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Introduction

Statistical Inference
Graphical Models
Bethe Free Energy and Belief Propagation (BP)

Statistical Inference

corrupted .
. L. possible
noisy channel data: statistical .
reimage
P(X‘O’) log-likelihood inference P 2
oeclC

magnetic field

o= (o1, ,0n), N finite, o;==+1 (example)

Maximum Likelihood symbol Maximum-a-Posteriori
ML = arg max P(x|o) MAP; = arg max Z P(x|o)
7 7 o\o;

Exhaustive search is generally expensive: complexity ~ 2N
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Statistical Inference
Graphical Models
Bethe Free Energy and Belief Propagation (BP)

Graphical models of Statistical Inference

Factorization (Forney '01, Loeliger '01)

P(o) = 71 H fa(oa)

aeX fa 2 0
Z = Z’P(g) Tab = Opa = %1
o o1 = (012,014, 018)

partition function o2 = (012,013)

X = edges

Example: Error-Correction  (linear code, bipartite Tanner graph)

() — 1, ogja=o0ig
fi(ai) _{ 0, otherwise

fa(0a) =6 H i, +1 | exp Zf’ihi/qf‘ hi - log-likelihoods
s iEe gj-connectivity degrees

v
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Statistical Inference
Graphical Models
Bethe Free Energy and Belief Propagation (BP)

Variational Method in Statistical Mechanics

Gibbs measure: P(o) = 22EE@) - 7 = S~ exp (—E(a))

Exact Variational Principe Kullback-Leibler '51
F{b(a)} = 3. b(a)E(o) — > b(o)In b(o)
_OF — —
55(o) ’b(a):p(a) 0 under za: b(o) =1
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Introduction

Statistical Inference
Graphical Models
Bethe Free Energy and Belief Propagation (BP)

Variational Method in Statistical Mechanics

Gibbs measure: P(o) = 'm’(}ﬂ, Z=) exp(—E(0))
F{b(co)} = %2 b(o)E(o) — ; b(c) In b(c)
=0 under Y b(o)=

o)

’ b(o)=p(c)

Variational Ansatz

® Mean-Field: p(o) ~ b(a) = [] bi(7)

@ Belief Propagation:
[1, ba(oa)
p(o) ~ (o) = 4122 _
H(a,b) bab(O'ab)

ba(o,) = Z b(o), bap(cap) Z b(o

o\o, o\oap

(exact on a tree)
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Introduction Statistical Inference

Graphical Models
Bethe Free Energy and Belief Propagation (BP)

Bethe free energy: variational approach

(Yedidia,Freeman,Weiss inspired by Bethe '35, Peierl
F==>"> ba(ca)Infa(ca)+ > > ba(05)Inba(03) = > bac(0ac) In bac(0ac)
a o, a o, (a)c)
self-energy configurational entropy

Va c€a: Zaa ba(oa) =1, bac(oac) = Zaa\aac ba(oa)

: ; e OF _
= Belief-Propagation Equations: % =0

constr.
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Introduction

Statistical Inference
Graphical Models
Bethe Free Energy and Belief Propagation (BP)

Bethe free energy: iational approach
(Yedidia,Freeman,Weiss '01 - inspired by Bethe '35, Peierls '36)

F=-— Z Z ba(oa)In fa(oa) + Z Z ba(oa) In ba(oa) — Z bac(Tac) In bac(ac)

a (a;¢)

self-energy configurational entropy
Va c€a: >, ba(0a) =1, bac(0ac) =35 \o, ba(0a)

=0

constr.

