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Abstract 
This paper develops a Bayesian methodology for assessing the confidence in model prediction 
by comparing the model output with experimental data when both are stochastic. The prior 
distribution of the response is first computed, which is then updated based on experimental 
observation using Bayesian analysis to compute a validation metric. A model error estimation 
methodology is then developed to include model form error, discretization error, stochastic 
analysis error (UQ error), input data error and output measurement error. Sensitivity of the 
validation metric to various error components and model parameters in discussed. A numerical 
example is presented to illustrate the proposed methodology. 
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1. Introduction 
Complex natural phenomena are increasingly sought to be modeled through sophisticated 
computational models, with very few or no full-scale experiments, thus reducing the time and 
cost of engineering development relying upon the understanding of these phenomena. However, 
such models incorporate many assumptions and approximations and hence need to be subjected 
to rigorous, quantitative verification and validation (V & V) before they can be applied to 
practical problems with confidence.  

There are a number of physical, statistical and model uncertainties in the prediction apart 
from the various direct sources of numerical error. A probabilistic approach to V&V under 
uncertainty involves quantification of the statistical distribution of model prediction and then 
comparing it with experimental measurement that also follows a statistical distribution. Note that 
this could also be viewed as studying the joint distribution of the experiment and model. Various 
methods are available to carry out probabilistic analysis to quantify the uncertainty in the model 
output, given the statistical distributions of the input variables, such as Monte Carlo simulation 
[1] or response surface methods [2, 3].  The choice of method depends on the nature of model 
used for predicting the output, and the needs with respect to accuracy and efficiency.  

Verification refers to the assessment of accuracy of the solution with respect to known 
solutions, or by some other means, such as a posteriori error estimation. This activity helps to 
identify, quantify and reduce the errors in the computational model [4, 5]. Several finite element 
discretization error estimators have been developed in the literature [6-8]. Error estimates for 
uncertainty quantification methods (Monte Carlo and response surface methods) are also 
available [2, 5]. 

Validation involves comparison of model prediction with experimental data [4]. The widely 
used method of “graphical validation” or viewgraph-based judgment (i.e., by plotting graphs of 
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prediction and observation) is inadequate although it is better than a qualitative comparison [9, 
10]. A rigorous quantitative model validation metric should include both prediction and 
measurement errors, and other uncertainties. Several metrics have been developed to include 
parametric uncertainty [11]. One such metric normalizes the difference between model 
predictions and experimental values and computes a relative error norm for discrete and 
continuous domain problems. Another metric includes the uncertainty in the experimental value 
due to limited data through statistical distributions and classical hypothesis testing [12, 13].  

Two types of validation metrics are developed in this paper, based on the Bayesian approach. 
The first metric considers test data based on a simple fail/pass criterion, while the second metric 
compares model prediction with observed response measurement, both being continuous 
variables. The second approach explicitly incorporates the variability in the experimental data 
and the magnitude of its deviation from the model prediction. Once the model is validated, it 
may be calibrated to improve its predictive capability. A prediction error estimation 
methodology is developed for this purpose in this paper; this includes model form error, 
discretization error, stochastic analysis error (UQ error), input data error and output measurement 
error. The overall error is a nonlinear combination of these various errors. Sensitivity analysis of 
the validation metric to different physical and statistical parameters of the model output and 
measurement error variance can be very useful for model improvement or calibration and 
resource allocation. Section 2 develops the Bayesian validation metrics, and Section 3 describes 
the proposed methodology for model error estimation and sensitivity analysis of the validation 
metric. An illustrative numerical example is provided in Section 4. 
 
