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Abstract:  Three applications of sampling-based sensitivity analysis in conjunction with 
evidence theory representations for epistemic uncertainty in model inputs are described:  
(i) an initial exploratory analysis to assess model behavior and provide insights for addi-
tional analysis, (ii) a stepwise analysis showing the incremental effects of uncertain vari-
ables on complementary cumulative belief functions and complementary cumulative 
plausibility functions, and (iii) a summary analysis showing a spectrum of variance-based 
sensitivity analysis results that derive from probability spaces that are consistent with the 
evidence space under consideration. 
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1.  INTRODUCTION 
Uncertainty analysis and sensitivity analysis should be important components of any 
analysis of a complex system, with (i) uncertainty analysis providing a representation of 
the uncertainty present in the estimates of analysis outcomes and (ii) sensitivity analysis 
identifying the contributions of individual analysis inputs to the uncertainty in analysis 
outcomes[1].  Probability theory provides the mathematical structure traditionally used in 
the representation of epistemic (i.e., state of knowledge) uncertainty, with the uncertainty 
in analysis outcomes represented with probability distributions and typically summarized 
as cumulative distribution functions (CDFs) or complementary cumulative distribution 
functions (CCDFs) [2-4]. A variety of sensitivity analysis procedures have been devel-
oped for use in conjunction with probabilistic representations of uncertainty, including 
differential analysis [5, 6], the Fourier amplitude sensitivity test (FAST) and related vari-
ance decomposition procedures[7-11], regression-based techniques [12, 13], and searches 
for nonrandom patterns [14]. 

Although probabilistic representations of uncertainty have been successfully em-
ployed in many analyses, such representations have been criticized for inducing an ap-
pearance of more refined knowledge with respect to the existing uncertainty than is really 
present [15, 16].  Much of this criticism derives from the use of uniform distributions to 
characterize uncertainty in the presence of little or no knowledge with respect to where 
the appropriate value to use for a parameter is located within a set of possible values. As 
a result, a number of alternative mathematical structures for the representation of  
epistemic uncertainty have been proposed, including evidence theory, possibility theory, 
and fuzzy set theory [17]. 
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Evidence theory provides a promising alternative to probability theory that allows for 
a fuller representation of the implications of uncertainty than is the case in a probabilistic 
representation of uncertainty. In particular, evidence theory involves two representations 
of the uncertainty associated with a set of possible analysis inputs or results: (i) a belief, 
which provides a measure of the extent to which the available information implies that 
the true value is contained in the set under consideration, and (ii) a plausibility, which 
provides a measure of the extent to which the available information implies that the true 
value might be contained in the set under consideration. One interpretation of the belief 
and plausibility associated with a set is that (i) the belief is the smallest possible probabil-
ity for the set that is consistent with all available information and (ii) the plausibility is 
the largest possible probability for the set that is consistent with all available information. 
An alternative interpretation is that evidence theory is an internally consistent mathemati-
cal structure for the representation of uncertainty without any explicit conceptual link to 
probability theory. The mathematical operations associated with evidence theory are the 
same for both interpretations. Just as probability theory uses CDFs and CCDFs to sum-
marize uncertainty, evidence theory uses cumulative belief functions (CBFs), cumulative 
plausibility functions (CPFs), complementary cumulative belief functions (CCBFs), and 
complementary cumulative plausibility functions (CCPFs) to summarize uncertainty. 

Although evidence theory is beginning to be used in the representation of uncertainty 
in applied analyses, the authors are unaware of any attempts to develop sensitivity analy-
sis procedures for use in conjunction with evidence theory. Due to the importance of sen-
sitivity analysis in any decision-aiding analysis, the potential usefulness of evidence 
theory will be enhanced if meaningful and practicable sensitivity analysis procedures are 
available for use in analyses that employ evidence theory in the representation of uncer-
tainty. As a result, the focus of this presentation is on the development of sensitivity 
analysis procedures for use in conjunction with evidence theory representations of uncer-
tainty. 

After a brief overview of evidence theory (Sect. 2), the following topics are consid-
ered:  (i) exploratory sensitivity analysis (Sect. 3), (ii) use of sensitivity analysis results in 
the stepwise construction of CCBFs and CCPFs (Sect. 4), (iii) analysis of evidence theory 
representations of uncertainty (Sect. 5), and (iv) concluding summary (Sect. 6). 

