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Abstract: Experiment plans formed by combining two or more designs, such as orthogonal 
arrays, primarily with 2- and 3-level factors, creating multi-level arrays with subsets of 
different strength are proposed for computer experiments.  The specific illustrations are 
designs for 5-level factors with fewer runs than generally required for 5-level orthogonal 
arrays of strength 2 or more.  At least five levels for each input are desired to allow for runs at 
a nominal value, two values either side of nominal but within a normal, anticipated range, and 
two more extreme values either side of nominal.  This number of levels allows for a broader 
range of input combinations to test the input combinations where a simulation code operates.  
Five-level factors also allow the possibility of up to 4th order polynomial models for fitting 
simulation results, at least in one dimension.  By having subsets of runs with more than 
strength 2, interaction effects may also be considered.  Also, the resulting designs have a 
“checker-board” pattern in lower-dimensional projections, in contrast to the grid projection 
that occurs with orthogonal arrays. 

Keywords: Computer experiments, experiment design, fractional factorial design, orthogonal 
arrays, correlation coefficient 

1. INTRODUCTION 
The context for this paper is planning runs of a non-stochastic computer code for the 

purpose of assessing important inputs from among p inputs.  As in McKay (1995), 
“important” input(s) are identified based on comparison of R2, an estimate of the correlation 
coefficient associated with the goodness of fit to the simulated output Y of an analysis of 
variance model based on a subset of inputs Xs.   The following is a formula for R2 based on a 
subset of inputs Xs: 
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where the subscript i  varies over distinct values of the s inputs identified in Xs, the 
subscript j varies over “replicate” experiments corresponding to a fixed value of the inputs Xs, 
and the “dot” subscript indicates the standard average.  “Replicate” is in quotes since no true 
replicates are done.  The computer simulation output is non-stochastic in that the output is 
fully determined by specification of the input with no variation in output for repeated runs of 
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the code for identical input.  Variation in the output is induced solely by variation in the 
inputs.  The (p-s) inputs identified by X-Xs may differ while Xs is fixed and this is the basis of 
pseudo-replicate, or “replicate” runs for fixed values of Xs.  The value yi. will be identically 
yij if there are no pseudo-replicate runs.  If this is the case for every value of the inputs 
identified by Xs, then R2 will have a value identically 1.  Otherwise, R2 is between 0 and 1.  
This reasoning leads to considering experiment designs such that, for subsets of inputs of a 
specified size s<p, a sampling of values for that subset of inputs is required such that 
“replicates” determined by a sample of values for the remaining inputs occur, for at least one 
of the values of the subset of inputs.  This is a property of factorial experiment designs, or 
orthogonal arrays, which naturally suit this analysis approach, per Moore and McKay (2002).  
However, in order to obtain non-degenerate values of R2 for subsets of 2 or more inputs, 
orthogonal arrays of strength 2 or more are dictated.  

The specific illustrations of experiment designs are for 5-level factors with fewer runs 
than generally required for 5-level orthogonal arrays of strength 2 or more.  In statistical 
experiment design, particularly as used in industrial physical experiments, factorial 
experiments with 2 or 3 level factors are common.  Here, at least five levels for each input are 
desired to allow for runs at a nominal value, two values either side of nominal but within a 
normal, anticipated range, and two more extreme values either side of nominal.  This number 
of levels allows for a broader range of input combinations to test the input combinations 
where a simulation code operates.  Five-level factors also allow the possibility of up to 4th 
order polynomial models for fitting the simulation results, at least in one dimension.   

The requirement for strength 2 or more arrays, in addition to requiring factors to have 5 
levels, leads to orthogonal arrays with unacceptably large numbers of runs in some situations.  
Moore and McKay (2002) present a 625 run orthogonal array for up to 26 5-level factors that 
is strength 3.  In fact, for 625 runs the maximum number of 5-level factors for which a 
strength 2 orthogonal array exists is 156.  The maximum number for which a strength 3 array 
exists in 625 runs is 26 5-level factors, and the maximum number for a strength 4 array is 6 5-
level factors.  For 125 runs, the maximum strength for a 5-level orthogonal array is 3 and 
inequalities in Hedayat, et al (1999) show that the maximum number of 5-level factors that 
could be accommodated by a strength 3 orthogonal array in 125 runs is 5.  Although it is 
conceivable that in computer experiments hundreds of runs might be achievable, for the 
problem at hand less than, or on the order of 100 runs of the computer code are acceptable.  
Additionally, often computer codes have at least tens of inputs and for the illustrations here no 
fewer than 7 inputs are considered.   

