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Abstract: The goal in Quasi-Monte Carlo (QMC) is to improve the accuracy of integrals
estimated by the Monte Carlo technique through a suitable specification of the sample
point set. Indeed, the errors from N samples typically drop as N−1 with QMC, which is
much better than the N−1/2 dependence obtained with Monte Carlo estimates based on
random point sets. The heuristic reasoning behind selecting QMC point sets is similar
to that in halftoning, that is, to spread the points out as evenly as possible, consistent
with the desired point density. I will outline the parallels between QMC and halftoning,
and describe an halftoning-inspired algorithm for generating a sample set with uniform
density, which yields smaller integration errors than standard QMC algorithms in two
dimensions.
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1. INTRODUCTION

The goal of the standard Monte Carlo (MC) technique[1] is to estimate the integral of a
function over a specified M-dimensional domain from evaluations of the function at points
that are randomly chosen within that domain. The objective in Quasi-Monte Carlo[2]
(QMC) is to improve those estimates through a suitable specification of the sample point
set. It has been shown that the errors from N samples for a fixed number of dimensions
typically fall off as N−1 with QMC, much more quickly than with MC, namely, N−1/2.

Digital halftoning is the process of creating a pattern of black dots on a white back-
ground to create the illusion of a gray-scale image.[3, 4] One of the principal goals in
halftoning is avoid introducing undesirable texture into the rendered image, which is typ-
ically caused by clumping of the dots, or uneven dot placement that accompanies random
dot distributions. In a sense, QMC has the same goal, whether it is implicitly or explic-
itly stated. The clumpiness in random point distributions also exists in standard Monte
Carlo, and lead to lower sampling efficiency than more uniformly distributed point distri-
butions. One observes that in regions of uniform low density, halftoned images seem to
have characteristics deemed desirable in QMC.

The heuristic reasoning behind selecting QMC point sets is similar to that in halfton-
ing, that is, to avoid clumping of the points (dots). The visual similarities between the
patterns generated in halftoning and QMC lead one to speculate whether halftoning tech-
niques might provide some useful lessons for quasi-Monte Carlo, or visa versa? I will
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demonstrate that a method for generating point sets, which is inspired by basic concepts
used in halftoning, yields more accurate estimates of 2D integrals than is obtained with
some standard QMC sequences. Of course, halftoning is conducted in only two dimen-
sions. It must be kept in mind that the same algorithms that work for 2D may not work
for higher dimensions. I will discuss the implications for higher dimensions and other
potential approaches to enhanced QMC methods.

The objective of the present study is to find improved QMC techniques to reduce the
number of function evaluations needed to achieve a specified accuracy in the estimate of
an integral. For example, the function to be integrated may depend on a simulation of a
complex physical process that might take several hours, or even several days, to calculate
on the fastest computers available. In such a situation, the time required to generate an
appropriate set of samples is inconsequential. Incidentally, intelligently selected point sets
can be used for purposes other than integration, for example, for performing sensitivity
analysis of computer models.[5, 6]

This paper summarizes the results presented in Ref. 7. Further details may be found
there.

2. HALFTONING

The goal of the halftoning process is to render a gray-scale image, subject to whatever
limitations are present in the printing or display process. Given the wide variety of con-
straints in printing technologies, a similarly wide variety of halftoning techniques exist[4].
For the purpose of the present study, I will focus on a single type of rendering, referred
to as digital halftoning, in which the printing process is only capable of putting black
dots on a white surface.[3, 8] The constraints on this process can include the dot size, the
minimum distance between dots, etc. Because halftoning is used in commercial printers,
which need to print pages rapidly, a large fraction of the published work on halftoning is
devoted to finding ways to speed up the halftoning process, through use of look-up tables,
for example. The trade-off between speed and rendition quality becomes a critical design
issue.

Figure 1 shows an excellent example of a high-quality halftoned image.[9] This figure
was produced using the direct-binary-search (DBS) technique, which will be described in
the following section.[8, 9] As in many halftoning techniques, DBS is based on minimizing
the perceived difference between the halftone image and the original gray-scale image that
it is supposed to represent. Because the judge of the quality of the halftoned image is
a human observer, halftoning algorithms are often are based on properties of the human
visual system (HVS).

