Bedrock (lithic)	4-14	---	Indurated	0	--	\| Moderate	Moderate	\| Low		
90:											
Duff-	\|Bedrock (lithic)	40-60	-	Indurated	0	---	\| Moderate	Moderate	Low		
Hackwood-----	--	\| ---	---	---	0	---	\| Moderate	Moderate	\| Low		
91:											
Edemaps--	\|Duripan	$20-35$	2-8		0	---	\|Moderate	Moderate	\| Low		
	\|Bedrock (lithic)	24-40	---	\| Indurated							
92 :											
Edemaps Carryback			2-8		0	---	\| Moderate	Moderate	\| Low		
	\|Bedrock (lithic)	24-40	---	\| Indurated							
									\|		
	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	Moderate	\| Low		
93 :											
Enko------------	---	---	---	---	0	---	\| Low	\| High	\| Low		
94:											
Enko------------	---	---	---	---	0	---	\|Low	\| High	\| Low		
Catlow------------	---	---	---	---	0	---	\|Low	\| High	\| Low		
95:											
Enko--------------	---	---	---	---	0	---	\|Low	\| High	\| Low		

Table 18.--Soil Features--Continued

Table 18.--Soil Features--Continued

Table 18.--Soil Features--Continued

Map symbol and soil name	Restrictive layer				Subsidence		Potential for	Risk of corrosion	
		Depth						Uncoated	
	Kind	\| to top	\|Thickness	Hardness	Initial	Total	\|frost action	steel	Concrete
		In	In		In	In			
122 :									
Fury-------------	---	---	---	---	0	---	\| High	\| High	\| Low
Housefield-------	---	---	---	---	0	---	\| High	\|Moderate	Low
Skidoosprings	Duripan	40-50	1-12	\| Indurated	0	---	\| High	\mid High	Low
Fury---	---	---	---	---	0	---	\| High	\| High	Low
Opie--------	---	-	---	---	0	---	\| High	\| High	\| High
124:									
Fury------------	---	---	---	---	0	-	\| High	\mid High	Low
Skidoosprings-	Duripan	40-50	1-12	Indurated	0	---	\|High	\| High	Low
Opie------------	---	---	---	---	0	---	\|High	\| High	High
125:									
Fury------	---	---	---	--	0	---	\| High	\mid High	Low
Widowspring-	---	--	---	---	0	-	\|High	\| Moderate	Low
126:									
Gaib	\|Bedrock (lithic)	10-20	---	Indurated	0	---	\| Moderate	\| Moderate	Low
127:									
Gaib-	\|Bedrock (lithic)	10-20	--	Indurated	0	---	\| Moderate	\| Moderate	Low
Ateron-	\|Bedrock (lithic)	10-20	---	Indurated	0	--	\|Moderate	\|Moderate	Low
128:									
Gaib-	\|Bedrock (lithic)	10-20	---	\| Indurated	0	--	\|Moderate	\| Moderate	Low
Rock outcrop-	\|Bedrock (lithic)	0-0	---	Indurated	0	---	---	---	---
$129:$									
Gilispie-	\|Bedrock (lithic)	12-20	---	Indurated	0	---	\|Moderate	\|Moderate	Low
Noname---	\|Bedrock (lithic)	4-14	---	Indurated	0	---	\| Moderate	\| Moderate	Low
	\|Bedrock (lithic)								
130:									
Gochea--	---	---	-	---	0	---	\|Moderate	\| High	Low
131:									
Goldrun---	---	-	-	---	0	---	\| Low	\mid High	Low
Alvodest-	---	---	---	---	0	---	\|High	\|High	High
132:									
Gradon-	\|Duripan	20-40	6-20	Indurated	0	---	\|Moderate	\| Moderate	\| Low
133:									
Guano----	$\begin{aligned} & \text { \|Bedrock } \\ & \mid \quad \text { (paralithic) } \end{aligned}$	10-20	---	Moderately cemented	0	---	\|Moderate	\mid High	\| Low
134:									
Gumble	$\begin{aligned} & \mid \text { Bedrock } \\ & \mid \quad \text { (paralithic) } \end{aligned}$	14-20	---	Moderately cemented	0	---	\| Low	\| High	Low
		\|							
$135 \text { : }$									
Gumble	$\begin{aligned} & \mid \text { Bedrock } \\ & \mid \quad \text { (paralithic) } \end{aligned}$	14-20	---	Moderately cemented	0	---	\| Low	\| High	Low