2.  EVIDENCE THEORY 

Evidence theory is based on the specification of a triple (S, , m), where (i) S is the set 
that contains everything that could occur in the particular universe under consideration, 
(ii)  is a countable collection of subsets of S, and (iii) m is a function defined on sub-
sets of S such that m(E ) > 0 if E ∈ , m(E) = 0 if E ⊂ S and S ∉ , and ΣE∈  m(E) = 1.  
For a subset E of S, m(E ) characterizes the amount of �likelihood� that can be assigned 
to E but to no proper subset of E.  In the terminology of evidence theory, (i) S is the sam-
ple space or universal set, (ii)  is the set of focal elements for S and m, and (iii) m(E ) is 
the basic probability assignment (BPA) associated with a subset E of S.  The elements of 
S are often vectors x = [x1, x2, �, xn], where each element xi of x is a variable with its 
own evidence space (Si, i, mi).  When the xi�s are assumed to be independent, (i) m(E ) 
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= Πi mi(Ei) if E = E1 × E2 × � × En and Ei ∈ i for i = 1, 2, �, n and (ii) m(E) = 0 oth-
erwise.  An evidence space (S, , m) plays the same role in evidence theory that a prob-
ability space (P, , p) plays in probability theory, where P  is the sample space,  is a 
suitably restricted set of subsets of P (i.e., a σ-algebra), and p is the function (i.e., prob-
ability measure) that assigns probabilities to elements of . 

The belief, Bel(E ), and plausibility, Pl(E ), for a subset E of S are defined by 

( ) ( ) ( ) ( ) and .Bel m Pl m
φ⊂ ∩ ≠

= =∑ ∑U E U E
E U E U  (2.1) 

In concept, Bel(E) is the amount of �likelihood� that must be assigned to E, and Pl(E) is 
the maximum amount of �likelihood� that could possibly be assigned to E.  When the 
elements of S are real valued, a CCBF and a CCPF provide a convenient summary of an 
evidence space (S, , m) and correspond to plots of the points 

( ){ } ( ){ }, , and , , ,v vv Bel v v Pl v   = ∈ = ∈   CCBF S S CCPF S S  (2.2) 

where S v = {x:  x ∈ S and x > v}. 

An important situation in the application of evidence theory is the consideration of a 
variable y = f(x), where f is a function defined for elements x of the sample space X as-
sociated with an evidence space (X, , mX) and x is represented as a vector because this 
is the case in most real analyses.  The properties of f and (X, , mX) induce an evidence 
space (Y, , mY) on y, which provides a characterization of the uncertainty associated 
with y.  In turn, this uncertainty can be summarized with a CCBF and a CCPF defined by 

( ){ }{ } ( ){ }{ }1 1, ,  and , , ,X v X vv Bel f v v Pl f v− −   = ∈ = ∈   CCBF Y Y CCPF Y Y (2.3) 

where BelX and PlX denote belief and plausibility defined with respect to (X, , mX) and 
Yv = {y:  y ∈ Y and y > v}.  The generation and analysis of CCBFs and CCPFs of the 
preceding form are fundamental parts of the use of evidence theory to characterize the 
uncertainty in model predictions. 

3.  EXPLORATORY SENSITIVITY ANALYSIS 
An initial exploratory sensitivity analysis plays an important role in helping to guide any 
study that involves uncertain inputs.  This is particularly true in uncertainty analyses 
based on evidence theory as the uncertainties are likely to be large and an appropriate un-
derstanding of these uncertainties and their implications can provide insights that facili-
tate the computational estimation of beliefs and plausibilities. 

Given that large uncertainties in many variables are likely to be present, a sampling-
based approach to sensitivity analysis with Latin hypercube sampling [18, 19] is a 
broadly applicable procedure for an exploratory analysis in conjunction with an evidence 
theory representation for uncertainty.  Use of this approach requires the specification of 
distributions for the uncertain variables for sampling purposes.  This specification should 
provide for an adequate exploration of the range of each uncertain variable and be consis-
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tent, in some sense, with the evidence theory specification of the uncertainty associated 
with individual analysis inputs. 

