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Abstract: A heuristic optimization methodology based on a Genetic Algorithm is presented 
with the goal to help researchers decide on the optimal set of thermodynamic data and models 
to use to accurately model phase diagrams and their associated uncertainty. This approach 
accounts for the errors associated with reported data and how reliable the researcher believes 
the model to be. Additionally, the results of the Genetic Algorithm provides guidance as to 
which experiments are needed to enhance the reliability of the dataset and is ideally suited for 
parameter optimization and sensitivity analysis. Applications include the UO2-PuO2 and UO2-
BeO systems. 
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1.0 INTRODUCTION 
Finding an optimal model by fitting thermodynamic data is a difficult problem in 

materials science due to the large uncertainty associated with the experimental or calculated 
data sets that are used as input.  This situation is most prevalent in the case of the calculation 
of phase diagrams [1] where the solidus and liquidus boundaries are highly uncertain [2] due 
to limitations in the accuracy of temperature measurements, limitations in determining the 
phase transition boundaries, and the potential for off-stoichiometric compositions at high 
temperature. In spite of all of these uncertainties or perhaps because of them, one rarely finds 
the uncertainty bounds reported with the phase diagram. 

One could address this problem in several ways, each having a number of limitations.  The 
first would be to simply accept a particular set of thermodynamic data as fact and use these 
values to calculate phase equilibrium curves.  This approach ignores all the data available in 
other thermodynamic assessments as well as any phase diagram data.  It also assumes that the 
selected data set is the best available.  The second approach would be to take an average of all 
the known thermodynamic data sets. It assumes that all the thermodynamic data is equal in 
quality and thus only an average is necessary. This approach also ignores the available phase 
diagram data. Another option is to fit the solidus and liquidus equations to the known phase 
diagram data.  The starting point of the optimization heavily influences this approach. 
Furthermore, it essentially ignores the experimental thermodynamic data once the 
optimization has initiated. The method proposed in this work uses a Genetic Algorithm to 
incorporate all the data and its associated uncertainties into an optimal fit of what is known. 

The scientific literature is notably bereft of papers dedicated to the analysis of the 
uncertainties associated with equilibrium phase diagrams. A classical approach, based on the 
"spread of mistakes" formalism, is presented in [3] while in [4] a way of extracting the 
maximum information from a minimal set of experimental data is investigated.  Bayesian 
based methods have been used to produce self-consistent thermodynamic data sets for binary 
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[5] or multi-component [6-8] systems. All papers emphasize the importance of starting with a 
reliable, self-consistent thermodynamic data set and draw the reader's attention to the 
propagation of the errors in the input parameters during the calculation process.  

This work demonstrates that modern heuristic optimization techniques such as Genetic 
Algorithms offer a viable way of relating models to the data in the face of large uncertainties 
both on the model parameters and the training data.  To illustrate the utility of this approach 
the solidus and liquidus boundaries of the UO2-PuO2 and UO2-BeO systems have been 
selected. The parameter optimization was performed for each binary system given some 
information about the solidus and liquidus boundaries, the heats of melting, ∆HM, and the 
melting temperatures, TM.  

1.1 Genetic Algorithms 
Genetic Algorithms are heuristic optimization techniques that borrow heavily from the 

ideas of Darwinian evolution.  Using evolution as an optimization tool was first proposed by 
Holland [9] and ever since has spurred a large amount of interest [10].  A genetic algorithm 
borrows the three main constructs of Darwinian evolution (selection, crossover, and mutation) 
to evolve a set of parameter vectors towards an optimal solution. 

In the parlance of the GA community, the set of parameter vectors is a population. Each 
member of the population is evaluated to determine how well it solves the problem at hand, 
i.e. to determine their fitness.  The most fit members are selected with a probability 
proportional to their fitness and allowed to exchange genetic information with other members 
and thus create the next population which usually has a higher average fitness than the parent 
population.   

