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Abstract:

We review our approach to the representation and propagation of hybrid uncertain-
ties through high-complexity models, based on quantities known as random intervals
[15, 20, 21]. These structures have a variety of mathematical descriptions, for example as
interval-valued random variables [4], statistical collections of intervals [17], or Dempster-
Shafer bodies of evidence on the Borel field [19]. But methods which provide simpler,
albeit approximate, representations of random intervals are highly desirable, including
p-boxes and traces. Each random interval, through its cumulative belief and plausibility
measures functions [36], generates a unique p-box whose constituent CDFs are all of those
consistent with the random interval. In turn, each p-box generates an equivalence class
of random intervals consistent with it. Then, each p-box necessarily generates a unique
trace which stands as the fuzzy set representation of the p-box or random interval. In
turn each trace generates an equivalence class of p-boxes. The heart of our approach is to
try to understand the tradeoffs between error and simplicity introduced when p-boxes or
traces are used to stand in for various random interval operations. For example, Joslyn
[18] has argued that for elicitation and representation tasks, traces can be the most ap-
propriate structure, and has proposed a method for the generation of canonical random
intervals from elicited traces. But alternatively, models built as algebraic equations of
uncertainty-valued variables (in our case, random-interval-valued) propagate uncertainty
through convolution operations on basic algebraic expressions, and while convolution op-
erations are defined on all three structures, we have observed that the results of only some
of these operations are preserved as one moves through these three levels of specificity.
We report on the status and progress of this modeling approach concerning the relations
between these mathematical structures within this overall framework.

Keywords: Dempster-Shafer theory, random sets, random intervals, p-boxes, probability
bounds, fuzzy arithmetic.

1. INTRODUCTION

Engineering modeling problems are frequently characterized by a large number of inputs
with different forms and levels of uncertainty present on them. For example, it might
be desirable in a given context to combine uncertainties characterized by coarse-grained
probability distributions, strong or weak statistical data, interval data, possibility dis-
tributions, or linguistic information represented as fuzzy sets. Propagating such hybrid
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uncertainties through high-complexity models (whether analytical or computational) is
thereby especially challenging, as are elicitations and interpretations of both input and
output uncertainties by domain experts and customers.

We have been developing an approach to the representation and propagation of hybrid
uncertainties in engineering modeling applications based on quantities known as random
intervals [15, 20, 21]. These structures have a variety of mathematical descriptions, for
example as interval-valued random variables [4], statistical collections of intervals [17], or
Dempster-Shafer bodies of evidence on the Borel field [19].

One of the advantages of random interval structures is their ability to generalize more
specific kinds of uncertainty quantities with a relative minimum of computational and
mathematical complexity. Nonetheless, random intervals are not especially simple struc-
tures to represent or manipulate, and therefore methods which provide simpler, albeit
approximate, representations of them are highly desirable. In this paper we report on
a framework we are developing to accomplish this. In our approach, random interval
quantities can be represented in increasingly simplified and approximate forms through
first p-box, and then trace, structures.

A p-box [8] is an ordered pair of monotonically increasing functions which together
bound a collection of cumulative probability distribution functions. Each random in-
terval, through its cumulative belief and plausibility measures functions [36], generates a
unique p-box whose constituent CDFs are all of those consistent with the random interval.
In turn, each p-box generates an equivalence class of random intervals consistent with it.

A trace [17] is defined in this context as a fuzzy quantity on the real line. Each p-box
necessarily generates a unique trace which stands as the fuzzy set representation of the
p-box or random interval. Under different conditions it can take on the properties of
a probability distribution, possibility distribution, or so-called “fuzzy interval” quantity
(used in fuzzy arithmetic). In turn each trace generates an equivalence class of p-boxes.

The heart of our approach is to try to understand the tradeoffs between error and sim-
plicity introduced when p-boxes or traces are used to stand in for various random interval
operations. For example, Joslyn [18] has argued that for elicitation and representation
tasks, traces can be the most appropriate structure, and has proposed a method for the
generation of canonical random intervals from elicited traces.

But alternatively, models built as algebraic equations of uncertainty-valued variables (in
our case, random-interval-valued) propagate uncertainty through convolution operations
on basic algebraic expressions. But while convolution operations are defined on all three
structures (random intervals, p-boxes, and traces), we have observed that the results of
only some of these operations are preserved as one moves through these three levels of
specificity.

