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Preamble
ation (approx)
ce with BP

Graphical Models
Examples (Physics, IT, CS)
Complexity & Algorithms

DPC codes Easy & Difficult

S for Spin Glasses

Books, Reviews, Papers

No perfect book on the subject, yet

Good books on related subjects

e David J. C. MacKay, Information Theory, Inference and
Learning Algorithms, Cambridge University Press, 2003

@ Marc Mezard & Anrea Montanari, Information, Physics and
Computation, in progress see Mezard's webpage

@ Tom Richardson, Riidiger Urbanke, Modern Coding Theory
Cambridge University Press, 2005

@ Alexander K. Hartmann, Heiko Rieger, Optimization
Algorithms in Physics, Wiley-VCH, 2002

Many recent research papers, and few reviews scattered over
Physics, Computer Science and Information Theory journals
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Preamble Graphical Models
Examples (Physics, IT, CS)
Complexity & Algorithms

Easy & Difficult

Boolean Graphical Models = The Language

Forney style - variables on the edges

Pe)= 2 ][40 .
. >
) b = Oy = %1
Z:ZHfa(Ua) (ib vk
- = g 71 = (012,014, 0138)

g2 = (012, 023)
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Preamble Graphical Models
Examples (Physics, IT, CS)
Complexity & Algorithms

Easy & Difficult

Boolean Graphical Models = The Language

Forney style - variables on the edges

Pe)= 2 ][40 .
. >
) b = Oy = %1
Z:ZHfa(Ua) (ib vk
- = g 71 = (012,014, 0138)

dr = (012,023)

y

Objects of Interest

@ Most Probable Configuration = Maximum Likelihood =
Ground State: arg max P(&)

@ Marginal Probability: e.g. P(0ap) = Zﬁ\aab P(3)
@ Partition Function: Z
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Preamble Graphical Models

Examples (Physics, IT, CS)
Complexity & Algorithms
Easy & Difficult

Example (1):

Ising model o) — ==l
P(G) = Z Lexp (Z(i,j) J,-J-a,-aj>

Jjj defines the graph (lattice)

v

Graphical Representation

Variables are usually associated with vertexes ... but transformation to
the Forney graph (variables on the edges) is straightforward

e Ferromagnetic (J; < 0), Anti-ferromagnetic (J; > 0) and
Frustrated/Glassy

@ Magnetization (order parameter) and Ground State

@ Thermodynamic Limit, N — oo

@ Phase Transitions
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Preamble Graphical Models

Examples (Physics, IT, CS)
Complexity & Algorithms
Easy & Difficult

Example (2):

Probabilistic Reconstructi atistical Inference)
Eorig = X = loi
original corrupted bl
possible
data noisy channel data: statistical : .
— el S = preimage
Jorig eC P(X‘KT) log-likelihood inference l = = (%
oecC
codeword magnetic field
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Preamble Graphical Models

Examples (Physics, IT, CS)
Complexity & Algorithms
Easy & Difficult

Example (2):

Probabilistic Reconstruc atistical Inference)
= X =
corrupted
noisy channel data: statistical
P(>?|5) log-likelihood inference

magnetic field

Qu

possible
preimage
oceC
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Preamble Graphical Models

Examples (Physics, IT, CS)
Complexity & Algorithms
Easy & Difficult

Example (2):

Probabilistic Reconstruc atistical Inference)

= X = a

corrupted .
. L. possible

noisy channel data: statistical .
. reimage
P(X|J) log-likelihood inference p&, c g
magnetic field
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Preamble

Graphical Models
Examples (Physics, IT, CS)
Complexity & Algorithms
Easy & Difficult

Example (2):

Probabilistic Reconstruction (Statistical Inference)

= X = a
corrupted .
. o possible
noisy channel data: statistical .
== o . reimage
P(X|J) log-likelihood inference po__, c g
magnetic field

Maximum Likelihood

Marginalization

ML(X) = arg max P(X|5) o7 (X) = arg max Z P(X|7)

5\0’,’

forward error correction - to be discussed later
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Preamble Graphical Models

Examples (Physics, IT, CS)
Complexity & Algorithms
Easy & Difficult

Example (3): , K-SAT

(X1 V xo V X3)A 1,2,.--, N — variables

A F(X) is a conjunction of M clauses
x; = 0(bad), 1(good)

X; is negation of x;

vV =0R A=AND

X is a “valid assignment” if F(X) =1

Probabilistic interpretation
P(X)=Z'F(%), Z=) F(X)
%

)
(x5 VX1V Xa)
F()?) = (X2 V x7 V X3)/\
(X7 V X5 V X5)/\

Finding a Valid Assignment, Counting Number of Assignments
Graphical Representation, Sparseness

Random, non-Random formulas

SAT /UNSAT transition wrt « = M/N, M, N — oo

© 6 06 ¢
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Preamble

Bethe Free Energy & Belief Proy tion (approx)
Exact Ir with BP

Decoding of LDPC codes

Algorithms for Spin Glasses

Complexity & Algorithms

Graphical Models
Examples (Physics, IT, CS)
Complexity & Algorithms
Easy & Difficult

@ How many operations are required to evaluate a graphical model of

size N7
° exact algorithm
°
approximate algorithm
°
measure of success
° improve
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Preamble Graphical Models

Examples (Physics, IT, CS)
Complexity & Algorithms
Easy & Difficult

Complexity & Algorithms

@ How many operations are required to evaluate a graphical model of
size N7

@ What is the exact algorithm with the least number of operations?

°
approximate algorithm
°
measure of success
° improve
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Preamble Graphical Models

Examples (Physics, IT, CS)
Complexity & Algorithms
Easy & Difficult

Complexity & Algorithms

@ How many operations are required to evaluate a graphical model of
size N7

@ What is the exact algorithm with the least number of operations?

@ If one is ready to trade optimality for efficiency, what is the best (or
just good) approximate algorithm he/she can find for a given
(small) number of operations?

measure of success

° improve
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Preamble Graphical Models

Examples (Physics, IT, CS)
Complexity & Algorithms
Easy & Difficult

Complexity & Algorithms

@ How many operations are required to evaluate a graphical model of
size N7

What is the exact algorithm with the least number of operations?

If one is ready to trade optimality for efficiency, what is the best (or
just good) approximate algorithm he/she can find for a given
(small) number of operations?

@ Given an approximate algorithm, how to decide if the algorithm is
good or bad? What is the measure of success?

° improve
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Preamble Graphical Models

Examples (Physics, IT, CS)
Complexity & Algorithms
Easy & Difficult

Complexity & Algorithms

@ How many operations are required to evaluate a graphical model of
size N7

What is the exact algorithm with the least number of operations?

If one is ready to trade optimality for efficiency, what is the best (or
just good) approximate algorithm he/she can find for a given
(small) number of operations?

Given an approximate algorithm, how to decide if the algorithm is
good or bad? What is the measure of success?

@ How one can systematically improve an approximate algorithm?
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Preamble Graphical Models

Examples (Physics, IT, CS)
Complexity & Algorithms
Easy & Difficult

Complexity & Algorithms

@ How many operations are required to evaluate a graphical model of
size N7

What is the exact algorithm with the least number of operations?

If one is ready to trade optimality for efficiency, what is the best (or
just good) approximate algorithm he/she can find for a given
(small) number of operations?

Given an approximate algorithm, how to decide if the algorithm is
good or bad? What is the measure of success?

@ How one can systematically improve an approximate algorithm?