As a population based optimization method, the GA is ideally suited to handle the various 
forms of uncertainty found in this problem with a minimum of assumption about what the 
uncertainty should look like.  The first form of uncertainty lays in the phase diagram data 
itself.  Figure 1 shows the experimental solidus and liquidus data from three different sources.   
In this work the GA must fit a model through this data.  The error bars on both the 
composition and temperature can be interpreted as nothing more than random intervals and 
thus there is no way to discern any type of uncertainty distribution on the intervals.   
Uncertainty in the experimental data relaxes the constraints on the optimal parameter values 
and forces us to identify a range of parameter values that provide a range of calculated values 
that lay within the experimental uncertainty.  Thus, this problem is under specified.  Previous 
work [11] has shown that a selection operator that uses a fuzzy logic-weighting scheme 
effectively handles optimization scenarios such as this where there are potentially a very large 
number of solutions all of equal fitness and plausibility. 

A fuzzy logic-weighting scheme [12] looks at all the objective values of a particular 
member and rescales them to a value between 0 and 1.  0 if the value is the worst of the 
population.  1 if it falls within the experimental uncertainty.  Once the objectives have been 
scaled, the average is taken over all objectives and that single number is the fitness for the 
member in the population.   

Using the fuzzy logic weighting scheme, the GA is run until all the members of the 
population reach a fitness of 1 or at least reach a state of equilibrium where there is no more 
improvement.  When this state is reached, the members of the final population are used to 
determine the uncertainty bounds on the model parameters.  The population of final 
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parameters can then be used to bound output of the model and show where the model is most 
uncertain and in need of more data.    
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Figure 1. The experimental solidus and liquidus data for the UO2-PuO2 system from Chikalla, Lyon 
and Baily, and Aitken and Evans. 

 

Another form of uncertainty lays in the search ranges for many of the input model 
parameters being optimized.  For some models, the input parameters are in fact 
experimentally accessible values which themselves contain a large amount of uncertainty.  
Such parameters would be the melting points of the starting compositions (UO2, PuO2, BeO) 
as well as their heats of melting.  Other models are purely empirical and were developed by 
various authors to fit their particular data sets.  The empirical parameters have no physical 
meaning. If such a model is to be fit to a different set of data, the published parameters could 
be used as a starting point.  Unfortunately, the parameters in question are rarely published 
with any sort of assessment of uncertainty and one must then make an educated guess as to 
what a reasonable search range would be.  

There are a number of advantages to using a GA in this problem over other calibration 
approaches.  First, a multi-objective GA tends to be robust enough to identify distributions of 
solutions.  These distributions are often multi-modal and thus have shapes not easily captured 
by traditional calibration routines. Second, the GA requires no preconceived assumptions 
about the uncertainty distributions on the objective data or the parameter values.  However, if 
desired, assumed distributions are easily incorporated.  Third, and probably most importantly, 
the GA incorporates all the known data into its search.  For example, the known phase 
diagram data defines the objectives and the spread of the known thermodynamic data defines 
the search space.  

2. PROCEDURE 
This work will address how well 5 different models fit and explain 3 different data sets 

and combinations thereof all of which are supposed to describe the solidus and liquidus 
curves of the UO2-PuO2 phase diagram as shown in Figure 1.  

The first data set is that of Chikalla [13] which only shows a liquidus curve.  The liquidus 
curve behaves as one would expect for an ideal solid solution  except for the PuO2 values of 
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of 5 and 10 wt%.  The data also shows significant scatter in liquidus temperature at all 
compositions but especially at 75 wt% PuO2.  Note that there is no scatter displayed or 
reported in the composition (x axis).  It was presumed by the authors that the composition was 
known exactly even though it is common knowledge that composition can drift due to 
changes in oxygen partial pressure and vaporization of the components.  It is also worth 
nothing that Chikalla, admits later in his paper that the liquidus must be much lower in 
temperature throughout the entire PuO2 composition range due to thermodynamic 
considerations and known melting points and heats of melting. However, other authors 
believe the liquidus to be much higher. 

