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COMPARISONS OF GENERALIZED ESTIMATES OF PROBABLE MAXIMUM
PRECIPITATION WITH GREATEST OBSERVED RAINFALLS

John T. Riedel and Louis C. Schreiner
Hydrometeorological Branch
Water Management Information Division
Office of Hydrology
National Weather Service, NOAA
Silver Spring, Maryland

ABSTRACT. This study summarizes known storms of record over
the United States east of the 105th meridian and west of the
Continental Divide that have point or areal rainfall depths
that are > 50 percent of PMP. More than 240 storms met this
criteria. The storms are identified and percentages of PMP
are shown on maps. Some judgement on the relative magnitude
of PMP in the two large regions is given by comparison of
the ratios of PMP to 100-yr return period rainfall. Such
ratios for 24 hours range from 4 to 6 east of the 105th
meridian. For the western mountainous states, these ratios
are as low as 2 in the more mountainous locations and as high
as 6 in the desert and sheltered spots.

1. INTRODUCTION

Studies by the Hydrometeorological Branch of the National Weather
Service giving generalized estimates of probable maximum precipitation
(PMP) have now been completed for the United States east of the 105th
meridian and for the region west of the Continental Divide. These studies
are used extensively by Federal, State and local government agencies, as
well as private companies and individuals as a standard in planning and
designing water control structures. The purpose of this report is to list
and show on maps those storms of record that are within 50 percent of
PMP. Additionally, we show ratios of point PMP values to values for the
100-year recurrence interval.

2. DEFINITIONS

PMP is defined as "the theoretically greatest depth of precipitation for
a given duration that is physically possible over a particular drainage
basin at a certain time of year." (American Meteorological Society 1959).
Realizing there are yet unknowns in our understanding of the physical
process responsible for extreme rainfall, we usually refer to the PMP
values as estimates. Procedures for developing PMP estimates are not



discussed in this study. These are given in detail in the referenced
hydrometeorological studies and summarized in Operational Hydrology
Report No. 1, "Manual for Estimation of Probable Maximum Precipitation, "
(World Meteorological Organization 1973).

Generalized PMP estimates provide results for large regions and are
presented on a series of maps or a combination of maps and computational
procedures. Thus, the user can obtain PMP estimates for any basin within
the range in area sizes and durations now required or expected to be
required in the future. Other estimates are at times determined for
specific drainages. These may be termed site specific PMP estimates.

Both local or thunderstorm PMP and general storm PMP were determined
for the western states. These are both needed since the most intense
station or point rainfalls of record in these states occur locally, not
in connection with large scale weather patterns that produce rains over
large areas for durations of a day or more*. This differs from storm
experience in the United States east of the 105th meridian where extreme
point rainfalls occur within general longer duration rain situations
covering large areas. Local.storm PMP is developed from storms that
cover areas less than 500 mi ‘’and have durations less than 6 hours. These
are either thunderstorms or intense convective showers. Examples of this
storm category are the 6.75-in. value in 1 hour at Morgan, Utah (8/16/1958),
and the 8.25-in. value in 150 minutes at Chiatovich Flat, California
(7/19/1955) , with rainfall covering an area less than 100 mi~. _General
storm PWP is based on storms covering areas larger than 1000 mi and
lasting a day or more. They are generally related to broadscale synoptic
weather patterns, as exemplified by the September 3-5, 1970 tropical storm
in Arizona and the January 19-24, 1943 storm in California. In these
storms, 24-hour point rainfall amounts were 1ll.4 and 25.8 inches, respec-
tively, and rain amounts over an inch covered areas of several thousand
square miles.

All-season PMP is the greatest PMP regardless of season. As an example
for large drainages, the all-season. PMP is a late fall or winter event
in California but a summer or early fall event in states bordering the
Gulf of Mexico and Atlantic Ocean.

3. SOURCES OF PMP VALUES

Figure 1 outlines four regions for which generalized PMP estimates
are available and table 1 lists the PMP studies and some pertinent
information. Other generalized PMP studies are available but were not used
in the comparisons. These include studies for specific large drainages,
such as those for the Susquehanna River drainage (Goodyear and Riedel 1965)
and the Tennessee River drainage (Schwarz and Helfert 1969). Valid
comparisons with PMP in these reports would require an individual PMP
estimate for the exact location of the isohyet encompassing the desired

*The area of Oregon and Washington West of the Cascade Divide is an

exception. Here rainfall climatology shows that the most extreme point
rainfalls have occurred in general storm situations.
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area size.