Table 18.--Soil Features--Continued

Map symbol and soil name	Restrictive layer				Subsidence		Potential for	Risk of corrosion			
		Depth						Uncoated			
	Kind	\|to top	\|Thickness		Hardness	\|Initial	Total	\|frost action		steel	Concrete
		In	In		In	In					
136:											
Gumble-	$\begin{aligned} & \text { \|Bedrock } \\ & \mid \text { (paralithic) } \end{aligned}$	14-20	---	\|Moderately cemented	0	---	Low	High	Low		
Mahoon----------	$\begin{aligned} & \text { \|Bedrock } \\ & \mid \text { (paralithic) } \end{aligned}$	20-40	---	\|Moderately cemented	0	---	\| Low	High	\| Low		
Cagle--	$\begin{aligned} & \text { \|Bedrock } \\ & \mid \quad \text { (paralithic) } \end{aligned}$	20-40	---	\|Moderately cemented	0	---	\| Low	Moderate	\| Low		
137:											
Hackwood---------	-	---	--- \|	-	0	---	\| Moderate	Moderate	\| Low		
138:											
Hackwood--------	--	---	---	---	0	--	\|Moderate	Moderate	Low		
Baconcamp--	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\| Moderate	Moderate	\| Low		
139 :											
Hapgood-	\|Bedrock (lithic)	40-60	--- \|	\| Indurated	0	---	\| Moderate	Moderate	Low		
$140 \text { : }$											
Hart Camp-	$\begin{aligned} & \text { \|Bedrock } \\ & \mid \quad \text { (paralithic) } \end{aligned}$	10-20	---	\|Moderately cemented	0	---	\| Moderate	Moderate	\| Low		
141:											
Hart Camp---	$\begin{aligned} & \text { \|Bedrock } \\ & \text { \| (paralithic) } \end{aligned}$	10-20	---	\|Moderately cemented	0	---	\| Moderate	Moderate	\| Low		
142:											
Helphenstein----	---	---	--- \|	\| ---	0	---	\| Moderate	High	\| High		
Goldrun---------	---	---	---	---	0	---	Low	High	\| Low		
$143:$											
Homefield	---	---	-	--	0	---	\| High	Moderate	\| Low		
144:											
Housefield-------	---	---	-	---	0	-	\| High	Moderate	\| Low		
145:											
Housefield-------	---	---	---	---	0	---	\|High	Moderate	\| Low		
			\|								
Doubleo-----------	---	---	---	---	0	---	\|High	High	\| Low		
146:											
Icene------------	---	---	-	-	0	---	\|Moderate	High	\| High		
Playas----------	---	---	--- \|	---	0	---	\|High	High	\| High		
$147 \text { : }$											
Icene-------------	---	---	---	---	0	---	\| Moderate	High	\| High		
Playas-----------	---	--	---	---	0	---	\|High	High	\| High		
148 :											
Jesse Camp-------	---	---	---	---	0	---	\| Moderate	High	\| Low		
$149:$											
Jimgreen----------	---	---	---	---	5-15	15-20	\|High	Moderate	\| Low		
			\|								
150:											
Jimgreen----------	---	---	---	---	5-15	15-20	\|High	Moderate	Low		
Housefield-----------	\| ---	---	---	---	5-15	15-20	\| High	Moderate	\| Low		

Table 18.--Soil Features--Continued

Map symbol and soil name	Restrictive layer				Subsidence		Potential for	Risk of corrosion	
	Kind	$\begin{aligned} & \text { \| Depth } \\ & \text { \| to top } \end{aligned}$	Thickness	Hardness	Initial\|	Total		Uncoated steel	Concrete
							frost action		
		In	In		In	In			
151:									
Kegler----------------\|	Duripan	25-40	2-12	\| Indurated	0	--	\|Moderate	\| High	Low
152:									
Kerrfield--------------	$\begin{aligned} & \text { \|Bedrock } \\ & \text { \| (paralithic) } \end{aligned}$	20-40	---	$\begin{aligned} & \text { \|Moderately } \\ & \mid \text { cemented } \end{aligned}$	0	---	\|Moderate	\| High	Low
153 :									
Klicker----------------	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	Moderate	Low
154 :									
Klicker---------------\|	\|Bedrock (lithic)	20-40	-	\| Indurated	0	---	Moderate	Moderate	Low
155:									
Krackle, north slopes--\|	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	\|Moderate	\| Low
Krackle, south slopes--	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	\|Moderate	\|Low
156:									
Krackle--------------- \|	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	\|Moderate	\|Low
Baconcamp--------------	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	Moderate	\|Low
Rock outcrop----------	\|Bedrock (lithic)	0-0	---	\| Indurated	0	---	--	---	--
157 :									
Krackle---------------\|	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	\|Moderate	\| Low
Baconcamp--------------	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	\|Moderate	\|Low
Rock outcrop-----------	\|Bedrock (lithic)	0-0	---	\| Indurated	0	---	---	---	---
158 :									
Krackle--------------- \|	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	Moderate	\|Moderate	\|Low
Rock outcrop-----------	\|Bedrock (lithic)	0-0	--	\| Indurated	0	---	---	---	---
159:									
Krackle---------------	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\| Moderate	Moderate	\| Low
Baconcamp--------------	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	Moderate	\|Moderate	\|Low
Hackwood--------------- \|	-	---	---	-	0	---	\|Moderate	\|Moderate	\|Low
160 :									
Ladycomb-------------- \|	\|Bedrock (lithic)	4-10	--- \|	\| Indurated	0	-	\|Moderate	\|Moderate	\|Low
161:									
Lambranch	\| ---	---	---	---	0	---	\|Moderate	\|Moderate	\| Low
162 :									
Lambring--------------\|	\| ---	---	---	---	0	---	\|Moderate	Moderate	\| Low
Egyptcreek------------- \|	\|Bedrock (lithic)	20-36	---	\| Indurated	0	---	\|Moderate	\|Moderate	\|Low
Rock outcrop----------	\|Bedrock (lithic)	0-0	---	\| Indurated	0	---	---	---	---
$163:$									
Lambring, thick surface	--	---	---	-	0	---	\|Moderate	\|Moderate	\|Low
Lambring, thin surface	---	---	-	---	0	---	\|Moderate	\|Moderate	\|Low
Rock outcrop-----------	\|Bedrock (lithic)	0-0	---	\| Indurated	0	---	---	---	---
164:									
Lambring--------------\|	--	---	---	--	0	---	\| Moderate	Moderate	\| Low
,									