A distribution that meets the preceding criteria can be obtained by sampling each fo-
cal element associated with a variable in consistency with its BPA and then sampling uni-
formly within that focal element.  With the assumption that each focal element for a 
variable xi with an evidence space (X i, i, mi) is an interval, this corresponds to defin-
ing a sampling distribution with a density function di given by 

( )
( )

( ) ( ) ( )
     

1

i
C

i ij i ij ij ij
j

d v v m b aδ
=

= −∑ E , (3.1) 

where (i) v ∈ Xi, (ii) C( i) is the cardinality of i, (iii) Eij = [aij, bij], j = 1, 2, �, 
C( i), are the focal elements associated with xi (i.e., the elements of i), and (iv) δij(v) 
= 1 if v ∈ Eij and 0 otherwise.  Appropriate modifications can be made to the preceding 
definition to handle focal elements with a finite number of elements and focal elements 
that are unions of disjoint intervals. 

Given that a relationship of the form y = f(x), x = [x1, x2, �, xn], is under considera-
tion, sampling according to the distributions indicated in Eq. (3.1) generates a mapping yk 
= f(xk) from uncertain analysis inputs to uncertain analysis results, where xk, k = 1, 2, �, 
nS, are the sampled values for x.  As previously indicated, Latin hypercube sampling is a 
likely candidate for the sampling procedure because of its efficient stratification proper-
ties.  Once this mapping is generated, it can be explored with various sensitivity analysis 
procedures to develop an understanding of the relationship between y and the individual 
elements of x. 

A variety of techniques are available for use in sampling-based sensitivity analyses 
[13, 20].  However, given that the analysis problem is based on evidence theory, sensitiv-
ity analysis procedures that do not place excessive reliance on the sampling distributions 
indicated in Eq. (3.1) are desirable.  Of course, no approach can fully divorce itself from 
these distributions because they ultimately give rise to the raw material of the sensitivity 
analysis (i.e., the mapping [xk, yk], k = 1, 2, �, nS); however, this is an unavoidable situa-
tion when the sample space associated with x is infinite as no approach can consider all 
values of x and so a subset of the values for x must be selected in some manner.  The ex-
amination of scatterplots is a natural initial procedure.  Then, rank-based procedures (e.g., 
rank repression, partial rank correlation, squared rank differences) are natural techniques 
to employ because they reduce the effects of both nonlinearities and the original sampling 
distributions [13, 21, 22]. 

If carried out successfully, an initial exploratory sensitivity analysis should provide 
important insights with respect to the relationship between y and the elements of x.  Of-
ten, only a few of the elements of x will have significant effects on y.  This is information 
that can be productively used in the estimation of the evidence theory structure associated 
with y. 
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4.  STEPWISE CONSTRUCTION OF CCBFs AND CCPFs 

For most models, the determination of beliefs and plausibilities for model predictions in 
general, and CCBFs and CCPFs in particular, is a demanding numerical challenge due to 
the need to determine the inverse of the model (i.e., function) involved.  Sampling-based 
(i.e., Monte Carlo) procedures provide one way to carry out such determinations.  With 
this approach, a sample xk, k = 1, 2, �, nS, is generated from X (e.g., with distributions 
for the elements of x of the form indicated in Eq. (3.1)), and y is evaluated for each xk to 
create the mapping [xk, yk], k = 1, 2, �, nS, from X to Y.  Then, the CCBF and CCPF for 
y can be estimated by 

{ }( ){ },1 : ,X k ky Pl y y y − ≤ ∈ ≅CCBF Yx  (4.1) 

and 

{ }( ){ }, : ,X k ky Pl y y y > ∈ ≅CCPF Yx , (4.2) 

respectively.  The approximation to CCBF for y in Eq. (4.1) is based on the equality 
Bel(E) + Pl(E 

c) = 1 and the fact that the subset criterion in the definition of belief (see 
Eq. (2.1)) does not allow for the direct estimate of belief with a finite sample when sets 
with infinite numbers of elements are under consideration.  In general, the same approach 
can be used to estimate the belief BelY(E) and plausibility PlY(E) for any subset E of Y. 

The problem with the preceding approach is that it can be prohibitively expensive 
computationally when the cardinality C( ) of  is high, which is usually the case in 
real analyses.  Specifically, C( ) = Πi C( i), where C( i) is the cardinality of i.  For 
example, if n = 8 and C( i) = 10, then C( ) = 108; and as a result, a very large sample 
would be required to converge the approximations to the CCBF and CCPF in Eqs. (4.1) 
and (4.2). 

