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Abstract: Probability bounds analysis provides analysts a convenient means to characterize 
the neighborhood of possible results that would be obtained in probabilistic calculations of 
plausible alternative inputs.  For this reason, it constitutes a method of global sensitivity 
analysis that does not require any notion of decomposing or partitioning total uncertainty.  We 
show the relationship between probability bounds analysis and the methods of interval 
analysis and probabilistic sensitivity analysis from which it is jointly derived, and indicate 
how the method can be used to assess the quality of probabilistic models such as those 
developed in Monte Carlo simulations for risk analyses.  We also illustrate how a meta-level 
sensitivity analysis can be conducted within a probability bounds analysis by pinching inputs 
to precise distributions or real values. 
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1. INTRODUCTION 
Sensitivity analysis is the general term for quantitative study of how the inputs to a model 
influence the results of the model.  Sensitivity analysis has many manifestations in 
probabilistic risk analyses and there are many disparate approaches based on various 
measures of influence and response.  Sensitivity analyses are conducted for fundamentally 
two reasons:  to understand the reliability of the conclusions and inferences drawn from an 
assessment, and to focus future empirical studies so that effort might be expended to improve 
estimates of inputs that would lead to the most improvement in the estimates of the outputs.  
Because of the obvious and fundamental importance of sensitivity analyses in calculations, 
there has been a confluence of ideas to this issue from disparate analytical disciplines. 

Leamer [1] defined global sensitivity analysis as a systematic study in which “a 
neighborhood of alternative assumptions is selected and the corresponding interval of 
inferences is identified”.  There are two disparate ways to effect such a study.  One natural 
way is to bound the neighborhood with interval ranges.  Another natural way is to ascribe a 
probability distribution to the elements in the neighborhood.  Consider, for example, the 
context of a deterministic calculation.  When the model involves uncertainty about the real-
valued quantities used in the calculation, the definition of global sensitivity analysis is 
equivalent to that of interval analysis [2,3,4,5].  Probability theory, implemented perhaps by 
Monte Carlo simulation, can also be viewed as a global sensitivity analysis of a deterministic 
calculation in that it yields a distribution describing the probability of alternative possible 
values about a point estimate [6,7,8,9].  In the figure below these two possible paths are 
shown as right and left downward arrows respectively.   
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Figure 1. Relationships among different calculation strategies.  Arrows represent generalizations.  

 

Of course, the calculations on which it might be desirable to conduct sensitivity analyses 
are not all deterministic.  In fact, many of them are already probabilistic, as is the case in most 
modern risk analyses and safety assessments.  One could construct a probabilistic sensitivity 
analysis of a probabilistic calculation.  The resulting analysis would be a second-order 
probabilistic assessment.  However, such studies are often difficult to conduct because of the 
large number of calculations that are required.  It is also sometimes difficult to visualize the 
results in a way that is easily comprehensible.  Alternatively, one could apply bounding 
arguments to the probabilistic calculation and arrive at interval versions of probability 
distributions.  We call such calculations “probability bounds analysis” (PBA) [10,11,12].  
This approach represents the uncertainty about a probability distribution by the set of 
cumulative distribution functions lying entirely within a pair of bounding distributions called 
a “probability box” or a “p-box”.  Probability bounds analysis is a global sensitivity analysis 
of a probabilistic calculation because it defines neighborhoods of probability distributions 
(i.e., the p-boxes) that represent the uncertainty about imperfectly known input distributions 
and projects this uncertainty through the model to identify a neighborhood of answers (also 
characterized by a p-box) in a way that guarantees the resulting bounds will entirely enclose 
the cumulative distribution function of the output.  A probability distribution is to a p-box the 
same way a real scalar number is to an interval.  The bounding distributions of the p-box 
enclose all possible distributions in the same way that the endpoints of the interval 
circumscribe the possible real values. 