In this paper, we report on the status and progress of this modeling approach concerning
the relations between these mathematical structures within this overall framework.
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2. GENERALIZED UNCERTAINTY QUANTIFICATION FOR
ENGINEERING MODELING

Consider the situation where we have a model, perhaps a large computer code, which acts
as a function f mapping inputs X to outputs Y . This model f might be quite complex,
with high run times, and more significantly multiple input parameters (expressed as the
dimensionality of the space X), with different kinds of uncertainty represented on them.
Given the necessity for many “gaps” between the information present in our simulations
from those of reality (model incompleteness and error, and inherent system variability
and imprecision), we wish to represent amounts, degrees, and kinds of these uncertainties
in formal systems.

But information available on inputs may be rich or sparse, so-called “aleatory” (related
to well-known, but chance, outcomes) or “epistemic” (related to a less-than-well-known
outcome), and may be made known through objective measurements or through the sub-
jective elicitation of experts. Mathematically, inputs might be represented as probability
distributions, paramaterized classes of probability distributions (e.g. N(µ, σ)), by a strong
statistical collection of data points, by a sparse such collection, by simple intervals, sta-
tistical collections of such intervals, or even by non-quantified linguistic expressions.
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Figure 1. Hybrid uncertainty quantification for an engineering modeling problem.

So given a risk or reliability problem related to our model f as charicatured in Fig. 1,
how can we quantify this uncertainty on the input space X, and furthermore propagate
it through f to the output space Y ? More to the point, how can we do so in a way which
respects all the original uncertainty quantifications as provided, making no unnecessary
assumptions? Paraphrasing Klir [25], how can we do such in a way which uses no less
than, but also no more than, all available information; that is, uses only, but all of, what
we are given?

So wherever possible, we should fit formalism to available information, and not vice versa.
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Through the 20th century, uncertainty modeling has been dominated by the mathematics
of probability, and since Shannon and Weaver [32], information has been defined as a
statistical measure of a probability distribution. But also starting in the 1960s, alternative
formalisms have arisen. Some of these were intended to stand in contrast to probability
theory; others are deeply linked to probability theory, but depart from or elaborate on it
in various ways. In the intervening time, there has been a proliferation of methodologies
(including interval analysis [28], fuzzy systems [26], fuzzy and monotone measures [24],
Dempster-Shafer evidence theory [13], random sets and intervals [22], possibility theory
[7], probability bounds [8], rough sets [30], imprecise probabilities [34], and info-gap theory
[2]) along with concomitant movements to synthesize and generalize them. Together,
following Klir [19, 23], we call these Generalized Information Theory (GIT). These
methods are increasingly accepted in engineering modeling [15, 33], and our approach is
squarely centered here.

As a very simple example motivating our approach, consider that for one of the variables
x in our space X, we’re given only an interval, that x might be between two quantities
a and b, so that x ∈ [a, b]. How do we represent the uncertainty U(I) in I? A standard
answer might be to use a uniform probability ditribution U(I) := p(x) with

p(x) =

{
1

b−a
, x ∈ [a, b]

0, x �∈ [a, b]
,

as shown by the horizontal line in Fig. 2. No doubt this answer is justified (by maximum
entropy, insufficient reason, and related principles) when it is necessary to use a single
probability distribution. But this was not specified in the problem. Indeed, one could
argue that any probability distribution with support on [a, b] can be justified, perhaps
denoted U(I) ∈ P([a, b]) (perhaps the truncated normal shown in Fig. 2); but better yet,
why isn’t our uncertainty all such distributions: U(I) = P([a, b]) (the box bounded by
the dashed lines in Fig. 2).

a b

1.00

.50

x

1
b-a

Figure 2. Representations of x ∈ [a, b].

In its purest form, our answer should in fact be none of these, but rather that U(I) is best
represented by the information as provided us, that is, by the interval itself: U(I) = [a, b].
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However, when it is necessary to combine information for some variable x ∈ X with
another y ∈ Y , then these other forms may be vailable. We argue below that all of these
answers are approached consistently within the proper GIT context.

3. NOTATION

Throughout the paper, assume a universe of discourse Ω, with ω ∈ Ω. Denote A ⊥ B :=
A ∩ B = ∅. Given a class C = {A} ⊆ 2Ω, define the core and support respectively as

C(C) :=
⋂

A∈C
A, U(C) :=

⋃
A∈C

A.