Since the average values of PMP in these studies are equivalent

to that from Hydrometeorological Report (HMR) No. 51, "Probable Maximum
Precipitation Estimates, United States East of the L05th Meridian,"
(Schreiner and Riedel 1978), we consider such comparisons unnecessary for

the present report.

We have not included comparisons for the region

between the Continental Divide and the 105th meridian even though a
generalized study covers this region (U.S. Weather Bureau 1960). That
study provides estimates for durations to only 24 hours and area sizes to

400 miZ.
in this comparison.

This is a more restrictive range than in the other studies used
In addition, the 1960 study provided estimates for the

entire United States west of the 105th meridian, using a degree of general-
ization not comparable with that used in the other studies.

Table 1.--Generalized PMP Studies Used in Comparisons

Hydrometeorological
Report

Geographic Bounds

Scope

No. 36
(U.s. Weather Bureau
1961 Revision, U.S.
Weather Bureau 1969)

No. 43
(U.S. Weather Bureau
1966)

No. 49
(Hansen et. al 1977)

No. 51
(Schreiner and Riedel
1978)

Pacific coast drainage
of California

Columbia River and
coastal drainages of
Oregon and Washington

Colorado River and
Great Basin drainages
(also all of California
for local storm PMP)

U.S. east of the 105th
meridian

General storm PMP
areas up to 5000 mi ;
6 to 72 hrs. Each
month, October-April

General storm PMP,

“areas up to 5000 mi ;

6 to 72 hrs. Each
month, October-June

Local storm PMP, east
of Cascades Ridge,
areas up to 500 mi ;
durations to 6 hrs.
Each month May-
September

General storm PMP, areas
up to 5000 mi"; 6 to

72 hrs. Each of the

12 months

Local storm PMP,
areas up to 500 mi ;
durations up to 6 hrs.
All season

Areas from 10 to 20,000
mi ; 6 to 72 hrs. All
season




4. SOURCES OF GREATEST OBSERVED RAINFALLS

Surveys made after extreme storm and flood events usually uncover greater
rainfall depths than those measured at stations that report regularly. This
is so since there is little chance that the most intense (or near most in-
tense) rainfall in a storm will occur over a preselected rain gage.

Many of the greatest rain catches from postflood surveys are used in storm
depth-area-duration studies. Results of these studies giving maximum areal
rainfall depths are included in a published catalog titled Storm Rainfall in
the United States, Depth-Area-Duration Data (Corps of Engineers 1945~ ).
Other accounts of extreme areal rainfall events studied in less detail have
been added to a more inclusive catalog (Shipe and Riedel 1976). While this
laEter publication covers depths for selected areas between 100 and 10,000
mi , maximum depths for smaller areas down to station values and for larger
areas are available in the data file used to prepare this publication. This
augmented catalog is a comprehensive source for known maximum areal rainfall
depths that have occurred over the contiguous United States.

Several studies of maximum station rainfalls for regular observing sta-
tions have been published. Weather Bureau Technical Paper No. 15,
"Maximum Station Precipitation for 1, 2, 3, 6, 12, and 24 hours," (U.S.
Weather Bureau 1951-61) shows greatest depths for 1-, 2-, 3-, 6-, 12-, and
24-hr durations on a monthly basis for the period from 1940 to about 1950
for all regularly published recording gage stations in 33 states. U.S.
Weather Bureau Technical Paper No. 2, "Maximum Recorded United States Point
Rainfall for & Minutes to 24 Hours at 207 First-Order Stations," (Jennings
revised 1963) gives the greatest recorded depths through 1961 for various
durations from 5 minutes to 24 hours at 296 first-order Weather Bureau
stations. U.S Weather Bureau Technical Paper No. 16, "Maximum 24-Hour
Precipitation in the United States,'" (Jennings 1952) gives the greatest
24-hr or l-day value of record through 1950 for each month for the regular
reporting stations. This last report has been updated for the present
comparisons through 1973 for all states.