(]

Linear (or Algebraic) in N is EASY, Exponential is DIFFICULTJ
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Preamble Graphical Models

Examples (Physics, IT, CS)
Complexity & Algorithms
Easy & Difficult

Easy & Difficult Boolean Problems

@ Any graphical problems on a tree (Bethe-Pieirls, dynamical
programming, belief propagation, and other names)

Ground State of a Rand. Field Ferrom. Ising model on any graph
Partition function of a planar Ising model

Finding if 2-SAT is satisfiable

Decoding over Binary Erasure Channel = XOR-SAT

Some network flow problems (max-flow, min-cut, shortest path, etc)

Minimal Perfect Matching Problem

Some special cases of Integer Programming (TUM)
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Preamble

Bethe Free Energy & Belief Propagation (approx)
ce with BP

DPC codes

Graphical Models
Examples (Physics, IT, CS)
Complexity & Algorithms

s for Spin Glasses Easyl&Difficalt

Easy & Difficult Boolean Problems

@ Any graphical problems on a tree (Bethe-Pieirls, dynamical
programming, belief propagation, and other names)

Ground State of a Rand. Field Ferrom. Ising model on any graph
Partition function of a planar Ising model

Finding if 2-SAT is satisfiable

Decoding over Binary Erasure Channel = XOR-SAT

Some network flow problems (max-flow, min-cut, shortest path, etc)

Minimal Perfect Matching Problem

Some special cases of Integer Programming (TUM)

Typical graphical problem, with loops and factor functions of a
general position, is DIFFICULT
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. . BP is Exact on a Tree
Bethe Free Energy & Belief Propagation (approx) Variational Method in Statistical Mechanics
Bethe Free Energy
Linear Programming and BP

BP is Exact on a Tree Bethe '35, Pieirls '36

—~ —~
( \ > Zis(015) = fi(o15), Zos(02s) = f(02s),
~— ~— Z36(036) = f3(036), 46(0a6) = fa(046)
s6(056) = Y f5(55) Z15(015) Zos(025)
(&) - 05 \056
o © ) Z = f5(56)Zas(036) Zao(0a6) Zos (or56)
N~ — 36
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BP is Exact on a Tree

Variational Method in Statistical Mechanics
Bethe Free Energy

Linear Programming and BP

Bethe Free Energy & Belief Propagation (approx)

BP is Exact on a Tree Bethe '35, Pieirls '36

( \ ) Zi5(015) = fi(o1s5), Zos(02s5) = fo(02s),
~— Z36(036) = f3(036), ~46(0a6) = fa(0a6)

~ —
s6(056) = »_ f5(5) Z15(015) Zos (0725)
® - F5\056
og © ) Z =) 5(3s)Z3s(036) Zas(6) Zss (s6)
~ — ~

06

Zba(Uab) = Z fa(ga)zac(aac)zad(aad) = Zab(gab) = Aab exp(nabgab:

Ea\o'ab

Belief Propagation Equations

Z fa(aa) exp(z naco'ac) (Uab — tanh (nab + 77ba)) =0

Fa cE€a
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BP is Exact on a Tree

Variational Method in Statistical Mechanics
Bethe Free Energy

Linear Programming and BP

Variational Method in Statistical Mechanics

- f2( -
Pe) = 5% 7 = Y11, £(5)

Exact Variational Principe (or earlier)

Bethe Free Energy & Belief Propagation (approx)

also known as Kullback-Leibler (1951) in CS and IT
F{b(3)} = = > b(7) > Infi(da) + 22 b(d) In b(5)
a a =
L =0 under Zb(&') =1

A7) lb@)=p(@)
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BP is Exact on a Tree

Variational Method in Statistical Mechanics
Bethe Free Energy

Linear Programming and BP

Variational Method in Statistical Mechanics

- f2( -
P(e) = L% 7= 11, £(5.)

Exact Variational Principe (or earlier)

Bethe Free Energy & Belief Propagation (approx)

also known as Kullback-Leibler (1951) in CS and IT
F{b(3)} = = > b(7) > Infi(da) + 22 b(d) In b(5)
a a =

OF

55(3) =0 under Z b(e) =1

b(&)=p(5)

Variational Ansatz

° ll\gflelar}-gield: p(d) = b(G) = [, p) bab(cab)
@ Beliet Propagation: =
[1, ba(72)

p(g) ~ b(o_:) - H(a,b) bab(gab)

Ya cea: Z by(d5) =1, bac(oac) = Z b,(55)

(exact on a tree)
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BP is Exact on a Tree

Variational Method in Statistical Mechanics
Bethe Free Energy

Linear Programming and BP

Bethe Free Energy & Belief Propagation (approx)

Bethe Free Energy: variational approach

(Yedidia,Freeman,Weiss '01 - inspired by Bethe '35, Peierls '3
F==>"> ba(3a)Infs(5a) + Y > ba(Fa)Inba(Fa) — Y bac(0ac) In bac(0ac)
a g, a d, (ac)
self-energy configurational entropy

Va c€a: >z ba(Fa) =1, bac(oac) = Zﬁa\oac b,(5a)

. . . OF _
=Belief-Propagation Equations: E|constr. =0
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BP is Exact on a Tree

Variational Method in Statistical Mechanics
Bethe Free Energy

Linear Programming and BP

Bethe Free Energy & Belief Propagation (approx)

Bethe Free Energy: variational approach

(Yedidia,Freeman,Weiss '01 - inspired by Bethe '35, Peierls '36)
F==>"> ba(3a)Infs(5a) + Y > ba(Fa)Inba(Fa) — Y bac(0ac) In bac(0ac)
a &, a G, (a;¢)
self-energy configurational entropy

Va c€a: >z ba(Fa) =1, bac(oac) = Zﬁa\oac b,(5a)

) ; - . 6F _
=Belief-Propagation Equations: E|constr. =0

Belief-Propagation as an approximation: iterative = Gallager '61; MacKay '98

@ Exact on a tree
Trading optimality for reduction in complexity: ~ 2L —~ L
(BP = solving equations on the graph) # (Message Passing = iterative BP)

Convergence of MP to minimum of Bethe Free energy can be enforced

© 6 06 ¢

Zpp 2 Zexact: BP ansatz in exact Gibbs Functional is not a truly variational
substitution (}_ 5 b(d) = 1 is not guaranteed)
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. . BP is Exact on a Tree
Bethe Free Energy & Belief Propagation (approx) Variational Method in Statistical Mechanics
Bethe Free Energy
Linear Programming and BP

Linear Programming version of Belief Propagation

In the limit of large SNR, In f; — to0: BP—LP
Minimize F = E = — "> b,(5,) In f4(6,) = self energy

under set of linear constraints
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BP is Exact on a Tree

Variational Method in Statistical Mechanics
Bethe Free Energy

Linear Programming and BP

Bethe Free Energy & Belief Propagation (approx)

Linear Programming version of Belief Propagation

In the limit of large SNR, In f;, — +oc: BP—LP
Minimize F = E = —) Y b,(6,)Inf,(5,) = self energy

under set of linear constraints

LP decoding of LDPC codes Feldman, Wainwright, Karger '03

@ ML can be restated as an LP over a codeword polytope

LP decoding is a “local codewords” relaxation of LP-ML
Codeword convergence certificate

Discrete and Nice for Analysis

Large polytope {by, bj} = Small polytope {b;}
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Loops ... Questions

Gauge Transformations and BP
Loop Series

Self-avoiding Tree Approach

Exact Inference with BP

BP does not account for Loops

4

@ Is BP just a heuristic in a loopy case?

e Why does it (often) work so well?
@ Does exact inference allow an expression in terms of BP?

