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Abstract: In this paper we present a number of recent applications in which an emulator
of a computer code is created using a Gaussian process model. Tools are then applied to
the emulator to perform sensitivity analysis and uncertainty analysis. Sensitivity analysis
is used both as an aid to model improvement and as a guide to how much the output
uncertainty might be reduced by learning about specific inputs. Uncertainty analysis al-
lows us to reflect output uncertainty due to unknown input parameters, when the finished
code is used for prediction.

The computer codes themselves are currently being developed within the UK Centre
for Terrestrial Carbon Dynamics.

Keywords: Bayesian emulator, Sensitivity analysis, Uncertainty analysis, Carbon bud-
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1. INTRODUCTION

Complicated physical processes are increasingly studied by means of sophisticated mathe-
matical models implemented within computer codes. Before relying upon the explanatory
and predictive abilities of any computer simulation, however, a variety of validatory checks
should be carried out.

The practical complications casting most serious doubts on how adequately and real-
istically a computer model reproduces reality usually arise from: vague or controversial
beliefs about the value of some of the code’s parameters; availability of limited and/or
inaccurate driving data; restrictions due to the CPU cost required for actually running
the program; and incomplete representation of reality by the model. In order to identify
and attenuate the main sources of uncertainty hampering a program’s performance sev-
eral statistical methods have already been proposed in the classical literature (see [1] for
an exhaustive reference).

The Bayesian Perspective

Over the past decade interesting results have been obtained from addressing problems
related to computer model uncertainty in a Bayesian fashion. In particular, a convenient
and flexible strategy consists in assigning a semi-parametric Gaussian process prior to
the program’s response; details of the technique can be found e.g. in [2]. Preliminary
emulation of a code by such means has already been fruitfully exercised on simulators of
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nuclear radiation releases [3] and on models for vehicle crash and spot welding [4]. Besides
relevant specific findings, results from these case-studies emphasise how widely applicable
and enlightening the principle of Gaussian process-based emulation can be. The case
studies described in this paper utilise a Bayesian emulator to deal with the problems of:
prediction: estimation of (possibly functionals of) model outputs at input configurations
other than the available ones; uncertainty analysis: exploration of the output distribu-
tion induced by assigning some probability distribution to uncertain inputs; screening:
identification of which of the code inputs are significantly active, i.e. most influential on
the outputs; sensitivity analysis: examination of how model outputs react to changes
in appropriate inputs; code verification: detection of bugs in the actual implementation
of the program. These issues relate to the code output. In this paper we will not consider
possible discrepancies between the code and real data.

The simplest sensitivity analysis product derived from the emulator is a set of main
effect plots [5]. For each of the emulator inputs, these show how the output responds, on
average, to changes in that input. Probability distributions must first be specified so that
the averaging correctly accounts for input uncertainty.

The Centre for Terrestrial Carbon Dynamics

The Centre for Terrestrial Carbon Dynamics (CTCD) is a consortium of British academic
and governmental institutions, established to advance scientific understanding of the role
played by terrestrial ecosystems in the carbon cycle, with stress on forest ecosystems.
CTCD is funded by the Natural Environment Research Council for 5 years as one of
its national centres of excellence in earth observation. The ultimate goals of the project
are: to gauge carbon fluxes and their uncertainties at different space/time resolutions;
to devise methodological, data and instrument advances for reducing these uncertainties;
and to deliver relevant findings in accessible formats to the scientific community and to
policy makers. These tasks are pursued with the support of a variety of environmental
models designed for simulating carbon patterns over different geographical and climatic
scenarios. Unfortunately, such models suffer from coarse reproduction of some underlying
physical processes and loose connections to driving data.

Within the Centre, Bayesian methods are being employed for the assessment of the
relevant model (and data) developments required for reducing the uncertainty around
predictions. We present three case studies of the Bayesian approach addressing these
challenges. The first in Section 2 illustrates the use of sensitivity analysis for model
testing. In Section 3 the emulator is used for a range of analyses including the creation of
a simplified upscaled model. The final case study is part of an assessment of uncertainty
in the UK carbon budget calculation.