As a result of these requirements, experiment plans formed by combining two or more 
designs, such as orthogonal arrays primarily with 2- and 3-level factors, creating multi-level 
arrays with subsets of different strength are proposed for computer experiments.  Experiments 
constructed in this way will be referred to as combined array experiments, or combined 
arrays.  Construction of combined arrays is illustrated in Section 2, specifically including 
investigation of 2-level and 3-level orthogonal arrays used to construct 5-level combined 
arrays.  Additional analysis considerations, optimal experiment design properties and space-
filling properties are discussed in Section 3 for combined arrays.  Conclusions are in Section 
4. 
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2. COMBINED ARRAYS 
In the following, combined array experiments are constructed by combining 2- and 3-level 

fractional factorial experiments, or orthogonal arrays, creating 5-level arrays with subsets of 
different strength.  The resulting combined array is not orthogonal although, obviously, 
subsets of runs are orthogonal arrays.  While 5-levels are formed and the underlying arrays 
are orthogonal, clearly the concepts can be extended to form any number of levels for the 
factors and to combine arrays that are not orthogonal although the arrays should have some 
specified, desirable properties.   

Factorial experiments are experiments for inputs, called factors, with a finite number of 
discrete values, referred to as levels, so if each input has K levels and there are p inputs then 
there are KP possible distinct runs referred to as the KP factorial design space.  The K levels 
could be associated with K equal probability content intervals for a continuous input.  If the 
experiment plan consisted of the entire KP factorial design space, then for each pair of inputs 
(subsets of size 2) there are K2 values (levels) with KP-2 “replicates” for each value.  
Obviously this extends to subsets of inputs of size s in the obvious way.  For relatively 
moderate K and even small sizes for p the full product space of possible experiment runs 
quickly becomes unmanageably large, even given the ability to run the simulation code 
thousands of times.  As stated previously, inputs with at least 5 levels are desired and only 5-
level factors are considered in the following.   

Orthogonal array experiment designs are subsets of full factorial designs, also referred to 
as fractional factorial designs, with reduced runs obtained by relaxing the property that for 
any subset of inputs there are “replicate” inputs for each value of the subset.    Wu and 
Hamada (2000) and Hedayat, et al (1999) are good references on orthogonal arrays, in 
addition to several older texts on statistical experiment design and fractional factorial 
experiments by John (1971) and Raktoe, et al (1981).  For K levels identified by elements in 
the set L={0,1,2,…,k-1}, an N×p array X with entries from L is an orthogonal array with K 
levels, strength t (0 ≤ t ≤ p) and index λ if every N× t sub-array of X contains each t-tuple 
based on L exactly λ  times as a row.  An array with parameters N (number of runs), p 
(number of factors), k (number of levels for each factor), and t (strength) is denoted 
OA(N,p,k,t).  From this definition, a strength t orthogonal array with index λ  is a set of p-
dimensional factorial design points such that if one considers any t-dimensional projection 
then every point in the Kt factorial design space is replicated λ  times.  Likewise, any 
projection of dimension smaller than t, say s<t, consist of λ *K(t-s) replicates of the KS 
factorial design space.  A full KP factorial design space is itself an OA(KP,p,K,p) with index 
unity, that is λ =1.  To reduce the number of runs from the full factorial design, a compromise 
is made on strength in orthogonal arrays.  In a strict sense, fractional factorial designs may be 
any subset of the full factorial design space but often this terminology, or the term regular 
fractional factorial, is reserved for subsets that form an orthogonal array.  For K prime, 
fractions of resolution III, IV and V defined in John (1971) or Raktoe, et al (1981) correspond 
to orthogonal arrays of strength 2, 3, and 4 respectively for which “replicate” runs occur for 
Xs including all values in the KS grid, where s<t and, respectively, t=2, 3, and 4 is the strength 
of the array. 

Again, experiment design options for 5-level factors are desired.  The number of levels is 
required to be 5: a nominal value (coded as 2), two values either side of nominal (referred to 
as inner limits, coded as 1 and 3) but with values that might be reasonably expected, and two 
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values either side set a little further out (referred to as outer limits, coded as 0 and 4).  The 
potential exists for failed runs at some of the extreme values.  Less than 100 runs, or on the 
order of 100, could be done.  Strength 3, at a minimum, is also desirable but that requires too 
many runs for a fully orthogonal array, on the order of 54=625 at a minimum, for 7 to 10 5-
level factors.  In reality, strength 3 is probably not absolutely required, that is the ability to 
assess a possibly unique effect for all 3 variable combinations of 5-level variables.  Instead, 
this strength requirement reflects the experimenter’s suspicion that there are potential 
interaction effects and the experimenter’s desire to obtain some information about interactions 
from the experiment.   