In one simple description of the HVS[3, 4], it is assumed that the effective modulation
transfer function (MTF) for the eye is proportional to an exponential of −c |f |, where f
is the radial spatial frequency on the observed page, and the factor c is related to the
distance of the observer from the page. The 2D inverse Fourier transform of this MTF
yields a blur function of the form

h(r) ∝ (w2 + r2)−3/2 , (1)
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Figure 1. An example of a digital halftone image generated with the direct-binary-search
algorithm taken from Ref. 9, which shows the high quality that is achievable with state-of-the-
art halftone rendering of gray-scale images. ( c©IEEE)

where r is the radial distance in the printed image. The width of this 2D Cauchy distri-
bution is characterized by the parameter w. The full-width at half maximum (FWHM)
of the radial profile of this distribution is 1.553 w. An important feature of h(r) is that it
has a long tail, behaving like r−3 for large r.

Assuming a position-invariant blur function h(x, y), the difference between the two
perceived images is the convolution:

e(x, y) = h ∗ [d − g] =

∫
h(x − x′, y − y′) [d(x′, y′) − g(x′, y′)] dx′ dy′ , (2)

where ∗ denotes the convolution operation, d(x, y) is the dot image, and g(x, y) is the
original gray-scale image to be rendered. Because the convolution redistributes intensities,
it is necessary to specify what to use outside of the domains of images d and g. This topic
is not often mentioned in discussions of halftoning but will be dealt with in Sect. 4. To
quantify the perceived discrepancy between the halftone image and the actual gray-scale
image, the most-often-used cost function is the total power in the error image

ϕ =

∫
R

|e(x, y)|2 dx dy . (3)

A variety of simplifying assumptions go into this formula, but it seems to be adequate for
producing halftone images of high visual quality.

The DBS algorithm[8, 9] is a specific approach to minimizing the HVS-motivated cost
function given by Eq. (3). The following is a simplified description of the DBS algorithm.
It is assumed that the halftone dot pattern is represented in terms of a discretized image
in which each pixel represents a dot and has one of two values, either black or white.
An initial pattern of dots is produced in which the density of the dots is approximately
proportional to the gray-scale image being rendered. Any one of several methods may be
used to generate this initial image, for example, thresholding of a set of random numbers.
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In this iterative algorithm, each pixel in the image is considered one at a time. The change
in ϕ produced by swapping the pixel’s value with each of its eight nearest neighbors is
calculated. The effect on ϕ of toggling, or reversing, the pixel’s value is also calculated.
If any of these options results in a decrease in ϕ, the change that reduces ϕ the most
is kept. One pass through all pixels in the halftone image is counted as one iteration.
The number iterations can vary from a half dozen to many times that, depending on
the characteristics of the initial image and the stopping criterion. Although the DBS
algorithm yields halftoned images of excellent quality, it requires intensive calculation.[9]

3. QUASI-MONTE CARLO

In standard Monte Carlo techniques[1], one evaluates integrals on the basis of a set of
point samples. The integral of a function f() of the parameter vector x is estimated as

∫
R

f(x) dx =
VR

N

N∑
i=1

f(xi) , (4)

where R indicates the domain of integration in M dimensions, VR is the volume of R,
and the N samples xi are randomly drawn from a uniform probability density function
defined over R.

The objective of the quasi-Monte Carlo technique is to reduce the number of function
evaluations needed to obtain a given accuracy in a Monte Carlo type of integration, and
to accelerate its convergence as N increases, a goal that is typically achieved[10]. One
useful feature of QMC is that any number of samples can be generated. Furthermore, an
arbitrary number of additional samples can be added to an existing set of samples. The
subject of space-filling or uniform point distributions has been extensively studied in the
field of statistics [11, 12].

Figure 2 shows four different sets of points that cover the unit square in 2D. Panel (a)
shows a set of random numbers that represents the type of point distribution that would
be used in classical MC. The points in panel (c) are taken from the low-density portion
of the sky near the top of Fig. 1. This dot pattern is observed to be somewhat similar to
the patterns seen in 2D point sets that used in quasi-Monte Carlo. It is known[13] that
by using quadrature methods, which typically rely on uniformly spaced sampling on a
Cartesian square grid, shown in panel (d), the rms error drops as N−1. For classical MC,
the rms error drops more slowly, as N−1/2.