2. CASE STUDY 1: SHEFFIELD DYNAMIC GLOBAL VEGETATION
MODEL

The Sheffield Dynamic Global Vegetation Model, daily version (SDGVMd) is described
in [6]. It is designed to be able to model generic plant functional types over large areas.
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Figure 1. Estimated main effects for SDGVMd inputs. Solid lines represent estimates of
the expected output with respect to the unknown input distribution. Dotted lines show 95%
pointwise probability bounds for these estimates with respect to the emulator distribution

A variety of extensions and improvements to SDGVMd were undertaken in the first
year of CTCD’s operation. Simple sensitivity analysis exercises were designed to identify
problems with the evolving code.

The five relevant soil and plant inputs that were considered at this stage were: Leaf life
span, bud burst temperature, senescence temperature, soil sand content (%) and soil clay
content (%). These were selected after talking with plant scientists following a preliminary
sensitivity study. The plant scientists also provided a range of values for these inputs,
that were plausible for a deciduous broadleaf plant type. An 80-point maximin latin
hypercube was generated in the resulting input space and for each point the average was
computed over 100 years for the principal model output (net ecosystem productivity, or
NEP). A number of coding errors were uncovered during this process, because the code
had not been exercised for such varied combinations of input.

Plots of main effects (Figure 1) proved a cheap and effective confirmatory tool for
the model developers. They clearly show which of the considered inputs NEP output is
significantly sensitive to, and the nature of the various input/output relationships. In
calculating the main effects, uniform probability distributions were assumed for these
inputs based on the given ranges, while the remainder were fixed at suggested default
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values. The plots show that NEP is generally a decreasing function of leaf life span. This
goes against the intuition that if leaves live longer they should be able to absorb more
carbon, and led the model developers to investigate the phenology routine more closely.
They found that a short life span was leading to multiple short growing seasons during
the year, and hence higher NEP. A more realistic phenology algorithm has since been
developed, and the main effect for leaf life span seen in subsequent sensitivity studies is
more realistic (see Section 4). The modellers were satisfied with the relationships revealed
by the other plots. Increasing the temperatures of budburst or senescence effectively eats
into the growing season at either end of the year, thus reducing total photosynthesis.
As expected, these temperatures are critical parameters and effort has been made within
CTCD to obtain good phenology information. Output is sensitive to the value of the
sand content, but not to clay content over this range. It is clearly important, therefore,
to obtain accurate soil sand content data.

3. CASE STUDY 2: SOIL PLANT ATMOSPHERE MODEL

The soil-plant-atmosphere (SPA) model [7] is a detailed model of plant processes operating
at a 30 minute time step. It therefore requires 30 minute driver variables in order to run.

3.1. The Aggregated Canopy Model (ACM)

In practice, predictions are required at a coarser temporal scale using a much more re-
stricted set of input data. One solution to this problem is to build a simplified model
at the coarse scale by aggregating model output from the fine scale model, and then fit-
ting simpler functional forms to the resulting input/output data set. This approach is
described in [8] and can be summarised as follows: (1) Generate 6561 points in the space
of 9 daily inputs; (2) Disaggregate each of these daily points into 30-minute time series
data; (3) Run SPA with the 30-minute data to produce 6561 daily GPP outputs; (4) Fit
a simpler response surface to the daily input and output points.

The resulting aggregated-canopy model (ACM) is a “big-leaf” model of daily gross
primary production (GPP) with 9 inputs. The model is much simpler and faster than
SPA, requiring daily driving data. are listed in Table 1 with their minimum and maximum
values. The target output is aggregate GPP for the given day. Motivated by an earlier
investigation [8], a variety of analyses have been performed on ACM and SPA.

3.2. Emulating SPA

The following analysis arises from the recognition that ACM is a kind of emulator of
SPA, designed to operate using daily meteorological driving data, when the 30 minute
data required by SPA are not available. We expect to meet similar extrapolation problems
when applying the more global scale SDGVMd outside the relatively data-rich region of
Northern Europe. It was therefore a useful exercise to employ Gaussian process emulation
to provide an alternative approximation for the upscaled SPA using far fewer runs.

In the current example we were not able to run the code directly. The following simple
algorithm was used to select a subset of 150 points from the 6561 SPA runs already
available from the ACM fitting procedure.
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Table 1. Input parameters with valid ranges

Input Symbol Min. Max.
Day of year D 173 230
Leaf Area Index (m2/m2) L 0.1 2.5
Mean foliar N concentration (g N/m2 leaf are) Nf 0.32 4.54
Mean daily temperature (°C) Tm 3 20
Half daily temperature range (°C) Thr 1 8
Irradiance (MJ· m−2· d−1) I 4.5 30.6
Leaf water-soil water potential difference (MPa) Ψd -2.5 -0.5
Ambient CO2 concentration (µmol/mol) Ca 173 230
Leaf hydraulic conductance (mmol·m−2·s−1·MPa−1) Kl 0.1 3.0

1. Generate a 150 point maximin Latin hypercube design (D1) in 9 dimensions, with
input ranges matching those seen in the SPA run data (Table 1).