Probability bounds analysis is related to other forms of uncertainty analysis.  It is a 
marriage of probability theory and interval analysis that generalizes and is faithful to both 
traditions.  As depicted in Figure 1, PBA can arise either by bounding probability 
distributions (the left path down to PBA) or by forming probability distributions of intervals 
(the right path).  The advantage of this marriage is that variability (aleatory uncertainty) and 
incertitude (epistemic uncertainty) are treated separately and propagated differently so each 
maintains its own character.  PBA is a comprehensive global sensitivity analysis that is an 
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alternative to complicated second-order or nested Monte Carlo methods.  PBA is very similar 
in spirit to Bayesian sensitivity analysis (which is also known as robust Bayes [13]), although 
the former concerns arithmetic and convolutions, and the latter addresses the issues of 
updating and aggregation.  Unlike Bayesian sensitivity analysis, probability bounds analysis is 
always easy to employ because it does not depend on the use of conjugate pairs to make 
calculations simple.  PBA is a practical approach to computing with imprecise probabilities 
[14].  Like a Bayesian sensitivity analysis, imprecise probabilities are represented by a class 
of distribution functions.  PBA is simpler because it defines the class solely by reference to 
two bounding distributions.  (It therefore cannot fully represent a situation in which there are 
intermediate distributions lying within the bounds that are excluded from the class.  In the 
context of risk and safety assessments, however, this is rarely a significant drawback.) 

2. PBA CIRCUMSCRIBES POSSIBLE DISTRIBUTIONS GIVEN UNCERTAINTY 
PBA can produce rigorous bounds around the output distribution from an assessment.  

These bounds enclose all the possible distributions that could actually arise given what is 
known and what is not known about the model and its inputs.  Because it is based on the idea 
of bounding rather than approximation, it provides an estimate of its own reliability [15,16, cf. 
17].  Probability bounds analysis can comprehensively account for possible deviations in 
assessment results arising from uncertainty about 

• distribution parameters, 
• distribution shape or family, 
• intervariable dependence, and even 
• model structure. 

Moreover, it can handle all of these kinds of uncertainties in a single calculation that gives a 
simple and rigorous characterization of how different the result could be given all of the 
professed uncertainty.  The requisite computations used in PBA are actually quite simple and 
have been implemented in straightforward algorithms [18,19,15,16,11,20].  The computations 
are generally much faster than even simple Monte Carlo convolution and vastly faster than a 
numerically intensive sensitivity analysis with traditional methods [21,22,23,24,6,7,25,8].  

Probability bounds analysis is useful whenever the uncertainty about the marginal 
distributions can be characterized by interval bounds about their cumulative distribution 
functions.  These bounds can be specified using empirical information available about each 
distribution.  For instance, if the parameters of a normal distribution can be given within 
interval ranges, best-possible bounds on the distribution are easy to construct.  If the shape of 
the underlying distribution is not known, but some statistics such as the mean, mode, 
variance, etc. can be specified (or given as intervals), rigorous bounds can generally be 
constructed that are guaranteed to enclose the true distribution subject to the given constraints.  
Often these bounds will be optimally narrow given the stated information.  The resulting p-
boxes are distribution-free in the sense that they make no assumptions whatever about  the 
distribution family (whether it is normal, lognormal, Weibull, etc.).  Such bounds on 
distributions can then be combined according to the calculations in the assessment.  Currently, 
software is available to handle (i) arithmetic convolutions (addition, multiplication, minimum, 
etc.), (ii) magnitude comparisons (greater than, less than), (iii) logical operations 
(conjunction, disjunction, etc.), and (iv) transformations (logarithm, exponentiation, roots, 
etc.). 
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It is also possible to handle uncertainty about the dependencies among variables in a 
model.  Recent algorithmic developments permit uncertainty about the dependencies among 
variables to be propagated through the calculations of a probabilistic assessment [26].  A pair-
wise dependency may be modeled with any of the following six assumptions: 

(i) independence, 
(ii) comonotonicity (maximal correlation), 

(iii) countermonotonicity (minimal correlation), 
(iv) linear relationship and correlation within a specified interval, 
(v) linear relationship with unknown correlation, 

(vi) signed (positive or negative) but otherwise unknown dependency, and 
(vii) unknown dependency (including any nonlinear relationship). 

For the first three cases, a convolution between two probability distributions yields a well 
defined probability distribution.  For the latter four cases, the results are given as bounds on a 
(cumulative) distribution function.  For each binary operation, the bounds obtained are 
generally the best possible bounds, i.e., they could not be any narrower yet still contain all the 
possible distributions permissible under the assumption. 

Unlike approaches based on conventional Monte Carlo simulation, the algorithms 
employed for these operations yield rigorous answers that lack sampling error.  In fact, the 
results are exact at each point of discretization, of which there may be arbitrarily many.  The 
results are guaranteed to enclose the true distributions.  Although it is straightforward to 
ensure that bounds remain rigorous (sure to contain the true distributions) in sequential 
calculations, the best possible nature of the bounds may be lost in some complication 
calculations.  Maintaining the optimality of the bounds is, in general, a computationally 
challenging task that can require other methods [14].  Nevertheless, the methods of 
probability bounds analysis developed over the last two decades provide risk and safety 
analysts a practical and convenient means to conduct comprehensive sensitivity analyses on 
their calculations. 