We begin considering Ω = {ωi}, 1 ≤ i ≤ n to be finite, but move to recognize Ω = IR, and
consider Borel sets (half-open interval subsets), elements of a interval Borel field.

Definition 3.1 (Interval Borel Field). Let

I := {[a, b) ⊆ IR : a, b ∈ IR ∪ {−∞,∞}, a ≤ b},

where ∀a ≤ b ∈ IR,−∞ < a ≤ b < ∞, [−∞, b) := lima−→−∞[a, b) ∈ I, [a,∞) :=
limb−→∞[a, b) ∈ I, [−∞,∞) = IR ∈ I, and [−∞,−∞) = [∞,∞) := ∅ ∈ I by con-
vention.

In general, let I := [a, b) ∈ I.

A vector denoted �a = 〈ai〉 = 〈a1, a2, . . . , am〉 is a structure of length |�a| := m where each
element ai of the vector is an element of some set ai ∈ X. The ai are ordered and may
include duplicates. Let an element b ∈ X be said to be included in a vector b ∈ �a if
∃ai, b = ai. Define subtraction of an element ai from a vector �a as a new vector

�a − ai := 〈a1, a2, . . . , ai−1, ai+1, . . . , am〉

so that |�a − ai| = m − 1.

Since a vector may contain duplicate elements ai1 , ai2 ∈ �a with ai1 = ai2 , therefore each
vector �a determines a unique non-empty set A constructed by including one instance of
each element ai ∈ �a, so that b ∈ �a ↔ b ∈ A, 1 ≤ |A| ≤ m, and the quantity |�a| − |A| is
the number of elements of �a which are duplicates.

Generalized convolution operators will be introduced, and denoted ⊕ ∈ {+,−,×,÷, ∧}
for addition, subtraction, multiplication, division, and exponentiation respectively. Let ∨
be the maximum and ∧ the minimum operator.

4. RANDOM SETS, RANDOM INTERVALS, AND EVIDENCE THEORY

We now introduce the fundamental ideas of random sets and intervals.

Definition 4.1 (General Random Set). Given a probability space 〈X, Σ, Pr〉, then
a function S: X → 2Ω − {∅}, where − is set subtraction, is a random subset of Ω if S is
Pr-measurable, so that ∀A ⊆ Ω, A �= ∅, S−1(A) ∈ Σ.
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Random sets were originally developed as a branch of stochastic geometry, and their
mathematics in general can be quite complex [1, 22]. But for our purposes, and espe-
cially in the finite case, they can be seen more simply as random variables taking values
on subsets of Ω. Further, they are mathematically isomorphic to bodies of evidence in
Dempster-Shafer evidence theory [3, 31]. We now reintroduce random sets in this context.

Definition 4.2 (Evidence Function, Basic Assignment). A function m: 2Ω →
[0, 1] is an evidence function (basic assignment) when m(∅) = 0 and

∑
A⊆Ω m(A) = 1.

Definition 4.3 (Finite Random Set). Given an evidence function m, then

S := {〈Aj, mj〉 : mj > 0}, (1)

is a finite random set where Aj ⊆ Ω, mj := m(Aj), and 1 ≤ j ≤ N := |S| ≤ 2n − 1.
Denote the focal set of S as the class F(S) := {Aj : mj > 0} ⊆ 2Ω.

Note 4.4. Each finite random set S determines a unique general random set S:F(S) →
2Ω − ∅ defined on the probability space

〈
F(S), 2F(S), Pr

〉
, where Pr is the measure deter-

mined by m acting as its density function [16]. Moreover, S simply is a Dempster-Shafer
body of evidence [13].

We recognize random sets with the following special structures:

Consistent: The global intersection is non-empty: ∀Aj1 , Aj2 ∈ F(S), Aj1 �⊥ Aj2 ↔
C(F(S)) �= ∅.

Consonant: Focal elements are all nested: ∀Aj1, Aj2 ∈ F(S), Aj1 ⊆ Aj2 or Aj1 ⊆ Aj2.

Disjoint: No focal elements intersect: ∀Aj1 , Aj2 ∈ F(S), Aj1 ⊥ Aj2.

Specific: All focal elements are singletons: ∀Aj ∈ F(S), ∃!ω ∈ Ω, Aj = {ω}.

Note that consonance implies consistency, and specificity implies disjointness. Finally,
disjointness implies a lack of consistency, and vice versa.