The second data set is from Lyon and Baily [14] and is generally considered to be a much 
more well-behaved and thus reliable experimental determination of both the solidus and 
liquidus of the UO2-PuO2 phase diagram.  Lyon and Baily also compute the solidus and 
liquidus curves using the Ideal Solutions laws and generally show a much better fit than 
Chikalla did in his study.  Like Chikalla, however, uncertainties were never properly 
accounted for in this study. For example, the composition is still assumed to be known exactly 
and in many cases, especially at very small and very large PuO2 compositions, the 
temperature error bars of the solidus and curves overlap significantly.  Both Chikalla and 
Lyon also use the generally accepted Ideal Solution model to calculate the solidus and 
liquidus curves.   While this model is known to be quite accurate and extendable to other 
systems because it is based on first principles, it has a down fall when it comes to fitting phase 
diagram data.  Namely, phase diagram data is usually collected by changing the composition 
(x) and measuring the temperature of the phase transitions (y) whereas the Ideal Solution 
model is the inverse.  It assumes a temperature and calculates the composition of the solidus 
and liquidus.  This inversion presents somewhat of a problem in the context of fitting a model 
to the data since the effect of experimental uncertainties cannot be directly propagated 
through the optimizer.  

The third data set is that of Aitken and Evans [15, 16].  Aitken and Evans, like Lyon and 
Bailly, experimentally determine the solidus and liquidus of the UO2-PuO2 system by varying 
the composition and measuring the temperature at which the solidus and liquidus are 
observed.  Aitken and Evans differ from Lyon and Baily and also Chikalla by attempting to fit 
the observed solidus and liquidus data with different polynomial forms.   The advantage of 
this approach is that the polynomial forms, like the data, provide a measure of temperature as 
a function of composition and thus are more amenable to proper uncertainty propagation.  The 
downside of this approach is obvious. Namely, the polynomials are only applicable to the 
phase diagrams at hand and their parameters cannot be used in a predictive fashion for other 
thermodynamic studies.  

2.1 Model Descriptions 
2.1.1 Model 1. Ideal Solid Solution Law 

The UO2-PuO2 system shows complete solubility of the two components in the solid 
phase [17]. The liquidus (xLiq) and solidus (xSol) mole fractions for each fixed temperature (T) 
can be approximated [18, 19] by: 
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Where R is the gas constant (8.314 J/mol K). 

The values of the input parameters for the UO2-PuO2 system are scattered [13, 15, 20-22], 
leading to large uncertainty bounds, as shown in Table I.  The goal of our work is to further 
refine the values of the input parameters using the GA given known experimental data on the 
solidus and liquidus positions (Figure 1).  Thus, the optimization proceeds as follows:  First, 
the search range for each parameter is defined for the GA based on the accepted uncertainty 
or variation in the published parameter values.  Second, the GA evolves the parameter values 
based on how well the values generate solidus and liquidus curves, which match the available 
experimental data – taking into account the uncertainties of the experimental solidus and 
liquidus curves.  For this study the initial uncertainty in concentration was assumed to be 
0.005 and the uncertainty in the liquidus and solidus temperatures was 55K and 35K 
respectively.  Once the range of parameter values is optimized, values from this range are 
placed in the forward model.  This results in fuzzy bands that define the position of the curves 
which are most self consistent given all data and the underlying model.  Of particular 
importance to note is that the total uncertainty in model parameter values as well as the 
solidus and liquidus curves decreases by using this method approach. 
Table I.  The Upper and Lower Limits of the Variable Search Space [13, 15, 20-22].  
Variable Units Lower value Upper value 
∆HM

UO2 kJ/mol 25 125 
∆HM

BeO  kJ/mol 42 125 
∆HM

PuO2  kJ/mol 25 100 
TM

UO2
 K 3000 3200 

TM
BeO  K 2700 2900 

TM
PuO2  K 2600 2800 

 

2.1.2 Model 2: polynomial in (x) 
Adamson et al. (in Aitken) recommend the following model for the solidus and liquidus 

curves of UO2-PuO2 

Ts K( )= as +bsx + csx
2 + dsx

3

Tl K( )= al +blx + clx
2

       (3) 
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where as = 3120, bs=-655.3, cs=336.4, ds=-99.9 and al=3120, bl=-388.1, cl=-30.4.  Note that 
the polynomial is in x as opposed to T as in Model 1. 