@ Can one correct BP systematically?
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Loops ... Questions

Gauge Transformations and BP
Loop Series

Self-avoiding Tree Approach

Exact Inference with BP

Gauge Transformations Chertkov, Chernyak '06

Local Gauge, G, Transformations

Z= Z:Ha ﬁ?(&a)a Ty = (O'abao'aa e )

Oab = Opy = %1

fa(Ea = (O'ab; co )) =
Za;b Gab (Tabs ) fa(00p, )
Zﬂab Gab(o—aba U/)Gba(o—aba O—N) = 6(0—/: 0”)

v

The partition function is invariant under any G-gauge!
7 = Z H fy(d5) = Z H (Z fa(7) H Gab (T abs o;b)>
o a G a A

bea
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Loops ... Questions

Gauge Transformations and BP
Loop Series

Self-avoiding Tree Approach

Exact Inference with BP

Belief Propagation as a Gauge Fixing Chertkov, Chernyak '06
z = Z H fa (53) = Z H <Z fa(é’;) H Gab(gab7 U/ab)>
g a o a al bea
Z=  2(G) + > Z.(G)
[l possible colorings of the graph
ground state ap & grap
F=41 7#+1, excited states
Va & Vb e a:
c#b
N 6665 (0 = —1,0%,) [] 65 (+1,0) =0
) cea

No loose BLUE=colored edges at any vertex of the graph!
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Loops ... Questions

Gauge Transformations and BP
Loop Series

Self-avoiding Tree Approach

Exact Inference with BP

Belief Propagation as a Gauge Fixing (II)
Va& vVbea: R

c#b
L 6@67 (1,7, >H *6(+1,0%) = 0 = ) altne=et Y 6@ ] 670,00
o’ o N\
5 0y Gab(Tabs ) Gos( s ') = 8(o”, 0"") IR
pa= T 6@ 1 6iP(+1,0%)

7

Belief Propagation in terms of Messages
G(bp)(+1 O') exp (Unab) , bp)( 1 O') exp (_Unba)
24/ cosh(1, + 7ba) 2\/C°5h(773b + 7ba)

Z ﬁa(o_:a) €Xp Z Oac'lac (Uab — tanh (nab + nba)) =0

Ea\Uab cEa
S fa(3a)exp(X e, Tabnan) __exp(a(nab+1pa))
ba(7) = >, fa(O’a)eXp(Zbea Uabnab)’ bav(7) = 2 &P((nab-+1ba))
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Loops ... Questions

Gauge Transformations and BP
Loop Series

Self-avoiding Tree Approach

Exact Inference with BP

Variational Principe and Gauge Fixing
Z=2o(G)+ Y Z(G), 2o(G) = Zole), cab(0ab) = Gan(+1,0ab)
~——

GF+1 depends only on the ground state gauges

Variational formulation of Belief Propagation
(bp)

0Zy(¢€)

Beus (o) =0 < Belief Propagation Equations
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Loops ... Questions
Gauge Transformations and BP

Exact Inference with BP A
Loop Series

Self-avoiding Tree Approach

Variational Principe and Gauge Fixing

Z=2(G)+ Y ZA(G), Zo(G)= Zuo(e), €an(0an) = Gap(+1,0ap)
~——

G=41 GF+1 depends only on the ground state gauges

Variational formulation of Belief Propagation
(bp)

0Zy(¢€)

Fenn(0as) =0 < Belief Propagation Equations

Fo(e) = —In Zy(€) is directly related to the Bethe Free Energy
of Yedidia, Freeman, Weiss '01
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Loops ... Questions

Gauge Transformations and BP
Loop Series

Self-avoiding Tree Approach

Exact Inference with BP

Variational Principe and Gauge Fixing
Z=2o(G)+ Y Z(G), 2o(G) = Zole), cab(0ab) = Gan(+1,0ab)
~——

GF+1 depends only on the ground state gauges

Variational formulation of Belief Propagation

(bp)
B?j%g,) =0 <« Belief Propagation Equations

Fo(e) = —In Zy(€) is directly related to the Bethe Free Energy
of Yedidia, Freeman, Weiss '01

General Remarks on Gauge Fixing

@ Related to the Re-parametrization Framework of Wainwright, Jaakkola and
Willsky '03
@ Generalizable to g-ary alphabet Chernyak, Chertkov '07

@ ... suggests Loop Series for the Partition Function =
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Loops ... Questions

Gauge Transformations and BP
Loop Series

Self-avoiding Tree Approach

Exact Inference with BP

Loop Series: Chertkov,Chernyak '06

Exact (!!) expression in terms of BP

z=Y [][#()=2 <1+Zr(C)>
Gy @ C

HC Ha
H(C) — a€ _ ~
=T a=my ~ L7
(ab)eC
@ The Loop Series is finite
C € Generalized Loops = Loops without loose ends O Al s i e s e
calculated within BP
@ BP is exact on a tree
Z b O’a)O'ab . .. ..
@ BP is a Gauge fixing condition.
(bo) Other choices of Gauges would
Z b; p (7a) H Oab — Mab) lead to different representation.

bea,C
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Loops ... Questions

Gauge Transformations and BP
Loop Series

Self-avoiding Tree Approach

Exact Inference with BP

Summary (Loop Calculus)

©

BP egs. solve Gauge fixing conditions

(]

BP egs also explains no-loose-end coloring constraints

@ BP minimizes gauge dependence in the ground state

Loop series expresses partition function in terms of a sum of terms,
each associated with a generalized loop of the graph

@ Each term in the Loop Series depends explicitly on the BP solution
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Loops ... Questions

Gauge Transformations and BP
Loop Series

Self-avoiding Tree Approach

Exact Inference with BP

Self-avoiding Tree Weitz '06

Bipartite. Binary.
’P(&') =z H f(a,-,aj)

(i S
pi(ci) = 3= P(5) 5
a\oj =
pi(r) _ 2\ U |f’i=+ o

P T E g, (Mg Flonsa)) |
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Loops ... Questions

Exact Inference with BP Gauge Tr.ansformatlons and BP
Loop Series
Self-avi g Tree Approach

Self-avoiding Tree Weitz '06

Bipartite. Binary.

'P(a")2271 H)f(o'lvgj) 02
pi(oi) = Z P(3) O
a\oj =

- Z&\a,(n(k,j) f("k’”f))|oi:+
P S oo, (M flowan)|

@ PO Po 0 @ PO PO o ® 90 9o o

? @ ﬁfﬁf ’ TR R

? i@ LT ¥ %
WY BB WEyyEy oy
-

~chertkov/Talks/IT /SPA.pdf
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Preamble

Bethe Free Energy & Belief Propagation (approx)
Exact Inference with BP

Decoding of LDPC codes

Algorithms for Spin Glasses

Loops ... Questions

Gauge Transformations and BP
Loop Series

Self-avoiding Tree Approach

Complementarity of Loop Calculus & Graphical Transformations

Speculations

@ Loop Calculus is built on Gauge Transformations. Gauge
Transformations do not change the graph but reparametrize
factor functions.
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Loops ... Questions

Gauge Transformations and BP
Loop Series

Self-avoiding Tree Approach

Exact Inference with BP

Complementarity of Loop Calculus & Graphical Transformations

Speculations

@ Loop Calculus is built on Gauge Transformations. Gauge
Transformations do not change the graph but reparametrize
factor functions.

@ Graphical Transformations keep factor functions but modify
the graph.
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Loops ... Questions

Gauge Transformations and BP
Loop Series

Self-avoiding Tree Approach

Exact Inference with BP

Complementarity of Loop Calculus & Graphical Transformations

Speculations

@ Loop Calculus is built on Gauge Transformations. Gauge
Transformations do not change the graph but reparametrize
factor functions.

@ Graphical Transformations keep factor functions but modify
the graph.

@ Loop Calculus & Graphical Transformations are
complementary.
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Loops ... Questions

Gauge Transformations and BP
Loop Series

Self-avoiding Tree Approach

Exact Inference with BP

Complementarity of Loop Calculus & Graphical Transformations

Speculations

@ Loop Calculus is built on Gauge Transformations. Gauge
Transformations do not change the graph but reparametrize
factor functions.

@ Graphical Transformations keep factor functions but modify
the graph.

@ Loop Calculus & Graphical Transformations are
complementary.

@ It may be advantageous to build efficient optimality achieving
algorithms on the combination of the two: the Loop Calculus
and the Graphical Transformations.
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Error Correction. Statistical Inference.
Error-Floor. Pseudo-Codewords & Instantons.

Decoding of LDPC codes Analys.is and Improvement of Decoding with Loop Calculus
Reducing the Error Floor

Error Correction

Q
i
Scheme' Cell phone Hard disk Optical disk Fiber

SOURCE [ = .19 jous 0. =

L

=D ..oL 110101 11

Example of Additive White Gaussian Channel:

P(xoutxin) = T P(xout;i|Ximi)
i=bits

pesmarion= s o 1o &=
L

2 2
& oy o P(xly) ~ exp(=s"(x — y)"/2)
N

@ Channel

is noisy "black box" with only statistical information available
@ Encoding:

use redundancy to redistribute damaging effect of the noise
@ Decoding [Algorithm]:

reconstruct most probable codeword by noisy (polluted) channel

Michael Chertkov — chertkov@lanl.gov http://cnls.Inl.gov/~chertkov/Talks/IT /SPA.pdf



Error Correction. Statistical Inference.