Definition 4.5 (Monotone Measure, Monotone Measure Trace). [35] Assume
a general universe of discourse Ω, a class of subsets C ⊆ 2Ω, and a sequence of such sets
{A1, A2, . . .} ⊆ C. Then ν: C → [0, 1] is a monotone measure if

1. ν(∅) = 0

2. Monotonicity:
∀A, B ⊆ Ω, A ⊆ B → ν(A) ≤ ν(B) (2)

3. Continuity from Below:

A1 ⊆ A2 ⊆ . . . and U(C) ∈ C → lim
i−→∞ ν(Ai) = ν

( ∞⋃
i=1

Ai

)
.
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4. Continuity from Above:

A1 ⊇ A2 ⊇ . . . and C(C) ∈ C → lim
i−→∞ ν(Ai) = ν

( ∞⋂
i=1

Ai

)
.

ν is normal when ν(Ω) = 1. Define the trace of a monotone measure ν as its “one-point
covering function” qν : Ω → [0, 1], with qν(ω) := ν({ω}).
Definition 4.6 (Evidence Measures). The plausibility and belief measures on ∀A ⊆
Ω are

Pl(A) :=
∑

Aj �⊥A

m(Aj), Bel(A) :=
∑

Aj⊆A

m(Aj),

Pl and Bel are generally normal, non-additive monotone measures [35], and are dual, in
that ∀A ⊆ Ω, Bel(A) = 1 − Pl( A ).

Random intervals were introduced by Dempster [4].

Definition 4.7 (Finite Random Interval). A finite random interval, denoted A, is
a finite random set on Ω = IR for which F(A) = {Ij} ⊆ I, 1 ≤ j ≤ N .

Thus a finite random interval is a finite random left-closed interval subset of IR.

Previously Ω had been postulated as a finite set, which leads to a great deal of mathe-
matical simplicity. However, even though Ω is now uncountable, complications can still
be avoided as long as A is finite, that is as long as only finitely many (N) focal elements
are present. This is because each I = [l, r) ⊆ IR is characterized completely by the
two endpoints l and r. With each new focal element Aj , N grows by 1, and the total
number of endpoints present in F(A) grows by at most 2. Thus the focal set of a finite
random interval can be completely represented by the finite collection of these endpoints:
F(A) = {Ij} = {[lj, rj)}. It is only these endpoints that need to be considered, and none
of the properties of the continuum of points between them is significant.

On this basis we can describe the various components of a random interval. In general de-
note Ij = [lj, rj). Then, denote the vector of all endpoints �L := 〈l1, r1, l2, l2, . . . , lj, rj , . . . , lN , rN〉,
and let L := {xk} be the set derived from eliminating duplicates from �L, with ∀xk ∈
L, ∃xj ∈ �L, xk = xj and 1 ≤ k ≤ Q := |L|, N + 1 ≤ Q ≤ 2N =

∣∣∣�L∣∣∣.
The elements of L determine a class Γ = {Gk} ⊆ I, now with 1 ≤ k ≤ Q − 1, which is
the finest partition of the support U(A) induced by the total intersections of the Ij with
each other and with all their intersections recursively. In practice, the Gk are determined
simply by ordering the xk ∈ L and then traversing them from minxk rightward, forming
an interval for each point in turn.

An example is shown in Fig. 3, with N = 4, F(A) = {[3.5, 4), [1, 2), [3, 4), [2, 3.5)}, and m

is as shown. Here Q = 5, with �L = 〈3.5, 4, 1, 2, 3, 4, 2, 3.5〉 , L = {1, 2, 3, 3.5, 4}, and thus
Γ = {[1, 2), [2, 3), [3, 3.5), [3.5, 4)}.
Our definition differs somewhat from others in the literature [9] who use fully closed
intervals. But not only is the Borel field I more consistent with that of measure theory
[14, 35], it also makes the algebraic manipulations of the Ij much easier, since e.g. for
x ≤ y ≤ z, [x, y) ∩ [y, z) = ∅.
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Figure 3. Example of a finite random interval.

In real problems, random intervals are derived from collections of observed intervals. In
Joslyn’s formalism for random interval measurement [17], the values m(Ij) are derived
by their relative frequency in this observation record. But depending on the application,
it may or may not be likely that two identical intervals I, I ′ = [l, r) will be observed, as
distinct from another interval I ′ “very close” to I, for example I ′ = [l + ε, r − δ) for some
very small ε, δ. In this case, as N grows each Ij is observed once, but with increasing
refinement among the endpoints {lj, rj}. Thus it is common in real applications to deal
with random intervals where all the focal elements Ij ∈ F(A) are distinct with Q ∼ 2N ,
and therefore each with frequency m(Ij) = 1/N .