5. PROCEDURE
5.1 Introduction

Our procedure was restricted to comparing large observed values with the
all~-season PMP. An alternative, would be to compare stqQrms with the PMP for
the month of the storm. We chose also to compare 10 mi~ PMP with maximum
station values, where these are available. 1In same cases, station values
were not available and average depths over 10 mi were used. For many
earlier storms, there were insufficient data to distinguish between the two.
Therefore, in Storm Rainfall in the United States (Cqgrps of Engineers
1945~ ), station depths are used sometimes as 10-mi depths.



5.2 U.S. East of the 105th Meridian

Generalized all-season PMP estimates for this region are given in.HAMR
No., 51 in map form for 10, 200, 1,000, 5,000, 10,000, and 20,000 mi“~ for
durations of 6, 12, 24, 48, and 72 hours (30 maps). For each of these area
size and duration combinations we have found all known storm depths that are
50 percent or more of PMP, These storm depths, in percent of PMP, are
Plotted in place of occurrence on charts 1 through 30, Table 2 lists these
storms chronologically with index letters for identification on maps, a
Corps of Engineers assignment number, if applicable from Storm Rainfall in
the United States (Corps of Engineers 1945- ), location of the storm center
(by town, state and latitude/longitude), and chart numbers on which each
storm appears. As an example, the 6/9-10/1905 storm, index AZ, Assignment
No. UMV 2-5, centered near Bonaparte, Iowa, 40°42 'N latitude and 91°48'W
longitude, has observed values > 50 percent of PMP for:
6 hr/1,000 mig chart 11 (56%) 6 hr/10,000 mig, chart 21 (66%)
12 hr/1,000 mi2, chart 12 (57%) 12 hr/10,000 mi2, chart 22 (61%)
24 hr/1,000 mi2, chart 13 (52%) 24 hr/10,000 mi2, chart 23 (52%)
6 hr/5,000 mi2, chart 16 (67%) 6 hr/20,000 mi2, chart 26 (61%)
12 hr/5,000 mi2, chart 17 (63%) 12 hr/20,000 mi~, chart 27 (54%)
24 hr/5,000 mi~, chart 18 (54%)

A total of 177 separate storms are listed in table 2. Major rain centers,
separated by more than 200 miles were listed as separate storms even if they
occurred on the same date. In some cases depth~area-duration data from
Storm Rainfall in the United States (Corps of Engineers 1945~ ) are given
separately for different storm centers as well as for the entire storm area
covered by individual centers. When this occurred, values for the different
storm centers were compared if the centers were more than 200 miles apart.

If the centers were closer together, comparisons were made for only the storm
center giving the greatest rainfall depth.

The areal rainfall depths were compared with the PMP at the location of
the maximum observed point rainfalls. This approximation avoided deter-
mining the actual location of the maximum depth, and determining the aver-
age PMP for possibly an odd-shaped isohyet. Generally, if the location of
the maximum areal depth is farther south than the maximum point depth, the
true percentage of PMP is less than shown; on the other hand, if the loca-
tion is farther north, the true percentage is greater than that shown on the
charts. Except for unusually shaped isohyets these differences would be
only a few percent.

5.3 U.S. West of the Continental Divide

Topographic influences in the western states make it difficult to prepare
simple mapped values of PMP as is done for the region east of the 105th
meridian*. Without such PMP maps for selected area sizes and durations, it

*We should note that the PMP maps for HMR No. 51 are stippled in the regions
near the 105th Meridian and the Appalachian Mountains to indicate possible
topographic influences on PMP estimates that are not covered in HMR No. 61.
Such complications were not considered in the comparisons.
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is extremely time consuming. to compare maximum areal depths with PMP. For
example, say for a 1,000-mji maximum depth, the exact location of the ischyet
encompassing this 1,000-mi area would need to be determined and the PMP
computed for this location., The simplifying assymption (used east of the
105th meridian) that the center of this 1,000-mi”~ area would coincide with
that of the maximum point rainfall cannot be used.

