

U.S. Department of Energy Office of Science

Fusion Energy Sciences Update

Presented to NRC Board on Physics and Astronomy April 25, 2008

Raymond Fonck

Associate Director of Fusion Energy Sciences

www.science.doe.gov/ofes

Agency Specific

- Response to Plasma 2010 (& other NRC) Reports
- ITER: status and US Contributions, funding
- Priorities for the US domestic fusion research program

• General

- Most significant issues over the next year
- Volatility in funding process and effects on program
- Where can Academy add value

Mission: Generate the knowledge needed for fusion energy sources, and understand general plasma science

• **Program Elements:**

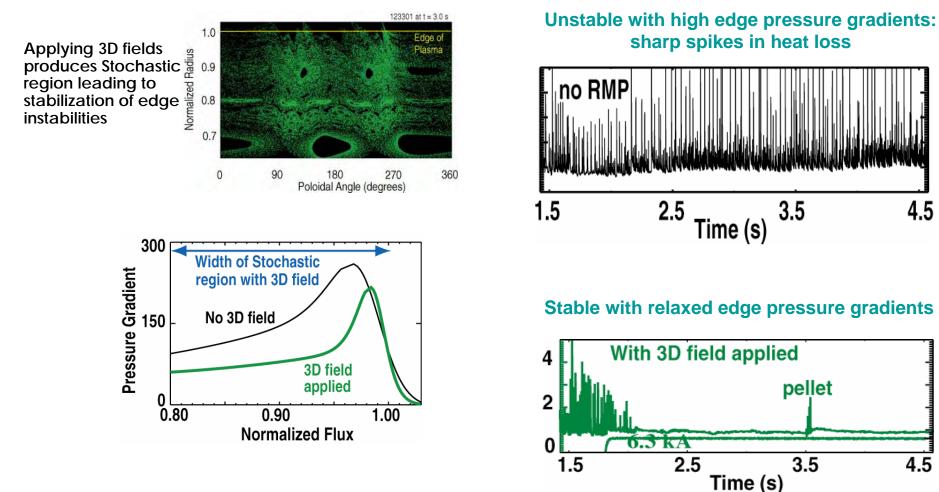
- Magnetic Fusion Energy Sciences:
 - Burning Plasma Science
 - Advanced Tokamak Physics
 - Toroidal Confinement Physics
 - ITER Project and Program
- Plasma Sciences:
 - Fundamental Properties of Plasmas
 - High Energy Density Laboratory Physics
 - Atomic Processes

• National/Shared Facilities:

- DIII-D Advanced Tokamak (GA)
- C-Mod Advanced Tokamak (MIT)
- NSTX Spherical Torus (Princeton)
- NCSX Stellarator (Princeton under construction)

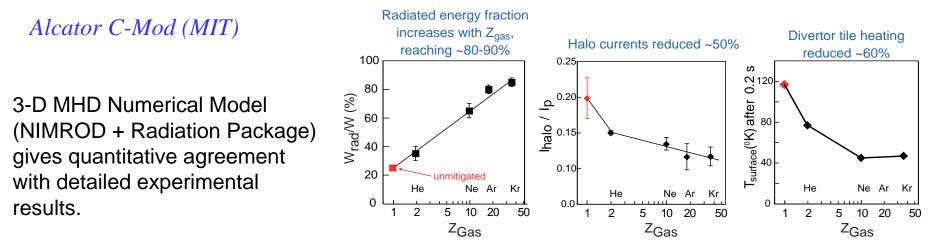
Theory and Computation Plasma and Fusion Technologies Diagnostics Fusion Materials

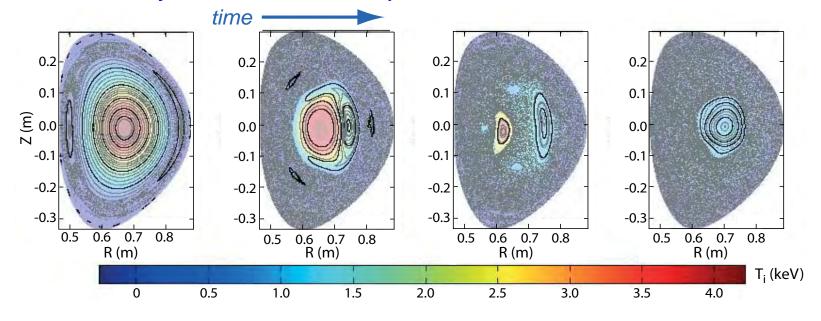
Electromagnetic Confinement Low-Temperature Plasmas


