

U.S. Fusion Energy Sciences Program

Joint Program in HEDLP: OFES Perspective

Y. C. Francis Thio, Program Manager, OFES

Presented to the SSAA Symposium, Washington, D.C.

February 26, 2008

Joint Program in HEDLP

- OFES interests in the Joint Program
 - Improve stewardship of Federal Government HEDLP program
 - Energy-related HEDLP studies to support case for IFES research in future
- Interested in exploiting scientific opportunities in large NNSA facilities
- Competition and diversities will be encouraged in the program
- First joint solicitation planned in FY2008 for FY2009 funding
- Planning follows same paradigm as for other OFES planning activities
 - FESAC to inform development of HEDLP program scientific roadmap for the next decade
 - Expect to follow with Workshop and consolidation of issues

HEDP-Research Topics & Related Federal Research Categories

Federal Research Categories	Research Examples
Astrophysics (NASA, NSF)	Astrophysical jets Neutron star interiors Core-collapse supernovae
High Energy Density Nuclear Physics (DOE/NP)	Quark-gluon plasmas; Nuclear astrophysics
High Energy Density Laboratory Plasmas (DOE/NNSA, DOE/FES)	Radiative hydrodynamics Laser-plasma and beam-plasma interaction Fusion burn Materials under extreme conditions Dense plasmas in ultrahigh fields Laboratory astrophysics
Ultrafast, Ultraintense Laser Science (NSF, DOE/BES)	Ultraintense x-rays for material science studies; applications of ultraintense lasers to chemistry and materials; advanced accelerators

Current OFES research in HED plasmas

Scientific Themes

- Develop the physics basis of pulsed, high density approach to fusion energy by studying HED plasmas
- Create, probe, and control new states of HED plasmas

Research covers fundamental areas of HEDLP physics

- Warm dense matter
- Laser-plasma, radiation-matter interaction
- Relativistic plasmas
- Dense plasma in high magnetic fields
- Compressible, radiative MHD

Research in support of three applications in IFES

- Heavy ion fusion
- Fast and shock ignition
- Magneto-inertial fusion

Current OFES Research in HEDLP

- Warm Dense Matter (Heavy ion fusion)
 - \$8.14M, 5 grants, 3 labs, 1 university, 1 industry
- Laser-plasma, radiation-matter interaction and relativistic plasmas (fast Ignition, shock ignition)
 - \$5.4M, 9 grants, 4 labs, 5 universities
 - \$1.1M, Fusion Science Center at U. Rochester
- Dense plasma in high magnetic fields, compressible, radiative MHD (Magneto-inertial fusion, astrophysical jets, and other)
 - \$4.71M, 17 grants, 4 labs, 10 Universities, 4 industries

HED projects in the past ICC program have been consolidated to the Joint Program in HEDLP in FY 2008

- HED ICCs consolidated into the Joint Program in HEDLP
 - Form the core of the program in dense plasmas in high magnetic fields (magnetized HEDLP):
 - Solid-liner MTF
 - Plasma-jet driven MTF
 - Dense-plasma wall interactions
 - Magneto-kinetic compression of FRC
 - Staged Z-pinch
- In addition, the SSPX group at LLNL has been re-directed towards a program in fast ignition and HED science to take advantage of major NNSA facilities.

With the limited funding at present, the OFES focus in IFES related HED research is modest

- In particular, we focus on studying ways to lower the implosion velocity and increasing coupling efficiency as one avenue towards higher fusion gain, while achieving ignition
 - Long-term, IFES requires higher gains, suitable targets and drivers, at reasonable costs
- Addressing the physics basis for three different approaches to achieve lower implosion velocity and higher coupling efficiency
 - Decoupling ignition from fuel assembly so that the dense fuel can be assembled with low implosion velocity
 - Fast ignition, shock ignition
 - Embedding an intense magnetic field in the target to slow down thermal losses from the hot spot, thus lower the implosion velocity required
 - Magneto-inertial fusion (magnetized target fusion)
 - Heavy ions have potentially higher efficiency in coupling to the target hydro
 - Heavy ion fusion

With our international partners, we are working towards testing the Fast Ignition concept

- Develop the scientific knowledge base to enable design of ignitionclass FI experiments in the next 5 years
 - Develop low-velocity, low-adiabat fuel assembly
 - Unravel the physics of ignitor energy creation and transmission
 - Develop modeling capability for designing integrated FI
- Currently funded research emphasizes electron fast ignitor
 - We would like to mount a major effort in ion fast ignitor, subject to receiving high-quality, competitive proposals
- Proposed program schedule
 - Develop scientific knowledge base to enable design of Q ~ 0.1 integrated FI experiment (2010)
 - Field integrated FI experiments and demonstrate $Q \sim 0.1$ (2012)
 - Design and field ignition class experiments on NIF (2015)

Slow implosions with low adiabat were tested on OMEGA D-3He fusion proton energy loss measured the high ρR

- Peak ρR is 0.26g/cm,² the highest ρR to date on OMEGA
- Empty shells would achieve ρR≈0.7g/cm² and stop 4MeV electrons

Warm (CH) thick-shell cone-target implosions in '08

C. Zhou, W. Theobald, R. Betti, P.B. Radha, V. Smalyuk, et al, Phys. Rev. Lett. 98: 025004 (2007)

We are developing a predictive understanding of the igniter physics – energy transmission

- We do not yet have predictive capability for the transport of relativistic electrons in dense plasmas against an adverse density gradient
- Involves new regimes of high energy density plasmas
 - Equation of states
 - Transport properties
 - Electrical, thermal
 - In the presence of magnetic fields
 - Beam and plasma instabilities
 - Weibel instabilities
- Experiments are required to guide and benchmark the codes