Table 18.--Soil Features--Continued

Map symbol and soil name	Restrictive layer				Subsidence		Potential for	Risk of corrosion	
	Kind	$\begin{aligned} & \text { Depth } \\ & \text { to top } \end{aligned}$	Thickness	Hardness	Initial\|	Total		Uncoated steel	Concrete
							frost action		
		In	In		In	In			
164:									
Rubble land------	--	---	---	--	0	---	--- \|	---	---
165:									
Langslet-------	---	---	---	---	0	-	\| High	Moderate	\| Low
$166:$									
Lava flows	\|Bedrock (lithic)	0-0	---	\| Indurated	0	---	---	---	---
167:									
Lava flows-	\|Bedrock (lithic)	0-0	---	\| Indurated	0	---	---	---	---
Flank-	\|Bedrock (lithic)	4-15	-	\| Indurated	0	---	\| Low	Moderate	\| Low
168:									
Lawen	---	-	---	---	0	---	\|Moderate	High	\| Low
169 :									
Leathers-	---	---	---	---	0	---	\|Moderate	High	\| High
$170:$									
Leathers	---	--	---	---	0	---	\|Moderate	High	\| High
171:									
Leemorris	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\mid High	Moderate	Low
Buckwilder-	\|Bedrock (lithic)	20-40	-	\| Indurated	0	--	\| High	High	Low
172 :									
Leemorris-	\|Bedrock (lithic)	20-40	-	\| Indurated	0	-	\| High	Moderate	Low
Buckwilder-	\|Bedrock (lithic)	20-40	---	Indurated	0	--	\| High	High	\| Low
$173 \text { : }$									
Legler	--	---	---	---	0	---	\|Moderate	High	\| Low
174:									
Locane-	\|Bedrock (lithic)	10-20	---	Indurated	0	---	\|Moderate	Moderate	\| Low
$175:$									
Lolak	---	---	---	---	0	---	\| High	High	\| High
176:									
Lolak-----	---	---	-	---	0	--	\| High	High	\| High
Ausmus---------	---	---	---	---	0	---	\| Moderate	High	\mid High
177:									
Lonely--	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\| Moderate	Moderate	Low
Doyn-	\|Bedrock (lithic)	4-10	---	Indurated	0	---	\| Low	Moderate	\| Low
178:									
Lonely--	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\|Moderate	Moderate	\| Low
Robson-	\|Bedrock (lithic)	12-20	---	Indurated	0	---	\| Moderate	Moderate	\| Low
179:									
Longcreek----	\|Bedrock (lithic)	10-20	---	Indurated	0	---	\| Moderate	Moderate	\| Low
Cleavage------	\|Bedrock (lithic)	14-20	---	Indurated	0	---	\| Moderate	Moderate	\| Low
180:									
Longcreek------	\|Bedrock (lithic)	10-20	---	Indurated	0	---	\| Moderate	Moderate	Low
Rock outcrop----	\|Bedrock (lithic)	0-0	---	Indurated	0	---	\| ---	---	---