We therefore Bave compared in detail only generalized all=-season PMP esti-
mates for 10-mi for 6= and 24-hr duraEions with maximum cbserved station
depths for these durations. For 10-mi the limitations on computing PMP are
not as great. Generalized all-season PMP maps for these durations were
based on PMP computations for each month specified in each of the three
reports, (see table 1) on a quarter degree latitude-~longitude grid for both
the general storm and local storm. The greatest all-season value from the
two storm types was then selected for each grid poing.The local storm 10-mi
PMP for 6 hours exceeds the 6~hr general storm 1l0-mj PMP over much of the
western states. In fact, it exceeds the 24~hr 10-mi~ general storm values
for some regions, and is therefore used for those cases in the comparisons
with 24=hr observed rainfalls.

We have made less detailed.comparisons of maximum observed areal depths
with PMP for 500 and 1000 mi for both 24 and 48 hours. For the most part,
these comparisons used the limited storm samplings provided in Hydrometeoro-
logical Reports No. 36, "Interim Report--Probable Maximum Precipitation in
California," No. 43, "Probable Maximum Precipitation, Northwest States,"
and No. 49, "Probable Maximum Precipitation Estimates, Colorado River and
Great Basin Drainages.'  For each of the comparisons we egtimated the
location covered by the maximum depth over 500 and 1000 mi~ and computed PMP
for each month for that location. The highest PMP or all-season value was
then used.

Charts 31 through 36 of the United States west of the Continental Divide

show observed storm rainfalls* that are 50 percent or more of PMP. Table 3
lists the storms chronologically as in table 2. There are 66 separate storm

events for these six combinations of area sizes and durations. Major rain
centers separated by more than 200 miles, although with the same storm date,
are listed as separate events.

6. RESULTS
6.1 Comments

2
Chart 1 for 6 hours, 10 mi shows two storms with percentages greater than
100 implying cobserved values greater than PMP. These are:

a) The Smethport, Pa. storm of July 17-18, 1942 (observed 30.8 +
inches in 4-1/2 hours -- a world record for this duration);

*The maximum station values for four storms are from isohyetal maps obtained

by expressing observed storm depths in percent of mean annual precipitation
and then through isopercental analyses obtaining a greater point depth.
These cases are marked with an asterisk in table 3.



43 9T, LTT ST.,p€ ¥O  uul Taxxtnbs XH 9T61/6T-%1/1
43 GELETT LELSF WO BIOUSTD XH ST61/12/2T
43 00,22T OT,TI¥ %O PnoTOoW * IN MH  ST61/2/2-€2/1
zZE' 1€ L0,8TT 8T, pE WO youey AqT0D AH ¥161/22-L1/T
K310 v161/€/1
ZE' 1€ GZ,IZT G§G,6€ V¥O  DBUTTATIS "IN 6I-1dS 0H -€161/62/21
se1ze’ 1€ 6€,L0T €G,L6 0D QUO3SPRTD 0€-zMS  IH 1161/9-%/01
43 65,0ZT TP, 6€ WO 9310ge7T SH 1T61/81/S
43 0, GTT SE,EF At oyeusaTlIIRY 9-pdN ¥9H 606T/€C-8T/11
43 GZ,0ZT 00,66 WO Aeg syo9w °aN OH 606T/9T-T1/T
X310
9€'%e'Z¢ GZ,TZT 6SG.,6€ YO  DUTTATIS "IN dH LO6T/LZ-ST1/¢€
43 GZ,GTT OP,T¥ AN uOisaTIRYD *IN *OH LO6T/S-1/2
43 0€,%2T SH.Z¥ WO pI03I0 3104 NH LO6T/€/T
9e’pE‘€e’Z¢E €6,9TT 6T.,6€ ¥ STTTI®N WH 9061/92~-€2/€
z€ €E€L,CZT LG,LE WO pPT9TFIUSYA TH v061/21/C
43 9€,0ZT €£T,S5€ V¥D eiTaiebIiewejues 3H T061/9/1
zZe'1¢€ 9ELFPTT €0,5€ 2ZY aAeUOW " 3d rH 8681/8¢7/8
43 SELEZT LELSP ¥O BIOUSTH IH €681/8/T1
ZE' 1€ 8Z,9TT 9€,2€ WO odure) HH 1681/21/8
Ze' 1€ TVoLTT LZ.LE AN o33swmred OH 0681/11/8
4% STLTIT 6S,2€ WO sejTuroud JIH 6881/21/01
4% TTI.7ZT ST.0F ¥O @2T1o3l3eW xaddn qH 8881/0¢/1
z€ EV,EET O0E,SF ™0 pueTixog a” Z881/21/21
A3 0€,TZT GE,8¢ WO ojuaueIdes OoH 088T/0Z/¥%
43 ST,ECT T€,8€ WO ssoy "3d g4 ¥L81/22/11
Z€ 8Z,2ZT 9F.LE VYD OOsTOURII ues ¥H  9981/0Z-61/Z1
sIeadde wIOlS YOTUM uo (S)3IeYy) buo Je] ERCERY uMmog, *ON juswubTSSe °*ON 931¥p Wx0ls