2. Validation metric 
2.1. Bayes factor 

Consider two models (or hypotheses) Mi and Mj. Their prior probabilities of acceptance are 
denoted by P(Mi) and P(Mj). By Bayes’ rule, when an event/data is observed, the relative 
posterior probabilities of two hypotheses are obtained as [14, 15]: 
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The term in the first set of square brackets on the right hand side is called the “Bayes factor” 
[16]. If the Bayes factor is greater than 1.0 then it can be inferred that the data favors the model 
Mi more than model Mj. If only a single model M is proposed, then the model could be either 
accepted as correct or rejected as incorrect. Thus the Bayes factor in Eq. (1) may also be written 
as ( ) ( )tcorrecnotisnobservatiocorrectisnobservatio MPMP . When an observation is made, 
then the Bayes factor estimates the ratio of relative likelihoods of the null hypothesis (i.e., data 
supports the proposed model) and alternate hypothesis (i.e., data does not support the proposed 
model). The Bayes factor metric is further developed below for two situations: 1) reliability 
model  2) response computation. 

2.1.1. Validation with pass/fail test data 

Let xo and x be the predicted failure probability and true failure probability respectively of an 
engineering system. The value xo is predicted by model M. This can be considered as a point null 
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hypothesis (Ho: x = xo). To estimate the Bayes factor in Eq. (1), we need to consider an 
alternative hypothesis (H1: x ≠ xo).  

If n experiments are undertaken, and k failures (e.g., stress greater than an allowable value) are 
observed out of n tests, then the probability of observing the data given that the true probability 
is equal to x comes from a binomial distribution as 

                                 ( ) ( )| , 1 n kn k
kP k x n C x x −= −                                                               (2) 

Under the null hypothesis, this probability, P(data| Ho: x = xo) can be exactly estimated by 
simply substituting xo in Eq. (2). Assume that there is no prior information about x under the 
alternative hypothesis. Therefore, a uniform distribution in [0, 1] is assumed for f(x| H1), the prior 
density under the alternative hypothesis [17]. Then the Bayes factor is computed as 
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It is easy to identify the above expression in Eq. (3) to be the probability density function 
(PDF) of a beta distribution with parameters k + 1, n – k +1. It is well known that the posterior 
PDF of x follows the beta distribution, when the prior PDF has uniform distribution. In more 
detail, if the prior has a uniform PDF in [0, 1] i.e., f(x) = 1, then the posterior PDF is 

                          ( | : , ) ( 1) (1 )n k n k
kf x data n k n C x x −= + −                                  (4) 

Note that this result is the same as in Eq. (3), which is the Bayes factor B(x) evaluated at the 
probability x (see Fig. 1). Therefore, the Bayes factor can be viewed here as the posterior density 
of x evaluated at the predicted value xo.  
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Fig. 1. Posterior density function for the probability of failure 

The above result, that the Bayes factor is the posterior PDF at the predicted value x0, is only for 
the case with uniform prior and binomial pass/fail data. For tests conducted in other situations, 
only a response quantity may be measured (such as deflection, strain etc.), but the specimen may 
not be loaded till failure. In such cases, it is valuable to derive a more general expression for the 
Bayes factor, by using prior and posterior PDF's of the predicted response. 

2.1.2. Validation with response variable measurement 

In Eq. (2), the probability of the data k for a given value of x, i.e., P(k| x, n), is also the likelihood 
function of x, i.e., L(x), where the failure probability x is the parameter of the binomial 
distribution. For a continuous distribution, the likelihood function is proportional to the 
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probability density of data y given the parameter x i.e., L(x) ∝ f(y| x) [18]. Consider x to be not 
the failure probability, but some general response quantity, with density function f(x) and xo the 
value predicted by the computational model under consideration. Then the probability of 
observing the data under the null hypothesis, P(data| Ho: x = xo) can be obtained from L(xo) = ε 
f(y| xo) where ε is a positive constant [18]. Similarly, the probability of observing the data under 
the alternative hypothesis P(data| H1: x ≠ xo) can be obtained from ( ) ( )L x g x dx∫  or 

( | ) ( )f y x g x dxε∫ , where g(x) is the prior density of x under the alternative hypothesis. Since no 
information on g(x) is likely to be available, one possibility is to assume g(x) = f(x). Then, using 
Eq. (1) and Bayes theorem, the Bayes factor is computed as 
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Thus, the Bayes factor simply becomes the ratio of posterior to prior PDFs of the predicted 
response when g(x) = f(x). This result probabilistically quantifies the contribution to model 
validation of an experimental result that agrees with a given model prediction. If g(x) ≠ f(x), then 
the Bayes factor is computed using Eq. (5) with g(x) instead of f(x) in the denominator. Fig. 2 
shows notional posterior and prior densities of model prediction x. Once again, B > 1 indicates 
data support for the model. 
 