The results of the exploratory sensitivity analysis described in Sect. 3 provide a basis 
for a potential path forward in developing the CCBF and CCPF approximations in Eqs. 
(4.1) and (4.2).  The uncertainty in most analysis outcomes is significantly affected by the 
uncertainty in only a small number of analysis inputs (e.g., 3-5).  Of course, this does not 
have to be the case but it does seem usually to be the case. In this situation, the approxi-
mations in Eqs. (4.1) and (4.2) can be determined by only considering the uncertainty 
(i.e., the evidence spaces (Xi, i, mi)) associated with the xi that significantly affect y.  
The remaining xi (i.e., those that do not have a significant effect on y) can be assigned 
degenerate evidence spaces (i.e., spaces (Xi, i, mi) for which mi(Xi) = 1) for use in 
evaluating the approximations in Eqs. (4.1) and (4.2). 

Increasing the resolution in the evidence spaces assigned to individual xi (i.e., by sub-
dividing elements of i and then apportioning the BPA for an original element of i 
over the subsets into which it is subdivided) tends to decrease, and can never increase, the 
uncertainty associated with evidence space for y.  Specifically, beliefs tend to increase 
(and can never decrease) and plausibilities tend to decrease (and can never increase); or 
put another way, beliefs and plausibilities for subsets of Y move closer together as the 
resolution in the characterization of the uncertainties associated with the xi is increased. 
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The preceding observations provide a basis for the use of sensitivity analysis results 
to guide a stepwise procedure for the construction of the CCBF and CCPF approxima-
tions in Eqs. (4.1) and (4.2).  At Step 1, the approximations in Eqs. (4.1) and (4.2) are de-
termined with the most important variable affecting the uncertainty in y assigned its 
original evidence space and all other variables assigned evidence spaces in which their 
original sample spaces are assigned a BPA of 1.  At Step 2, the approximations in Eqs. 
(4.1) and (4.2) are determined with the two most important variables affecting the uncer-
tainty in y assigned their original evidence spaces and all other variables assigned evi-
dence spaces in which their original sample spaces are assigned a BPA of 1.  Analogous 
steps follow for additional important variables determined in the sensitivity analysis until 
substantive changes in the CCBF and CCPF approximations in Eqs. (4.1) and (4.2) no 
longer occur, at which point the approximation procedure stops.  This approach can pro-
duce substantial computational savings over what would be incurred if the approxima-
tions in Eqs. (4.1) and (4.2) were evaluated with the original evidence spaces assigned to 
all the xi. 

The construction procedure just outlined can also can be viewed as a sensitivity 
analysis in the context of evidence theory.  The changes in the location of the CCBF and 
CCPF as additional variables are added in the preceding procedure provides an indication 
of the importance of individual variables with respect to the uncertainty in y characterized 
by (Y, , mY).  At an intuitive level, this approach is analogous to the use of stepwise 
regression analysis in traditional sensitivity analyses. 

5.  SUMMARY SENSITIVITY ANALYSIS 
Together, a CCBF and CCPF for y provide bounds on all possible CCDFs for y that could 
derive from different distributions for the xi that are consistent with their specified evi-
dence spaces (Xi, i, mi).  In particular, if (Pi, i, pi) is a probability space for xi that is 
consistent with the evidence space (Xi, i, mi) for i = 1, 2, �, n, then these probability 
spaces give rise to corresponding probability spaces (PX, X, pX) and (PY, Y, pY) for x 
and y with the CCDF associated with (PY, Y, pY) falling somewhere between the CCBF 
and CCPF for y.  Traditional sensitivity analysis methods can be used to investigate the 
relationships between the uncertainty in the xi characterized by the probability spaces (Pi, 

i, pi) and the uncertainty in y characterized by the probability space (PY, Y, pY).  A 
possible approach is a variance decomposition for y that partitions the variance for y into 
the contributions to this variance from the individual xi [8-10].  However, unlike a tradi-
tional sensitivity analysis in which the probability spaces (Pi, i, pi) are uniquely speci-
fied, there are many possibilities for the spaces (Pi, i, pi) in an evidence theory context 
and thus many possible variance decompositions for y.  In variance-based sensitivity 
analysis, the variance V(y) of y is expressed as 