To obtain 5-level factors, 2-level and 3-level experiments designs are combined 
associating the levels of these two designs with 5-levels.  The 2-levels are assigned the 
reasonable values either side of nominal (inner limits) and 3-levels assigned to nominal and 
the two extreme values (outer limits) either side of nominal.  With this construct in mind, it is 
clear all that is required are desirable (high strength, allowing for run size limitations) 2-level 
and 3-level experiment designs.  It is expected that a good (high strength) 2-level factorial 
design would yield main effects assessments independent of (at least pair-wise) cross factor 
interactions while a riskier (lower strength) 3-level factorial design would give somewhat 
more limited information on code functioning at nominal and extreme values of the factors.  
One would not run as much risk of losing information if code runs at extreme values fail since 
results on a good 2-level design would be obtained.  However, there is potential for additional 
information over the limited 2-level factorial experiment, such as departure from linearity 
assessable with runs at the nominal values of factors as well as code performance at extremes.  
In the following, combined arrays are denoted CA(N,p,k,”i”t,”o”t) with parameters N 
(number of runs), p (number of factors), k (number of levels for each factor, here k=5), 
strength t labeled “i”t corresponding to the orthogonal array associated with the inner limits , 
and strength t labeled “o”t corresponding to the orthogonal array associated with the outer 
limits.   

Substantial research and continuing development exists for constructing 2- and 3-level 
fractional factorial designs and the variety of methods and results in the literature are not 
surveyed here.  Specific arrays are used to illustrate the construction of combined arrays.  
Hedayat, et al (1999) is a source of most constructions of these designs, and Tables 12.6 (c-e) 
on pages 326-327 of this text index constructed (fixed-level) orthogonal arrays for 2-level 
arrays with strength at least 3 and 3-level arrays with strength at least 2.  Electronic data-bases 
containing these, and other, arrays can be found at the website: 

www.research.att.com/~njas/oadir.  

For seven factors, there is an OA(16,8,2,3), a 16-run orthogonal array for eight 2-level 
factors that is strength 3, and an OA(18,7,3,2), an 18 run orthogonal array for seven 3-level 
factors.  Using only 7 of the 8 factors from an OA(16,8,2,3) combined with the OA(18,7,3,2), 
a CA(34,7,5,i3,o2) combined array is constructed.  An OA(16,8,2,3), 2-level array is defined 
by columns x1, …, x8 such that the first four columns are the full 24 array and the remaining 
columns are defined by the following equations (with modulus 2 addition): 

x5 = x1 +  x2 +  x3, 

x6 = x1 +  x2 +  x4, 
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x7 = x1 +  x3 +  x4, 

x8 = x2 +  x3 +  x4. 

Table 1 lists the 16 design points in this OA(16,8,2,3) with levels coded as 0 and 1 and then 
recoded to the values either side of nominal (inner limits) coded as 1 and 3 for the 5-level 
factors denoted f1, …, f8: 

Table 1:  OA(16,8,2,3) and associated points in CA(34,7,5,i3,o2) 
OA(16,8,2,3) 

Run/Input 

Coded {0,1} 

x1 x2 x3 x4 x5 x6 x7 x8 CA(34,7,5,i3,o2) 

Run/Input 

Coded {1,3} 

f1 f2 f3 f4 f5 f6 f7 f8 

1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

2 1 0 0 0 1 1 1 0 2 3 1 1 1 3 3 3 1 

3 0 1 0 0 1 1 0 1 3 1 3 1 1 3 3 1 3 

4 1 1 0 0 0 0 1 1 4 3 3 1 1 1 1 3 3 

5 0 0 1 0 1 0 1 1 5 1 1 3 1 3 1 3 3 

6 1 0 1 0 0 1 0 1 6 3 1 3 1 1 3 1 3 

7 0 1 1 0 0 1 1 0 7 1 3 3 1 1 3 3 1 

8 1 1 1 0 1 0 0 0 8 3 3 3 1 3 1 1 1 

9 0 0 0 1 0 1 1 1 9 1 1 1 3 1 3 3 3 

10 1 0 0 1 1 0 0 1 10 3 1 1 3 3 1 1 3 

11 0 1 0 1 1 0 1 0 11 1 3 1 3 3 1 3 1 

12 1 1 0 1 0 1 0 0 12 3 3 1 3 1 3 1 1 

13 0 0 1 1 1 1 0 0 13 1 1 3 3 3 3 1 1 

14 1 0 1 1 0 0 1 0 14 3 1 3 3 1 1 3 1 

15 0 1 1 1 0 0 0 1 15 1 3 3 3 1 1 1 3 

16 1 1 1 1 1 1 1 1 16 3 3 3 3 3 3 3 3 

 