 
 
 
 

 

 

 

Fig. 2. Validation metric as a ratio of posterior and prior density values 
 
If xtrue is the true solution, x is the model output, and y is the experimental observation, then the 
following equations hold: 

                xtrue = x + εpred                                                             (6a) 
                xtrue =  y + εexp                                                              (6b) 

where εpred is the model prediction error and εexp is the measurement error. If we hypothesize that 
there is no prediction error, the observed value will simply be y = x - εexp. From this relation and 
a Gaussian experimental error assumption, we obtain f(y| x) ~ N(x, 

exp

2
εσ ). The likelihood function 

L(x) in Eq. (5) can be created using f(y| x). If there is only one observed value of y, then L(x) = 
f(y| x). If multiple data are observed, the likelihood is constructed as a product of f(y| x) values 
evaluated at each y. This can be used to test our hypothesis.  

A Bayes factor less than unity denotes that εpred is significant and should not have been 
omitted and hence there is a need for estimating the total prediction error. It should be noted that 
the metric shown in Eq. (5) allows us to use non-Gaussian experimental errors also. Even when 
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B > 1, it is useful to quantify the prediction error, and to examine whether contributions from 
different errors cancel each other. Further the degree of confidence in the model prediction can 
be measured from the posterior probability of the null hypothesis being true i.e., P(H0| data) as 
B/(B + 1) assuming that the prior probability P(H0) to be 0.5 in the absence of any prior 
knowledge. The following section presents methods for quantifying the errors and uncertainty in 
model prediction. 

3. Error estimation 
The total prediction error is a function of various error components that can be broadly divided 
into numerical solution errors and model form errors. Investigations on error combination are 
rarely available. This paper pursues a nonlinear combination method.  

3.1 Numerical Error Components in Simulation 
Several components of numerical errors in model prediction, such as data error, discretization 
error, stochastic analysis error (or UQ error), and measurement error are briefly discussed below. 

3.1.1. Input data error (εd) 
The measurement error in the input variables will be propagated to the prediction of the output. 
If the relationship between input and output is given by 1 2( , ,.. )mu f x x x= , then the error in the 
prediction of the output due to the measurement error in the input variables may be approximated 
using a first-order sensitivity analysis as 

                                                 ixx
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in which δxi is the measurement error in ith input random variable xi and xx
ix

f
=








∂
∂ is the first 

order sensitivity coefficient of the model output u with respect to the ith input random variable xi.  
The measurement error in each input variable has been commonly quantified as a random 
variable with Gaussian distribution, with zero mean and a known or assumed variance, based on 
the instrument calibration. 

3.1.2. Discretization error (εh) 
Several methods to quantify the discretization error in finite element analysis are available in the 
literature. However, most of these methods do not quantify the actual error; instead, they 
quantify some surrogate measures to facilitate adaptive mesh refinement. The Richardson 
extrapolation (RE) method has been found to be suitable for model verification and validation, 
since it comes closest to quantifying the actual discretization error [19]. This method has been 
extended by the first author to stochastic finite element analysis [20]. It should be noted that RE 
requires that the model solution be asymptotically convergent and the domain is discretized 
uniformly (regular grid). The assumption of monotone truncation error convergence is not valid 
for very coarse models sometimes. In the Richardson extrapolation method, the error due to grid 
size (for a coarse mesh) is given by 

          
1
21

−
−

= ph r
ff

ε                                                             (8) 
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where the grid refinement ratio r = h2/ h1, and f1 and f2 are the solutions with coarse and fine 
meshes respectively. The order of convergence p can be obtained from the relation 

)ln(/ln
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=  where f3 is the solution with the finest grid size, and r = h2/ h1 = h3/ h2. 