2.1.3 Model 3; polynomial in (x) 
Lyon and Baily recommend the following model for the solidus and liquidus curves of 

UO2-PuO2 

Ts K( )= as +bsx + csx
2

Tl K( )= al +blx + clx
2

        (4) 

where as = 3113.15, bs=-5.41395, cs=7.4639e-3 and al=3113.15, bl=-3.2166, cl=-
1.448518e-3. 

2.1.4 Model 4: polynomial in (x) 
Komatsu et al. (in Aitken) recommend the following model for the solidus and liquidus 

curves of UO2-PuO2 

Ts K( )= TMUO2
/ 1+bsx + csx

2( )
Tl K( )= TMUO2

/ 1+blx + clx
2( )

       (5) 

where bs=0.1811, cs=-0.011 and bl=0.1068, cl=0.06316. 

2.1.5 Model 5: standard thermodynamic in T but extended to other phase diagram data 
Another advantage of using a GA with a fuzzy logic selection method is that different 

types of objective functions can be easily combined.  In this exercise the objective goals of 
Model 1 are combined with the objective goals and data of a thermodynamic model of the 
eutectic UO2-BeO system.  To optimize the UO2-BeO system, a similar procedure as for the 
UO2-PuO2 system was employed. For this type of diagram the equilibrium lines are defined 
by:   
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The values of the melting enthalpy and temperature were obtained from the literature and are 
displayed in Table I.  Note that the both Model 1 and the eutectic model require 
thermodynamic values for UO2. Thus, by incorporating this model into the optimization 
scheme, the potential thermodynamic values for UO2 are constrained.  Unfortunately, the 
thermodynamic values for BeO are also required.  The reader should take heart, however, that 
this process of combining objectives, models and data allows one to obtain 
thermodynamically self consistent values for the basic properties of the constituent 
compositions – something that is typically very hard to do using other uncertainty propagation 
methods. The UO2-BeO phase diagram [23] shows a eutectic point at T = 2450 K and BeO 
mole fraction x =  0.68. Namely xBeO = 0.68±0.05 (Figure 2). For this study the uncertainty in 
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the liquidus concentration was again 0.05 and the temperature uncertainty was 40K.  In the 
model, the eutectic composition is defined as that point in which the curves calculated from 
Eq. (6) and Eq. (7) intersect. This point also defines the calculated eutectic temperature.  
While the eutectic temperature is known experimentally, there is no information gain in 
comparing it to the calculated value since the calculated value is determined by the calculated 
value of the eutectic composition. 
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Figure 2. The experimental eutectic point for the UO2-BeO system at 0.68 mol% BeO. 
 

3. RESULTS 
Table II shows the results of the optimization with each model described previously and 

when using different data sets.  The table shows the model used, data set used, number of 
solutions found and the fitness of said solutions. The maximum possible fitness is 1.0 and 
would indicate that all the calculated values fall within the experimental uncertainty of the 
data.  

3.1 Model 1 
Tests 1-10 used model 1 with the listed data sets.  The difference between tests 1-5 and 6-

10 is the stated uncertainty of the composition values.  In tests 1-5 the uncertainty is 0.005 
whereas in tests 6-10 it is 0.05.  Note that experimentally the uncertainty in composition is 
very small (0.005 is a reasonable number) whereas the uncertainty in temperature is much 
higher.  Unfortunately, Model 1 is written as a function of temperature, not composition.  
Thus when the model optimized against the raw data, it rarely falls within the experimental 
uncertainty of x.  The net result of this fact for tests 1-5 is that the apparent fitness of the 
optimal solutions is very low.   To get around this problem and find a large set of solutions 
that actually pass through the known uncertainty bounds of the experimental data, the 
uncertainty in composition was expanded based on the degree to which the uncertainty in x 
would intersect uncertainties in temperature of neighboring compositions.  The final 
assessment of this ‘graphically driven’  as opposed to data driven uncertainty was an interval 
of size ±0.05.   Tests 6-10 show the results of using this ‘graphically driven’ uncertainty in x.  
Note that all of the fitnesses increase as would be expected but most notably, a total of 394 
solutions were found that perfectly match the experimental data of Lyon and Baily.  