MST Reverse Field Pinch (CMSO - WI) Large Area Plasma Device (UCLA)

Magnetic Fusion Sciences: Controlling Instability @ Plasma Edge

DIII-D Advanced Tokamak (General Atomics)

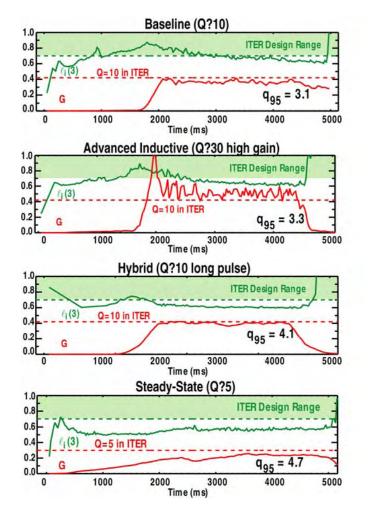

Critical Edge Instability Controlled by Purposefully Degrading Magnetic Surfaces

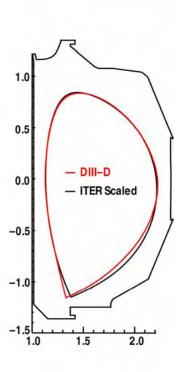


MFES: Understanding an Effective Disruption Mitigation Technique

Injection of massive gas puff dissipates energy through radiation:

Fully 3-D simulation shows rapid destruction of flux surfaces:


Excellent Science Attractive Energy Sciences


MFES: Similarity Experiments Enable Development of a Detailed Physics Basis for ITER

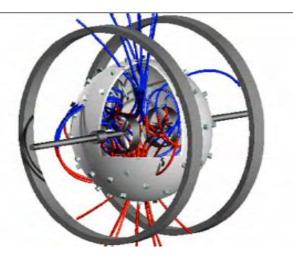
DIII-D Advanced Tokamak (General Atomics)

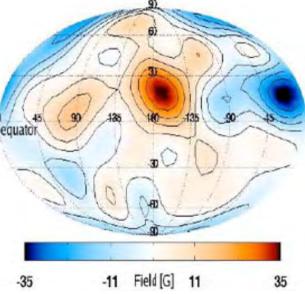
• DIII-D can simulate ITER scenarios ...

In the ITER shape and aspect ratio...

- Baseline (ITER Scenario 2)
 - Reference operating case
 - Q≈10 operation at full current (15 MA)
- Advanced Inductive (AI)
 - High fusion gain scenario
 - Q>10 at full current (15 MA)
- Hybrid (ITER Scenario 3)
 - Long pulse, high fluence mission
 - Q≈10 at reduced
 - current (~12 MA)
- Steady-state (ITER Scenario 4)
 - Advanced Tokamak (AT) scenario targets steady-state objective
 - Above no-wall pressure limit
 - Q≈5 at reduced current (~9 MA)
- Broad experimental current profiles (low $\ell_{\rm i}$) impact ITER coil design

Dynamo Experiment: self-generation of magnetic fields in turbulent flows of liquid metal

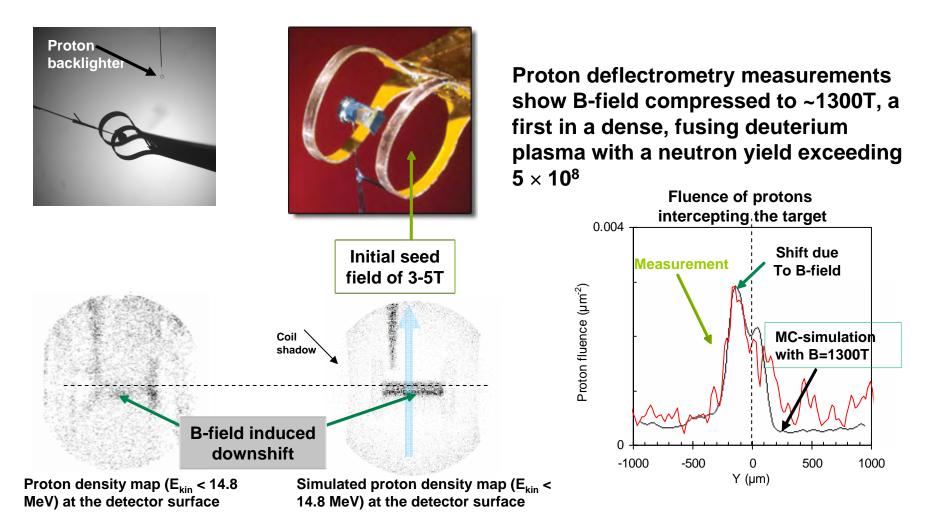

<u>The Madison Dynamo Experiment</u> (WI)