Due to the input variable uncertainties, the finite element solutions f1 and f2 are stochastic. 
Therefore, based on Eq. (8), the discretization error (εh) is also a random variable. 

3.1.3. Uncertainty quantification error (εuq) 

Errors in stochastic analysis are method-dependent, i.e. sampling error occurs (εmc) in Monte 
Carlo methods and truncation error (εsm) occurs in response surface methods (either conventional 
or polynomial chaos-based). For example, sampling error could be assumed to be a Gaussian 
random variable with zero mean and variance given by σ2/N where N is the number of Monte 
Carlo runs and σ2 is the original variance of the model output [21]. The truncation error (εsm) is 
simply the residual error in the response surface.  

In this paper, due to the use of response surface techniques for uncertainty quantification, 
truncation error is used to represent εuq. A polynomial chaos-based response surface is used, 
which is found to have superior convergence characteristics than conventional response surface 
models [20]. The response surface is constructed by approximating both the input and output 
random variables through series expansions of independent standard random variables ξi. For 
example, a normal random variable can be expressed in terms of its parameters as µ + σξ where 
ξ is a standard normal variable.  Similarly, a lognormal random variable with parameters λ and δ 
can be expressed as exp (λ + δξ). The output response surface is expressed in terms of the input 
variables through a polynomial chaos expansion as 
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where x is the output and ),...,(
1 piip ξξΓ  are multi-dimensional Hermite polynomials of degree p. 

The design points for the data used to construct the response surface are chosen such that they 
are the roots of the Hermite polynomial of the order p+1 where p is the order of the response 
surface [2].  

The series in Eq. (9) could be truncated to a finite number of terms. Thus the accuracy of the 
stochastic computational model depends on the order of the expansion. The truncation error εsm 
in the response surface of order p can be estimated by constructing additional higher order 
response surfaces (i.e., order p +1 or p + 2 ), and using the Richardson extrapolation method, 
similar to Eq. (8).   

3.1.4. Output measurement error (εexp) 

The measurement error in the output variable is a separate error component, whereas the 
measurement error in the input variables is compounded through propagation in the prediction 
model. Output measurement error is quantified commonly as a random variable with Gaussian 
distribution, with zero mean and a known or assumed variance. 
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3.2. Model Form Error (εmodel) 

If multiple models are considered, Bayesian model averaging (BMA) [22, 23] may be used to 
reduce the model form uncertainty and model errors, but not quantify them explicitly. In some 
practical cases, only one model may be available, in which case BMA may not be useful. If a 
single model is employed, this paper makes use of the observed data to express the overall 
prediction error through a regression model consisting of the individual error components. The 
residual of such a regression analysis should include the model form error (after subtracting the 
experimental error effects). From Eqs. (6a) and (6b) and by denoting εobs as the difference 
between the data and prediction, i.e., εobs = y – x, we can obtain the following relation:  

            εobs = y - x = εpred – εexp  
                   = εnum + εmodel - εexp  

                                                                  = ( , , )h uq d model expf ε ε ε ε ε+ −                           (10) 