It is interesting to compare the four patterns in Fig. 2, and consider the fact that the
accuracy for integrating func2, defined in Eq. (8), using these point sets is (a) 2.5%, (b)
0.5%, (c) 0.14%∗, and (d) 0.09%. It seems that the more uniformly distributed the points,
the better they are for MC-style integration.

With most standard QMC sequences, the point sequences are the same from one time
to the next. The algorithms for generating the points are deterministic, and typically

∗This rms error is actually for the point set produced by the MVD algorithm, and shown in
Fig. 4a, which is virtually indistinguishable in its general character from Fig. 2c.
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Figure 2. Four examples of different kinds of sample sets, each consisting of 400 points, which
can be used to estimate an integral over the unit square using Eq. (4). (a) A random point
set, each point in which is obtained by randomly drawing values for x and y from a uniform
distribution from 0 to 1. (b) The first 400 points from the Halton sequence [2,3]. (c) Subsample
taken from the sky region in the halftoning example shown in Fig. 1. (d) A regular array of
points arranged on a square grid.

depend on the prime numbers, which are typically small primes. This situation is quite
different than that for the generation of pseudo-random numbers, where the sequence is
usually different (and independent) each time it is requested. Of course, by setting the
‘seed’ to the same value, the same sequence can be obtained again, but this is under the
user’s control.

A metric that is often used in the QMC field is the local discrepancy, the L2 norm of
which is, in 2D

D2 =

{∫
U

[
n(x, y)

N
− A0(x, y)

]2

dx dy

}1
2

, (5)

where A0(x, y) is the area of the rectangle with one corner anchored at the origin and its
opposite corner at (x, y), and n(x, y) is the number of samples that lie inside the same
rectangle out of a total of N samples. The integration is over the unit square, designated
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by U . This quantity is clearly a measure of the uniformity of the distribution of the
sample points. D2, and other similarly defined discrepancy measures, are useful because
they form the basis for several upper bounds on the integration error for specified classes
of functions[2]. The definition of D2 may be made more robust by employing an average
over rectangles anchored at all four corners of the unit square[14]. One thing that seems
odd about this metric is that it is based on rectangles with horizontal and vertical edges,
which seems to emphasize the separable characteristics of point sets and may be not well
suited for nonseparable functions. A metric with more isotropic properties might be more
appropriate.

QMC sequences are typically obtained by combining low-discrepancy one-dimensional
sequences[2]. Numerous QMC sequences have been proposed. One of the simplest is the
Halton sequence, which is based on the prime numbers 2 and 3. For example, the Halton
sequence based on the prime number 3 is 1/3, 2/3, 1/9, 4/9 7/9, 2/9, 5/9, 8/9, 1/27, 10/27,
19/27 etc. Other primes would yield different patterns. However, when the same primes
are used, the sequences are perfectly repeatable and the same 2D pattern are obtained.
The Sobel sequence is based on primitive polynomials.[13]

One argument for using MC instead of sampling on a regular grid (quadrature method)
is to avoid a coherent interaction between the sample set and the unknown function being
integrated.[13] Consider for example, the case when the integrand is a periodic function
with the same period as the spacing between sample points. Then the estimated value of
the integral depends critically on the position of the sample points relative to the structure
in the integrand. A regular point pattern will yield the same result every time, if the same
pattern is used. A random sample pattern used in Monte Carlo will yield different results
every time, so one is less likely to be fooled. Another well-known reason for using MC in
high dimensions is that the number of points required by quadrature methods becomes
too large.[13]

Although there are similarities between QMC and halftoning patterns, there seems to
have been little intersection of the two fields of research. One possible exception is the
work by Ohbuchi and Aono[15] in which they used QMC sequences to improve rendering
of surfaces and shadows in a 3D scene. It should be mentioned that many techniques
other than QMC and MC exist for conducting efficient sensitivity studies on computer
models, the intended application of the present work. Some of these are Latin hypercube
sampling[11], stratified sampling,[1] and orthogonal arrays[6].