: ; nee OF
=Belief-Propagation Equations: 5

MAP~BP=Belief-Propagation (Bethe-Pieirls): iterative = Gallager '61; MacKay '98

@ Exact on a tree
@ Trading optimality for reduction in complexity: ~ 2L —~ L

@ BP = solving equations on the graph:

JEB i€p
Noj = hj + > tanh=1 [ T tanh ngi < LDPC representation
B#a iZ#j

@ Message Passing = iterative BP

@ Convergence of MP to minimum of Bethe Free energy can be enforced
v
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Graphical Models
Bethe Free Energy and Belief Propagation (BP)

Linear Programming version of Belief Propagation

In the limit of large SNR, f;, — +o0: BP—LP
Minimize F =~ E = —)_ > bs(o,) Infy(o,) = self energy

under set of linear constraints
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Introduction Statistical Inference

Graphical Models
Bethe Free Energy and Belief Propagation (BP)

Linear Programming version of Belief Propagation

In the limit of large SNR, f;, — +o0: BP—LP
Minimize F =~ E = —)_ > bs(o,) Infy(o,) = self energy

under set of linear constraints

LP decoding of LDPC codes Feldman, Wainwright, Karger '03

@ ML can be restated as an LP over a codeword polytope

@ LP decoding is a “local codewords” relaxation of LP-ML
@ Codeword convergence certificate

@ Discrete and Nice for Analysis

@ Large polytope {b,, bj} = Small polytope {b;}
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© Loop Calculus
@ Gauge Transformations and BP
@ Loop Series in terms of BP
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BP does not account for Loops
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BP does not account for Loops
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@ Is BP just a heuristic in a loopy case?

e Why does it (often) work so well?
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BP does not account for Loops

o

@ Is BP just a heuristic in a loopy case?

e Why does it (often) work so well?

@ Does exact inference allow an expression in terms of BP?

@ Can one correct BP systematically?
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Loop Calculus Gauge Transformations and BP

Loop Series in terms of BP

BP does not account for Loops

o

@ Is BP just a heuristic in a loopy case?

e Why does it (often) work so well?

@ Does exact inference allow an expression in terms of BP?

@ Can one correct BP systematically?

Previous Considerations:

@ Rizzo, Montanari '05 - Corrections to BP approximation

@ Parisi, Slanina '05 - BP as a saddle-point + corrections
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Chertkov,Chernyak '06

fa(o'a = (O'aby cee )) % Eg;b Gap (O'aby U;b) fa(a';bv o )

= ! Zo’ab Gab(a—abu U/)Gba(aab> OJl) == 6(0'/7 UII)
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Chertkov,Chernyak '06

fa(o'a = (O'aby ce )) — Eg;b Gap (O'aby U;b) fa(O';b, o )

= i Z"’ab Gab(Uab7 U,)Gba(o'aby UII) == 6(0Ja U”)
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Loop Series in terms of BP

Chertkov,Chernyak '06

f:a(o'a = (Uab» T )) = Zg;b Gap (Uab7 C";b) fa(o';bv c )

Zgab Gab(o'abv U/)Gba(o'abv 0'”) = 6(0J7 0'”)
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Chertkov,Chernyak '06

Local Gauge, G, Transformations

e ' i fo(0a = (0ap,--+)) — Zg;b Gab (Uabyo';b) fa(o';bv"')

Zgab Gab(o'abv 0'/) Gba(aabv 0'”) = 6(0Jv 0'”)

Gea €

[ Xe}

Gy Gpg Gos G i\Gid
ef

The partition function is invariant under any G-gauge!

Z = Z H f2(0s) = Z H(Z fa(a';) H Gab(Tabs G;b))

bca

graphical trace
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Gauge Transformation: Binary Representation

Z=3, 1L f(0s) = ¥, 11, fa(0a) [Tpe 2572, obe # 0t
The binary trick

1+ 7o = 2elontm) (1 + (tanh(n + x) — o)(tanh(n + x) — 7) cosh?(n + x))

cosh(71+x)

?a(a'a) = ﬂ,(o’a) Hbga eXp(nabaab)
Vbc (chv Ucb) =1+ (tanh(nbc aF ncb) - ch) (tanh(nbc aF ncb) - Ucb) COShz("]bc + ncb)

Graph Coloring

Z= (H 2 cosh(npe + ncb))ilz H fa(oa) - H Vbe
be o! a bc
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Gauge Transformation: Binary Representation