In Eq. (10), overall numerical error εnum is a nonlinear function of the error components εh, 
εuq and εd. Therefore, it is constructed as a response surface with respect to εh, εuq, and εd, using a 
polynomial chaos expansion, similar to Section 3.1.3. The quantity εmodel – εexp is simply the 
residual εresidual of such a response surface. Thus the distribution of model error εmodel is 
quantified by knowing the distributions of εresidual and εexp. However in most practical situations, 
the validation data is very limited. From a single validation experiment, one has the numerical 
values of prediction and observation, and estimates of the numerical errors in prediction, but not 
the experimental error. In other words, values ( , , )h uq df ε ε ε , and εobs are available but the exact 
value for experimental error εexp cannot be estimated. Only the distribution of εexp is available or 
assumed, if at all. If we have a sufficient number of validation data, we can compute the 
difference (εobs - ( , , )h uq df ε ε ε ) and add a randomly generated term εexp to it each time to obtain 
an estimate of model form error εmodel. Since the sample size (number of observations made) is 
limited, an empirical distribution for εmodel cannot be constructed with confidence. However, one 
can compute the statistics like mean and standard deviation of model error from a set of 
validation experiments. Bootstrapping [24] (sampling with replacement) can be done on the 
given data set to generate a large number of statistics for model form error, thus obtaining the 
distributions for mean and standard deviation of model form error. Bootstrapping assumes that 
the data set in hand is representative of the intended population and no prior assumptions are 
made regarding distribution of the samples. Further the observations are assumed to be 
independent and sampling is purely random.  

3.3 Sensitivity Analysis 
The Bayesian validation metric given in Eqs. (3) and (5) depends explicitly on model output and 
uncertainties arising from validation experiments like lack of sufficient data points and random 
measurement errors etc. Also, the statistical and physical model parameters affect the model 
output and hence a model may be accepted or rejected based on our prior assumption in a 
Bayesian analysis. Thus, there exists an implicit relation between the Bayes factor and each of 
the above model parameters, and curves may be fitted to depict this relation. The sensitivity of 
the Bayes factor to these variables may be estimated from the slopes (first order sense) of such 
plots. For example, with reference to Eq. (3), the uncertainty due to a limited number of data 
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points in a pass/fail type of test may be quantified as 2 (1 )
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= . For particular known 

values of k and x0, one can generate a plot of B(x0) versus 2
oxσ  for different values of n, based on 

Eq. (3), as shown in Fig. 3.  
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Fig. 3. Relation between B(x0) and 2

oxσ  

Similar relations between B(x0) and 
exp

2
εσ , µx, σx etc in Eq. (5) can be derived to be used in a 

sensitivity analysis. A numerical example is provided to illustrate the proposed methodology. 

4. Numerical example 

The steady state heat transfer in a thin wire of length L, with thermal conductivity k, convective 
heat coefficient β is of interest. The temperature at midpoint of the wire needs to be predicted. 
We assume (acknowledging model form error) that this problem is essentially one dimensional 
and that the solution can be obtained from the boundary value problem  

            
2

2 ( )Tk T Q x
x

β∂
− + =

∂
                                                       (11) 

with known conditions T(0) and T(L) 

where Q(x) is the heat source. Suppose k and β are assumed for the sake of illustration to be 
random variables, normally distributed with statistics N (5, 1) and N (0.5, 0.1) respectively. Also, 
the heat source Q(x) = 25(2x-L)2 with L = 4. The wire is insulated at the ends, which are kept at 
zero temperature i.e., T(0) = T(L) = 0. It is required to predict T(2.0). 

The numerical solution T(x) for Eq. (11) can be obtained using a finite-difference scheme 
with discretization step size h. Since k and β are random, the model prediction T(2.0) is also 
random whose statistical distribution needs to be estimated. Since each computation of T(2.0) 
using a finite-difference scheme could be computationally expensive, a response surface may be 
fitted to predict T(2.0) as a function of input random variables k and β. A polynomial chaos-
based response surface is used for this purpose, as mentioned in Section 3.1.3 earlier. Thus the 
random variables k and β are expressed as (5+ξ1) and (0.5+0.1ξ2) respectively, where ξ1 and ξ2 
are standard normal variables. The design points for the data used to construct the response 
surface are chosen such that they are the roots of Hermite polynomial of the order p+1 where p is 
the order of the response surface. The corresponding values of k and β, with respect to these 
collocation points, are then used in the numerical model to compute the response T(2.0). The 
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unknown coefficients of the stochastic response surface are then computed using standard 
regression techniques. 