Error-Floor. Pseudo-Codewords & Instantons.

Analysis and Improvement of Decoding with Loop Calculus
Reducing the Error Floor

Low Density Parity Check Codes

Decoding of LDPC codes

@ N bits, M checks, L = N — M information bits
example: N =10,M =5,L =5

@ 2L codewords of 2V possible patterns
@ Parity check: Av =c =0

example:
1 1 1 1 0 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0
A= 0o 1 0o 1 0o 1 0 1 1 1
1 0 1 0 1 0o o0 1 1 1
1 1 0 O 1 0 1 0 1 1
@ LDPC = graph (parity check matrix) is sparse

Tanner's (155,64,20) code

L~ Hamming distance
informational bits
length of encoded message

Parity check matrix

hertkov@lanl.gov



Error Correction. Statistical Inference.
Error-Floor. Pseudo-Codewords & Instantons.

Decoding of LDPC codes Analys.ls and Impro-vement of Decoding with Loop Calculus
Reducing the Error Floor

Decoding as Statistical Inference

Decoding

Plolx) =22 )] ]o ( [T o +1) I plxiler)

i€ i

Hard (check) constraints define the graph/code

N.Sourlas '89 — Stat Phys & Error-correction

Michael Chertkov — chertkov@lanl.gov http://cnls.Inl.gov/~chertkov/Talks/IT /SPA.pdf



Error Correction. Statistical Inference.

Error-Floor. Pseudo-Codewords & Instantons.

Analysis and Improvement of Decoding with Loop Calculus
Reducing the Error Floor

Decoding of LDPC codes

Graphical models

ctori (Forney '01, Loeliger '01)

P(olx) = Z 7 ] fi(xaloa)

z(x) =Y [[ falxalo))

partition function

f>0
Oap = Opy = £1

o1 = (012,014, 018)

oy = (012,013)

Example: Error-Correction  (linear code, bipartite Tanner graph)

1, Va,331i, oja=0;
fi(hiloi) = eXP(Uihi)'{ 0 ’ otherwil:e v

fo(oa) =46 H oj,+1

ica h; - log-likelihoods
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Error Correction. Statistical Inference.

Error-Floor. Pseudo-Codewords & Instantons.

Analysis and Improvement of Decoding with Loop Calculus
Reducing the Error Floor

Decoding of LDPC codes

Shannon Transition

1072

@ Phase Transition

@ Ensemble of Codes
[analysis & design]

@ Thermodynamic
limit but

1.0 0.077 0.955 0.933 0.912 0.801 0871 0851 ¢

0.159 0.153 0.147 0.142 0.136 0.131 0.125 012 P,

hael Chertkov — chertkov@lanl.gov http://cnls.Inl.go



Decoding of LDPC codes

Error-Floor

Error Correction. Statistical Inference.

Error-Floor. Pseudo-Codewords & Instantons.

Analysis and Improvement of Decoding with Loop Calculus
Reducing the Error Floor

Old/bad
codes

andom

Error Rate
5]
[S

Optimized |

ptimized Il

45 5.0 55 6.0 E./N, [dB]
Signal-to-Noise Ratio

@ BER vs SNR = measure of

performance

@ Finite size effects
e Waterfall <= Error-floor

@ Error-floor typically emerges due

to sub-optimality of decoding,
i.e. due to unaccounted loops

@ Monte-Carlo is useless at

FER < 108

@ Need an efficient method to

analyze error-floor

Michael Chertkov — chertkov@lanl.gov
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Error Correction. Statistical Inference.
Error-Floor. Pseudo-Codewords & Instantons.
Analysis and Improvement of Decoding with Loop Calculus

Decoding of LDPC codes Reducing the Error Floor

Pseudo-codewords and Instantons

Error-floor is caused by Pseudo-codewords: m———
Wiberg '96; Forney et.al'99; Frey et.al '01; closest to zero rrors
Richardson '03; Vontobel, Koetter '04-'06 ) . er
Instanton = optimal conf of the noise \
no erfors
BER = /d(noise) WEIGHT (noise) _
timal conf
BER ~ WEIGHT< - ’;Za con )
oF the noise Instanton-amoeba
optimal conf _ Point at the ES — optimization algorithm
of the noise ~  closest to "0" Stepanov, et.al '04,'05

Stepanov, Chertkov '06

Instantons are decoded to Pseudo-Codewords
http://cnls.Inl.gov/~chertkov/Talks/IT /SPA.pdf
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Error Correction. Statistical Inference.

Error-Floor. Pseudo-Codewords & Instantons.

Analysis and Improvement of Decoding with Loop Calculus
Reducing the Error Floor

Decoding of LDPC codes

Pseudo-Codeword Search Algorithm

LP decoding (o, =0,1 AWGN channel)

(155, 64,20), AWGN test:

Va: Y bo(oa) =1, & Vivasi: bf(ai):zcra\a,-bﬂ(ol’)

Ta

Error-Surface

‘ Weighted Median: .
i - < PR e e
Tinst | o X: _oXio d = (Ziai) )
° 0 | st 2507 i e S
“0”-codeword : dangerous i FER ~ exp(—d - s%/2) g P e

I pseudo-codeword Wiberg '96; Forney et.al '01 ) i

: Vontobel, Koetter '03,'05 ; e
PCS Algorithm  Chertkov, Stepanov '06 o—
e @ Start: Initiate x(©). o . B Mf
@ Step 1: x(K) is decoded to o (K). 2 . . 4037

£ ——

T " T
s0 100 150
bitlabel, i=0, .., 154

@ Step 2: Find y(¥) - weighted median
between o (k) and 0"
@ Step 3: If y(k) = )’(kil)x kx = k End} ~ 200 pseudo-codewords within

Otherwise go to Step 2 with 16.4037 < d < 20
L) (0 g

Michael Chertkov — chertkov@lanl.gov http://cnls.Inl.gov/~chertkov/Talks/IT /SPA.pdf



Error Correction. Statistical Inference.
Error-Floor. Pseudo-Codewords & Instantons.
Analysis and Improvement of Decoding with Loop Calculus

Decoding of LDPC codes Reducing the Error Floor

Frame Error-Rate vs Signal-to-Noise-Ratio

!

~ exp(—10.076 - s2/2)

distribution function

Instanton-amoeba:
Stepanov, et.al '04,'05,’06
LP-based PC-search:

SNR Chertkov, Stepanov '06,'07

hertkov@lanl.gov B hertkov/Talks/IT /SPA.pdf




Error Correction. Statistical Inference.

Error-Floor. Pseudo-Codewords & Instantons.

Analysis and Improvement of Decoding with Loop Calculus
Reducing the Error Floor

Decoding of LDPC codes

Frame Error-Rate vs Signal-to-Noise-Ratio

c
S

—~ B
g2

5 BP, 128 iter 2

=

% 1074 2
B

e e | 3

S ~ exp(—10.076 - s2/2)

=

|I| 1081

&

5

LT

Instanton-amoeba:

e 207 - Stepanov, et.al '04,'05,’06
. . . . LP-based PC-search:
SNR Chertkov, Stepanov '06,'07




Error Correction. Statistical Inference.

Error-Floor. Pseudo-Codewords & Instantons.

Analysis and Improvement of Decoding with Loop Calculus
Reducing the Error Floor

Decoding of LDPC codes

Loop Calculus & Pseudo-Codeword Analysis Chertkov,Chernyak '06

Single loop truncation

Z =21+ crc) = Zo(1+r()) S

200

o o

Synthesis of Pseudo-Codeword Search Algorithm

(Chertkov, Stepanov '06) &

A-posteriori log-likelihoods

@ Consider pseudo-codewords one after other

@ For an individual pseudo-codeword /instanton identify a critical
loop, I, giving major contribution to the loop series.