Table 18.--Soil Features--Continued

Table 18.--Soil Features--Continued

Map symbol and soil name	Restrictive layer				Subsidence		$\begin{gathered} \text { Potential } \\ \text { for } \\ \text { frost action } \end{gathered}$	Risk of corrosion	
	Kind	$\begin{aligned} & \text { Depth } \\ & \mid \text { to top } \end{aligned}$	Thickness	Hardness	Initial	Total		Uncoated steel	Concrete
		In	In		In	In			
194 :									
Merlin, very cobbly----	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	\|Moderate	Moderate	Low
195:									
Merlin---------------- \|	\|Bedrock (lithic)	10-20	-	\| Indurated	0	---	\|Moderate	Moderate	\| Low
Ateron----------------	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	\|Moderate	Moderate	\| Low
196:									
Merlin-	\|Bedrock (lithic)	10-20	--	\| Indurated	0	---	\|Moderate	Moderate	\| Low
Ateron----------------	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	\|Moderate	Moderate	\|Low
Rubble land------------	\| ---	---	-	---	0	---	---	---	---
197 :									
Merlin---------------- \|	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	\|Moderate	Moderate	\| Low
Ateron----------------	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	\|Moderate	Moderate	\| Low
Ticino----------------	$\begin{aligned} & \mid \text { Bedrock } \\ & \text { (paralithic) } \end{aligned}$	20-30	---	\|Moderately cemented	0	---	\|Moderate	Moderate	\|Low
	\|Bedrock (lithic)	22-40	---	Indurated					
$\begin{aligned} & \text { 198: } \\ & \text { Merlin- } \end{aligned}$	198:								\| Low
Erakatak-	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	Moderate	\| Low
Teguro----------------	\|Bedrock (lithic)	14-20	---	\| Indurated	0	---	\|Moderate	Moderate	\| Low
199:									
Merlin----------------\|	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	\|Moderate	Moderate	\| Low
Observation------------	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	Moderate	\|Low
200:									
Merlin-	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	\|Moderate	Moderate	\| Low
Observation-	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	Moderate	\| Low
201:									
Merlin-	\|Bedrock (lithic)	10-20	-	\| Indurated	0	---	\|Moderate	Moderate	\| Low
Rubble land------------	---	-	---	---	0	---	---	---	---
202:									
Merlin-	\|Bedrock (lithic)	10-20	---	\| Indurated	0	-	\|Moderate	Moderate	\| Low
Teguro----------------	\|Bedrock (lithic)	14-20	---	\| Indurated	0	---	\|Moderate	Moderate	\| Low
203:									
Merlin----------------	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	\| Moderate	Moderate	\| Low
Teguro----------------	\|Bedrock (lithic)	14-20	---	\| Indurated	0	---	\|Moderate	Moderate	\| Low
204:									
Mesman---------------- \|	-	---	---	---	0	---	\|Moderate	High	\| High
205:									
Mesman---------------- \|	---	-	---	---	0	---	\|Moderate	High	\| High
206:									
Mesman-----------------	---	---	---	---	0	---	\|Moderate	\| High	\| High
- \|									

Table 18.--Soil Features--Continued

Table 18.--Soil Features--Continued

Map symbol and soil name	Restrictive layer				Subsidence		$\begin{array}{\|l} \text { Potential } \\ \text { for } \\ \text { frost action } \end{array}$	Risk of corrosion		
	Kind	$\begin{aligned} & \text { Depth } \\ & \mid \text { to top } \end{aligned}$	\|Thickness		Hardness	Initial\|	Total		Uncoated steel	Concrete
		In	In		In	In				
222:										
Ninemile-------------- \|	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	Moderate	\|Moderate	\| Low	
Edemaps----------------	Duripan	20-35	2-8	\| Indurated	0	---	Moderate	\|Moderate	\| Low	
	\|Bedrock (lithic)	24-40	---	\| Indurated						
223:										
Ninemile--------------	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	Moderate	Moderate	\|Low	
Madeline--------------- \|	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	Moderate	\|Moderate	\| Low	
224:										
Ninemile---------------	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	Moderate	\|Moderate	\| Low	
Pearlwise--------------	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	\|Moderate	\|Low	
225:										
Ninemile---------------	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	Moderate	Moderate	\| Low	
Reluctan--------------	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\|Moderate	\| High	\|Low	
226:										
Ninemile---------------	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	Moderate	Moderate	\| Low	
Reluctan--------------	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\|Moderate	\| High	\| Low	
Rubble land------------	-	---	---	---	0	---	---	---	---	
227:										
Ninemile-------------- \|	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	Moderate	\|Moderate	\| Low	
Rock outcrop-----------	\|Bedrock (lithic)	0-0	---	\| Indurated	0	---	---	---	---	
228:										
Ninemile--------------	\|Bedrock (lithic)	10-20	---	\| Indurated	0	-	\|Moderate	\|Moderate	\|Low	
Rubble land------------	\| ---	---	---	--	0	---	--	---	---	
229:										
Ninemile-------------- \|	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	Moderate	\|Moderate	\| Low	
Westbutte-------------	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	\| Moderate	\| Low	
230:										
Ninemile, very cobbly--	\|Bedrock (lithic)	10-20	---	\| Indurated	0	---	\|Moderate	\|Moderate	\|Low	
Westbutte------------- \|	\|Bedrock (lithic)	20-40	-	\| Indurated	0	---	Moderate	\|Moderate	\| Low	
Ninemile, extremely stony	\|Bedrock (lithic)	10-20	---	\| Indurated	0	-	\|Moderate	\|Moderate	\|Low	
231:										
Ninemile, very cobbly--	\|Bedrock (lithic)	10-20	-	Indurated	0	--	Moderate	Moderate	\| Low	
Ninemile, extremely stony---------------	\|Bedrock (lithic)	10-20	-	\| Indurated	0	---	\|Moderate	\|Moderate	\|Low	
232:										
Ninemile---------------	\|Bedrock (lithic)	10-20	--	\| Indurated	0	---	\|Moderate	\|Moderate	Low	
Felcher---------------- \|	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	Moderate	\|Moderate	\| Low	
233:										
Noname---------------- \|	\|Bedrock (lithic)	4-14	--	Indurated	0	---	Moderate	\| Moderate	\| Low	