2. For each point in D1, select the closest matching point in the big design (excluding
those already selected) and add it to the emulator training data.

The emulator can now be used instead of ACM to carry out prediction, uncertainty
analysis and sensitivity analysis.

3.2.1. Prediction

The 6411 SPA runs not used to build the emulator are available to test the prediction
accuracy of the emulator against that of ACM. The emulator root mean squared error
(RMSE) was 0.314, compared with RMSE=0.726 for the ACM. Predicted versus true
values of the aggregated SPA output are plotted in figures 2 for both ACM and emulator
predictions. Clearly the emulator has smaller errors overall, but not for all regions of the
input space. The emulator predicts some small GPP values as being negative. This is
physically impossible, and for these values ACM is more accurate because this knowledge
is built into the ACM equations. We could of course modify the emulator output so that
negative values are set to 0.

As a diagnostic check, we plot the t140(0, 1) Q-Q plot of standardised errors in Figure
3. Most of the points are on the line, indicating that overall the posterior variances are
consistent with actual errors. Deviations from the line cast some doubt about the dis-
tributional assumptions. In particular, the stationarity assumption may be questionable
here.

3.2.2. Sensitivity analysis

Main effects for the emulator inputs are plotted in Figure 4. We assume independent
uniform distributions for the inputs according to the ranges in Table 1. The method
used in [9] provides an estimate of the uncertainty of the output resulting from the input
uncertainty, and a breakdown of the contribution to this uncertainty from each input.
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Figure 2. Fitted versus actual values of the aggregated SPA runs: on the left using ACM and
on the right using the emulator. 1:1 lines are dashed, regression lines are solid
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Figure 3. Quantile-Quantile plot for standardised residuals

The total variance is 3.44, and the percentage contributions to this variance from each
input are Nf (41.08%), D (18.96%), L (8.63%), I (7.34%), Ca (4.87%), Tm (4.27%), Ψd

(0.67%), Kl (0.53%), Thr (0.38%). The remaining 13.27% is due to joint effects and higher
order interaction effects. These results are consistent with the findings given in [8], yet
were obtained in a much simpler way using far fewer runs of SPA.

3.2.3. Uncertainty analysis

Uncertainty analysis is concerned with quantifying the uncertainties in predictions that
arise because one or more of the code inputs are unknown. As an example, consider the
prediction of GPP at a single site on a given day (site 7000, day 200). Values are available
from a data file for each of the required inputs and driving data. The ACM prediction
assuming these inputs are exactly known is 3.59. Now suppose that just 1 of these inputs,
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Figure 4. Main effects for each of the input parameters. The solid line is the median. The
dashed lines correspond to the 95% point-wise probability band

the irradiance, is uncertain with a N(15.08, 9) distribution. The value 15.08 is the value
given in the data files, and a variance of 9 was chosen to match the distribution of errors in
irradiance prediction (Figure 2 of [8]). A simple method of propagating this uncertainty
is to use a Monte Carlo uncertainty analysis. Running ACM for each of 500 irradiance
inputs sampled from this distribution (with all other inputs fixed) produces a sample
from the ‘true’ uncertainty distribution of the GPP output of ACM, which we can obtain
in this case only because runs of ACM are essentially instantaneous. The uncertainty
distribution has mean 3.56 and variance 0.052.

By comparison, the emulator prediction assuming the inputs are all known is 3.33
(with variance 0.02 due to emulator uncertainty). The emulator prediction assuming
a N(15.08, 9) distribution for irradiance is 3.24 (with variance 0.018 due to emulator
uncertainty). The variance of the prediction is estimated as 0.15. The conclusion we
draw from this is that the ACM is overpredicting the output mean and underpredicting
the output variance.