Z=3%,11,f(0s) = X o I1, faloa) TTpe 2570, ope # 0t

The binary trick

1+ mo = 2elontm) (1 + (tanh(n + x) — o)(tanh(n + x) — 7) cosh?(n + X))

cosh(n+x)

?a(o'a) = f:?(a'a) Hbea eXp(nabUab)
Ve (Fbe; 0eb) = 1+ (tanh(npe + Neb) — dbe) (tanh(npe + 1ep) — oep) C05h2(7]bc + Neb)

Graph Coloring

Z= (H 2c°5h(nbc + ncb))_lz H ?3(0'3) : H Ve
bc o/ a bc
N——
1+ > s

colored edges
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Gauge Transformation: Binary Representation
Z =%, I1, fi(0a) = Lo T1, f3(03) TTpe %22, b # 0t

The binary trick

14 7o = Z2ELRY (1 4 (tanh(n + x) — o)(tanh(y + x) — 7) cosh?(n + X))

?a(ﬂ'a) = fa(O'a) Hbg; eXp(nabgab)
Ve (Fbes 0cb) = 1+ (tanh(npe + Neb) — dbe) (tanh(npe + Nep) — ocp) C°5h2(77bc + Neb)

= ([T 2cosh(mbe +7e))~ ZH fa(os) - [T Vee

bc bc

1+ T 30005000000
colored edges

Z=  Zy(m) +
——

e G all possible colorings of the graph

excited states
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Gauges and BP

Partition function in the colored representation

Z = (T[] 2cosh(mpe + 1) ST % T Voer  Fa(oaina) = fa(oa) [ exp(napoas)
o/ a bc

bc b€a

2
Ve (0be, 0cb) = 1+ (tanh(npe + Mep) — be) (tanh(Mpe + neb) — o) cosh™ (npe + Mep)
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Gauges and BP

Partition function in the colored representation

Z = (T[] 2cosh(mpe + 1) ST % T Voer  Fa(oaina) = fa(oa) [ exp(napoas)

bc o! a bc bea

2
Ve (0be, 0cb) = 1+ (tanh(npe + Mep) — be) (tanh(Mpe + neb) — o) cosh™ (npe + Mep)

Fixing the gauges = BP equations!!

JjEB i€ep
Eaa (tanh(nggp) + nf’ip)) — Uab) fa(caima) =0 = bp =h; + Z tanh ™ 1 H tanh 17
BFa i#
LDPC case
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Gauges and BP

Partition function in the colored representation

Z = (T[] 2cosh(mpe + 1) ST % T Voer  Fa(oaina) = fa(oa) [ exp(napoas)

bc o! a bc bea

2
Ve (0be, 0cb) = 1+ (tanh(npe + Mep) — be) (tanh(Mpe + neb) — o) cosh™ (npe + Mep)

Fixing the gauges = BP equations!!

JjEB i€ep
Eaa (tanh(nggp) + nf’ip)) — Uab) fa(caima) =0 = bp =h; + Z tanh ™ 1 H tanh 17
BFa i#
LDPC case

Color Principe: no loose ends

T Ve =1+ b ek e ke
(bc)

colored edges
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Gauges and BP
Partition function in the colored representation

Z = ([] 2cosh(mpe + 1e6) "D TT B[ Veer  Faloaina) = faloa) [T exp(na6005)

bc a bc bea

2
Ve (Gbes ocp) = 1+ (tanh(npe + nep) — obc) (tanh(Mpe + nep) — o) cosh® (npe + Mep)

Fixing the gauges = BP equations!!

JEB i€p
b b z b — b,
Eo,a (tanh(nibp) + ngap)) — Uab) fa(eaina) =0 = na'j. = h; + Z tanh 1(I_I tanh nﬁ’:})
BFa i#

LDPC case

Color Principe: no loose ends

IT Ve =1+ > 00081000 000
bc) colored edges

(
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Gauges and BP

Partition function in the colored representation

Z = (] 2cosh(mpe + 1) ST % T Voer  Fa(oaina) = fa(oa) [ exp(napoas)
o/ a bc

bc b€a

2
Vbe (0be, 0cb) = 1+ (tanh(npe + Mep) — be) (tanh(Mpe + nep) — o) cosh™ (npe + Mep)

Fixing the gauges = BP equations!!