300 gallons of liquid sodium 150 kW of mechanical power Rm/Re=10-5 (always turbulent) Confinement is simple, and conductivity is uniform

Predicted:

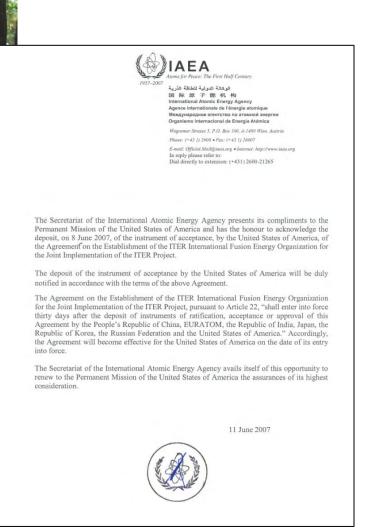
Intermittently excited magnetic eigenmode has structure similar to that predicted for the mean-flow, selfgenerated dynamo

Observed:

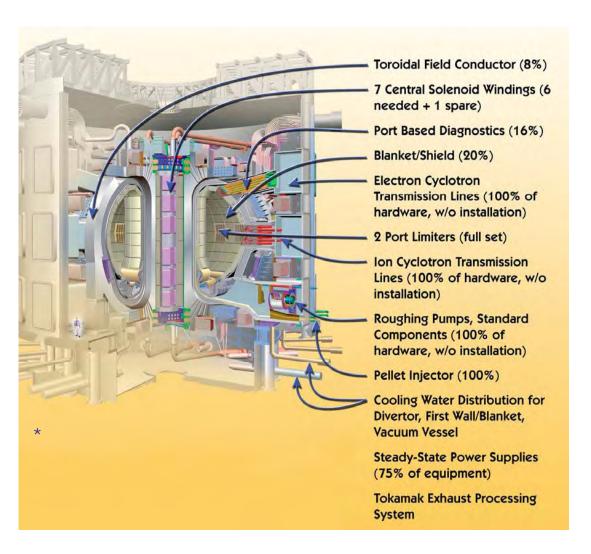


Magnetic flux compression in implosion experiments on OMEGA produce MegaGauss Fields

Compression of magnetized ICF targets produces magnetic fields of 13 MG and 10-fold increase in fusion yield



ITER Agreement Ratification Process Complete


- November 21, 2006 the ITER Agreement was signed by the seven Members.
- October 24, 2007 the ITER Agreement entered into force and the ITER Organization became a legal entity.
- November 27-28, 2007 with completion of the above milestones, the first official ITER Council Meeting was held.

U.S. ITER Project Scope

- In-kind contributions of hardware and its delivery to France,
- In-kind contribution of staff (secondees) to IO
- Cash contributions for
 - R&D and Common Fund expenses (e.g., direct staff, IO services, machine assembly/installation/ commissioning)
 - the Central Reserve
- Operation of the US ITER Project Office at ORNL in conjunction with partner Labs PPPL and SRNL

Overall Status of ITER

International

- ITER Organization (IO) staffed to ~ 300 including contractors; employees are under 5-year contracts
- ITER Council's S&T and Management Advisory Committees are operational and engaged. Financial Audit Board is performing its first audit in April 2008.
- Members' Domestic Agencies are becoming fully operational and developing Procurement Arrangements for hardware contributions
- IO submitted the Preliminary Safety Report to the French regulatory authorities
- Construction Site Preparations:
 - Platform leveling (major earthmoving) underway
 - Excavation for Buildings to begin in early 2009
- ITER Organization is developing a bottoms-up Integrated Project Schedule and detailed resource estimates for their scope. Indications are that construction completion will slip to 2018-19.
- Design Review concluded in 2007, but STAC identified several key design issues requiring additional work. IO & Members have made good progress in finding solutions. U.S. has been a major contributor.
 - Goal = have overall design, schedule approved by Council by end of 2008.

