Outline

Analyzing and Correcting Effects of Noise and Disorder in Optics Communications Analyzing and Decoding LDPC codes

Michael Chertkov¹ Vladimir Chernyak ^{2,1}, Mikhail Stepanov ^{3,1}, Bane Vasic ³

¹CNLS & T-13, LANL

²Wayne State, Detroit & ³U of Arizona, Tucson

Michael Chertkov, Los Alamos NL

Analyzing and Decoding LDPC codes

Outline

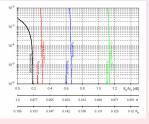
Error Correction in communications and other technologies

- Intro
- General scheme
- LDPC codes
- 2 Understanding Error-Floor
 - Emergence of the Error-Floor is a caveat of BP
 - Instanton (optimal fluctuation) method
 - Tanner code. Gaussian channel.
 - Tanner code. Laplacian channel.
 - Linear Programming Decoding
- Improving Belief Propagation/Bethe-Peierls
 - Factor Graph Model
 - Bethe Free Energy and BP
 - Loop Calculus
 - Loop Corrected Belief Propagation
 - BP for Channels with Correlations

Path forward

Intro General scheme LDPC codes

Noise and disorder in communication lines


- Amplifier Noise
- Cross-channel (and inter-channel) Interference
- Variation in dispersion
- Variation in birefringence
- o . . .

Why error-correction?

- "Cheap" alternative to fiber line improvements
- Error-free transmission is achievable in theory

Challenges:

- Extremely low BER (error-floor)
- Case specific correlations
- Optical implementation (switch)

<ロ> (日) (日) (日) (日) (日)

Analyzing and Decoding LDPC codes

Error Correction in communications and other technologies Understanding Error-Floor

Improving Belief Propagation/Bethe-Peierls Path forward Intro General scheme LDPC codes

Error Correction

• Channel (fiber)

is noisy "black box" with only statistical information available

• Encoding:

use redundancy to redistribute damaging effect of the noise

• Decoding:

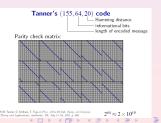
reconstruct most probable codeword by noisy (polluted) channel 📱 🤊 ५ ८

Analyzing and Decoding LDPC codes

Error Correction in communications and other technologies

Understanding Error-Floor Improving Belief Propagation/Bethe-Peierls Path forward Intro General scheme LDPC codes

Low Density Parity Check Codes



- N bits, M checks, L = N M information bits example: N = 10, M = 5, L = 5
- 2^L codewords of 2^N possible patterns
- Parity check: Ĥv = c = 0 example:

Ĥ =	(1 0 0	1 0 1	1 1 0	1 1 1	0 1 0	1 1 1	1 1 0	0 1 1	0 0 1	0 0 1	
		1 1	0 1	1 0	0 0	1 1	0 0	0 1	1 0	1 1	1 1,	

LPDC = graph (parity check matrix) is sparse

Michael Chertkov, Los Alamos NL Analyzing and Decoding LDPC codes

Intro General scheme LDPC codes

Decoding Low Density Parity Check Codes

Maximum Likelihood/Maximum-a-Posteriori

Exhaustive search for pre-image = the best one can possibly do

BP=Belief-Propagation (Bethe-Pieirls)

- Exact on a tree
- Applies to a general inference problem on a (sparse) graph
- Trading optimality for reduction in complexity: $\sim 2^L \rightarrow \sim L$
- BP = solving equations on the graph:

$$\eta_{j\alpha} = h_j + \sum_{eta
eq lpha}^{j\ineta} \tanh^{-1} \left(\prod_{i
eq j}^{i\ineta} \tanh\eta_{ieta}\right)$$

• Message Passing = iterative BF

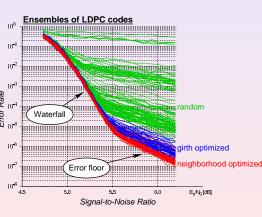
・ロン ・回 と ・ヨン ・ヨン

Intro General scheme LDPC codes

Decoding Low Density Parity Check Codes

Maximum Likelihood/Maximum-a-Posteriori

Exhaustive search for pre-image = the best one can possibly do


BP=Belief-Propagation (Bethe-Pieirls)