Table 18.--Soil Features--Continued

Table 18.--Soil Features--Continued

Map symbol and soil name	Restrictive layer				Subsidence		Potential for	Risk of corrosion			
		Depth						Uncoated			
	Kind	\| to top	\|Thickness		Hardness	\|Initial		Total	\|frost action	steel	Concrete
		In	In		In	In					
246:											
Opie------------	---	---	--	---	0	---	\| High	\| High	High		
247:											
Oreneva-	Bedrock (lithic)	20-40	---	Indurated	0	---	Moderate	\| High	Low		
$248 \text { : }$											
Outerkirk-	---	---	-	---	0	---	\| Moderate	\| High	Low		
249 :											
Outerkirk--------	---	---	---	-	0	---	\| Moderate	\mid High	Low		
$250:$											
Outerkirk	---	---	---	---	0	---	\| Moderate	\| High	Low		
Defenbaugh------	---	---	---	---	0	---	Moderate	\| High	Low		
251:											
Ozamis----------	---	-	--	---	0	---	\| High	\| High	Low		
$252 \text { : }$											
Pearlwise	\|Bedrock (lithic)	20-40	---	Indurated	0	---	Moderate	Moderate	Low		
253:											
Pernty	\|Bedrock (lithic)	14-20	---	Indurated	0	--	\|Moderate	\|Moderate	Low		
$254:$											
Pernty---	\|Bedrock (lithic)	14-20	---	Indurated	0	---	Moderate	Moderate	Low		
255:											
Pernty-	\|Bedrock (lithic)	14-20	---	Indurated	0	-	\| Moderate	\| Moderate	Low		
$256:$											
Pernty-	\|Bedrock (lithic)	14-20	---	Indurated	0	---	Moderate	Moderate	Low		
Rock outcrop---	\|Bedrock (lithic)	0-0	---	Indurated	0	---	---	---	---		
257:											
Pernty--	\|Bedrock (lithic)	14-20	-	Indurated	0	---	\| Moderate	\| Moderate	Low		
Westbutte---	\|Bedrock (lithic)	20-40	---	Indurated	0	---	\|Moderate	\|Moderate	Low		
Ninemile-	\|Bedrock (lithic)	10-20	---	Indurated	0	---	\| Moderate	\| Moderate	Low		
$258 \text { : }$											
Pits	---	---	---	---	0	---	\| None	---	---		
259:											
Playas-----------	-	---	--	-	0	---	\| High	\| High	\| High		
260:											
Playas-----------	--	-	--	---	0	---	\| High	\| High	High		
Thenarrows--------	---	---	---	---	0	---	\| High	\| High	High		
261:											
Poall------------	---	-	---	---	0	---	\| Low	\| High	Low		
$262:$											
Poall------------	---	---	---	---	0	---	\| Low	\| High	Low		
Gumble----------	$\begin{aligned} & \text { Bedrock } \\ & \text { (paralithic) } \end{aligned}$	14-20	---	\|Moderately cemented	0	---	\| Low	\| High	Low		
	(paralithic)										
263 :											
Pomerening--------	---	---	---	---	0	---	\| Low	\| Moderate	Low		