Yager [36] introduced convolution operators on random intervals.

Definition 4.8 (Random Interval Convolution). Assume two independent ran-
dom intervals A1 = {〈Ij, mj〉}, 1 ≤ j ≤ N1,A2 = {〈Ik, mk〉}, 1 ≤ k ≤ N2, and a convolu-
tion operator ⊕. Then A1 ⊕A2 := {〈Il, ml〉} where:

1 ≤ l ≤ N1N2, Il = {z = x ⊕ y, x ∈ Ij , y ∈ Ik}, ml = mjmk.

5. PROBABILITY BOXES

Random intervals can be difficult structures to elicit, represent, and manipulate. The first
of the approximations we introduce are so-called probability boxes, or just p-boxes.

Definition 5.1 (Probability Box (P-Box)). A p-box [8] is a structure B :=
〈
B, B

〉
,

where B, B: IR → [0, 1] with:

1. limx−→−∞ B(x) −→ 0, limx−→∞ B(x) −→ 1

2. limx−→−∞ B(x) −→ 0, limx−→∞ B(x) −→ 1

3. B(x), B(x) are non-decreasing in x, and

4. B ≤ B.
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B and B are interpreted as bounds on cumulative distribution functions (CDFs). In other

words, B =
〈
B, B

〉
can be identified with the set of all functions {F : B ≤ F ≤ B} such

that F is the CDF of some probability measures Pr on IR. For each such F , denote F ∈ B.
In this way, each p-box defines such a class of probability measures.

Definition 5.2 (P-Box Convolution). Assume two p-boxes B1,B2, and a convolution
operator ⊕. When B1 and B2 are independent, then define

(B1 ⊕ B2)(z) :=
{∫

x⊕y≤z
dΠ(F (x), G(y)) : F ∈ B1, G ∈ B2

}
,

where Π(u, v) = uv is the product copula [29].

Each random interval naturally generates a p-box.

Theorem 5.3. Given a random interval A, then B(A) := 〈BEL, PL〉 is a P-Box, where
BEL and PL are the “cumulative belief and plausibility distributions” PL, BEL: IR → [0, 1]
originally defined by Yager [36]

BEL(x) := Bel([−∞, x)), PL(x) := Pl([−∞, x)).

Proof. Assume a random interval A. We need to show:

1. First,

lim
x−→−∞BEL(x) = lim

x−→−∞ Bel([−∞, x)) = Bel
(

lim
x−→−∞[−∞, x)

)
= Bel([−∞,−∞)) = Bel(∅) = 0.

Similarly,

lim
x−→∞BEL(x) = lim

x−→∞ Bel([−∞, x)) = Bel
(

lim
x−→∞[−∞, x)

)
= Bel([−∞,∞)) = Bel(IR) = 1.

The results limx−→−∞ PL(x) = 0, limx−→∞ PL(x) = 1 follow identically.

2. Since x ≤ y → [−∞, x) ⊆ [−∞, y), and since Bel and Pl are monotone measures,
therefore from monotone measure monotonicity x ≤ y → BEL(x) ≤ BEL(y), there-
fore BEL(x) is monotone non-decreasing in x. And similarly for PL.

3. ∀I ∈ I, Bel(I) ≤ Pl(I), and thus in particular ∀x ∈ IR, Bel([−∞, x)) ≤ Pl([−∞, x)),
and so ∀x ∈ IR, BEL(x) ≤ PL(x).

Therefore 〈BEL, PL〉 is a p-box.

The p-box generated from the example random interval is shown in Fig. 4. Since B and
B partially overlap, the diagram is somewhat ambiguous on its far left and right portions,
but note that

B([−∞, 1)) = 0, B([−∞, 2, )) = 0, B([3,∞)) = 1, B([3.5,∞)) = 1.
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Figure 4. A finite random interval and its piecewise-constant p-box B(A).

{B,E} = {C,D} = {B,C,D,E}

a b

1

.50

xc d

E m(E) = .5

D m(D) = .5
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E m(E) = .25
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F2
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Figure 5. Three different random intervals and their common p-box and trace.
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But for the converse, each p-box determines only an equivalence class of random intervals.
Consider the example shown in Fig. 5 for a < c < d < b ∈ IR, C = {B = [a, d), C =
[a, b), D = [c, d), E = [c, b)}, and three different focal classes F1 = {B, E},F2 = {C, D},
and F3 = {B, C, D, E} with their respective m1, m2, and m3 are shown. We have B(A1) =
B(A2) = B(A3).