Hedayat, et al (1999) lists an OA(18,7,3,2) on page 20 and discusses construction in 
Chapter 3.  The reader is referred to the text for construction and the design is listed here in 
Table 2 with standard {0,1,2} coding followed by coding for the nominal and extreme values 
(outer limits) for f1, …, f7:  
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Table 2:  OA(18,7,3,2) ) and associated points in CA(34,7,5,i3,o2) 
OA(18,7,3,2) 

Run/Input 

Coded{0,1,2} 

x1 x2 x3 x4 x5 x6 x7 CA(34,7,5,i3,o2) 

Run/Input 

Coded {0,2,4} 

f1 f2 f3 f4 f5 f6 f7 

1 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 

2 1 1 1 1 1 1 0 18 2 2 2 2 2 2 2 

3 2 2 2 2 2 2 0 19 4 4 4 4 4 4 4 

4 0 0 1 2 1 2 0 20 0 0 2 4 2 4 0 

5 1 1 2 0 2 0 0 21 2 2 4 0 4 0 0 

6 2 2 0 1 0 1 0 22 4 4 0 2 0 2 0 

7 0 1 0 2 2 1 1 23 0 2 0 4 4 2 2 

8 1 2 1 0 0 2 1 24 2 4 2 0 0 4 2 

9 2 0 2 1 1 0 1 25 4 0 4 2 2 0 2 

10 0 2 2 0 1 1 1 26 0 4 4 0 2 2 2 

11 1 0 0 1 2 2 1 27 2 0 0 2 4 4 2 

12 2 1 1 2 0 0 1 28 4 2 2 4 0 0 2 

13 0 1 2 1 0 2 2 29 0 2 4 2 0 4 4 

14 1 2 0 2 1 0 2 30 2 4 0 4 2 0 4 

15 2 0 1 0 2 1 2 31 4 0 2 0 4 2 4 

16 0 2 1 1 2 0 2 32 0 4 2 2 4 0 4 

17 1 0 2 2 0 1 2 33 2 0 4 4 0 2 4 

18 2 1 0 0 1 2 2 34 4 2 0 0 2 4 4 

 

Table 3 lists additional examples of combined arrays that could be formed in a like 
fashion to CA(34,7,5,i3,o2) based on arrays that are indexed in Hedayat, et al (1999). 

Table 3:  CA formed from binary and ternary OA 

Binary OA Ternary OA CA 

OA(16,8,2,3) OA(18,7,3,2) CA(34,7,5,i3,o2) 

OA(24,12,2,3) OA(27,13,3,2) CA(51,12,5,i3,o2) 

OA(32,16,2,3) OA(27,13,3,2) CA(59,13,5,i3,o2) 

OA(64,14,2,3) OA(27,13,3,2) CA(91,13,5,i3,o2) 

OA(64,14,2,3) OA(54,25,3,2) CA(118,14,5,i3,i2)

OA(128,15,2,4) OA(54,25,3,2) CA(182,15,5,i4,i2)
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3. STATISTICAL ANALYSIS AND SPACE-FILLING FEATURES FOR 
COMBINED ARRAYS 

Examining CA(34,7,5,i3,o2) in a similar way as an orthogonal array is evaluated, lower 
dimensional projections may be considered or, equivalently, multi-way tables of the counts of 
values of the factors that occur in the experiment design.  For any two columns of the 
CA(34,7,5,i3,o2) experiment, the two-way table (Table 4) of values that occur in the design 
is: 

  Table 4 :  Incidence of values for any two columns in CA(34,7,5,i3,o2)      

“replicates” fj= 0 1 2 3 4 totals 

fi=        

0  2 0 2 0 2 6 

1  0 4 0 4 0 8 

2  2 0 2 0 2 6 

3  0 4 0 4 0 8 

4  2 0 2 0 2 6 

Totals  6 8 6 8 6 34 
runs 

        

For a strength 2 orthogonal array this table would have the same values in every cell.  For 
combined orthogonal arrays such as CA(34,7,5,i3,o2), there is a “checkerboard” pattern for 
the cells with non-zero and zero counts and the cells with non-zero counts may not have the 
same counts.   