- Exact on a tree
- Applies to a general inference problem on a (sparse) graph
- Trading optimality for reduction in complexity: $\sim 2^L \rightarrow \sim L$

$$\eta_{j\alpha} = h_j + \sum_{eta
eq lpha}^{j \in eta} \tanh^{-1} \left(\prod_{i \neq j}^{i \in eta} \tanh \eta_{ieta} \right)$$

• Message Passing = iterative BP

Error-Floor

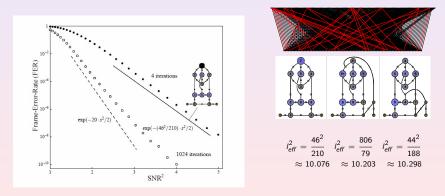

Emergence of the Error-Floor is a caveat of BP Instanton (optimal fluctuation) method Tanner code. Gaussian channel. Tanner code. Laplacian channel. Linear Programming Decoding

- BER vs SNR = measure of performance
- Waterfall ↔ Error-floor
- Suboptimal decoding causes error-floor
- Fluctuations within an expurgated ensemble of codes are stronger in the error-floor domain
- Monte-Carlo is useless at ${\rm BER} \lesssim 10^{-8}$
- Need an efficient method to analyze error-floor.

Emergence of the Error-Floor is a caveat of BP Instanton (optimal fluctuation) method Tanner code. Gaussian channel. Tanner code. Laplacian channel. Linear Programming Decoding

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

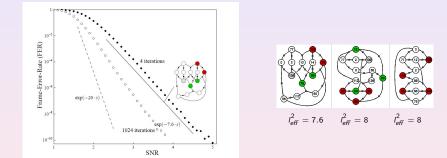
Optimal Fluctuation



Chernyak, Chertkov, Stepanov, Vasic Phys.Rev.Lett 93, 198702 (2004)

Emergence of the Error-Floor is a caveat of BP Instanton (optimal fluctuation) method Tanner code. Gaussian channel. Tanner code. Laplacian channel. Linear Programming Decoding

(155,64,20) Tanner code. Gaussian Channel.

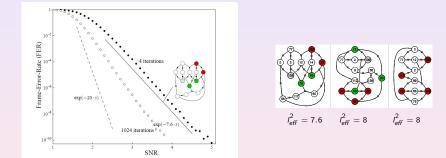

 Instanton-amoeba (numerical minimization) implemented for 4-iterations of iterative BP

Stepanov, Chertkov, Chernyak, Vasic, Phys Rev Lett 95, 228701 (2005) + cond-mat/0506037 + ISIT 2006

Emergence of the Error-Floor is a caveat of BP Instanton (optimal fluctuation) method Tanner code. Gaussian channel. Tanner code. Laplacian channel. Linear Programming Decoding

(155,64,20) Tanner code. Laplacian Channel.

Lesson:


Strong dependence of the error-floor performance on the channel

Stepanov, Chertkov, 43rd Allerton conference (2005), arXiv:cs.IT/0507031 🛛 🗧 🕞 🗸 🚊 🕨

Michael Chertkov, Los Alamos NL Analyzing and Decoding LDPC codes

Emergence of the Error-Floor is a caveat of BP Instanton (optimal fluctuation) method Tanner code. Gaussian channel. Tanner code. Laplacian channel. Linear Programming Decoding

(155,64,20) Tanner code. Laplacian Channel.

Lesson:

Strong dependence of the error-floor performance on the channel

Stepanov, Chertkov, 43rd Allerton conference (2005), arXiv:cs.IT/0507031

Michael Chertkov, Los Alamos NL Analyzing and Decoding LDPC codes

Emergence of the Error-Floor is a caveat of BP Instanton (optimal fluctuation) method Tanner code. Gaussian channel. Tanner code. Laplacian channel. Linear Programming Decoding

LP decoding

Feldman, Wainwright, Karger '03

Chertkov, Stepanov '06

臣

stop 2 stop 3 ²⁾ = **0**⁽²⁾ end

- LP decoding = minimization of a linear function over a bounded domain described by linear conditions
- Fast and Discrete
- "Large SNR" limit of BP

Instanton for LP-decoding

• Find instanton in small number of discrete steps

(155, 64, 20) test:

 \sim 200 instantons were found within the gap between

error-floor (BP) and Hamming distance (MAP)

asymptotics, 16.4037 < E < 20

Chertkov, Stepanov – submitted to IEEE IT, arXiv:cs.IT/0601113

Factorization

Factor Graph Model Bethe Free Energy and BP Loop Calculus Loop Corrected Belief Propagation BP for Channels with Correlations