Thus for a given p-box B, we can denote A(B) as the equivalence class of random intervals
consistent with it: A(B) := {A : B(A) = B}.
B and B have inverses under reasonable conditions. Assume that B and B are piecewise
continuous from the left. Then define the quasi-inverses

B−1(α) := argmin
x∈IR

|α − B(x)|, B
−1

(α) := argmin
x∈IR

|α − B(x)|,

for α ∈ [0, 1], and

Definition 5.4 (P-Box Inverse). Given a p-box B, let B−1: [0, 1] → I where ∀α ∈
[0, 1]

B−1(α) :=
{[

B
−1

(α), B−1(α)
)}

.

Condition 4 of (5.1) guarantees that for each α = [0, 1],B−1(α) exists and is a member
of I. When B and B are piecewise-constant, B−1 naturally partitions [0, 1] into disjoint
intervals denoted ᾱj over which ∀α, α′ ∈ ᾱj ,B−1(α) = B−1(α′). In practice, denote

ᾱj :=
[
αl

j , α
r
j

]
, where

αl
j = argmin

x∈IR
B(x) ≥ α, αu

j = argmax
x∈IR

B(x) ≤ α.

This is shown in Fig. 4.

Given a piecewise-constant p-box, there is a canonical way to construct a random interval
consistent with it.

Definition 5.5 (Canonical Random Interval from P-Box). Assume a p-box B.
Then construct A∗(B) := {〈B−1(ᾱj), mj〉}, where B−1(ᾱj) := B−1(αl

j) = B−1(αr
j) and

mj = αl
j − αr

j .

Theorem 5.6. A∗(B) is a random interval, and A∗(B) ∈ A(B).

Proof. It is evident from the definitions (5.4) and (5.5) that each ᾱj ∈ I. Also, since the
α̂j partition [0, 1], therefore ∑

j

mj =
∑
j

(
αl

j − αr
j

)
= 1.

It is relatively easy to see in Fig. 4 that A∗(B(A)) = A, although we know that this is
not always so.
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6. RANDOM INTERVAL TRACES

A fuzzy (sub)set of Ω, denoted Ã ⊆̃ Ω, is determined by its membership function, which
is any function of the form µ

Ã
: Ω → [0, 1]. Denote the core of a fuzzy set as C(µ) := {ω ∈

Ω : µ(ω) = 1}.
The value of µ

F̃
(ωi) indicates the degree or extent to which ωi ∈ Ω. Fuzzy sets generalize

classical (crisp) sets in that a subset A ⊆ Ω has a memberhsip function defined as the
characteristic function µA := χA. In the sequel, let each fuzzy set be considered to be a
fuzzy subset of the reals Ã ⊆̃ IR.

The trace of any monotone measure defined on IR is a fuzzy set.

Corollary 6.1. Given a monotone measure ν, then qν is a membership function.

Proof. Follows trivially from the definition of trace (4.5).

Fuzzy sets also have convolutions.

Definition 6.2 (Fuzzy Set Convolution). Assume two fuzzy intervals Ã1, Ã2, a
convolution operator ⊕, and a T-norm �. Let Ã3 = Ã1 ⊕ Ã2. Then

µ
Ã3

(z) :=
∨

x⊕y=z

µ
Ã1

(x) � µ
Ã2

(y).

There are two special kinds of fuzzy subsets which are of particular interest to us.

Definition 6.3 (Fuzzy Interval). [5, 6] A fuzzy subset of the real line F̃ ⊆̃ IR is a
fuzzy interval if F̃ is maximally normalized and convex, so that

∀x, y ∈ IR, ∀z ∈ [x, y], µ
F̃
(z) ≥ µ

F̃
(x) ∧ µ

F̃
(y).

Note that convexity here implies unimodality in the weak sense that C(F̃ ) is a closed
interval. This goes to a limit for fuzzy numbers.

Definition 6.4 (Fuzzy Number). A fuzzy number is a fuzzy interval F̃ where
∃x ∈ IR,C(F̃ ) = {x}.
So each random interval naturally generates a trace.