Table 18.--Soil Features--Continued

Table 18.--Soil Features--Continued

Map symbol and soil name	Restrictive layer				Subsidence		$\begin{array}{\|c\|} \left\|\begin{array}{c} \text { Potential } \\ \text { for } \end{array}\right\| \\ \text { frost action } \end{array}$	Risk of corrosion	
		Depth						Uncoated	
	Kind	\|to top	\| Thickness	Hardness	Initial	Total		steel	Concrete
		In	In		In	In			
278:									
Reluctan-----	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	Moderate	\| High	Low
279:									
Riddleranch-	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	\|Moderate	\| Low
Lambring-----	---	---	---	---	0	---	\|Moderate	\|Moderate	\| Low
Rock outcrop-	\|Bedrock (lithic)	0-0	---	\| Indurated	0	---	--	---	---
280:									
Riddleranch----	\|Bedrock (lithic)	20-40	-	\| Indurated	0	---	Moderate	\|Moderate	Low
Rock outcrop----	\|Bedrock (lithic)	0-0	---	\| Indurated	0	---	---	---	---
281:									
Rinconflat------	---	---	---	---	0	---	\|Moderate	\| High	\| Low
282:									
Rio King-------	---	---	---	---	0	---	\|Moderate	\| High	\|Low
283:									
Rio King--------	---	---	---	-	0	-	Moderate	\| High	\| Low
Droval---	---	---	---	---	0	---	\| High	\| High	\| High
284:									
Risley-	$\begin{aligned} & \text { \|Bedrock } \\ & \text { \| (paralithic) } \end{aligned}$	20-40	---	Moderately cemented	0	---	\| Low	\| High	\| Low
Gumble-	$\begin{aligned} & \mid \text { Bedrock } \\ & \text { (paralithic) } \end{aligned}$	14-20	---	\|Moderately cemented	0	---	\|Low	\| High	\| Low
285:									
Risley-	$\begin{aligned} & \text { \|Bedrock } \\ & \text { \| (paralithic) } \end{aligned}$	20-40	---	\|Moderately cemented	0	---	\| Low	\| High	\|Low
Gumble-	$\begin{aligned} & \text { \|Bedrock } \\ & \text { \| (paralithic) } \end{aligned}$	14-20	---	\|Moderately cemented	0	--	\| Low	\| High	\| Low
Torriorthents-	$\begin{aligned} & \text { \|Bedrock } \\ & \text { \| (paralithic) } \end{aligned}$	4-14	---	$\begin{array}{\|l} \mid \text { Moderately } \\ \mid \text { cemented } \end{array}$	0	---	\| Low	---	---
286:									
Risley-	$\begin{aligned} & \text { \|Bedrock } \\ & \text { \| (paralithic) } \end{aligned}$	20-40	---	\|Moderately cemented	0	---	\| Low	\| High	\|Low
Rock outcrop--	\|Bedrock (lithic)	0-0	-	\| Indurated	0	---	--	---	---
287 :									
Robson---	\|Bedrock (lithic)	12-20	---	\| Indurated	0	---	Moderate	Moderate	\|Low
Anawalt----	\|Bedrock (lithic)	12-20	---	\| Indurated	0	---	Moderate	\| High	\| Low
288:									
Robson-	\|Bedrock (lithic)	12-20	--	\| Indurated	0	--	Moderate	Moderate	\| Low
Fourwheel-	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	\|Moderate	\| Low
289 :									
Robson-	\|Bedrock (lithic)	12-20	---	\| Indurated	0	---	Moderate	\|Moderate	\| Low
Felcher----------	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	\|Moderate	Moderate	\| Low
290:									
Roca-	\|Bedrock (lithic)	20-40	---	\| Indurated	0	---	Moderate	\| High	\| Low

Table 18.--Soil Features--Continued

Table 18.--Soil Features--Continued

Map symbol and soil name	Restrictive layer				Subsidence		Potential for	Risk of corrosion			
		Depth						Uncoated			
	Kind	\| to top	Thickness\|	Hardness	\|nitial		Total	\|frost action		steel	Concrete
		In	In		In	In					
303:											
Skedaddle, north slopes\|	\|Bedrock (lithic)	7-12	---	Indurated	0	---	\| Moderate	\| Moderate	\| Low		
304 :											
Skidoosprings--------- \|	Duripan	40-50	1-12	Indurated	0	---	\| High	\| High	\| Low		
$305:$											
Skidoosprings--------- \|	Duripan	40-50	1-12	Indurated	0	-	\| High	\| High	\| Low		
$306:$											
Skunkfarm----------------\|	---	---	--	---	0	---	\mid High	\mid High	\| Low		
Cumulic Haploxerolls---\|	---	---	---	---	0	---	\|Moderate	\| Moderate	\| Low		
307:											
Skunkfarm------------- \|	---	---	---	---	0	---	\| High	\| High	\| Low		
Doubleo--------------- \|	---	---	--	---	0	---	\mid High	\| High	\| Low		
$308:$											
Skunkfarm-------------	---	--	---	---	0	---	\|High	\|High	\| Low		
Mcbain---------------- \|	---	---	---	---	0	---	\|Moderate	\| High	\| High		
Doubleo----------------	---	---	---	---	0	---	High	\| High	Low		
309:											
Skunkfarm------------- \|	---	---	-	---	0	---	\| High	\| High	Low		
Skidoosprings--------- \|	Duripan	40-50	1-12	Indurated	0	---	\mid High	\mid High	\| Low		
\|											
310:											
Spangenburg----------- \|	-	---	---	-	0	---	\| Moderate	\| High	\| Low		
311:											
Spangenburg-----------	---	---	---	---	0	---	\| Moderate	\| High	Low		
312 :											
Spangenburg-----------	\| ---	---	---	---	0	---	\|Moderate	\| High	\| Low		
313 :											
Srednic---------------	Duripan	20-40	3-10	Indurated	0	---	\| Low	\| Moderate	\| Low		
	\|Bedrock (lithic)	25-50	---	Indurated							
Aval------------------	\|Bedrock (lithic)	10-20	---	Indurated	0	---	\| Low	\| Moderate	\| Low		
Aval											
314 :											
Stampede	Duripan	20-30	5-10	Indurated	0	---	\|Moderate	\| High	\| Low		
315 :											
Swaler---------------- \|	---	- ---	-	---	0	---	\|Moderate	\| High	\| Low		
316:											
Swaler---------------- \|	---	---	---	---	0	---	\| Moderate	\| High	\| Low		
Swalesilver-----------	---	---	---	---	0	---	\| Moderate	\| High	\| Low		
317:											
Swalesilver-----------\|	---	-	---	---	0	---	\| Moderate	\| High	\| Low		
318 :											
Swalesilver------------ \|	\| ---	-	---	---	0	---	\|Moderate	\|High	\| Low		
319 :											
Swalesilver-----------	---	---	---	---	0	---	\| Moderate	\| High	\| Low		
		\|									