4. MINIMUM VISUAL DISCREPANCY FOR POINT SETS

Taking a cue from the DBS algorithm, I now describe an algorithm for minimizing the
visual discrepancy (MVD) between a set of points and an image with uniform density.
Starting with some arbitrary point pattern, the MVD algorithm considers each point in
the set in a randomly permuted order. Instead of comparing the blurred dot image to the
blurred gray-scale image, as in Eq. (3), it is better to reference the blurred dot image to
its own mean value by computing its variance:

ψ =

∫
R

|e(x, y)|2 dx dy −
(∫

R

e(x, y) dx dy

)2

, (6)
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where e is the convolution of d with h, as in Eq. (2), but with g = 0. This self referencing
is possible because the number of points is fixed. To minimize ψ, the following iterative
algorithm is employed. Each point is considered, one at a time, in a randomly ordered
way. The value of ψ is calculated for fixed-length steps in eight different directions, along
the axes and along the 45◦ diagonals. If any of these steps results in a decrease in ψ,
that step yielding the smallest ψ is accepted. After all points in the point set have been
considered, which is called one iteration, the step length is decreased by a factor and the
process is repeated until a predetermined number of iterations K have been performed.
The total number of iterations required to achieve satisfactory point distributions ranges
from five to about 15.

The step length for the first iteration is chosen on the basis of how evenly distributed
the points are in the initial pattern. It is specified in terms a characteristic distance
between points for the final, uniformly distributed point set, taken in two dimensions as
a =

√
N , for N points. In the present study, the initial step length is chosen between 0.2 a

to 0.4 a, dependent on the uniformity of the initial point pattern. The larger value is used
when the initial pattern is a random point set, the smaller when starting with the Halton
sequence, for example. In practice, the step length is adjusted so that approximately half
the points considered get moved to lower ψ values. In the last iteration of the prescribed
number of iterations K, the final step length is normally about 0.1 a.

An important aspect of the MVD algorithm is the specification and calculation of ψ,
the function to be minimized. Through experimentation, I have found that the radial
FWHM of the blur function Eq. (1) is best chosen to be on the order of the expected
distance between points a. A value of w ≈ a/2 seems to work well. Larger values do not
keep points away from each other strongly enough. Another detail in the calculation of ψ
concerns the convolution. The convolution operation redistributes intensities from inside
the unit square to the outside, and visa versa. It therefore becomes necessary to specify
the values of the image, not only inside the unit square, but also outside. In this study,
the image is extended with a value equal to the average point density inside the unit
square. Auxiliary runs show that this choice minimizes the error in the integration tests
described in the next section. The convolution operations are performed using standard
Fast Fourier Transform methods. The image sizes used in this study are typically 200 ×
200 pixels to cover the unit square, and are extended to 256 × 256 pixels for the FFT.

The result of the blurring operation of the point (dot) image, stated in Eq. (6), is shown
in Fig. 3. This point distribution is obtained by using the above optimization algorithm
starting with the 100-point Halton sequence [2,3]. In this example, a = 0.1, and w = 0.05,
which results in a radial profile with a FWHM of 0.0767. I have found that it is helpful to
start with a point pattern that has relatively good coarse-scale uniformity. For example,
starting with a Halton sequence of points or a stratified sample set[13] makes it easier to
minimize ψ compared to starting with a random distribution. Similar observations have
been made about the operation of centroidal Voronoi tessellation algorithms[16]. Other
examples of point sets obtained with MVD are presented in Fig. 4. Figure 4a looks very
similar to Fig. 2c, the DBS example.

Minimizing ψ amounts to minimizing the variance in Fig. 3b. It is fairly clear that
to obtain the lowest variance in the blurred image, the points must be distributed so no
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Figure 3. (a) This distribution of 100 points is obtained by minimizing the visual discrepancy
from a uniform density level, and (b) the visualized point image, that is, the point image on
the left blurred by the human visual system. The MVD algorithm is based on minimizing the
variance in this blurred image. The rms deviation for the blurred image, relative to its mean
value, is 1.1%.

gaps exist in the pattern. Consequently, for the optimal pattern the points will be spread
out as far apart and as uniformly as possible. One might expect regular patterns to
minimize ψ. In fact, it is possible to identify regular patterns in the point sets produced
by the MVD algorithm, as for example, in Figs. 3a and 4. The local patterns tend to be
principally hexagonal, but do not possess a long-range order. The situation is similar to
that in solid-state physics in which carefully fabricated materials produce single crystals
with well-defined lattice structures. While the MVD and the DBS halftoning algorithm
do not produce such regular arrays, there is definitely a tendency to do so. The MVD
structures have defects similar to those seen in crystals, e.g., dislocations and interstitial
defects. Actually, the patterns produced by the MVD and BDS algorithms more closely
resemble glassy structures, obtained by quickly freezing a molten material, than crystalline
structures.