Definition 6.5 (Random Interval Trace). Given a random interval A, define the
function ρA: IR → [0, 1] as the plausibilistic trace, or just trace, of A, where ρA = qPl.
Therefore

∀x ∈ IR, ρA(x) := Pl({x}) =
∑

Aj�x

mj . (3)

An example is shown in Fig. 6, with A as before, and ρ shown in the top of the figure.

But for the converse, each fuzzy subset of IR determines only an equivalence class of
random intervals. Consider again the example shown in Fig. 5. Each of the three random
intervals A1,A2, and A3 generates exactly the same trace, here shown in the bold, dashed,
“step-pyramid” shaped curve.

So for a given fuzzy set F̃ , denote A
(
F̃
)

as the equivalence class of random intervals

consistent with it: A(F̃ ) :=
{
A : ρ(A) = F̃

}
. The structure of this equivalence class
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Figure 6. Example random interval with its trace and its components.

is not simple, and has been dealt with in depth by Goodman and his colleagues [10–12].
Furthermore, they have shown that operations on fuzzy sets are preserved when projected
through the random set space.

Joslyn has shown the basis to derive fuzzy mathematics from (empirically derived) random
intervals [17]. First, ρ is constant over each Gk ⊆ IR. But moreoever:

Theorem 6.6. [17] The trace ρA of a random interval A is a fuzzy interval iff A is
consistent.

This is important because fuzzy intervals generalize crisp intervals as fuzzy sets generalize
crisp sets. They are also the basis for “fuzzy arithmetic”, since the set of fuzzy intervals
is closed under convolution. In addition:

Proposition 6.7. Given two fuzzy intervals F̃1, F̃2, a convolution operator ⊕, and a
T-norm �, then F̃1 ⊕ F̃2 is not necessarily a fuzzy interval. However,

C
(
F̃1 ⊕ F̃2

)
= C

(
F̃1

)
⊕ C

(
F̃2

)
, U

(
F̃1 ⊕ F̃2

)
= U

(
F̃1

)
⊕ U

(
F̃2

)
.

7. P-BOXES AND TRACES

We now begin to explore the relations among the categories of random intervals and their
trace and p-box representations. These are diagrammed in Fig. 7.

First, a given p-box determine a trace uniquely.

Definition 7.1 (Trace of a P-Box). Assume a p-box B. Then its trace, denoted
ρ(B), is determined by ρ(B) := B − B.

The trace determined in this way from the p-box of a random interval is the same as the
trace of the random interval itself, as we will now show.
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Figure 7. Relations among random intervals, p-boxes, and traces.

Theorem 7.2. For all random intervals A, ρ(B(A)) = ρ(A).

Proof. Assume a random interval A. Fix a point x ∈ IR. Then

PL(x) = Pl((∞, x)) =
∑

Ij �⊥(∞,x]

m(Ij) =
∑
lj≤x

m(Ij)

BEL(x) = Bel((∞, x]) =
∑

Ij⊆(∞,x]

m(Ij) =
∑
x≥rj

m(Ij). (4)

Then from (5.5) and (7.1),

ρ(B(A))(x) = PL(x) − BEL(x) =
∑

lj≤x<rj

m(Ij) =
∑
x∈Ij

m(Ij) = ρ(A)(x). (5)

Note how crucial the use of half-open intervals is. The weak inequality in (4) results
through subtraction in the appropriate half-open interval in (5), and this would have been
the case whether the Ij were closed or not. These results can be checked with some simple
diagrammatic reasoning between Fig. 4 and Fig. 6.

But conversely, it might be that the trace of a random interval has multiple p-boxes which
could generate it.

8. FUTURE WORK

Future development requires the following considerations:

• Given that B → ρ, then it should be that A(B) ⊆ A(B(ρ)). What about the
converse?
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• For a given A, compare A(B(A)) and A(ρ(A)).

Comparison of canonical reconstructions:

• For a given A, compare A∗(B(A)) and A∗(ρ(A)).

• Keep going: compare ρ(A∗(B)) and B(A∗(ρ)).

Convolutions. Similar questions for convolutions all around. In particular:

• Compare B(A1 ⊕A2) with B(A1) ⊕ B(A2).

• Compare A∗(B(A1 ⊕A2)) with A∗(B(A1) ⊕ B(A2)).

• Compare ρ(A1 ⊕A2) with ρ(A1) ⊕ ρ(A2).

• Compare A∗(ρ(A1 ⊕A2)) with A∗(ρ(A1) ⊕ ρ(A2)).
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