In this numerical example, a second order response surface in two variables is constructed for 
T(2.0) and with step-size h = 1. The design points for k and β are selected at the collocation 
points obtained from the roots of 3rd order Hermite polynomials. The response surface is  

 Tpred = T(2.0) = 17.102 -3.003 ξ1 -0.698 ξ2 + 0.4964(ξ1
2-1) + 0.0251(ξ2

2-1) + 0.237 ξ1ξ2  (12) 

where ξ1 and ξ2 are independent standard normal variables and R2 = 0.999. The PDF of Tpred can 
be generated by simulating ξ1 and ξ2, and is found to have a lognormal distribution with mean 
17.12 and variance 10.042. This is the prior density to be considered in the Bayesian model 
validation next. 

4.1 Validation 

Suppose for given values of k and β,  the numerical model predicted a temperature of 18.5 
degrees. A wire made of a material with properties k and β having the same measured values as 
input to the numerical model was tested three times repeatedly to measure the temperature at 
location x = 2. 

 

 

 

 

 

 
Fig. 4. PDF of T(2.0) 

 
The measured temperature was different in each experiment i.e., 18.8, 18.2, 18.9 degrees. 
Assuming a Gaussian experimental error with zero mean, the true experimental value is assumed 
to be the mean of the three measurements, i.e., 18.633 degrees for the sake of illustration. Also, 
the experimental error is assumed to have a variance 2

expεσ estimated from the three 
measurements, again for the sake of illustration. 

As described in Section 2.1.1, the likelihood function of the prediction is proportional to a 
normal density with mean T(2.0) and variance 2

expεσ  = 0.1433. Also with the knowledge of 
f(T(2.0)), the validation metric is evaluated at T = 18.5 degrees. Using Eq. (5), the validation 
metric B is found to be 11.6 which is much greater than 1.0 indicating that the data matches very 
well with the prediction. However, one should be cautious in accepting this result since various 
errors like discretization error, input data error, truncation error and even model form error may 
be canceling each other to produce a result that is close to the measured value. Hence there is a 
need to estimate the various errors explicitly, as described below. 

4.2 Error Estimation 

The numerical model related to Eq. (11) was refined using h = 0.5 and h = 0.25 to estimate the 
convergence rate p = 1.985 ≈ 2 as described in Section 3.1.2. The discretization error εh based on 
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the Richardson extrapolation method was obtained as a stochastic response surface in two 
variables as 

         εh = 5.9725 -1.1 ξ1 -0.1918 ξ2 + 0.1895(ξ1
2-1) + 0.0057(ξ2

2-1) + 0.0681 ξ1ξ2       (13) 

The discretization error was found to have a lognormal distribution with parameters λ = 1.762, 
and ξ = 0.1923 i.e., with mean 5.9725 degrees and a standard deviation of 1.15. Due to the use of 
the stochastic response surface, the uncertainty quantification error εuq is estimated by the 
truncation error εsm, i.e., the residual error in the stochastic response surface for the model 
response T(2.0), which was found to be a Gaussian variable with zero mean and a standard 
deviation of 0.2 degrees. This is much smaller than the FEM discretization error. The 
information on input data error εd was not available, and εd is assumed negligible in this 
example. Neglecting εsm and εd based on the above observations, the numerical error εnum in Eq. 
(10) is approximated by εh.  Thus Eq. (10) reduces to 

                  εobs = εh + εmodel – εexp                                              (14)  