(Forney '01, Loeliger '01)

$$\sigma_{ab} = \sigma_{ba} = \pm 1$$

$$\sigma_1 = (\sigma_{12}, \sigma_{14}, \sigma_{18})$$

$$\sigma_2 = (\sigma_{12}, \sigma_{13})$$

Example: Error-Correction (bipartite)

 $P\{\boldsymbol{\sigma}\} = \prod_{a \in X} f_a(\boldsymbol{\sigma}_a),$

 $Z = \sum_{\{\sigma\}} P\{\sigma\},\$

X = edges

$$f_i(\boldsymbol{\sigma}_i) = \begin{cases} 1, & \sigma_{i\alpha} = \sigma_{i\beta} \\ 0, & \text{otherwise} \end{cases}$$
$$f_\alpha(\boldsymbol{\sigma}_\alpha) = \delta\left(\prod_{i \in \alpha} \sigma_i, +1\right) \exp\left(\sum_{i \in \alpha} \sigma_i h_i / q_i\right)$$

Michael Chertkov, Los Alamos NL

 h_i - log-likelihoods q_i -connectivity degrees

Analyzing and Decoding LDPC codes

Factor Graph Model Bethe Free Energy and BP Loop Calculus Loop Corrected Belief Propagation BP for Channels with Correlations

Bethe free energy: variational approach (Yedidia,Freeman,Weiss '01 - inspired by Bethe '35, Peierls '36)

•
$$F = -\sum_{a} \sum_{\sigma_{a}} b_{a}(\sigma_{a}) \ln f_{a}(\sigma_{a}) + \sum_{a} \sum_{\sigma_{a}} b_{a}(\sigma_{a}) \ln b_{a}(\sigma_{a}) - \sum_{(a,c)} b_{ac}(\sigma_{ac}) \ln b_{ac}(\sigma_{ac})$$

constraints:

$$\begin{array}{ll} \forall \ a, \ c; \ c \in a: & 0 \le b_a(\sigma_a), \ b_{ac}(\sigma_{a,c} \le 1 \\ \\ \forall \ a, \ c; \ c \in a: & \sum_{\sigma_a} b_a(\sigma_a) = \sum_{\sigma_{a,c}} b_{ac}(\sigma_{a,c}) = 1 \\ \\ \forall \ a, \ c; \ c \in a: & b_{ac}(\sigma_{ac}) = \sum_{\sigma_a \setminus \sigma_{ac}} b_a(\sigma_a) = \sum_{\sigma_c \setminus \sigma_{ac}} b_c(\sigma_{a,c}) \end{array}$$

• Belief-Propagation Equations:
$$\frac{\delta F}{\delta b}\Big|_{\text{constr.}} = 0$$

- LP=BP at SNR \rightarrow 0
- Convergence of iterative BP is not guaranteed

• Relaxation to minimum of the Bethe Free energy enforces convergence of iterative BP

・ロト ・回ト ・ヨト ・ヨト

(Stepanov, Chertkov - 44th Allerton 09/2006)

Factor Graph Model Bethe Free Energy and BP Loop Calculus Loop Corrected Belief Propagation BP for Channels with Correlations

Bethe free energy: variational approach (Yedidia,Freeman,Weiss '01 - inspired by Bethe '35, Peierls '36)

•
$$F = -\sum_{a} \sum_{\sigma_{a}} b_{a}(\sigma_{a}) \ln f_{a}(\sigma_{a}) + \sum_{a} \sum_{\sigma_{a}} b_{a}(\sigma_{a}) \ln b_{a}(\sigma_{a}) - \sum_{(a,c)} b_{ac}(\sigma_{ac}) \ln b_{ac}(\sigma_{ac})$$

constraints:

• Belief-Propagation Equations:
$$\frac{\delta F}{\delta b}\Big|_{\text{constr.}} =$$

- LP=BP at SNR \rightarrow 0
- Convergence of iterative BP is not guaranteed

• Relaxation to minimum of the Bethe Free energy enforces convergence of iterative BP

・ロン ・回 と ・ ヨ と ・ ヨ と …

(Stepanov, Chertkov - 44th Allerton 09/2006)

0

Factor Graph Model Bethe Free Energy and BP Loop Calculus Loop Corrected Belief Propagation BP for Channels with Correlations