JjEB i€p
b, b 7 b, - b,
Xion (tanh(ngbp) 4 nfjap)) = Uab) fa(caimna) =0 = ’705' = h; + Z tanh 1(H tanh nﬁ’;)
BFa i#
LDPC case

Color Principe: no loose ends

IT Vbe =1+ > 1000810004 000
(bc) colored edges
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Gauges and BP

Partition function in the colored representation

Z = (] 2cosh(mpe + 1) ST % T Voer  Fa(oaina) = fa(oa) [ exp(napoas)
o/ a bc

bc b€a

2
Vbe (0be, 0cb) = 1+ (tanh(npe + Mep) — be) (tanh(Mpe + nep) — o) cosh™ (npe + Mep)

Fixing the gauges = BP equations!!

JjEB i€p
b, b 7 b, - b,
Xion (tanh(ngbp) 4 nfjap)) = Uab) fa(caimna) =0 = ’705' = h; + Z tanh 1(H tanh nﬁ’;)
BFa i#
LDPC case

Color Principe: no loose ends

Variational Principe:

IT Vbe =1+ > 1000810004 000
by lored ed
(bc) colored edges 1_[ Vbcﬂlv 7= 2, 52y 0

@ > - o
= 2 = ([Tae 2e08h (e + 1)~ o T, fles)
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Loop Series: Chertkov,Chernyak '06

Exact (!!) expression in terms of BP

z=>"T]fe.) =2 (1 +Zr(C)>
o, a C

HCNa
(€)= ——"——~=]]#
[1 (1-m3) I;IC
(ab)eC

@ The Loop Series is finite

C € Generalized Loops = Loops without loose ends O A s i fhe sl ame

calculated within BP

o’

@ BP is exact on a tree

_ (bp)
Mab = /do‘aba (02) s @ BP is a Gauge fixing condition.

(bp) Other choices of Gauges would
Ha = /do'aba (o2) H (0ab — Map) lead to different representation.
bea,C
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Features of the Loop Calculus

Z =2Zy(1+ rc), rc = [lec fia

@ Bethe Free Energy is related to the “ground state” term in the partition

function: F(b*(n)) = —In Zy(n), where
- _ fa(oa) exp(Tpea NabTab) _ exp((Mab+7ba)T ab)
b (aa) ~ T fa('-"a)eXP(bfbea NabTab)’ b:b(oab) = 2cosh€nabi’7:a)b
*]
*]
*]
*]
*]
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Features of the Loop Calculus

Z Zo(]. +r rc cC fla

@ Bethe Free Energy is related to the “ground state” term in the partition

function: F(b*(n)) = —In Zy(n), where
fa(oa) exp(3pea MabTab) ;

bi(02) = 5= Fion oot bip(an) = at
@ Extrema of F(b) are in one-to-one correspondence with extrema of Zy(n).
*]
*]
*]
*]
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Features of the Loop Calculus

Z Zo(]. +r rc cC fla
@ Bethe Free Energy is related to the “ground state” term in the partition
function: F(b*(n)) = —In Zy(n), where

b (os) = - fa(

( — 4 MabTab)

oa) exp(

b,:,/?(”'ah) =

@ Extrema of F(b) are in one-to-one correspondence with extrema of Zy(n).

@ Loop series can be built around any extremum (minimum, maximum or
saddle-point) of the Bethe Free energy.
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Features of the Loop Calculus

V4 Zo(l—l—rc rc HaeCNa
@ Bethe Free Energy is related to the “ground state” term in the partition
function: F(b*(n)) = —In Zy(n), where
bJ(O'J) =5 = -

<oy ¢

2 ~bEa ’/d»“‘r(TdD> ! ]b
@ Extrema of F(b) are in one-to-one correspondence with extrema of Zy(n).