® @ ®0

@ Hint: look for single connected loops and use local " triad” 0

contributions as a tester: r(I)=]],cr ﬁsfp)

T
bit label, i=1,....155

Proof-of-Concept test  [(155, 64, 20) code over AWGN]

@ V pseudo-codewords with 16.4037 < d < 20 (~ 200 found)
there always exists a simple single-connected critical loop(s)
with r([) ~ 1.

Pseudo-codewords with the lowest d show r(I) =1

Invariant with respect to other choices of the original codeword

Michael Chertkov — chertkov@lanl.gov
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Error Correction. Statistical Inference.
Error-Floor. Pseudo-Codewords & Instantons.
Analysis and Improvement of Decoding with Loop Calculus

Decoding of LDPC codes Reducing the Error Floor

Extended Variational Principe & Loop-Corrected BP

Bare BP Variational Principe: gT]Z(;; =0
a
n(bP)
New choice of Gauges guided by the knowledge of the critical loop I
dexp(—F)|  _ _
EX;T‘%[O’ F=—In(Z+ Zr)

\

BP-equations are modified along the critical loop I

3 o, (tanh(Map+1ba) —0ap) Pa(oa)
Y o, Paloa)

= explicitly known contribution|, =0 [along I

Teff

Loop-Corrected BP Algorithm

1. Run bare BP algorithm. Terminate if BP succeeds (i.e. a valid code word is found).

2. If BP fails find the most relevant loop I that corresponds to the maximal |r-|. Triad search is helping.

3. Solve the modified-BP equations for the given I'. Terminate if the improved-BP succeeds.

4. Return to Step 2 with an improved I'-loop selection.

A\

Michael Chertkov — chertkov@lanl.gov http://cnls.Inl.gov/~chertkov/Talks/IT /SPA.pdf



Error Correction. Statistical Inference.

Error-Floor. Pseudo-Codewords & Instantons.

Analysis and Improvement of Decoding with Loop Calculus
Reducing the Error Floor

Decoding of LDPC codes

| P-erasure = simple heuristics

@ 1. Run LP algorithm. Terminate if LP succeeds (i.e. a valid code word is found).
@ 2. If LP fails, find the most relevant loop I that corresponds to the maximal amplitude r(I).
@ 3. Modify the log-likelihoods along the loop I introducing a shift towards zero, i.e. introduce a complete

or partial erasure of the log-likelihoods at the bits. Run LP with modified log-likelihoods. Terminate if the
modified LP succeeds.

@ 4. Return to Step 2 with an improved selection principle for the critical loop.

(155, 64,20) Test

o IT WORKS!
All troublemakers (~ 200 of them) previously found by LP-based Pseudo-Codeword-Search Algorithm
method were successfully corrected by the LP-erasure algorithm.

@ Method is invariant with respect the choice of the codeword (used to generate pseudo-codewords).

General Conjecture:

@ Loop-erasure algorithm is capable of reducing the error-floor

@ Local adjustment of the algorithm, anywhere along the critical loop, in the spirit
of the Facet Guessing (Dimakis, Wainwright '06), may be sufficient =

Michael Chertkov — chertkov@lanl.gov http://cnls.Inl.go chertkov/Talks/IT /SPA.pdf



Error Correction. Statistical Inference.
Error-Floor. Pseudo-Codewords & Instantons.

Decoding of LDPC codes Analys_ls and Improvement of Decoding with Loop Calculus
Reducing the Error Floor

Breaking the critical loop locally Chertkov '07

@ Exhaustive Bit Guessing (simplified version of [ Dimakis, Wainwright '06])
corrects all the ~ 200 dangerous pseudo-codewords !!

@ Set of "successful” bits correlates strongly with the set of bits forming the
critical loop

[155, 64, 20] test of LGG

[ LAY N
& ) $ ¢,
Loop Guided Guessing (LGG) é“’ TS

@ 1. Run the LP algorithm. Terminate if LP émd S : o°

succeeds. 1 0 e 0, T
@ 2. If LP fails, find the critical loop, I'. § , L

10

@ 3. Pick any bit along the critical loop and *“fix 2 é E/NAZZSZ ° °

the bit" running two two corrected LP schemes. ©e

Terminate if any of LPs succeeds. . .

. . @ Complexity of LGG is the

@ 4. If not return to Step 3 selecting another bit e &S 6 [P

along the critical loop or to Step 2 for an

improved selection principle for I'. @ LGG corrects 9 out of 10

errors at E,/Np = 4.8 !

Michael Chertkov — chertkov@lanl.gov http://cnls.Inl.gov/~chertkov/Talks/IT /SPA.pdf



Error Correction. Statistical Inference.
Error-Floor. Pseudo-Codewords & Instantons.
Analysis and Improvement of Decoding with Loop Calculus

Decoding of LDPC codes Reducing the Error Floor

What to do with the remaining 1/10 ?

Draper, Yedidia, Wang ISIT'07: Fixing 1,2, ..., k bits = 2*
LPs till decode to a codeword (ML certificate enforced).

@ Weiss, Yanover, Meltzer '07: Sufficient condition for bits
decoded by the bare LP to integers to show the right values.

Our further strategy:

Use Loop Calculus in sequential selection of the fixed bits

Longer codes
@ Back to iterative BP

Michael Chertkov — chertkov@lanl.gov http://cnls.Inl.gov/~chertkov/Talks/IT /SPA.pdf



Preamble

Bethe Free Energy & Belief Propagation (approx)
Exact In ce with BP
Decoding of LDPC codes

Algorithms for Spin Glasses

Error Correction. Statistical Inference.

Error-Floor. Pseudo-Codewords & Instantons.

Analysis and Improvement of Decoding with Loop Calculus
Reducing the Error Floor

Summary (LDPC Decoding)

Error floor is due to low-weight (dangerous) pseudo-codewords

Instanton-amoeba & Pseudo-codeword search algorithms
allows to find the dangerous pseudo-codewords efficiently

Critical loops in the Loop Series signify wrong decoding

Loop Series based analysis offers efficient guiding principle for

decoding improvement

Reducing the error floor may be not that difficult ... after all
[N.B. We are discussing Average Case Complexity]

All papers are available at http://cnls.lanl.gov/~chertkov/pub.htm J

Michael Chertkov — chertkov@lanl.gov
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

Ferromagnetic Random-Field Ising Model

p(7) = Z texp Pia ZJUO',O'J = Z hio;
(i)

Jj >0, hy 20
(7,/) are edges on an undirected graph G

Ground State, T — 0

mln Z Jijoio; — Zha,

/,J)eg i€eg

vV ieG: ogi=%1
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

Undirected = Directed = (s-t)-Extended

mm Z Jijoio; — Zh;a;

% (ies i€g V i€G: o=+l

m|n g J,Hjo oj

J)E .
('1) 9 v i€g): oi=tlios=+lio=—1 3

directed: J,'_,j = Jj_,,' ES J,-j/2
(S—t) extended: Js;_,; =2h;, it h; >0 Ji_;= 2|h,‘|7 if h <0

Michael Chertkov — chertkov@lanl.gov http://cnls.Inl.gov/~chertkov/Talks/IT /SPA.pdf



Spin Glass & Min-Cut/Max-Flow
BP is exact on some problems with Loops
Dimers & Planar algorithm

Algorithms for Spin Glasses BP and Loop Series on Planar Graphs

From Vertexes to Edges

E Jijoio;j

i.J)€G,
( J) d v iGQ;: oi=tl;0s=+1;0:=—1

Integer Linear Programming

L 1 Uizlvaj:_l = — o =
=4 = { 0, otherwise pr = (0l =en) 2= 00

ojoj +0jo; =2 —4(nij + nji), 0s0i =1—2ns,;, ojor=1—2n
_1 Z J,—g + {r;r]nn Z J,—»Jnl—d Vi e g/ pi = 0.1: ps = 0 pt = 1
(i—i)eg P (i—pegy dis

V(i —Jj)€g:
—pj+mi—j=0,1

Michael Chertkov — chertkov@lanl.gov
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

FRFI=Min-Cut=Max-Flow

1
_ Ji_.;+ min Ji . mi;
2_2 i—j Z i—jTi—j v:‘eg{,,p,-:o,l:ps=0,m=1
V(i —Jj)eg,:
pi —pj +ni-j=0,1