I93U80 WIOls

sdxo) Xaput

16

gpraq

103UULIU0Y [fO 482M *G°N (SUOLIDIND § PUD S821L8 D2ID ¢) “GHd SO 408 < 17vfUibd Y310 SuI015--°¢ 27qD]



17

43 TP LTT €Z,¥€ VYO Ixed Sautrd bT1dq nr vve1/22/¢
g9c’'ge’'peee’ze 1e 20,811 €T,b€ ¥DO  dued sasbaoH LI €¥6T/¥2-61/1
*d*°N 931TweSOx

9c’ge’ze GZ,6TT GE,LLE VD @doUBIQUF *OS "IN xSI EY6T/¥C-61/1

43 6V €T TT,9%7 YM STTasEN ar Zye1/1€/0T

zZe' 1€ 9€ LIT ¥T.p€ WO dwed s,AoTTaX a1 8¢61/%/€-92/2

9e‘pE‘ZETE €7 ,TCT TG.8€ WO sbIaqoH oI LEGT/TT-6/2T

183 GEITT 00,6€ VWO uwreq edeuwreind NI LEGT/8-%/T

9clge'pe’ee’ 1E 0€,€CT O0€.LF W¥M MIed MTd "IN I GE6T/SZ-0Z/1

43 €5,8TT S0.PE YO - ezZnYOaT A1 gc61/1€/21

1€ PP WZT €Z.87 WM ‘ST ysoojer rt €E6T/T2/TT

(43 LT %CT €0,ZF WO sbutyooxg TI €€61/6/9

ze'1e 0€,TZT S0.87 WM anox brg HI zE6T/92/2

g9e‘ge’ye’ee’Te 0S PIT 0€,9% dI 3YeT UsTId "IN *9I  T€61/2/¥-0€/€

(43 SZ,STT OV,Iv AN UOISOTIRYD "IN «AI  0€6T/LT-TT/T1

g9g‘ge‘pe’‘ee’ze 06 9TT ¥0.PE WD S3ILTd poomiey 67-ds Al LT6T/2Z-01/2

(43 90 ,8TT GT.PE WD dured s,prdo €Z-1ds dI  1261/LT-L1/TT

(43 ST, €ZT TE€.,8¢ YO ssog 3I103 o1 0Z61/81/11

43 0G.£2T TT,9% O eTII1035Y g1 6161/22/1

1€ PT,2CT OT.0F YO FInig pay ¥I 816T/€1/6

TE'TE  GEL6TT GELLE WO BUOMBM AN ZH LT61/52-02/2

sxeadde wxols UyoTym uo Amv 3IeYyD buort Jer] 93vls uMOJg, *ON uﬁwﬁﬁmﬂmmm * ON 93ep WwIols .
sdxoD Xapur

: (panUIU0D) Bpraid
Ngﬁm:ﬁ:oo%o#mms.m:b«mﬁcﬁd&%m@:@mmmwmdm&aﬁ%m%o&QwMNN&.:wEfgmmﬁo“m!ﬂmQNQG&