@ Loop series can be built around any extremum (minimum, maximum or
saddle-point) of the Bethe Free energy.

@ —1<rc,jia < 1. The tasks of finding all fi, (over the graph) and r¢ for a given
loop are (computationally) not difficult. All that suggests simple heuristic for
finding loops with large rc.
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Features of the Loop Calculus

V4 ZO(]-“‘”C rc HaeCﬁa

@ Bethe Free Energy is related to the “ground state” term in the partition
function: F(b*(n)) = —In Zy(n), where

fa(oa) exp(3pea MabTab) *
o F a7 . bdb(f"ah) _

s f2(72) &xP(X e, 12bb)

b

ab

exp((12ab
2 cosh(7

bJ (‘77) =5
@ Extrema of F(b) are in one-to-one correspondence with extrema of Zy(n).

@ Loop series can be built around any extremum (minimum, maximum or
saddle-point) of the Bethe Free energy.

@ —1 < rc,jia < 1. The tasks of finding all i, (over the graph) and r¢ for a given
loop are (computationally) not difficult. All that suggests simple heuristic for
finding loops with large rc.

@ Linear Programming limit of the Loop Calculus is well defined.
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Loop Calculus Gauge Transformations and BP
Loop Series in terms of BP

Features of the Loop Calculus

V4 ZO(]-“‘”C rc HaeCﬁa

@ Bethe Free Energy is related to the “ground state” term in the partition
function: F(b*(n)) = —In Zy(n), where

fa(oa) exp(3pea MabTab) *
o F a7 . bdb(f"ah) _

> bea MabTab)

exp((nab

b
2 cosh(n,p

b3 (oa) = Yo, falda)e

@ Extrema of F(b) are in one-to-one correspondence with extrema of Zy(n).

@ Loop series can be built around any extremum (minimum, maximum or
saddle-point) of the Bethe Free energy.

@ —1 < rc,jia < 1. The tasks of finding all i, (over the graph) and r¢ for a given
loop are (computationally) not difficult. All that suggests simple heuristic for
finding loops with large rc.

@ Linear Programming limit of the Loop Calculus is well defined.

@ Any marginal probability, e.g. magnetization (a-posteriori log-likelihood) at an
edge, is expressed as modified Loop Series.
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Applications Long Correlations and Loops in Statistical Mechanics

9 Applications
@ Analysis and Improvement of LDPC-BP/LP Decoding
@ Long Correlations and Loops in Statistical Mechanics
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Analysis and Improvement of LDPC-BP/LP Decoding
Applications Long Correlations and Loops in Statistical Mechanics

Error-floor Analysis

Truncation as an Approximation

Z=21+Y crc) = Zo(1+r(T))
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Analysis and Improvement of LDPC-BP/LP Decoding
Applications Long Correlations and Loops in Statistical Mechanics

Error-floor Analysis

Truncation as an Approximation

Z=21+Y crc) = Zo(1+r(T))

Synthesis of Pseudo-Codeword Search Algorithm

(Chertkov, Stepanov '06) &

@ Consider pseudo-codewords one after other

@ For an individual pseudo-codeword /instanton identify a critical
loop, I, giving major contribution to the loop series.
@ Hint: look for single connected loops and use local " triad”

contributions as a tester: r(r):]_[aer /lsfp)

Michael Chertkov, Los Alamos Loop Calculus: Exact Inference in terms of Belief Propagation



Analysis and Improvement of LDPC-BP/LP Decoding
Applications Long Correlations and Loops in Statistical Mechanics

Error-floor Analysis

Instanton #1, d,=16.4037

Truncation as an Approximation :

Z=2(1+ crc)~ Zo(1+r()) L0 °

o o

Synthesis of Pseudo-Codeword Search Algorithm

(Chertkov, Stepanov '06) &

g
&

@ Consider pseudo-codewords one after other

@ For an individual pseudo-codeword /instanton identify a critical
loop, I, giving major contribution to the loop series. -1

@
00 150

0 T
bit label, i=1,....155

@ Hint: look for single connected loops and use local " triad”

contributions as a tester: r(r):]_[aer /lsfp)

v

Proof-of-Concept test (155, 64, 20) code over AWGN]

@ V pseudo-codewords with 16.4037 < d < 20 (~ 200 found)
there always exists a simple single-connected critical loop(s)
with r([) ~ 1.