( ) 12
1 1 1

,
n n n

i ij n
i i j i

V y V V V
= = = +

= + + +∑ ∑ ∑ !!  (5.1) 
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where Vi is the contribution of xi to V(y), Vij is the contribution of the interaction of xi and 
xj to V(y), and so on up to V12�n which is the contribution of the interaction of x1, x2, �, 
xn to V(y).  Possible sensitivity measures are provided by 

( ) ( )12 and ,i i iT i ij n
j i

s V V y s V V V V y
≠

 
= = + + +  

 
∑ !!  (5.2) 

where si the fraction of V(y) contributed by xi alone and siT is the fraction of V(y) contrib-
uted by xi and interactions of xi with other variables.  The term Vi is defined by iterated 
integrals involving the probability spaces for the individual variables.  For example, when 
n = 3, 

( ) ( ) ( ) ( ) ( )
1 2 3

2
2

1 1 2 3 3 3 2 2 3 2 1 1 1, , ,V f x x x d x d x dx dx d x dx E y = −  ∫ ∫ ∫P P P
 (5.3) 

where di denotes the density function associated with (Pi, i, pi) and E(y) denotes the 
expected value of y; similar defining integrals hold for V2 and V3, and related, but more 
complicated, integrals define V12, V13, V23 and V123.  Analogous relationships hold for n > 
3.  By suitably orchestrating an analysis, Vi and si for i = 1, 2, �, n can be estimated with 
two independent random or Latin hypercube samples; further, si and siT for i = 1, 2, �, n 
can be estimated with a total of n + 2 suitably defined samples. 

Three questions arise with respect to the implementation of a variance-based sensitiv-
ity analysis in the context of evidence theory:  (i) How to select an appropriate spectrum 
of distributions for each xi from the infinite number of distributions that are consistent 
with (Xi, i, mi)?, (ii) How to implement the analysis in a computationally practicable 
manner for multiple distributions (i.e., multiple probability spaces (Pi, i, pi)) for each 
xi?, and (iii) How to display the results of the sensitivity analyses for multiple distribu-
tions of the xi and hence multiple distributions for x and y? 

The first question arises because there is no inherent structure associated with the in-
finite number of distributions for xi that are consistent with (Xi, i, mi).  The situation is 
analogous to that encountered in an interval analysis for a real-valued quantity except that 
the uncertain quantity is now a probability space rather than a number.  As there is no 
way to consider all probability spaces consistent with (Xi, i, pi) and also no specific 
structure to guide the selection of individual probability spaces, some type of ad hoc pro-
cedure is needed to select representative probability spaces that are consistent with (Xi, 

i, pi).  Further, the number of selected distributions for each xi must be relatively small; 
otherwise, the total number of combinations of selected distributions for all n variables 
will be too large to be computationally practicable. 

An exploratory approach that should provide valuable information for many situa-
tions is to select three distributions for each xi, with (i) one distribution emphasizing the 
smaller values associated with each focal element, (ii) one distribution uniform over the 
range of each focal element, and (iii) one distribution emphasizing the larger values asso-
ciated with each focal element.  The distributions indicated in (i) and (iii) could be left 
and right triangular or left and right quadratic.  Left and right triangular distributions are 
actually quite similar to uniform distributions and thus may not be good choices.  For fo-
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cal element Eij = [aij, bij] associated with xi, the corresponding density functions dlij, duij 
and drij for left quadratic, uniform, and right quadratic distributions, respectively, over Eij 
are 

( )
( )
( )

( ) ( ) ( )
( )
( )

2 2

3 3

3 31, ,  and ij ij
lij uij rij

ij ijij ij ij ij

b v v a
d v d v d v

b ab a b a

− −
= = =

−− −
 (5.4) 

if v ∈ Eij and dlij(v) = duij(v) = drij(v) = 0 otherwise. In turn, the left quadratic, uniform and 
right quadratic distribution functions dli, dui and dri for xi are given by 

( ) ( ) ( )
( )    
      

1

i
C

ci i ij cij
j

d v m d v
=

= ∑ E  (5.5) 

for v ∈ Xi and c = l, u, r. 