*sTsATeue Teausoxsdost

woxF pauTeldqo

*G1 93ed 230uUjl003] 99§

*POAISSHO 30U SPM PISn SNTPA UOTIPIS UNWTXPHy

1€ €0,6TT GCT,S5€ WD pPToTIsIoyed ar ZL6T/L/9
g€ 96 0TT 6%,£€ 2Z¥  *3ID UBUD{IOM dez-zds  Or 0L6T/S-€/6
ze'1¢ ¥0,60T 8E,LE In jutod bng Np 0L6T/L~€/6
43 €2,60T 6%,LE N butpueTd "aN We 896T1/1/8
9¢ ' pe 2T, 12T 2Th,6€ VYO HZT'MID ysnag IC $961/€2-61/21
43 ZT,£2T 8E,bF YO uoTIOUNL SARD Py v961/22/21
9e'ge’ee TTETIT 8T.87 IW JTumms €Z-zan rr $961/8-L/9
9€' ve 8T, TZT Th6€ ¥O IO yshag "aN Ic  796T/€T1-11/0T
43 0€, 72T 0Z,LF ¥M OTTTAUSID *3d HP 6S61/0Z/11
ze'1¢ vZ,2CT 6£,0F WD uojMaN op 656T1/81/6
ZE'TE  BE,IIT €0o1% dn uebIoW ar 8S61/91/8
ve 90 TZT 9€,6€ WO "ATA Axxsqmerds ar  SS6T/pz-1z/Z1
ze'1E ST 8IT Ph,LE V¥O°ITI YOTAOIBRTYD ar GS6T/6T/L
9€ve 12 21T LO¥E 2V¥ TIMOTFUNS or  T1s61/0€-52/8
*3XD

(43 HOu@NH ZT,Iv YD OTATRId YOTIO ac 0S61/0Z/11
ge‘ee’ze’ 1¢ 0€ 8TT 0€,9€ ¥D 43D ILATTS “aN ¥r  0S61/12-61/TT
(43 TZ £2T 61,57 ¥O ureq SUTYSEH Z1 6v61/0T1-6/¢
ze GG ECT €p,SF WO weTeyYsN KI  9%6T/8T-LT/T1
43 20 PIT GZ,LE AN'MJd"3IS wed -Iag XI  9%61/62-LT/01
1€ PE ZCT PG.LE VWO sTedlewel “3W MI SY6T/L2/2T

*3d "T.3BN
9E‘SE'HE'EE TETE 0€ 6TT &€ LE V¥D  93TWOSOX "IN AT SP6T1/€/T-0€/1
saieodde wIO3S UY2Tym uo (s)3Iey)d buo el 93e1s umoI, *ON JUSuuUbIsS®e *ON 93ep wrolg

sdxo)

XopUur

18

(pepnyouco) 2praid

103UBULIUOY fo 288M *G*[) (SUOLIDIND ¢ PUD $921S DIV ¢) N LSO %08 < 11PSUIDI Y210 SWIoS—-¢ 27qV]



19

b) The Cherry Creek, Colo., storm of May 30-31, 1935 (observed 24 inches
in less than 6 hours).

For both of these storms there are sufficient data to define lO—mi2 ver-
age observed rainfalls distinct from the point values. The 6-hr 10-mi alue
is 24.7 inches for storm (a) and 20.6 inches for storm (b). Thegse 10 mi
average 6-hr depths are 97 percent and 89 percent of 6~hr 10-mi PMP,
respectively. The apparent greater than 100 percent of PMP values extend
into the 12—, 24-, and 48~hr durations (charts 2, 3, and 4) in the case of
the Smethport storm. Here, if 10 mi average values are compared, the
percentages of PMP are 93, 94, and 86, respectively.

For many individual storm events, numerous recorded station rainfalls are
50 percent or more of PMP. We have listed only the comparison of PMP with
the one greatest observed value in each storm. This is particularly impor-
tant for the western states. With sharp gradients in PMP, there is a strong
probability of higher percentages of PMP for some of the lesser observed
values in a storm. An example is the January 19-24, 1943 storm in southern
California. The maximum observed point at Hoegees Camp, California, @4-hr
value) is 25.8 inches (PMP=34.1 inches) which gives 76 percent of PMP. In
the same storm 20.3 inches was observed at Mount Wilson Airway station which
is located only a few miles west of Hoegees Camp. This 20.3-inch amount is
82 percent of PMP at the location where it occurred. A detailed time-
consuming search for such higher percents in all storms would (a) uncover
many more storms within 50 percent of PMP and (b) raise the percents,
especially for those given on charts 31 and 32 for the western states.