Experiments to develop and benchmark the codes include

Understand transport in cold metal OK - need to extend work to hot plasma

transport in dense plasmas

Shock driven foam experiment emulates FI cone tip at stagnation

• Explores the bottle-neck issue

In ion fast ignitor research, beam focusing and photon-ion energy conversion efficiency need to be characterized

At Los Alamos National Laboratory Trident Laser Facility, laser-driven mono-energetic ion acceleration was first demonstrated

1st experimental demonstration of laser-driven, mono-energetic ion acceleration¹:

Carbon 6+, 3 MeV/amu, 10⁹ particles, ~1kA, longitudinal emittance 10⁻⁶ eVs

With maxwellian energy distribution:

Range of species: H, Be, C, O, F, Ni, S, Pd, Pt MeV/amu ion energies, up to 10¹³ ions per pulse².

- ¹ Hegelich et al., Nature 439, p441 (2006).
- ² Hegelich et al., Phys. Plasmas, 12, 056314 (2005).
- ³ Flippo et al., PRL, submitted Feb. (2007)
- ⁴ Yin et al., Phys. Plasmas 14, 056706, (2007)

At Lawrence Livermore National Laboratory Titans laser facility, focusing of laser-driven proton beam is being explored

The shock ignition concept has been tested on OMEGA

More experiments with CH targets in '07-'08, cryo-targets in '09

R. Betti, FO 1.3, "Shock Ignition of Thermonuclear Fuel with High Areal Density"

Multi-MJ pulsed power facilities ready for implosion experiments for magneto-inertial fusion (MIF) research

By 2012, (1) develop predictive understanding of the dominant physical processes governing MIF, (2) create multi-keV, multi-MG, HED plasmas

- Air Force Reseach Lab Shiva Star pulsed power facility: 9 MJ, 12 MA
- imploded a 30-cm long, 10 cm diameter,
 1.1 mm thick Al liner in 24 μs reaching 0.5 cm/μs, with 16x radial convergence
- Integrated MIF implosion experiment to begin in 2008
 - Experimental system near completion

LANL FRX-L pulsed power facility

Demonstrated FRC $\sim 5 \times 10^{16} \text{ cm}^3$, 300 eV, $\sim 10 \, \mu\text{s}$

Attractive concepts for driving MIF are being investigated

 Converging array of plasma jets can be merged to form plasma shells (liners) for imploding a magnetized plasma

- Very high Mach-number plasma flows have been seen in wire-array Z-pinch
- Radial plasma flows stagnate on axis forming dense HED plasmas
 (Bott, et. al. Phys Rev E, 74, 2006)

Plasma jets from capillary discharges merge to form a plasma liner (Witherspoon, 2007)

- Address 3 major issues for MIF
 - Standoff delivery of liner
 - Repetitive operation
 - Liner fabrication and cost
- The next step is to mount a major study to merge plasma jets to produce stagnation pressures exceeding 1 Mbar, subject to receiving high-quality, competitive proposals

Advanced coaxial plasma gun to accelerate plasma slab without the blow-by instability is under development

At OMEGA, Rochester, flux compression experiments for High-Gain MIF is underway

- A magnetized cylindrical target is imploded to compress a seed magnetic flux
- A ~0.1 MG seed magnetic field is generated with a double coil driven by a portable capacitive discharge system
- Mono-energetic 14.7 MeV proton beam deflectometry is used for measuring the compressed magnetic fields
- Experimental system is undergoing preliminary shake-down tests
- So far the tests have produced one shot in which an initial field of 3T is compressed, resulting in a measured compressed field of 1300 T at one instant in time
- More tests are planned in April

Current Activities in Heavy Ion Fusion Science

- Directed at investigating HED physics of IFES
 - Bright, intense ion beams are required
- Neutralized drift compression: NDCX-1 has compressed ion beams from 200 ns down to 2 ns with 60x beam intensity longitudinally
- Initiated isochoric target heating experiments in jointly with GSI, Germany,
- Measurements of electron cloud effects on intense heavy-ion beam transport in both quadrupole and solenoid magnets.
- Computer simulation models matching experiments in both neutralized beam compression and e-cloud studies.
- Running HYDRA code to explore new heavy ion fusion direct drive target concept

Program Plan for Heavy Ion Fusion Science

- NDCX-I (by 2008)
 - Demonstrate intensity amplification of ~ 1000X with combined longitudinal and transverse compression
 - Conduct first beam-on-target WDM experiments in 2008 (~ 0.5 eV and solid density; transient darkening experiment)

- Develop NDCX-II (2011)
 - 2.8 MeV, high-intensity beam
- WDM studies at ~ 1 eV
- HED physics for IFES
 - Hydrodynamics experiments for stability and ion ablative direct drive target physics
 - Explore heavy ion fusion in twosided polar direct drive

Summary

- Current OFES interest emphasizes IFES-motivated HEDLP, but plans to expand program to include HED astrophysics that most overlap with this portion of the HEDLP space.
 - Complements NNSA's interests and stewardship of HEDLP
- Limited funding at present forces OFES to adopt a modest approach and focus on pursuing research in optimizing gain-efficiency product for IFES
 - Lowering implosion velocity and increasing coupling efficiency
 - Decoupling ignition from fuel assembly
 - Suppressing thermal transport by embedding an magnetic field in the target
 - Increasing coupling efficiency by using heavy ion beams
- The research covers the fundamental areas of HEDLP in:
 - Warm dense matter
 - Laser-plasma, radiation-matter interaction
 - Relativistic plasmas
 - Dense plasma in high magnetic fields
 - Compressible, radiative MHD