The second question arises because computational cost can easily become unreason-
able unless the analysis is carefully planned.  As a first step, only those variables that ac-
tually affect y need to be considered.  The preliminary sensitivity analysis described in 
Sect. 3 should, in most analyses, identify the four or five variables that have significant 
effects on y.  It is only those variables that require consideration of their original evidence 
spaces as indicated in Eq. (5.5); the remaining variables can be assigned a uniform or 
some other convenient distribution.  For example, if four xi affect y and the three distribu-
tions defined in Eq. (5.5) are considered for each of these xi, then 34 = 81 different prob-
ability spaces result for x and hence for y.  As a second step, the analysis can be designed 
to use the same samples in the evaluation of si and siT for all probability spaces defined 
for x (e.g., the 81 spaces indicated above). For example, if Latin hypercube sampling is 
used, it is necessary to actually evaluate f for samples from only one of the probability 
spaces for x; after these evaluations for f are performed, results for the other probability 
spaces for x under consideration (e.g., the remaining 80 probability spaces in the example 
above) can be obtained by reweighting the results obtained for the individual sample 
elements on the basis of the changed distributions for the xi�s [19, 23].  A similar re-
weighting procedure is also available for random sampling [24]. 

The third question arises because of the difficulty of displaying the results of multiple 
sensitivity analyses for y in a reasonably compact and understandable format.  Presenting 
the sensitivity analyses individually is unlikely to be adequate because of the large num-
ber of analyses involved and the resultant difficulty of observing trends in variable 
importance across analyses.  A promising presentation format to employ for this 
representation is a cobweb plot, which provides a representation for a multidimensional 
distribution in a two-dimensional plot [25].  For example, if nPS probability spaces (PXj, 

Xj, pXj) for x are under consideration and 4 uncertain variables have been identified for 
analysis, the results of the sensitivity analyses for y might be of the form 

1 2 3 4, , , , , , 1, 2,  , ,j j j j j j je v s s s s j nPS = =  …s  (5.6) 
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where ej and vj are the expected value and variance for y that derive from the probability 
space (PXj, Xj, pXj) for x and sij, i = 1, 2, 3, 4, are the fractional contributions to vj as de-
fined in the first equality in Eq. (5.2) for the 4 uncertain variables under consideration. 

With a cobweb plot, the nPS vectors in Eq. (5.6) can be presented in a single plot 
frame.  Specifically, the individual elements of sj are designated by locations on the hori-
zontal axis and their values correspond to locations on the vertical axis.  In general, it 
may be necessary to use multiple axis scales for the vertical axis or to plot quantiles for 
the elements of sj rather than their actual values.  Each sj results in a single point in each 
of the vertical columns associated with its elements.  The identity of sj is maintained by a 
line that connects the values of its elements.  As desired, the cobweb plot allows the pres-
entation of all sensitivity analysis results in a single plot frame and also facilitates the 
recognition of interactions between variables. 

In summary, the approach presented in this section to the performance and presenta-
tion of a sensitivity analysis for a function defined on an evidence space has three com-
ponents:  (i) Definition of representative probability spaces for the analysis input x that 
are consistent with the evidence space for x, (ii) Use of efficient sampling-based numeri-
cal procedures to decompose the variance of the analysis outcome y for each probability 
space for x, and (iii) Use of cobweb plots to summarize the results of the sensitivity 
analyses for y carried out for the individual probability spaces for x.  Thus, rather than 
having a single set of sensitivity analysis results for y, a spectrum of sensitivity analysis 
results for y is obtained that is consistent with the evidence space that characterizes the 
uncertainty in x. 

6.  SUMMARY 

Three applications of sampling-based sensitivity analysis in conjunction with evidence 
theory representations for epistemic uncertainty in model inputs have been described:  (i) 
an initial exploratory analysis to assess model behavior and provide insights for addi-
tional analysis, (ii) a stepwise analysis showing the incremental effects of uncertain vari-
ables on CCBFs and CCPFs, and (iii) a summary analysis showing a spectrum of 
variance-based sensitivity analysis results that derive from probability spaces that are 
consistence with the evidence space under consideration.  It is hoped that the ideas asso-
ciated with these approaches will provide a start towards the development of effective 
sensitivity analysis procedures for use in conjunction with evidence theory representa-
tions for epistemic uncertainty. 
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