Overall Status of ITER

- <u>Domestic (U.S. ITER Project)</u>
 - Achieved Critical Decision 1 (Approve Alternative Selection and Cost Range) in January 2008.
 - Total Project Cost (TPC) range set at \$1.45B \$2.2B based on analysis of risks and present market environment.
 - This range supercedes the previous OMB cap of \$1.122B.
 - Critical Decision 2 (Approve Performance Baseline) is projected to occur in FY2009-10
 - Depending on how soon the ITER Organization can establish their own baselines for the entire construction phase of ITER.
 - DOE will conduct Lehman reviews and an External Independent Review at the appropriate times to validate schedule and cost estimates for the U.S. ITER Project.
 - Baseline funding profile will be set.

FY 2009 Fusion Energy Sciences Budget Request Restores ITER Funding

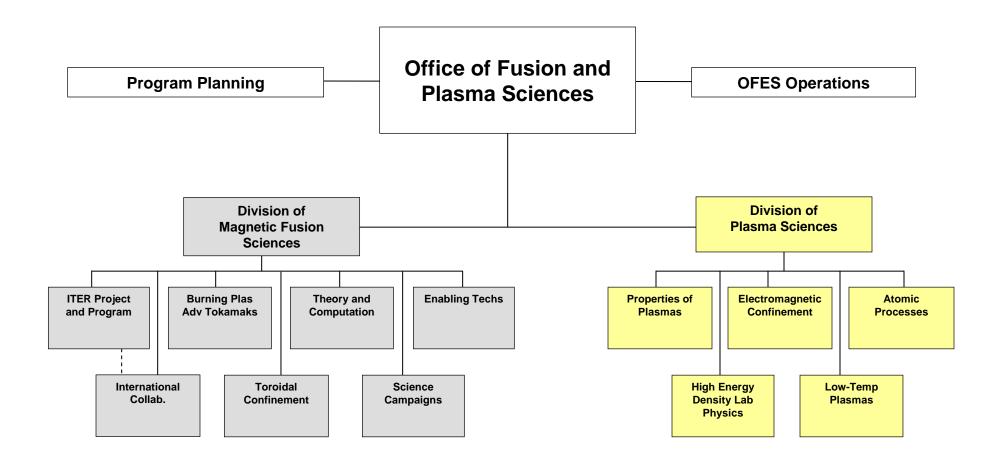
	(\$ Millions)			
	FY 2007	FY 2008	FY 2008	FY 2009
	<u>Actual</u>	<u>CONG</u>	<u>Jan AFP</u>	CONG
Science	144.6	159.5	163.9	168.4
Facility Operations	146.3	247.5	100.8	301.9
Enabling R&D	<u>20.8</u>	20.8	21.8	<u>22.7</u>
OFES Total	311.7	427.8	286.5	493.1
Research:				
Burning Plasma/Tokamak	85.7	89.7	93.8	88.1
Alternate Toroidal Configs	52.7	55.7	57.7	50.1
Plasma Science	28.7	25.6	29.5	38.4
MIE Projects:				
ITER MIE	60.0	160.0	10.6	214.5
NCSX MIE	15.9	15.9	15.9	19.6

- Despite the FY2008 Budget shortfall, the U.S. ITER Project remains the highest priority in the DOE Office of Science's Facilities for the Future of Science: A Twenty-Year Outlook.
 - See Dr. Ray Orbach, DOE Under Secretary for Science, March 5, 2008 Congressional Testimony
- Using uncosted prior year funds and the \$10.6M FY2008 appropriation for ITER
 - the U.S. ITER Project has retained a core team
 - remained engaged with the ITER Organization in finalizing the ITER design and establishing a credible construction schedule.
 - U.S. secondees remain on assignment in France.
 - Our cash contributions and long-lead procurements, however, are being deferred until additional funds become available.

• President's FY2009 Budget Request calls for \$214.5M

- Consistent with previous funding projections
- Enables U.S. to meet 2008 09 funding commitments to the ITER Organization
- U.S. ITER Project staffing will be reconstituted
- Permits U.S. design and R&D activities to move forward, and allows long-lead hardware procurements to be initiated
- Helps restore international confidence in U.S. commitment
- Realization of the FY2009 request is crucial for the success of ITER and for the future health of the U.S. Fusion Program.