It should be kept in mind that the MVD algorithm tends to find a local minimum in
ψ, not the global minimum. Single crystals represent the global minimum in energy. It
may be possible to show that similar regular structures occur at the global minimum in ψ.
Auxiliary tests indicate that regular square and hexagonal arrays of points tend to have the
lowest observed values of ψ. However, initializing MVD with slightly perturbed versions
these patterns does not generally result in the same regular pattern being regained. It
seems that irregularities in the point distribution create barriers that the simple downhill
optimization algorithm presently used does not overcome. Other choices for the blur
kernel or smaller values for w may make it easier to come closer to the global minimum.
On the other hand, it is not clear that reaching the global minimum is desirable, as
commented on in the Discussion section.

The optimization approach in MVD moves each point a limited distance. As with many
iterative approaches to optimization, the high-frequencies in the image (corresponding to
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Figure 4. Point sets obtained with the MVD algorithm containing (a) 400 points and (b) 1000
points.

small scales) tend to be optimized at the beginning of the optimization procedure. The
low frequencies (coarse scales) often take many iterations to be optimized. Thus, one
might think that a multiscale approach to this optimization procedure could help speed
up long-range adjustment of the point patterns to reach a suitable local minimum. For
example, in the early iterations, one might use a relatively large value of w in the blur
function (1) and move groups of neighboring points instead single points. An alternative
would be to start with point patterns that possess coarse-scale uniformity, for example,
a QMC sequence or stratified sampling. Even a regular pattern, such as the square-grid
pattern shown in Fig. 2d or a hexagonal pattern might be used to initialize MVD, provided
that the positions of each point is randomly budged a suitable, but small, distance.

5. INTEGRATION TESTS

The performance of the various kinds of points sets for MC-like integration may be tested
for selected functions. The following two separable functions are used in this study

func1(x) =
∏

i

|4(xi − x0
i )| , (7)

func2(x) =
∏

i

exp{−2|xi − x0
i |} , (8)

where x represents a position vector, x0 is the center of the distribution, and i = 1,
2 for two dimensions. The mean-square error is determined for the integral estimated
using Eq. (4) by averaging the squared error over x0 values that uniformly cover the unit
square. This average is accomplished using the standard MC technique and is based on
1000 randomly chosen x0 positions. The first function (7) is an inverted pyramid that
rises linearly from zero at x0. The second function (8) peaks at x0, and gradually drops
toward zero with a FWHM of 0.693 in both the x1 and x2 directions.

Figure 5 summarizes the results of the integration test of the function func2 (8). The
first and most important observation is that the random point set yields substantially
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Figure 5. Plot of the per-cent rms error in Monte Carlo evaluations of integrals of the two-
dimensional function func2, given in Eq. (8), for various kinds point sets versus the number
of samples, N . The largest errors occur for the random sample set, shown as dots. The rms
errors are smaller for the Halton sequence (diamonds), the minimum visual discrepancy (MVD)
algorithm (stars), and the square grid (squares). The top line shows the convergence behavior
of the rms error expected for standard MC, namely N−1/2; the bottom line shows the behavior
often achieved by quasi-MC sample sets, N−1.

poorer integration accuracy than the other point sets. Its rms error drops like N−1/2,
indicated by the upper line, as is expected for Monte Carlo integration. The Halton
sequence, a mainstay in the QMC field, performs much better. The MVD algorithm
yields rms errors that are generally better than those for the Halton sequence by at least
a factor of two. For 100 points, MVD provides approximately ten times lower error
than random sampling, and at 1000 samples it is at least 20 times better. The general
dependence of the error for these three kinds of points sets is N−1. For expensive function
evaluations, these improvements represent substantial savings.