6.2 East of the 105th Meridian

Table 4A gives the number of storms that are 50 percent or more of PMP for
each combination of area size and duration. In general, an increase in this
count with increasing area size is noted. This is contrary to what one might
expect if all other factors were equal since we have studied fewEr rain
storms with maximum average depths for 20,000 mi~ than for 10 mi, One
factor that is not equal is that for small areas a few extreme point wvalues,
when considered over the region within which they could occur, i.e.,
transposed, are so much greater than most other storms. This reduces the
storm count, as shown in table 4A for small areas. The larger the area,
the less the effect of the point extreme; that is, differences between
large area rainfalls and PMP are less. We alsc note in many cases an
increasing count of storms with increasing duration. The same reason is
given for this as for the increase with area size.

In all except two instances (east of the 105th meridian), the station, or
10 mi~ cases >50 percent of PMP came either from Storm Rainfall in the
United States (Corps of Engineers 1945- ) or Greatest Known Areal Storm
Rainfall Depths for the Contiguous United States (Shipe and Riedel 1976).
Many of the rainfall analyses of the largest storms in these publications
e.g., Cherry Creek, Colorado, May 30-31, 1935; Smethport, Pennsylvania,
July 17-18,1942; Rapid City, South Dakota, June 9, 1972; Enid, Oklahoma,
October 10-11, 1973; Kansas City, September 11-13, 1977; etc., are based on
post storm surveys made to determine maximum rainfall amounts. This
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indicates the importance of these surveys in determining maximum observed
rainfall amounts and in developing estimates of PMP.

There may be concern about the distribution of storms gn any particular
one of the 30 maps. Consider chart 1 (for 6 hours 10 mi ) as an example.
No storms are shown ip the North Central Great Lakes region. However,
turning to the 200-mi~ 6-hr map (chart 6), we see several storms in this
region. In regionally, durationally, and areally smooth envelopes of PMP,
gaps can occur and should be expected on some maps.

6.3 West of the Continental Divide

We note from table 4B there are a total of 66 separate storm events with
rains > 50 percent of PMP. Of these, the maximum values for at least 20
storms were recorded at regular reporting stations -- that is, surveys which
might have uncovered yet greater rainfalls were not made after the storm
events. Because of sparse habitation in the Western States, there remains
the possibility that greater values would not have been found, although
they likely occurred. Probably few surveys have been made after storm
events in the Western States because of the small likelihood that additional
larger catches would be discovered.

The distribution of storms shows that a large portion of the 66 events
occurred either in California or in the coastal region of Washington and
Oregon. We expect observed storms to approach PMP more closely in wet
regions like the Sierra Nevadas than in dry regions.

7. MAGNITUDE OF PMP: WEST OF CONTINENTAL DIVIDE VS. EAST
OF 105TH MERIDIAN

7.1 Comparisons of PMP with Maximum Observed Rainfalls

A question is whether PMP estimates west of the Continental Divide (West)
are comparable to those east of the 105th meridian (East) i.e., do the
values represent the same degree of "conservatism," All other factors
equal one should expect more values > 50 percent of PMP for the East
because we have more observations there and the region is larger. That is,
in the East there are currently about 6500 precipitation reporting stations
in a region of almost 2 million square miles, while in the West there are
only about 2100 stations in a region of about 800,000 square miles. We have
also studied a much larger number of storms in the East, 673, while in the
West we have studied only,139. Despite this imbalance of data, examination
of table 4 shows 77 10 mi® cases for the 6- and 24-hour durations combined
that are > 50 percent of PMP for the region west of the Continental Divide
while for the East there are only 59 such cases. We believe this is due to
the few most extreme values for the East that reduce the number of cases >
50 percent when these few are transposed (a point already discussed). Some
indication of this is found in the data. A count of thg number of cases >
50-, >60-, >70-, >80~, and >90-percent of PMP for 10 mi~ for 6 and 24 hours,
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East and West is shown in table 5. The total number of cases > 50 percent
of PMP is higher for the West, but when the criterion is >70 percent of PMP,
there is a higher count for the East.

In summary, obstacles to comparing the frequency of storm rainfalls > 50
percent of PMP in the East to those in the West, include difference in a)
the number of storms analyzed, b) the number of post storm surveys, and c)
the number and variety of record storms.

Table 5.--gumber of Storm Rainfall Cases Exceeding Various Percentages of
PMP (10 mi®, 6 and 24 hours).