@ Pseudo-codewords with the lowest d show r(I') = 1

@ Invariant with respect to other choices of the original codeword
o
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Analysis and Improvement of LDPC-BP/LP Decoding
Applications Long Correlations and Loops in Statistical Mechanics

Extended Variational Principe & Loop-Corrected BP

Bare BP Variational Principe:

52y

o =0, Zy= ([pc 2¢0n(bc + 7cp)) ! g I1a Palra)

n(bP)

n(bp)
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Extended Variational Principe & Loop-Corrected BP

Bare BP Variational Principe:

57y
Snap

=0, 2y = ([Tpe 2c0sh(npe + nep)) * o I1, Paloa)
n(bP)

n(bp)

New choice of Gauges guided by the knowledge of the critical loop '

S exp(—F) _ —
e, =0 F= In(Zo + Zr)
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Extended Variational Principe & Loop-Corrected BP

Bare BP Variational Principe:

57y
Snap

=0, 2y = ([Tpe 2c0sh(npe + nep)) * o I1, Paloa)
n(bP)

New choice of Gauges guided by the knowledge of the critical loop '

S exp(—F) _ —
Seel=7) ‘Mﬁo, F=—In(Z+Z)

n(bp)

V.

BP-equations are modified along the critical loop I

Eo-a (tanh(n2p+1pa) — o ap)Paloa)
Eaa Pa(oa)

1 Hd;
_ JET LRI 5,y
Neff H(a’b')er(li(malb’) )

# 0 [along I]

Neff
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Extended Variational Principe & Loop-Corrected BP

Bare BP Variational Principe:

57y
Snap

=0, 2y = ([Tpe 2c0sh(npe + nep)) * o I1, Paloa)
n(bP)

New choice of Gauges guided by the knowledge of the critical loop '

S exp(—F) _ —
Seel=7) ‘Mﬁo, F=—In(Z+Z)

n(bp)

V.

BP-equations are modified along the critical loop I

Eo-a (tanh(n2p+1pa) — o ap)Paloa)
Eaa Pa(oa)

_ Maer rar

= ) 2, OMa—bir
Neff H(a’b')er(li(malb’) )

# 0 [along I]

Neff

Loop-Corrected BP Algorithm

1. Run bare BP algorithm. Terminate if BP succeeds (i.e. a valid code word is found).

A\

2. If BP fails find the most relevant loop I that corresponds to the maximal |r-|. Triad search is helping.

3. Solve the modified-BP equations for the given I'. Terminate if the improved-BP succeeds.

4. Return to Step 2 with an improved I-loop selection.

\
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Analysis and Improvement of LDPC-BP/LP Decoding
Applications Long Correlations and Loops in Statistical Mechanics

[.P-erasure = simple heuristics

@ 1. Run LP algorithm. Terminate if LP succeeds (i.e. a valid code word is found).
@ 2. If LP fails, find the most relevant loop I that corresponds to the maximal amplitude r(T).

@ 3. Modify the log-likelihoods along the loop I introducing a shift towards zero, i.e. introduce a complete
or partial erasure of the log-likelihoods at the bits. Run LP with modified log-likelihoods. Terminate if the
modified LP succeeds.

@ 4. Return to Step 2 with an improved selection principle for the critical loop.
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Analysis and Improvement of LDPC-BP/LP Decoding
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[.P-erasure = simple heuristics

@ 1. Run LP algorithm. Terminate if LP succeeds (i.e. a valid code word is found).

@ 2. If LP fails, find the most relevant loop I that corresponds to the maximal amplitude r(T).