The discrepancy D2, given in Eq. (5), does not correlate very well with the integration
accuracy. In particular, the values for D2 for the square pattern are always somewhat
greater than those of the Halton and MVD sample sets, and yet the square pattern almost
always produced the smallest rms error. Furthermore, D2 is often smaller for the Halton
sequence than for the MVD pattern, even though MVD always has smaller rms error.
One can conclude that the D2 discrepancy for a point set is not a very good indicator of
its integration accuracy, at least for the functions considered here.

One way to look at Eq. (4) for MC integration is that each function value in the sum
is representative of a volume element surrounding it. A useful way to partition the do-
main of integration into neighborhoods surrounding each sample point is through Voronoi
analysis.[16–18] A simple, if somewhat unorthodox way to perform Voronoi analysis, is
based on a Monte Carlo technique. One randomly draws a set of K points {Xk} from
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a uniform distribution defined over the domain of interest. The distance is computed
between each point Xk and each point in the sample set {Zj} being analyzed. It is
assigned to the closest Zj. The set of points that are closest to Zj belong to its Voronoi
region, the number of which, divided by K, is an estimate of the fractional volume of that
Voronoi region.

From the equal weighting of the function value at each sample point in Eq. (4), one
would suppose that for a good sample set, the Voronoi areas should all be about equal.
However, in further tests involving other types of point sets and other integration test
functions, the correlation between these two quantities is not upheld. Thus, the uniformity
of the Voronoi areas does not not seem to be uniquely related to the integration error.
In addition, one might expect that the average second moment of the radius should be
minimum for a point set with good sampling properties. This condition is attained with
a centroidal Voronoi tessellation.[16, 17] Unfortunately, this quantity does not seem to be
correlated with integration error either.

6. DISCUSSION

The ultimate aim of the present work is to improve on present techniques for analyzing the
sensitivity of computer models outputs to numerous input parameters. The goal therefore
is to develop point sets in high dimensions, which possess desirable convergence properties
for integration estimates, comparable to, or better than QMC sequences. As argued
earlier, it seems desirable for the sample points to be spatially distributed somewhat
randomly. The sample sets should also be independent from one sequence to the next.
Another desirable trait is for the sample sets to be easily augmentable, so that additional
points may be easily generated, if deemed necessary.

The MVD algorithm, based on the ideas behind halftoning has been shown to achieve
very good performance for integrating two simple functions. On the other hand, the MVD
algorithm, per se, may be impossible to implement in high dimensions because it is based
on determining the mean-square error, Eq. (6), of an M -dimensional image. This implies
the necessity for storing a discretized image in M dimensions, which may be infeasible
when M gets larger than four or five, even when coarsely discretized in each dimension.
The convolution is not a problem, because with fast Fourier transforms, the cost grows
only linearly with M .

Another approach to generating a suitable point set, which is closely related to MVD,
is to draw an analogy between the point set and a collection of particles, which interact
by means of a potential field. The potential field can be chosen so that the particles repel
each other at close distances, but are less repulsive when they are sufficiently far apart.
This type of action occurs in the MVD approach, although it is not explicit. Appropriate
conditions need to be specified at the boundary of the region. The advantage of this
potential-field approach is that an integral over the M -dimensional domain is not required
to evaluate the cost function. To calculate the total energy of a specific configuration of the
particles, the distances between each point and every other point needs to be calculated, an
order-MN2 calculation for N points in M dimensions, which is quite managable. On the
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Figure 6. Examples obtained with the potential-field algorithm for (a) 100 points and (b) 1000
points.

other hand, to determine the change in energy for optimizing each point, the calculation
is only of order MN .

Initial results indicate that this potential-field approach is promising. Figure 6 shows
the results obtained with a potential with the same form used in the DBS algorithm,
given in Eq. (1)

ζ =
N∑

j=1

N∑
i=j+1

(w2 + |xi − xj|2)−3/2 , (9)

with suitable boundary conditions. The indices i and j label the points in the sequence.
These patterns are visually very similar to those produced by MVD, shown in Fig. 3a and
Fig. 4b. The rms errors for integrating func2 with these two point sets are 0.96% for 100
points and 0.17% for 1000 points, which is competitive with MVD. This potential-field
approach is somewhat akin to the ‘springs’ idea of Atkins et al.[19]. Also, Idé et al. [20]
have proposed a very similar approach for minimizing the L2 discrepancy using an analogy
to molecular dynamics.
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