Table 18.--Soil Features--Continued

Table 18.--Soil Features--Continued

Table 18.--Soil Features--Continued

Table 18.--Soil Features--Continued

(An asterisk in the first column indicates a taxadjunct to the series. See text for a description of those characteristics that are outside the range of the series)

Soil name	Family or higher taxonomic class
Acte	Clayey, montmorillonitic, frigid, shallow Xeric Argidurids
Alvodest	Fine, montmorillonitic, mesic Sodic Aquicambids
Alyan-	Fine, montmorillonitic, frigid Aridic Argixerolls
Anatone	Loamy-skeletal, mixed, frigid Lithic Haploxerolls
Anawalt	Clayey, montmorillonitic, frigid Lithic Xeric Haplargids
Arci	Fine, montmorillonitic, frigid Pachic Argixerolls
Ateron	Clayey-skeletal, montmorillonitic, frigid Lithic Argixerolls
Atlow	Loamy-skeletal, mixed, mesic Lithic Xeric Haplargids
Ausmu	Fine-silty, mixed, frigid Aquic Natrargids
Ava	Ashy, frigid Lithic Xeric Haplocambids
Baconcamp	Loamy-skeletal, mixed Pachic Cryoborolls
Berdugo	Fine, montmorillonitic, mesic Xeric Paleargids
Bigfrog	Loamy, mixed, mesic, shallow Xeric Argidurids
Bocker	Loamy-skeletal, mixed, frigid Lithic Haploxerolls
Boraval	Fine, montmorillonitic (calcareous), mesic Aeric Halaquepts
*Borobey	Ashy, frigid Vitritorrandic Haploxerolls
Boulder Lake-	Fine, montmorillonitic, frigid Xeric Epiaquerts
Brabble	Fine-loamy, mixed, mesic Xeric Haplodurids
Brace	Fine-loamy, mixed, frigid Xeric Argidurids
Brezniak	Clayey, montmorillonitic, mesic Lithic Argixerolls
Brock	Loamy-skeletal, mixed, mesic, shallow Xeric Argidurids
Bruncan	Loamy, mixed, mesic, shallow Xeric Argidurids
Brunzel	Loamy-skeletal, mixed, frigid Typic Haploxerolls
Bucklake	Fine, montmorillonitic, mesic Aridic Argixerolls
Buckwild	Very-fine, montmorillonitic Argic Vertic Cryoborolls
*Cagle	Fine, montmorillonitic, mesic Aridic Argixerolls
Calderwoo	Loamy-skeletal, mixed, mesic Lithic Xeric Haplocambids
Carryback	Fine, montmorillonitic, frigid Vertic Palexerolls
Carvix	Fine-loamy, mixed, frigid Aridic Haploxerolls
Catlow	Loamy-skeletal, mixed, mesic Durinodic Xeric Haplocambids
Clamp	Loamy-skeletal, mixed Lithic Cryoborolls
Cleavage	Loamy-skeletal, mixed, frigid Lithic Argixerolls
Cotant	Clayey, montmorillonitic, frigid, shallow Aridic Argixerolls
Coztu	Loamy, mixed, frigid Lithic Xeric Haplargids
Crowcamp	Fine, montmorillonitic, frigid Vertic Palexerolls
Cumulic Haploxerol	Cumulic Haploxerolls
Davey-	Sandy, mixed, mesic Xeric Haplocambids
Defenbaugh	Fine-loamy, mixed, mesic Typic Haplocambids
*Degarmo	Fine-loamy over sandy or sandy-skeletal, mixed, frigid Cumulic Endoaquolls
Dentdraw	Fine-loamy, mixed (calcareous), frigid Fluvaquentic Endoaquolls
Deppy	Loamy, mixed, mesic, shallow Argidic Argidurids
Dickl	Loamy, mixed Lithic Cryoborolls
Dixon	Fine-loamy over sandy or sandy-skeletal, mixed, mesic Xeric Haplocambids
Dogmountain	Ashy-skeletal, frigid Vitrixerandic Haplodurids
Double	Clayey over loamy, montmorillonitic, calcareous, frigid Fluvaquentic Vertic Endoaquolls
Doyn	Loamy, mixed, frigid Lithic Haploxerolls
Drewsey	Coarse-loamy, mixed, mesic Xeric Haplocambids
Drova	Fine, montmorillonitic, mesic Sodic Aquicambids
Duckclub	Coarse-loamy, mixed, frigid Sodic Aquicambids
	Fine-loamy, mixed Pachic Cryoborolls
Edemaps	Fine, montmorillonitic, frigid Argiduridic Durixerolls
Egyptcreek	Loamy-skeletal, mixed, frigid Ultic Haploxerolls
Enko	Coarse-loamy, mixed, mesic Durinodic Xeric Haplocambids
Era	Clayey-skeletal, montmorillonitic, frigid Typic Argixerolls
Felche	Loamy-skeletal, mixed, mesic Xeric Haplocambids
Fina	Fine, montmorillonitic, mesic Vertic Natrargids
Fitzwater	Loamy-skeletal, mixed, frigid Aridic Haploxerolls
Flank	Ashy-skeletal, nonacid, frigid Lithic Xeric Torriorthents
Fourwheel	Fine, montmorillonitic, frigid Vertic Paleargids
Frezn	Fine, montmorillonitic, frigid Xeric Paleargids
*Fury	Fine-silty, mixed, frigid Cumulic Endoaquolls
Gaib	Loamy-skeletal, mixed, frigid Lithic Ultic Argixerolls
Gilispie	Loamy, mixed Argic Lithic Cryoborolls
Gochea	Fine-loamy, mixed, frigid Argiduridic Argixerolls