These results indicate that Lyon and Baily’s experimental data is most consistent with the 
Ideal Solution assumptions of Model 1.   Further it correctly identifies Chikalla’s data as being 
the most suspect.   
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Table II.  The results of optimizing each model against the available data sets. C: Chikalla, L: Lyon 
and Baily, and A: Aitken and Evans. 
Test Model Data Sets # Solutions Fitness 
1 1a L 1 0.949274 
2 1a A 1 0.976892 
3 1a C 1 0.84066 
4 1a L+A 1 0.928932 
5 1a L+A+C 1 0.790519 
6 1b L 394 1 
7 1b A 1 0.989953 
8 1b C 1 0.887064 
9 1b L+A 1 0.99024 
10 1b L+A+C 1 0.874315 
11 2 L 5 0.998358 
12 2 A 377 1 
13 2 C 1 0.9591 
14 2 L+A 14 0.995911 
15 2 L+A+C 1 0.941159 
16 3 L 145 0.998775 
17 3 A 291 1 
18 3 C 502 1 
19 3 L+A 82 0.993154 
20 3 L+A+C 2 0.930555 
21 4 L 3 0.983283 
22 4 A 1 0.993808 
23 4 C 449 0.960122 
24 4 L+A 1 0.982623 
25 4 L+A+C 1 0.920988 
26 5a L 11 0.974211 
27 5a A 322 0.981022 
28 5a C 105 0.899736 
29 5a L+A 1 0.963978 
30 5a L+A+C 7 0.894648 
31 5b L 308 0.999815 
32 5b A 255 1 
33 5b C 395 0.933822 
34 5b L+A 43 0.995135 
35 5b L+A+C 127 0.930271 
 

3.2 Models 2-4 
Models 2, 3, and 4 are polynomial functions originally designed to fit specific data sets.  

From the results of Table 1I this fact is clear since some models find a large number of highly 
fit solutions for one set of data and not the others.  It should also be pointed out that since the 
polynomials are functions of composition, they are able to more accurately account for the 
uncertainty in the temperature data.  Thus, they give the illusion of being better fit models 
than the thermodynamically based Model 1.  Unfortunately, though these models appear to fit 
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much of the data very well they are in no way extensible to other phase systems.  In other 
words where the melting points and heats of melting optimized in Model 1 can then be used to 
estimate the behavior other phase systems, the parameters of Models 2-4 cannot.   

3.3 Model 5 
Like Model 1, two values were used for the uncertainties in composition.  Namely, ±0.005 

for Tests 26-30 and ±0.05 for Tests 31-35.  Also, as was the case for Model 1, the larger 
uncertainties in composition faired better in the optimization.  This is evidenced by the higher 
fitness values and number of solutions for all of the data sets optimized against.  The most 
notable difference between the output of Models 1 and 5 is shown in Figure 3, however.   
Model 1 had to optimize the values for the melting point and heats of melting of UO2 and 
PuO2 whereas Model 5 also had to optimized the same values for BeO.  Since the values for 
UO2 were needed in both the Ideal solution model of UO2-PuO2 and the simple eutectic model 
of UO2-BeO, the ultimate optimal values were much more constrained in Model 5.  Figure 3 
shows the optimal melting point and heat of formation for UO2 from Models 1 (circle) and 
Model 5 (square).  Note that since UO2 was much more constrained in Model 5, only one 
viable solution was found.   
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Figure 3.  The final solution sets for the heats of melting and the melting points of UO2 determined 
through the optimization of Model 1 (circle) and Model 5 (square). 

4. CONCLUSIONS 
The use of a Genetic Algorithm allows for incorporating uncertain data sets, both large 

and small, in an efficient and meaningful way. This process then leads to the optimization of 
the parameters of proposed models and the assessment of the overall predictive credibility of 
said models.   Specifically, this work determines the degree of uncertainty on the phase 
boundaries of the UO2-PuO2 and UO2-BeO systems by taking into account the available phase 
boundary data, the accepted models of the phase boundaries, and the thermodynamic data 
used in those models.  The net result was an overall reduction in uncertainty of the values of 
the thermodynamic data as well as the phase boundary positions in a way that is internally 
self-consistent.  The use of modern heuristic optimizers such as genetic algorithms was 
crucial to this work since they are both robust and require no assumptions about the forms of 
the uncertainty distributions.   
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