A.K. Hartman & H. Rieger, Optimization Algorithms in Physics, Wiley-VCH, 2002,

and references therein
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BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

FRFI=Min-Cut=Max-Flow

1
_ Ji_.;+ min Ji . mi;
2_2 i—j Z i—jTi—j v:‘eg{,,p,-:o,l:ps=0,m=1
V(i —Jj)eg,:
pi —pj +ni-j=0,1

A.K. Hartman & H. Rieger, Optimization Algorithms in Physics, Wiley-VCH, 2002,

and references therein
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

FRFI=Min-Cut=Max-Flow

1
_ Ji_.;+ min Ji . mi;
2_2 i—j Z i—jTi—j v:‘eg{,,p,-:o,l:ps=0,m=1
V(i —Jj)eg,:
pi —pj +ni-j=0,1

A.K. Hartman & H. Rieger, Optimization Algorithms in Physics, Wiley-VCH, 2002,

and references therein

Michael Chertkov — chertkov@lanl.gov http://cnls.Inl.gov/~chertkov/Talks/IT /SPA.pdf



Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

FRFI=Min-Cut=Max-Flow

1

- Jimj+ min Jimnimg| .
2 _Z ! {mp}.z I i€ ghpi=0,1; ps=0, pr =1
V(i —Jj)eg,:

pi —pj +ni-j=0,1

Min-Cut Max-Flow

A.K. Hartman & H. Rieger, Optimization Algorithms in Physics, Wiley-VCH, 2002,

and references therein
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

Back to Undirected Graph

‘ Z Jiﬂj+{r;1’|;1} ‘ S dimmin] V'iG.gQ,Pi,: 0,1; ps =0, pe =1
V(i —j)€gy: pi—pj+ni-;j=0,1

=5 2 o Z Jimil vie g pi=01 p=0, p=1
= V(i,j) € G’ pi—pj+m;=0,1

Jsi=2h;, if h; >0 Jir =2|hi|, if hi<O
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

Back to Undirected Graph

1 .
= Z ,Jiﬂj+{r;17lg} . Z / Jh—ii=s| Vi€ gl pi=01 ps=0, pr=1
(i=i)edq (i=i)edq V(i—j)€Gl: pi—p+ni—;=0,1

1 .
2 Z ,Jij+{r2,|/?} .Z, Jimil vie g pi=01 p=0, p=1
()€e (e V(i.j) €G': pi—pj+ 75 =0,1

Jsi=2h;, if h; >0 Jir =2|hi|, if hi<O
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

FRFI/Min-Cut/Max-Flow is EASY

) I\/Iany network algorithms. See e.g. T.H. Cormen, et al, Introduction to
Algorithms, MIT-Press (2001)

@ Reduction to Linear Programming. See e.g. H. Papadimitriou,
I. Steiglitz, Combinatorial Optimization: Alg. and Complexity, Dover (1998)

Relaxation of Min-Cut Integer LP to respective LP is exact

3 2 it gin 3 il g0, p =15 vieghn =0,
? 9o (iedy V(i,j)€G": pi—pj+n;=0,1

e Matrix of LP constraints is Totally Uni-Modular (TUM)
o Min-Cut LP and Max-Flow LP are Dual

Michael Chertkov — chertkov@lanl.gov http://cnls.Inl.gov/~chertkov/Talks/IT /SPA.pdf



Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

FRFI/Min-Cut/Max-Flow is EASY

) I\/Iany network algorithms. See e.g. T.H. Cormen, et al, Introduction to
Algorithms, MIT-Press (2001)

@ Reduction to Linear Programming. See e.g. H. Papadimitriou,
I. Steiglitz, Combinatorial Optimization: Alg. and Complexity, Dover (1998)

Relaxation of Min-Cut Integer LP to respective LP is exact

Z/JU—"_rnm Z/J’JWU} Ps:O, pt:]-; Vieglypi:[OJ]
* ireo ()< V(i) €9 pi—pj+my = [0,1]

e Matrix of LP constraints is Totally Uni-Modular (TUM)
o Min-Cut LP and Max-Flow LP are Dual
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

How about using BP for FRFI? J
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Spin Glass & Min-Cut/Max-Flow
BP is exact on some problems with Loops

Dimers & Planar algorithm

Algorithms for Spin Glasses BP and Loop Series on Planar Graphs

How about using BP for FRFI? J

First Impression:

Should not work for arbitrary graph because of Loops
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Spin Glass & Min-Cut/Max-Flow
BP is exact on some problems with Loops

Dimers & Planar algorithm

Algorithms for Spin Glasses BP and Loop Series on Planar Graphs

How about using BP for FRFI? J

First Impression:

Should not work for arbitrary graph because of Loops

On Second Thought:

May be the T — 0 limit is not that hopeless? After all we know
that the problem is easy!

Michael Chertkov — chertkov@lanl.gov http://cnls.Inl.gov/~chertkov/Talks/IT /SPA.pdf



Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

Algorithms for Spin Glasses BP and Loop Series on Planar Graphs

How about using BP for FRFI? J

First Impression:

—

Should not work for arbitrary graph because of Loops

On Second Thought:

May be the T — 0 limit is not that hopeless? After all we know
that the problem is easy!

Tree reweighted BP of Kolmogorov & Wainwright '05
At T — 0 BP solves the FRFI model exactly on any graph!

Another Easy Example with Loops: Bayati, Shah and Sharma '06
Maximum Weight Matching of a Bi-partite graph

Michael Chertkov — chertkov@lanl.gov http://cnls.Inl.gov/~chertkov/Talks/IT /SPA.pdf



Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

Easy Problems with Loops and Bethe Free energy

Proof of the i Bethe Free energy approa

Original model
at finite T’

Bethe free energy
Formulation
of BP

Integer
Programming

Linear
Programming
(A)

Linear
Programming

®)

Chertkov '08 |
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Algorithms for Spin Glasses

Bethe Free Energy for FRFI

Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

At any Temperature

Minimize the Free Energy :

F=E-TS, E=

(i) @isj

Vi & VJEI b,‘(O’,‘

Z Z b cr,,a_,) U,-cfj—

(i,) @i

S= Z Z bU(a,,UJ)Inb (i) O’,,O'J
):Zb;j((f;,oj), VI
@

Z Z bi(oi)hijo;
ZZ bi(c;) In bi(o;)
> bi(ei) =1
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Decoding of LDPC codes

Algorithms for Spin Glasses

Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Bethe Free Energy for FRFI

Minimize the Free Energy :

F=E-TS, E= Z Z b U,,J_,) 0’,‘0’j — Z Z bi(oj)hioi

(i,) @i

S= Z Z bjj(ai,aj) In b jy(ai, o) ZZb(U, In b;(o;)

(i:) @isj i

Vi & V_] Ei: b,-(o,-) = Z b,-j((f,-,oj), Vi: z b,-(o,-) =1

Minimize the Self Energy :
E=->" Y b 0,701) Uin—ZZbi(Ui)hiUi
(i.j) @i»0; i o

Vi & Vj€ei: b,‘(O’,’) = Z b,'J'(O',',O'j)7 Vi : Z b;(a,-) =1

9j
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

Linear Programming (B) for FRFI

et P Jsi =2h;  bs(os,0;) = bj(0;)é(os,+1)  h; >0
(s-t) modification: { Jie =2|hi| b7, 0t) = bi(07)5(ot,—1)  hi <O

{{,“'b’}} Z ) > bij(ai, o) *‘7 G|l vieg & Vjci: bjo)= o
(ij)eg’ oi,0) Yie g : Z b(a,):l
bs(+)=1 & bd( )=1

bjj(oi, o)
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

Linear Programming (B) for FRFI

o . Jsi = 2h; bs,'(O's,O',') = b,‘(O’,’)(S(O'S,+1) h; >0
(s-t) modification: { Jie = 2|hi|  bir(oi,0¢) = bi(0i)d(0r, —1) h; <0