Recommendations from Recent National Academies Studies

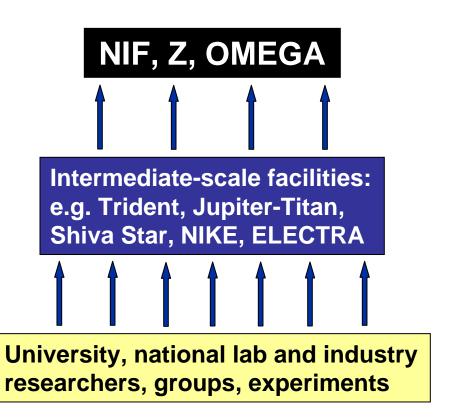

- Plasma Science: Plasma 2010 Decadal Study (2007)
 - Central recommendation:
 - "To fully realize the opportunities in plasma research, a unified approach is required. Therefore, the Department of Energy's Office of Science should reorient its research programs to incorporate magnetic and inertial fusion energy sciences, basic plasma science, non-missiondriven high-energy density plasma science, and low-temperature plasma science and engineering."
- Burning Plasmas and Fusion: Burning Plasma (2004)
 - Participate in ITER
 - Integrate burning plasmas/ITER and rest of program
 - Develop cross-cutting science campaigns
 - Prioritize magnetic fusion program activities
- High Energy Density : X-games (2003), Interagency Task Force
 - Work with NNSA to steward High Energy Density Laboratory Physics -HEDLP

Plasma Science: Advancing Knowledge in the National Interest

May 2007

Draft, Conceptual, etc. Reorganization to Address NRC Recommendations

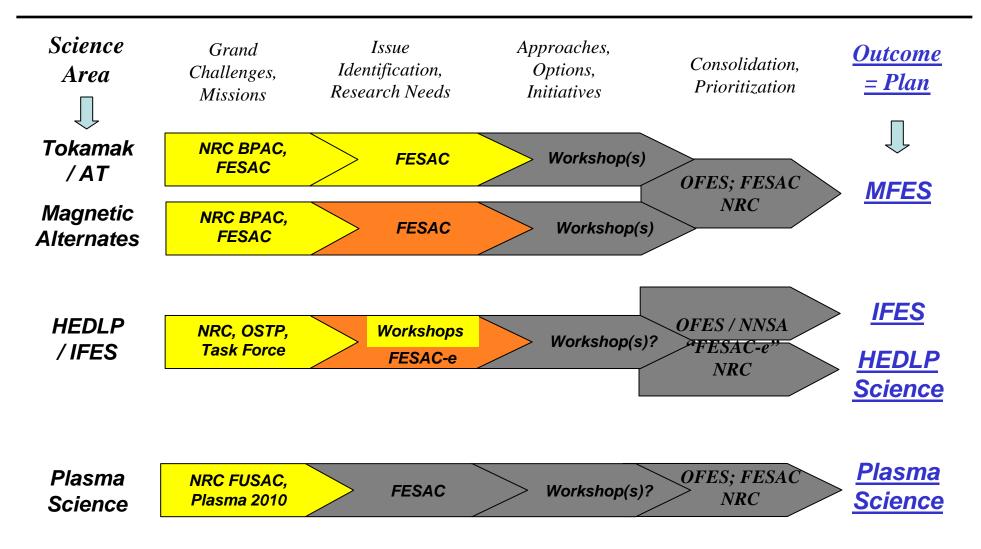
The Joint Program in HEDLP


- OFES and NNSA ICF Office establishing a joint program in High Energy Density Laboratory Plasmas (HEDLP)
 - Addressing the finding of the interagency TF-HEDP
 - The joint program will provide stewardship of HEDLP while maintaining the interdisciplinary nature of this area of science

• Topical research areas include:

- Laboratory astrophysics
- Compressible dynamics and radiative hydrodynamics
- Heavy ions, warm dense matter and strongly coupled plasmas
- Dense plasmas in ultrahigh magnetic fields
- Laser-plasma interactions
- Inertial confinement fusion and fast ignition
- HEDLP with ultra-fast and ultra-intense lasers

- Initial main scientific themes¹:
 - Create, probe, and control new states of matter in HEDLP
 - Laboratory Astrophysics
 - Challenges in inertial fusion energy sciences
- Program evolution will be guided by Advisory Committee and planning exercises
- First joint solicitation planned for 2008-2009
 - Requesting + \$5M for FY 2009
 - Details coming soon