@ 3. Modify the log-likelihoods along the loop I introducing a shift towards zero, i.e. introduce a complete
or partial erasure of the log-likelihoods at the bits. Run LP with modified log-likelihoods. Terminate if the
modified LP succeeds.

@ 4. Return to Step 2 with an improved selection principle for the critical loop.

(155, 64, Test

o IT WORKS!
All troublemakers (~ 200 of them) previously found by LP-based Pseudo-Codeword-Search Algorithm
method were successfully corrected by the LP-erasure algorithm.

@ Method is invariant with respect the choice of the codeword (used to generate pseudo-codewords).
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Analysis and Improvement of LDPC-BP/LP Decoding
Applications Long Correlations and Loops in Statistical Mechanics

[.P-erasure = simple heuristics

@ 1. Run LP algorithm. Terminate if LP succeeds (i.e. a valid code word is found).
@ 2. If LP fails, find the most relevant loop I that corresponds to the maximal amplitude r(T).

@ 3. Modify the log-likelihoods along the loop I introducing a shift towards zero, i.e. introduce a complete
or partial erasure of the log-likelihoods at the bits. Run LP with modified log-likelihoods. Terminate if the
modified LP succeeds.

@ 4. Return to Step 2 with an improved selection principle for the critical loop.

A

(155, 64, 20) Test

o IT WORKS!

All troublemakers (~ 200 of them) previously found by LP-based Pseudo-Codeword-Search Algorithm
method were successfully corrected by the LP-erasure algorithm.

@ Method is invariant with respect the choice of the codeword (used to generate pseudo-codewords).

General Conjecture:

@ Loop-erasure algorithm is capable of reducing the error-floor

® Bottleneck is in finding the critical loop
o
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Analysis and Improvement of LDPC-BP/LP Decoding
Applications Long Correlations and Loops in Statistical Mechanics

Dilute Gas of Loops: Z =2y (1+> rc )~ 2Zy- [I (1+rs)
C

Csc —single connected

Applies to
@ Lattice problems in high spatial dimensions
@ Large Erdos-Renyi problems (random graphs with controlled connectivity degree)

The approximation allows an easy multi-scale re-summation

In the para-magnetic phase and h = 0: the only solution of BP is a trivial one
n =20, Zp — 1, and the Loop Series is reduced to the high-temperature

expansion [Domb, Fisher, et al '58-'90]

Loop Series trivially passes common " loop”

Ising model in the factor graph terms tests (from Rizzo, Montanari '05)

Z=% I _ewp(Jjoioj) =% TI faloa)

o a=(i,j)EX o ac{ifU{a} @ Evaluation of the critical temperature in the
fi(oi) = exp(hio;), oja=0ig=0; Yo,B3 i constant exchange, zero field Ising model
A 0, otherwise; @ Leading 1/N corrections to the Free Energy of the

Viana-Bray model in the vicinity of the critical

fou (UQ = (i, Uaj)) =& (Jijaaif"aj) point (glass transition)
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@ BP is better then just a heuristic in the loopy case ... BP is the
special Gauge condition eliminating all contributions but loops.
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Results

@ BP is better then just a heuristic in the loopy case ... BP is the
special Gauge condition eliminating all contributions but loops.

@ Exact Marginal probability allows explicit Loop Series expression in
terms of a solution of the Belief Propagation equations.
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@ BP is better then just a heuristic in the loopy case ... BP is the
special Gauge condition eliminating all contributions but loops.

@ Exact Marginal probability allows explicit Loop Series expression in
terms of a solution of the Belief Propagation equations.

@ Truncation and/or Re-summation of the Loop Series provide
hierarchy of systematically improvable approximations/algorithms.
Standard BP/LP is a first member in the hierarchy.
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@ BP is better then just a heuristic in the loopy case ... BP is the
special Gauge condition eliminating all contributions but loops.

@ Exact Marginal probability allows explicit Loop Series expression in
terms of a solution of the Belief Propagation equations.