: Ji
& |- 2 X meneyoni]| vieo & wiei by =, bylona)
(i.)€G’ 7iraj Vieg': 3, bilo;)=1
bs(+) =1 & by(—) =1

0 = (umys {19 = E0CH D E 0 =
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

Linear Programming (B) for FRFI

o . Jsi = 2h; bs,'(O'g,O',') = b,‘(O’;)(S(O'S,+1) h; >0
(s-t) modification: { Jie = 2|hi|  bir(oi,0¢) = bi(0i)d(0r, —1) h; <0

[min | 3 , > by(01,97)> 2% || vieg & viei: o= >0, bij(oi,05)
(i,j)eG’ oioj Vie g : Za, bi(ci) =1
bs(+) =1 & by(—) =1

0 = (umys {19 = E0CH D E 0 =

2 Z ,J”+ o, Z ,J'j“"j V(ij)€G": mi—mji+p; >0
? (i)eo (i)eg Y(i,j)€G : 1>mu;>0
s =0, m=1
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

FRFIl at T = 0 is solved exactly by BP

Original model
at finite T’

Bethe free energy
Formulation
of BP

Integer
Programming

Linear
Programming
(A)

Linear
Programming
(B)
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

FRFIl at T = 0 is solved exactly by BP

2 2yt gin Z, Jini ps =0, pr =1; Vie G, p=[0,1]
(#)egy V(i,j) €G": pi—pj+m =[0,1]

_Z Z,J,J—i- mm Z/Jul‘u lj)Eg’: i — i+ > 0
s =0, m=1

A\

LP(A)=LP(B)
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Spin Glass & Min-Cut/Max-Flow
BP is exact on some problems with Loops

Dimers & Planar algorithm

Algorithms for Spin Glasses BP and Loop Series on Planar Graphs

Original model
at finite 7"

Bethe free energy
Integer Formulation

Programming

The scheme also works for T — 0 of

plo)=Ztexp (=T hioj | [[6|D_ Jaici, ma

where J is a Totally Uni-Modular matrix
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

Glassy Ising & Dimer Models on a Planar Graph

Partition Function of J;; = 0 Ising Model, o; = £1

T

Z=) e <Z(’J)EFJ”J’UJ> [ /
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

Ising & Dimer Classics

L. Onsager, Crystal Statistics, Phys.Rev. 65, 117 (1944)

M. Kac, J.C. Ward, A combinatorial solution of the Two-dimensional Ising
Model, Phys. Rev. 88, 1332 (1952)

C.A. Hurst and H.S. Green, New Solution of the Ising Problem for a
Rectangular Lattice, J.of Chem.Phys. 33, 1059 (1960)

M.E. Fisher, Statistical Mechanics on a Plane Lattice, Phys.Rev 124, 1664
(1961)

P.W. Kasteleyn, The statistics of dimers on a lattice, Physics 27, 1209 (1961)

P.W. Kasteleyn, Dimer Statistics and Phase Transitions, J. Math. Phys. 4, 287
(1963)

M.E. Fisher, On the dimer solution of planar Ising models, J. Math. Phys. 7,
1776 (1966)

F. Barahona, On the computational complexity of Ising spin glass models,
J.Phys. A 15, 3241 (1982)
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

Algorithms for Spin Glasses BP and Loop Series on Planar Graphs

From Ising to Dimer (1)

@ For a given & an edge is sat:
ifJ,'j>0 & 0’;0’j210f./;j<0 & U;Uj:—l

@ Circle is frustrated if the number of negative edges is odd.
(N.B. Frustration of a circle is invariant wrt &'.)

e Equivalent configurations, ¢ and —¢, have the same weight

@ Introduce dual graph, I'*. A vertex of ['* correspondent to a
frustrated (unfrustrated) face is odd (even).

unsat edges
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

Algorithms for Spin Glasses BP and Loop Series on Planar Graphs

From Ising to Dimer (1)

oo Jiiojo;
Z:Zexp Z("J)E;_ Y

e For a given & an edge is sat:
ifJ,'j>0 & O’,'O'j:lof./,'j<0 & U,'O'j:—].

@ Circle is frustrated if the number of negative edges is odd.
(N.B. Frustration of a circle is invariant wrt &)

@ Equivalent configurations, ¢ and —¢&, have the same weight

@ Introduce dual graph, I'*. A vertex of ['* correspondent to a
frustrated (unfrustrated) face is odd (even).

E:_Z(ij) J,'J'UiO'j:—Z(,-j)|JU|+2 > | i

unsat edges
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

Algorithms for Spin Glasses BP and Loop Series on Planar Graphs

From Ising to Dimer (1)

2. (i jyer Jioi0; ~ o
Z= exp | ———

20 T b

e For a given & an edge is sat: i \¥
if i >0 & ojoj=10f J; <0 & 0,-0]-/:—1 \

@ Circle is frustrated if the number of negative edges is odd.
(N.B. Frustration of a circle is invariant wrt &'.)

e Equivalent configurations, ¢ and —g, have the same weight

@ Introduce dual graph, I'*. A vertex of ['* correspondent to a
frustrated (unfrustrated) face is odd (even).

E:_Z(ij) JijUin:_Z(,'j)‘Jij“i‘2 > | i
unsat edges
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Bethe Free Energy & Belief Prop. on (approx)
Exact Inference with BP

Decoding of LDPC codes

Algorithms for Spin Glasses

From Ising to Dimer (I1)

Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

@ The graphical transformations are invariant, i.e. they do not depend on the
original configuration of & (colors of vertexes/edges of the dual lattice

stay/change)

@ Spin glass Ising model on a planar graph is reduced to the Dimer Matching
model on an auxiliary planar graph with all nodes of the connectivity three or
smaller (graph. transformations in two steps)
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I Dimers & Planar algorithm
of LDPC codes BP and Loop Series on Planar Graphs
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

Pfaffian solution of the Matching problem

1 3
1 3
Z = 212234+2142243 =V Detxz\ = Pf[/z\] 4
2
0 —zip 0 —2zi4 ) ,
Ao | &2 0 23 —2Z24
0 —z3 O 734
214 24 —2z3¢ O
Odd-face rule 1 3
Direct edges of the graph such that
4

for every internal face the number of
edges oriented clockwise is odd

Michael Chertkov — chertkov@lanl.gov http://cnls.Inl.gov/~chertkov/Talks/IT /SPA.pdf



Preamble

Bethe Free Energy & Belief Propa on (approx)
Exact Inference with BP

ding DPC codes

Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorrrithmsi for Spin Glasses

Planar Spin Glass and Dimer Matching Problems

The Pfaffian formula with the “odd-face” orientation rule extends
to any planar graph thus proving constructively that

@ Counting weighted number of dimer matchings on a planar
graph is easy

@ Calculating partition function of the spin glass Ising model on
a planar graph is easy

@ Adding magnetic field to planar, non-planar geometry, or non-binary alphabet
makes the spin-glass problem difficult

@ Dimer-monomer matching is difficult even in the planar case

@ Planar-Graph Decomposition [Globerson, Jaakola '06] is an example of an
approximate algorithm that could be constructed for “nearly” planar problems
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Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Algorithms for Spin Glasses

Single-connected Partition Chertkov, Chernyak, Teodorescu '08

@ Functions are on vertexes; variables (binary) are on edges

@ Vlertexes are of degree three (not restrictive)

Loop Series = BP + sum over generalized loops

_ _ ﬂa,é
Z = Z() czZ, Z= 1+ Z H Ma,ac y Maac = (a,b)eC Ci
€ aeC II V1-ma(C)
beC
myp = Z 0 apbab(oab), flazc = Z H Tab — Map)ba(Fa),
Tab G, bEac

<

Single-Connected Partition

VaeC, |6(a)|c=2
Zs=2y-zs, zs=1+ Z re,
Ceg

Is the Single-Connected Partition on a planar graph summable (easy)?
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Spin Glass & Min-Cut/Max-Flow
BP is exact on some problems with Loops
Dimers & Planar algorithm