Table 19.--Classification of the Soils--Continued
Soil name

| \| |
| :--- | |

|

Table 19.--Classification of the Soils--Continued

Soil name	Family or higher taxonomic class
Roc	Clayey-skeletal, montmorillonitic, frigid Xeric Haplargids
Roschene	Fine-loamy, mixed, frigid Cumulic Haploxerolls
Royst	Clayey-skeletal, montmorillonitic, frigid Pachic Argixerolls
Sagehen	Loamy-skeletal, mixed, frigid Lithic Xeric Haplocambids
Sandgap	Mixed, frigid Haploduridic Xeric Torripsamments
Seharney	Loamy-skeletal, mixed, frigid, shallow Xerochreptic Haplodurids
Skedaddle	Loamy-skeletal, mixed, nonacid, mesic Lithic Xeric Torriorthents
Skidoosprings	Coarse-loamy, mixed (calcareous), frigid Aeric Halaquepts
Skunkfarm	Fine-loamy, mixed, frigid Typic Endoaquolls
Spangenburg-	Fine, montmorillonitic, mesic Xeric Paleargids
Srednic	Ashy, frigid Vitrixerandic Haplodurids
Stampede	Fine, montmorillonitic, frigid Vertic Durixerolls
Swaler	Fine, montmorillonitic, frigid Xeric Paleargids
Swalesilver	Fine, montmorillonitic, frigid Aquic Palexeralfs
Teguro	Loamy, mixed, frigid Lithic Argixerolls
Thenarrows	Coarse-loamy, mixed (calcareous), frigid Typic Halaquepts
Ticino	Fine-loamy, mixed, frigid Typic Argixerolls
Tincan	Loamy, mixed, mesic, shallow Aridic Haploxerolls
Toll	Mixed, mesic Xeric Torripsamments
Torriorthents	Torriorthents
Tuffo	Ashy, nonacid, mesic, shallow Vitrandic Torriorthents
Tumtum	Loamy, mixed, mesic, shallow Typic Argidurids
Turpin	Fine-loamy, mixed, mesic Sodic Xeric Haplocambids
Vanwype	Clayey-skeletal, montmorillonitic, mesic Xeric Haplargids
Vergas	Fine-loamy over sandy or sandy-skeletal, mixed, frigid Durinodic Xeric Haplargids
Vil	Loamy, mixed, frigid, shallow Argiduridic Durixerolls
Vining	Coarse-loamy, mixed, mesic Xeric Haplocambids
Vital	Loamy-skeletal, mixed, frigid Typic Argixerolls
Voltage	Coarse-loamy, mixed, frigid Xeric Haplocalcids
Wagont	Clayey, montmorillonitic, frigid, shallow Argiduridic Durixerolls
*Waspo	Fine, montmorillonitic, mesic Aridic Haploxererts
Welc	Fine-loamy, mixed, frigid Cumulic Endoaquolls
Wenas	Fine-loamy, mixed, mesic Cumulic Endoaquolls
Westbut	Loamy-skeletal, mixed, frigid Pachic Haploxerolls
Widowspring	Fine-silty, mixed, frigid Cumulic Haploxerolls
Windybutte	Fine-silty, mixed, frigid Argiduridic Argixerolls
Wolverine	Mixed, frigid Xeric Torripsamments

NRCS Accessibility Statement

The Natural Resources Conservation Service (NRCS) is committed to making its information accessible to all of its customers and employees. If you are experiencing accessibility issues and need assistance, please contact our Helpdesk by phone at 1-800-457-3642 or by e-mail at helpdesk @ helpdesk.itc.nrcs.usda.gov. For assistance with publications that include maps, graphs, or similar forms of information, you may also wish to contact our State or local office. You can locate the correct office and phone number at http://offices.sc.egov.usda.gov/locator/app.

[^0]: Baconcamp and similar soils-40 percent
 Hapgood and similar soils-35 percent
 Rock outcrop-15 percent
 Contrasting inclusions-10 percent

[^1]: Carryback and similar soils-85 percent
 Contrasting inclusions-15 percent

 ## Setting

 Landform: Plateaus

[^2]: Welch and similar soils-85 percent
 Contrasting inclusions-15 percent