@ Truncation and/or Re-summation of the Loop Series provide
hierarchy of systematically improvable approximations/algorithms.
Standard BP/LP is a first member in the hierarchy.

@ Local example (truncation). Finding a critical loop, or a small
number of critical loops, can be algorithmically sufficient for drastic
improvement of BP decoding in the error-floor domain.
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@ BP is better then just a heuristic in the loopy case ... BP is the
special Gauge condition eliminating all contributions but loops.

@ Exact Marginal probability allows explicit Loop Series expression in
terms of a solution of the Belief Propagation equations.

@ Truncation and/or Re-summation of the Loop Series provide
hierarchy of systematically improvable approximations/algorithms.
Standard BP/LP is a first member in the hierarchy.

@ Local example (truncation). Finding a critical loop, or a small
number of critical loops, can be algorithmically sufficient for drastic
improvement of BP decoding in the error-floor domain.

@ Multi-scale example of stat-mech problems with long correlations.
Re-summation is needed to improve upon BP.
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Future Challenges

@ Better Algorithms: Loop Series Truncation/Resummation
o
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@ Better Algorithms: Loop Series Truncation/Resummation

@ Generalizations. g-ary and continuous alphabets. Quantum spins, Quantum
error-correction.
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@ Better Algorithms: Loop Series Truncation/Resummation

@ Generalizations. g-ary and continuous alphabets. Quantum spins, Quantum
error-correction.

@ Loop calculus based analysis of graph ensembles, e.g. understanding and
improving the cavity method [Mézard, Parisi '85-'03]
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Generalizations. g-ary and continuous alphabets. Quantum spins, Quantum
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Loop calculus based analysis of graph ensembles, e.g. understanding and
improving the cavity method [Mézard, Parisi '85-'03]

Extending the list of Loop Calculus Applications, e.g. SAT and cryptography
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Future Challenges

@ Better Algorithms: Loop Series Truncation/Resummation

@ Generalizations. g-ary and continuous alphabets. Quantum spins, Quantum
error-correction.

@ Loop calculus based analysis of graph ensembles, e.g. understanding and
improving the cavity method [Mézard, Parisi '85-'03]

@ Extending the list of Loop Calculus Applications, e.g. SAT and cryptography
@ Non-BP gauges, e.g. for stat problems on regular and irregular lattices
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Future Challenges

@ Better Algorithms: Loop Series Truncation/Resummation

@ Generalizations. g-ary and continuous alphabets. Quantum spins, Quantum
error-correction.

@ Loop calculus based analysis of graph ensembles, e.g. understanding and
improving the cavity method [Mézard, Parisi '85-'03]

@ Extending the list of Loop Calculus Applications, e.g. SAT and cryptography

Non-BP gauges, e.g. for stat problems on regular and irregular lattices

@ Relation to graph ¢-functions [Koetter, Li, Vontobel, Walker '05]

v

Other complementary developments, e.g. wrt Algorithms:

@ Improving BP [Survey Propagation = Mézard et.al '02; Generalized BP =
Yedidia et.al '01]

@ Correcting for Loops in BP [Montanarri, Rizzo '05; Parisi, Slanina '05]

Accelerating convergence of bare BP-LDPC [Stepanov, Chertkov '06]

@ Reducing LP-LDPC complexity [Taghavi, Siegel '06; Vontobel, Koetter '06;
Chertkov, Stepanov '07]

@ Improving LP-LDPC [Dimakis, Wainwright '06]
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BP is Exact on a Tree (LDPC)
Pseudo-Codewords & Loops

200=5 51T o) e (£ )

o a=1 iI€Ea

h; is a log-likelihood at a bit (outcome of the channel)

ZE(h) = = (H - 1) exp (; h;ai)

o> (3> ieB

jep 1 iep i€p
L — —
Zjo = exp(£h)) H 5 H(Z;E +Zjg) £ H(Z;}; —Zi)
pta © \i#i i
1 Z+ JjeB i€p
_ o -1
o 5 In <ZJ> y  Mja=hj + Z tanh Htanh nig
jor pra i#i
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