Algorithms for Spin Glasses BP and Loop Series on Planar Graphs

Single-connected Partition (1)  Chertkov,Chernyak, Teodorescu '08

Reduction to the dimer-matching model on an auxiliary graph

@ reminiscent of the Fisher's transformation

AT A
— S8 s
A=A

(a b ege

=3 II )™ ]]o Z Tab, 1

7 (a,b)€Ge

@ z; is a Pfaffian on a planar graph [Kasteleyn] — EASY !
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Spin Glass & Min-Cut/Max-Flow
BP is exact on some problems with Loops
Dimers & Planar algorithm

Algorithms for Spin Glasses BP and Loop Series on Planar Graphs

Problems Reducible to Single-Connected Partition

Generic planar problem is difficult J

A planar problem is easy if

the factor functions satisfy

(a,b)e€
Vaeg: Z fa O'a) H eXP nabo'ab) (Uab — tanh (nab + nba))) =0.

where 77 are messages from a BP solution for the model
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Spin Glass & Min-Cut/Max-Flow
BP is exact on some problems with Loops
Dimers & Planar algorithm

Algorithms for Spin Glasses BP and Loop Series on Planar Graphs
Loop Series as a Pfaffian Series
|a]=3 X —
z= Z 2y H Laz, 2y = Pf (AW) = \/Det (AW)
v acv

All zy are computationally tractable (Pfaffians)

@ “Exclude” the fully connected part (vertexes of degree three
within the generalized loop and adjusted edges)
@ “Extend” the remaining graph (part of the generalized loop)

o N.B. Ay is not simply a minor of A (exclusion changes signs)
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Bethe Free Energy & Belief Propagation (approx)

Some

Preamble

Spin Glass & Min-Cut/Max-Flow

BP is exact on some problems with Loops
Dimers & Planar algorithm

BP and Loop Series on Planar Graphs

Exact In ce with BP
Decoding of LDPC codes
Algorithms for Spin Glasses

Future Challenges

Search for new approximate schemes for intractable planar
problems

Perturbative exploration of a larger set of intractable
non-planar problems which are close, in some sense, to planar
problems (e.g. in the spirit of Globerson, Jaakkola '06)

Extension to other Graph Minor excluded families of graphs,
e.g. only Ks excluded, or only K33 excluded

Extension to g-ary case. Loop Tower. Potts model, etc.

Possible Relation to Integrable Hierarchies and Quantum
Computations

Disorder-averaged planar problems
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Spin Glass & Min-Cut/Max-Flow
BP is exact on some problems with Loops

Dimers & Planar algorithm

Algorithms for Spin Glasses BP and Loop Series on Planar Graphs

All papers are available at http://cnls.lanl.gov/~chertkov/pub.htm J
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Gauge Fixing & Bethe Free Energy

in the spirit of Yedidia, Freeman, Weiss '01
Minimize: ®g = 3, ¥, ba(Fa) In (253 ) = oty Lo, bab(a5) In bab(7ap)

under the conditions: Va & Vc € a 0 < ba(Ga), bac(oac) <1
>, ba(Ga) =1
bac(o'ac) = Zaa\aac ba(Ea)

Q@ Lp=0p+ Y [X In(eap(0ap))(bap(0ap) — X ba(Ga)) + 3 In(€ba(a))(bab(0ha) — X bp(Fp))]
(ab) Tab Ga\oap Tba Gp\ops

@ Finding extremum of the Bethe Lagrangian with respect to beliefs, b,, and b, and expressing the result in

terms of e: EB(b, 6) = fB(E)
e fB(6)|{v(avb): Eaab 6ab(Uab)Gba(o—ab):]'} = fo(f) = In(Z(E))
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Reducing complexity of LP

Complexity of the bare LP grows exponentially with check degree

Current solutions:
o Adaptive LP (Taghavi, Siegel '06)
@ BP-style relaxation of LP (Vontobel, Koetter '06)

Dendro-trick = Graph Modification (our solution) Chertkov,Stepanov'07

@ MAP solutions are identical
@ Set of Pseudo-codewords are identical

@ Instanton spectra are very alike, ~
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Grassmann (fermion) Calculus for Pfaffians

Grassman Variables on Vertexes

V(a,b) € Ge: 0,05+ 00, =0 /dG:O, /0d0:1

Pfaffian as a Gaussian Berezin Integral over the Fermions

/exp (;(?2\5) df = Pf(A) = y/det(A)
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My papers on ... (A)

@ M. CHERTKOV, V. CHERNYAK, R. TEODORESCU, “Belief Propagation and Loop Series on Planar Graphs”,
submitted to JSTAT, arxiv.org/abs/0802.3950.

@ M. CHERTKOV, Exactness of Belief Propagation for Some Graphical Models with Loops, submitted to the
Journal of Machine Learning, arxiv.org/abs/0801.0341

@ V. CHERNYAK and M. CHERTKOV, “Loop Calculus and Belief Propagation for g-ary Alphabet: Loop
Tower,” Proceedings of IEEE ISIT 2007, June 2007, Nice, arXiv:cs.IT/0701086.

@ M. CHERTKOV and V. CHERNYAK, “Loop series for discrete statistical models on graphs,”
JSTAT /2006,/P06009, arXiv:cond-mat/0603189.

@ M. CHERTKOV and V. CHERNYAK, “Loop Calculus in Statistical Physics and Information Science,” Phys.
Rev. E, 73, 065102(R) (2006), arXiv:cond-mat/0601487.

Reducing the Error Floor

@ M. CHERTKOV, “Reducing the Error Floor”, invited talk at the Information Theory Workshop '07 on
" Frontiers in Coding”, September 2-6, 2007.

@ M. CHERTKOV and V. CHERNYAK, “Loop Calculus Helps to Improve Belief Propagation and Linear
Programming Decodings of Low-Density-Parity-Check Codes,” invited talk at 44" Allerton Conference,
September 27-29, 2006, Allerton, IL, arXiv:cs.IT/0609154.

All papers are available at http://cnls.lanl.gov/~chertkov/pub.htm
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My papers on ... (B)

Pseudo-Codewords. Analyzing the E lo

@ M. CuERTKOV and M. STEPANOV, “Searching for low weight pseudo-codewords,” invited talk at the 2007
Information Theory and Application Workshop, proceedings, ITA CALIT2, UCSD, arXiv:cs.IT/0702024.

@ M. CHERTKOV and M. STEPANOV, “Pseudo-codeword Landscape,” Proceedings of IEEE ISIT 2007, June
2007, Nice, arXiv:cs.IT/0701084.
@ M. CHERTKOV and M. STEPANOV, “An Efficient Pseudo-Codeword-Search Algorithm for Linear

Programming Decoding of LDPC Codes,” to appear in IEEE Transactions on Information Theory,
arXiv:cs.IT/0601113.

@ M. StepANOV and M. CHERTKOV, “Instanton analysis of Low-Density-Parity-Check codes in the
error-floor regime,” Proceeding of IEEE ISIT 2006, July 2006 Seattle, arXiv:cs.IT/0601070.

@ M. StEPANOV and M. CHERTKOV, “The error-floor of LDPC codes in the Laplacian channel,” Proceedings
of 43rd Allerton Conference (September 28-30, 2005, Allerton, IL), arXiv:cs.IT/0507031.

@ M. STEPANOV, V. CHERNYAK, M. CHERTKOV and B. VASIC, “Diagnosis of weakness in error correction: a
physics approach to error floor analysis,” Phys. Rev. Lett. 95, 228701 (2005),cond-mat/0506037.

@ V. CHERNYAK, M. CHERTKOV, M. STEPANOV and B. VAsic, “Error correction on a tree: An instanton
approach” , Phys. Rev. Lett. 93, 198702-1 (2004).

Other subjects related to LDPC+ decoding

@ J. A. ANGUITA, M. CHERTKOV, B. VASIC and M. A. NEIFELD, "Bethe-Free-Energy Based Decoding of
Low-Density Parity-Check Codes on Partial Response Channels,” submitted to IEEE Journal of Selected
Areas in Communications.

@ M. StePANOV and M. CHERTKOV, “Improving convergence of belief propagation decoding,” Proceedings
of 44th Allerton Conference, September 27-29, 2006, Allerton, IL, arXiv:cs.IT/0607112.
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