1. Recommended by community HEDLP Workshop at the Argonne National Lab (May 23–24, 2007)

- Support for ITER and the burning plasma program
 - Integration of program vision
- Addressing most issues in a flat-budget climate, at best
 - Distribution of mission elements
 - Multi-year planning, despite single-year funding
- New Initiatives needed, even on a flat budget
 - Major Facilities utilization
 - ITER physics program and national research team
 - Fusion Simulation Project: the culmination of the MFES program
 - Future: confronting the fusion-plasma-materials challenges
 - HEDLP science needs
 - Plasma Sciences renewal (modest Plasma Science Initiative)
- Need for strategic plans to guide decisions
 - Resource redistribution inevitable
 - E.g., near-term termination of major facility

A Multi-year, Multi-Step Planning Process for <u>Each</u> Area of Responsibility

FESAC Gaps and Opportunities Study Already Suggests Basic Plan Structure

- Address 4 major themes in establishing a basis for Fusion Energy
 - Demonstrate control and understanding of burning plasma
 - Issue: understanding high-gain, nonlinear burning plasma science
 - Initiative: ITER MIE, operations, and upgrades
 - Creating predictable high-performance steady-state plasmas
 - Issue: establish, control and sustain advanced tokamak scenarios
 - Initiatives: Fusion Simulation Project; off-shore tokamak collaborations
 - Taming the plasma-material interface
 - Issues: plasma-materials interactions
 - Initiative: domestic and international tokamak studies of plasma-wall
 - Harnessing fusion power
 - Issue: integrating the multiply nonlinear plasma-nuclear environment
 - Initiative: Materials Test Station; Fusion Nuclear Science Expt.
- Modest watch on alternative confinement concepts
 - Expand knowledge base for toroidal confinement
 - Mitigate potential deficiencies in tokamak as reactor concept
- Foster stewardship of plasma sciences
- Strengthen HEDLP and related inertial fusion energy sciences (IFES) to prepare for access to ignition studies on NIF

Initial Prioritization of Issues Beyond Burning Plasmas:

Finding 3: Results of Prioritization

- Tier 1: solution not in hand, major extrapolation from current state of knowledge, need for qualitative improvements and substantial development for both short and long term
 - Plasma Facing Components
 - Materials
- Tier 2: solutions foreseen but not yet achieved, major extrapolation from current state of knowledge, need for qualitative improvements and substantial development for long term
 - Off-normal events
 - Fuel cycle
 - Plasma-wall interactions

Tier 2: (Continued)

- Integrated, highperformance plasmas
- Power extraction
- Predictive modeling
- Measurement
- Tier 3: solutions foreseen but not yet achieved, moderate extrapolation from current state of knowledge, need for quantitative improvements and substantial development for long term
 - RF launchers/internal components
 - Auxiliary systems
 - Control
 - Safety and environment
 - Magnets

FESAC Planning Panel Final Report October 23, 2007

Questions to Address

Agency Specific

- Response to Plasma 2010 (& other NRC) Reports
 - Most major recommendations adopted and are heavily influencing program
- ITER: status and US Contributions, funding
 - FY 2009 is critical for US participation in ITER
- Priorities for the US domestic fusion research program
 - Initial prioritization is emerging, but really needs boring down to extract scientific issues and needed initiatives; needs decoupling from near-term interests

General

- Most significant issues over the next year
 - Burning plasma future; strategic scientific planning
- Volatility in funding process and effects on program
 - Obvious difficulties in plotting trajectories of programs over many years
- Where can Academy can add value
 - Feedback during strategic planning process, and eventual review
 - Recognize differences between fusion sciences and plasma sciences; not zero-sum

Summary

- Detailed and exciting physics results from all areas of programs
- ITER growing from its "green-field" startup
 - International Organization developing
 - Major Design review activity near completion
 - Cost and schedule will clarify over next year

• Hoping to restore ITER funding in FY 2009

- Defunding in FY 2008 omnibus bill was an unfortunate surprise
- Concerns on US reliability
- US ITER Project Office surviving in minimal state
- Attaining near President's request in FY 2009 is needed for US participation in ITER

OFES responding to NRC recommendations

- Supporting several dedicated centers of excellence
- Integrating burning plasma enterprise with other program activities
- Stewardship of general plasma science and HEDLP are core interests
 - General plasma science and DOE/NSF partnership (Plasma 2010)
 - New Joint Program for HEDLP (w/NNSA) (DOE Workshops)

• Embarking on extensive strategic planning and prioritization efforts for all lines of research

- NRC, FESAC studies; Reasearch Needs workshops; Consolidation to Integrated Plans