4. CASE STUDY 3: UNCERTAINTY IN THE UK CARBON BUDGET

A major deliverable of CTCD will be an estimate of the UK carbon budget, in April 2004,
using SDGVMd. We will quantify uncertainty on the UK carbon budget using Bayesian
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Figure 5. Main effects for each of the input parameters. The solid line is the median. The
dashed lines correspond to the 95% point-wise probability bands. The test was carried out using
a central UK site and a set of input ranges appropriate for a deciduous broadleaf tree

methods, recognising uncertainty in major model parameters defining vegetation and soil
properties. Since SDGVMd is a point model, the first step is to consider uncertainties
at individual sites. Nine sites were selected to be representative of the varied climatic
conditions in the UK.

The code used here is a more developed version of the one described in Section 2. We
performed a more extensive sensitivity study, this time to identify the inputs that would
potentially contribute most to the output uncertainty. Figure 4 shows the results from
an assessment of 14 plant functional type inputs. Using the same variance decomposition
technique as in Section 3.2.2, the most important inputs were found to be leaf life span
(days), initial minimum stem rate (millimetres), maximum age (years) and water potential
(M Pa). Plant modelling experts were then questioned on their beliefs about these inputs
to elicit probability distributions. Different plant functional types were believed to have
different probability distributions for some inputs. Each site represents an area covering
10km2, so the distributions also account for the fact that multiple species are likely to be
represented.
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Table 2. Uncertainty analysis results for NEP at the 9 test sites for a deciduous broadleaf
plant functional type. The values in parentheses are variances of the mean estimate due to the
emulator. Plug-in estimates are obtained by running SDGVMd with input values fixed at their
means

Site Output mean Output variance plug-in estimate

S. Ballater (Scotland) 78.10 (1.59) 210.20 89.31

Kielder 65.85 (3.77) 239.73 43.5

New Forest (Hampshire) 207.23 (4.97) 1133.78 269.23

Dartmoor 64.88 (7.63) 472.93 99.93

Lowland (Scotland) 66.35 (7.26) 418.42 73.34

E. Keswick (Lake District) 45.38 (2.56) 183.39 55.19

Barnstaple 137.52 (3.31) 785.95 162.02

Milton Keynes 217.48 (11.54) 494.11 228.43

Stockten on the Forest (Nr York) 218.86 (2.35) 241.39 234.84

Maximum age was agreed as having a N(180, 100) distribution for all types. Leaf life
span was agreed as having a N(200, 625) distribution for deciduous types, N(1500, 10000)
for evergreen needleleaf and N(1200, 10000) for evergreen broadleaf types. The loga-
rithm of the minimum stem rate was assigned a N(ln 0.006, (0.5 ln 1.5)2) distribution for
a broadleaf type and a N(ln 0.0015, (0.5 ln 1.5)2) distribution for a needleleaf type. Wa-
ter potential was agreed to be distributed as N(3, 0.25) for deciduous broadleaf types,
N(4, 0.25) for evergreen broadleaf types, and N(3.5, 0.25) for both needleleaf types. A
realistic distribution for the leaf mortality index input has yet to be determined. The
sensitivity study was repeated with the refined distributions and ranges to see if anything
new would show up. At this point seeding density emerged as a significant input.

An uncertainty analysis was carried out at each of the 9 sites, yielding estimates for
the mean and variance of NEP output averaged over the decade 1991–2000. Results are
given in Table 2. Even after accounting for uncertainty in the emulator, the output means
differ noticeably from the plug-in estimates, suggesting non-linearity. In all but Kielder,
the plug-in values are overestimating the mean output. We recognise these variances will
be underestimates if any of the key inputs, such as seeding density and leaf mortality
index are artificially assumed to be fixed or given the wrong distribution. Plant scientists
have so far been unable to specify distributions for these inputs, but the process described
above has clearly identified these as issues to be resolved by further research. Our results
also suggest that the different sites can yield different sets of key inputs, and the process
of eliciting prior distributions from the plant scientists will need to be repeated until all
uncertainties are accurately represented.
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5. CONCLUSIONS

The proposed Bayesian approach to computer experimentation has already supplied useful
insights to CTCD modellers and is expected to yield profitable responses when applied
to more demanding test beds. Uncertainty and sensitivity analyses will be integral parts
of all major CTCD deliverables. The efficiency of the emulator was clearly demonstrated
in the case of the aggregated SPA model, where greater accuracy was achieved using
only a fraction of the code run data used to derive ACM. Identifying the most significant
uncertainty sources will help determine how best to focus future resources in order to
reduce overall uncertainty.
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