>50% >60% >70% >80% >90%
East of 105th 59 32 19 7 3
meridian
West of Conti- 77 39 13 4 0
nental Divide

7.2 Comparisons of PMP With 100-yr Rainfalls

Some judgement on PMP in the East compared to that in the West can be made
from examining ratios of PMP to 100-yr rainfalls.

Charts 37 and 38 show ratios of 6- and 24-hr PMP (Schreiner and Riedel
1978) to 100-yr rainfall (Hershfield 1961) for 6 and 24 hours, respectively,
east of the 105th meridian. The ratios for 6 hours vary from about 4 near
the gulf coast to about 7 in the Great Lakes region. For 24 hours the
range is about 4 to 6.

Now let's look at the ratios west of the Continental Divide for 6 hours
(chart 39) and 24 hours (chart 40). The 100-yr values come from NOAA Atlas
2 (Miller et al. 1973). Both maps show a greater variation in ratios
from place-to-place than for east of the 105th meridian. This was to be
expected. Mountain masses have a large effect in regional variation of
rainfall magnitudes. We would expect, as shown, that for regions where
there are frequent large rains occurring at or nearly at the same place
because of orographic influences (e.g., Sierra slopes), the storm depths
would more closely approach PMP (lower ratio of PMP to 100-yr). Similarly,
highest ratios generally occur as shown in locations where heavy rainfalls
are infrequent because of sheltering or distance from the moisture source
(e.g., central valley of California or the Snake River Valley). Charts
37 and 38 show a similar trend to lower ratios in the eastern Appalachian
Mountains and lowest ratios near the Gulf where the storm experience is

greatest.
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In the west for 6 hours (chart 39), the ratios vary from 2 to 8. For 24
hours (chart 40), the ratios vary from 2 to 6. In general, the western
states show a wider range in ratios. The authors of NOAA Atlas 2, however,
(personal communication) believe that if rainfall frequency studies were
now made for the eastern mountainous regions with the attention to
orographic factors used in NOAA Atlas 2, results would be less smooth with
more centers of high and low values. If so, this could result in a greater
range of PMP to 100-yr ratios.

8. SUMMARY

This report provides some perspective to the user on the relation between
PMP and maximum observed rainfalls. In the east, of 675 storms studied,
177 (about one-fourth) had a rainfall depth (for at least one of the
standard area sizes and durations considered) that was > 50 percent of PMP.
This comparison is from documented records of storm rainfalls that extend
over approximately 100 years. These storm rainfall amounts are well
distributed over the range of durations and area sizes. From the length
of record and over this large region, we have a few storms, about 1 percent,
that are within 20 percent of PMP.

For the region west of the Continental Divide, the comparisons are more
difficult. Our data sample is smaller and because of maps of PMP for a
given area size and duration cannot be readily prepared, detailed.
comparisons analogous to those in the East cannot be made.

In spite of a smaller storm sample in the West, we found there are more
cases > 50 percent of PMP for 10 mi areas (6 and 24 hours) than in the East.
This is due to the much fewer post storm surveys in the West. The many
more eastern post storm surveys have resulted in a relatively few very
extreme observed point rainfalls which, when considered over the region
where they could have occurred, set the magnitude of PMP-that exceeds by
quite a margin the remaining maxima.

The comparisons of PMP values with the values for the 100~-yr occurrence
interval indicate a rough comparability in PMP between the East and the
West. It is, however, not possible to assign a recurrence interval to PMP,
nor even to assume that locations, where the ratio of PMP to 100-year values
are the same, have the same recurrence level. The PMP to 100-year ratios
give general guidance to approximate PMP magnitudes. In general, they
should be low in regions of frequent heavy rains and high where large
amounts are uncommon. These trends are seen in charts 37 to 40. The
Cascade-Sierra slopes, the Appalachians, Gulf of Mexico coastal region, etc.,
have the lowest ratios. The highest ratios are in the central valley of
California, Snake River Valley, North Dakota, etc. The relative values
examined in this study are, therefore, about what would be expected.
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Chart No. 9.--Same as chart 6, for 48 hr/200 mi2.
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Chart No. 35.--Same as chart 33, for 24 hr/1000 mi
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Chart No. 40.--Same as chart 39, for 24 hours.
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Commerce on October 3, 1970. The mission responsibilities of NOAA are to assess the socioeconomic impact
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