Loop Calculus:

(Chertkov, Chernyak '06)

• Exact expression (for partition function, etc) in terms of BP

$$Z = Z_0 \left(1 + \sum_C r(C) \right), \quad r(C) = \frac{\prod_{a \in C} \mu_a}{\prod_{(ab) \in C} (1 - m_{ab}^2)}$$
$$m_{ab} = \int d\sigma_a b_a(\sigma_a) \sigma_{ab}$$
$$\mu_a = \int d\sigma_a b_a(\sigma_a) \prod_{b \in a, C} (\sigma_{ab} - m_{ab})$$

 $b_{ab}, b_a, Z_0 \equiv -\ln F -$ all calculated within BP

・ロン ・回 と ・ ヨ と ・ ヨ と

- BP is exact on a tree
- BP is a Gauge fixing condition

Factor Graph Model Bethe Free Energy and BP Loop Calculus Loop Corrected Belief Propagation BP for Channels with Correlations

・ロン ・回 と ・ ヨン ・ ヨン

Utility of the loop calculus for improving BP

LP-version of the loop-improved algorithm

- 1. Run LP algorithm. Terminate if LP succeeds.
- 2. If LP fails, find the most relevant loop C correspondent to the maximum in amplitude r(C).
- 3. Modify the log-likelihoods along the loop *C* introducing "erasures" along the loop.
- 4. Run LP with modified log-likelihoods.

(155, 64, 20) test

All "dangerous" pseudo-codewords (\sim 200 of them) previously found by LP-instanton

method were successfully corrected by the loop-improved LP algorithm.

• The loop-imroved decoding shows NO error-floor.

Chertkov, Chernyak - invited talk at 44th Allerton conference, 09/2006

Factor Graph Model Bethe Free Energy and BP Loop Calculus Loop Corrected Belief Propagation BP for Channels with Correlations

・ロッ ・回 ・ ・ ヨ ・ ・ ヨ ・

Utility of the loop calculus for improving BP

LP-version of the loop-improved algorithm

- 1. Run LP algorithm. Terminate if LP succeeds.
- 2. If LP fails, find the most relevant loop C correspondent to the maximum in amplitude r(C).
- 3. Modify the log-likelihoods along the loop *C* introducing "erasures" along the loop.
- 4. Run LP with modified log-likelihoods.

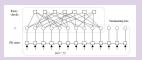
(155, 64, 20) test

All "dangerous" pseudo-codewords (\sim 200 of them) previously found by LP-instanton

method were successfully corrected by the loop-improved LP algorithm.

• The loop-imroved decoding shows NO error-floor.

Chertkov, Chernyak - invited talk at 44th Allerton conference, 09/2006


Factor Graph Model Bethe Free Energy and BP Loop Calculus Loop Corrected Belief Propagation BP for Channels with Correlations

Example: Inter-Symbol interference (Partial Response) channel

Di-code formulation

• output =
$$y_i = \sum_j J_{ij}\sigma_j + \xi_i$$

 $\langle \xi_i \rangle = 0, \quad \langle \xi_i \xi_j \rangle = \delta_{ij}/s^2$

- σ is encoded by an LDPC code
- di-code=Inter-Symbol Interference + LDPC code
- Decoding of the di-code = solving inference problem on an extended Tanner graph

Our approach

- Formulate di-BP = minimum of the joint (di-) Bethe free energy
- Test iterative version of the di-BP against Monte-Carlo simulations
- Apply instanton (and instanton-LP) approach to analysis of di-BP (di-code) error-floor
- Develop loop-improved di-BP/LP

Anguita, Chertkov - in progress

<ロ> (日) (日) (日) (日) (日)

Analyzing, Developing and Improving Inference Algorithms

Methods	Applications				
 Instanton toolbox for Coding Approximate algorithms improving BP (a) Enforcing convergence to BP (b) Loop series truncation (c) Correcting BP gauges based on bare BP Other gauge fixing ideas 	 Error-Correction over "interesting" channels (e.g. in fiber optics) Inter-symbol interference on 2d, 3d and networks (wireless, magnetic/holographic memory) Other problems in information and computer sciences (community detection, coding and routing on networks, combinatorial optimization, cryptography, etc) 				

Towards Designing Better Error-Correction Codes

・ロン ・回 と ・ ヨ と ・ ヨ と …