Considering any three factors in CA(34,7,5,i3,o2), the tables of values that occur are 
variants of one of the three tables labeled below as Table 5 for f1, f2, and f3, Table 6 for f1, f2, 
and f7, or Table 7 for f3, f5, and f7.  The variations that occur are that the rows that correspond 
to the even values of a factor may be permuted, although the marginal count values stay the 
same.  There are 28 triples of factors, which have a 3-way table like Table 5, 6 triples 
correspond to Table 6, and factors f3, f5, and f6 are the only ones with the pattern in Table 7. 

Table 5:  Values of f1, f2, and f3 in the design CA(34,7,5,i3,o2). 
“reps” f3= 0 1 2 3 4 total 

 f2= 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4  

f1= 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 6 

 1 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 8 

 2 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 6 

 3 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 8 

 4 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 6 

Total  2 0 2 0 2 0 4 0 4 0 2 0 2 0 2 0 4 0 4 0 2 0 2 0 2 34 
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Table 6:  Values of f1, f2, and f7 in the design CA(34,7,5,i3,o2). 
“reps” f7= 0 1 2 3 4 total 

 f2= 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4  

f1= 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 6 

 1 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 8 

 2 0 0 2 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 6 

 3 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 8 

 4 0 0 0 0 2 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 6 

Total  2 0 2 0 2 0 4 0 4 0 2 0 2 0 2 0 4 0 4 0 2 0 2 0 2 34 

 

Table 7:  Values of f3, f5, and f7 in the design CA(34,7,5,i3,o2). 
“reps” f7= 0 1 2 3 4 total 

 f5= 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4  

f3= 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 6 

 1 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 8 

 2 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 

 3 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 8 

 4 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 6 

Total  2 0 2 0 2 0 4 0 4 0 2 0 2 0 2 0 4 0 4 0 2 0 2 0 2 34 

 

A strength 3 orthogonal array would dictate that every cell in the 3-way tables has the same 
non-zero count.  There are 125 cells, so, obviously, with only 34 runs not every cell can have 
a non-zero count.  The trade-off with fewer runs than cells is to have non-zero count in as 
many cells as possible and have these cells “spread” around as much as possible.  Visually, 
this is best achieved in Table 5 which is the associated table for 28 of the 35 possible triples of 
factors.  Based on this observation, combined array designs do a good job of space-filling in 
lower dimensional projections that correspond to the strengths of the combined arrays.  
Specifically, CA(34,7,5,i3,o2) is a good space-filling design in its 2- and 3-dimensional 
projections. 

Since the combined arrays have underlying structure of orthogonal arrays on subsets of 
runs, analyses investigating main effects and interactions are possible and there are  
“replicates” required for the comparison of R2 as in McKay (1995) for identifying “important” 
input(s).  In statistical experiments, 2- and 3-level experiments are common and relate to the 
fitting of polynomial regression models with degree 1 or 2, respectively.  For 2-level factors, 
at most a first order, or linear, polynomial in a single factor can be modeled.  For 3-level 
factors, a second order polynomial model can be fit.  In the analysis of variance paradigm, 2-
level factors allow fitting of linear main effects only while 3-level factors coincide with fitting 
linear and quadratic main effects.  The requirement of strength 2 or 3 orthogonal arrays is 
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associated with fitting of polynomial regression models without or with cross factor terms, 
respectively.  In an analysis of variance interpretation, strength 2 corresponds to the ability to 
fit main effects only where at least some main effects are biased by possibly significant two-
factor interactions.  In the experiment design literature this type of experiment is referred to as 
a resolution III design.  Strength 3 corresponds to a resolution IV design where only a main 
effects model is estimable but the main effects estimates are not biased by any two-factor 
interactions, although bias due to any higher order interactions exists.  Strength 4 corresponds 
to a resolution V design where main effects and two-factor interactions are estimable, 
although again biased by any potentially non-negligible higher order interactions.  The 
capacity of an experiment to evaluate assorted polynomial trends does not necessarily indicate 
that the polynomial is in any sense the replacement model, but as for analysis based on 
comparison of R2 for different sets of inputs, it provides a means for identifying inputs that 
are most influential subject to the limits of the experiment design.  

4. CONCLUSIONS 
Combining 2- and 3-level orthogonal arrays leads to designs with 5-level factors but with 

full orthogonality compromised.  The resulting array is not orthogonal but high strength is 
achieved with respect to some level combinations or a subset of runs and as a result there is 
the capacity to make assessment of important effects based on comparison of R2 for different 
input sets as in McKay (1995).  These properties are achieved with fewer runs than would be 
required for an orthogonal design for 5-level factors. 
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