In Eq. (14), the distributions of εh and εexp are available from the above discussion. Specific 
values of εobs are available from each test. The number of tests, and thus the number of samples 
of εobs, is likely to be small in practical problems. In this example, nine values of Tpred (and hence 
εh) are calculated at nine collocation point values of ξ1 and ξ2 (using Eqs. 12 and 13 
respectively), as shown in Table 1. Assume for the sake of illustration that nine corresponding 
values of Τobs (and hence εobs) are observed from nine tests, also shown in Table 1. A bootstrap 
resampling technique [24] (with replacement) can then be applied to generate εmodel, based on Eq. 
(14). Each time a value for (εobs – εh) is resampled from the nine values shown in Table 1, a 
randomly generated value of εexp is added to it, and sample statistics of εmodel (mean and standard 
deviation) are calculated from nine such values in a resample. (Note that each resample contains 
the same number of data points as the original sample, i.e., nine in this case). The procedure is 
repeated and 10,000 values for µεmodel and σεmodel are obtained, thus giving their distributions as 
shown in Table 2. This approach thus provides a measure of the uncertainties in the statistical 
parameters of model form error, since they are obtained by bootstrap resampling.  

Table 1. Sample points for model form error 

εh Tpred Tobs εobs εobs - εh 
5.824 16.597 16.794 0.197 -5.627 

8.126 12.902 12.997 0.095 -8.031 

5.824 15.642 15.920 0.278 -5.546 

4.174 23.222 23.310 0.088 -4.086 

5.824 17.653 17.442 -0.211 -6.035 

8.126 13.526 13.488 -0.038 -8.164 

4.174 21.350 21.181 -0.169 -4.343 

8.126 12.327 12.173 -0.154 -8.28 

4.174 25.394 25.301 -0.093 -4.267 
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In this example, the mean model error µεmodel was observed to follow a normal distribution (mean 
-6.03, see Table 2), and the standard deviation of model error σεmodel was observed to follow a 
Weibull distribution. The numerical error has a mean value of 5.9 degrees while the model form 
error has a mean value of -6.03 degrees.  

Table 2. Distributions of model error statistics 
Parameter Mean Variance Type of 

distribution 

µεmodel -6.03 0.293 Normal 

σεmodel 1.6 0.066 Weibull 

Looking at these numerical results, the two errors appear to have almost cancelled each other in 
Eq. (14), resulting in a small overall observed error εobs and hence a high Bayes factor in Section 
4.1, indicating an optimistic model validation result. But the error quantification shows that the 
prediction model has large numerical and model form errors. Thus a model acceptance/ rejection 
criterion based on the overall εobs alone can lead to misleading conclusions, especially in other 
untested situations when the numerical and model form errors might become additive. This 
observation shows the importance of quantifying various error components, in addition to simply 
comparing prediction and observation. 

Since the error components add up linearly in this example, the relative first order 
sensitivities of numerical, model and experimental errors to Bayes factor will simply be 
proportional to their respective standard deviations. The first order normalized sensitivities of the 
model parameters k and β to Bayes factor in Eq. (5) are found to be 0.978 and 0.208 respectively 
at their corresponding mean values. These values are computed by plotting the relation B vs. k 
and B vs. β separately, and normalizing the products of standard deviations  
and slopes evaluated at their mean values. 

5. Conclusion 
V&V needs to quantify various errors under uncertainty and effectively compare them with 
imprecisely measured experimental data to assess the predictive capability of the model. A 
Bayesian approach was proposed for model validation in this paper, and developed for two 
situations. The first case performs model assessment using a pass/fail criterion and uses the 
Bayes factor as a metric. The second case includes the uncertainty in the experimental data 
explicitly and estimates the Bayes factor using prior and posterior distributions of the model 
output. The overall numerical error in prediction is expressed as a nonlinear response surface in 
terms of several errors such as discretization error, uncertainty quantification error and input data 
error, and compared with the observed error to estimate the statistics of the model form error. A 
bootstrapping technique is used to estimate the model form error from a limited number of 
experimental measurements. The simple numerical example resulted in a linear relation among 
various errors and the further work is needed to demonstrate the methodology for a more 
complex problem where the various errors are combined in a non-linear fashion. Also, the 
sensitivity analysis limited to a first-order evaluation showed that the validation metric is 
sensitive to the variance of each error component. Similarly model parameters that have an 
insignificant effect (small sensitivity) on Bayes factor can be omitted to reduce model 
complexity. 
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