3. META-LEVEL SENSITIVITY ANALYSES 
As outlined above, probability bounds analysis is a kind of sensitivity analysis with 
considerable comprehensiveness.  It is possible and sometimes of interest to perform a 
sensitivity analysis on the results of an assessment conducted with PBA.  This would, of 
course, constitute a meta-level sensitivity analysis.  This section explores the use of pinching 
studies that hypothetically assess the impact on result uncertainty of additional empirical 
knowledge. 

One of the fundamental purposes of sensitivity studies is to learn where focusing future 
empirical efforts would be most productive.  This purpose requires estimating the value of 
additional empirical information.  Of course, the value of information not yet observed cannot 
be measured, but it can perhaps be predicted.  One strategy to this end is to assess how much 
less uncertainty the calculations would have if extra knowledge about an input were available.  
This might be done by comparing the uncertainty before and after “pinching” an input, i.e., 
replacing it with a value without uncertainty.  Of course, one does not generally know the 
correct value without uncertainty, so this replacement must be conjectural in nature.  To pinch 
a parameter means to hypothetically reduce its uncertainty for the purpose of the thought-
experiment.  The experiment asks what would happen if there were less uncertainty about this 
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number.  Quantifying this effect amounts to measuring the contribution by the input to the 
overall uncertainty in a calculation.   

The estimate of the value of information for a parameter will depend on how much 
uncertainty is present in the parameter, and how it affects the uncertainty in this final result.  
The sensitivity could be computed with an expression like 

%
)unc(
)unc(1100 








−

B
T  

where B is the base value of the risk expression, T is the value of the risk expression 
computed with an input pinched, and unc( ) is a measure of the uncertainty of the answer.  
The result is an estimate of the value of additional empirical information about the input in 
terms of the percent reduction in uncertainty that might be achieved in the expression when 
the input parameter is replaced by a better estimate obtained from future empirical study.  The 
pinching can be applied to each input quantity in turn and the results used to rank the inputs in 
terms of their sensitivities.  (Note that these reductions will not generally add up to 100% for 
all the input variables.)  In principle, one could also pinch multiple inputs simultaneously to 
study interactions. 

There are multiple possible ways to define unc( ) to measure uncertainty.  In the context of 
probability bounds analysis, one obvious measure is the area between the upper and lower 
bounds of the p-box.  As the p-box approaches a precise probability distribution where all 
epistemic incertitude has evaporated and only the natural variability remains, this area 
approaches zero.  An analyst might also elect to define unc( ) as some measure of dispersion 
or perhaps the heaviness of the tails [27] of the p-box.  Using different measures will 
obviously allow the analyst to address different questions in a sensitivity analysis.  If the 
measure of uncertainty is a scalar quantity (i.e., a real number), then the sensitivities that 
come from the analysis will also be scalars and can be ordered. 

There are also multiple possible ways to pinch uncertainty.  Pinching in different ways can 
result in strongly different estimates of the overall value of information.  Several strategies are 
possible in estimating sensitivities from comparative PBA assessments: 

(i) replace an input with a point value, 
(ii) replace an input with a precise distribution function, or 

(iii) replace an input with a zero-variance interval. 

Replacing a p-box with a precise probability distribution would be pinching away the 
incertitude about the distribution.  Replacing a p-box or a distribution function with a point 
value would be pinching away both the incertitude and the variability of the quantity.  For 
inputs that are known to be variable (variance greater than zero), such a pinching is 
counterfactual, but it may nevertheless be informative.  In particular, in may be especially 
useful in planning remediating strategies.  In some situations, it may be reasonable to replace 
a p-box with a p-box shaped like an interval but prescribed to have a variance of zero.  The 
effect of this would be to pinch away the variability but leave uncertainty.  Such a 
replacement might be reasonable for p-boxes having a core (a region along the abscissa for 
which the upper bound of the p-box is one and lower bound is zero).   
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This approach of pinching inputs and recalculating the assessment is not unfamiliar to 
Monte Carlo analysts.  Many routinely conduct sensitivity studies of the proportional 
contribution of variability in each variable to the overall variability in the calculated risk 
distribution.  To determine the effects of variability in a Monte Carlo simulation using this 
method, each variable containing variability (i.e., expressed as a probability distribution) is 
reduced in turn to its mean or other appropriate point value, and the simulation is repeated.  
The measure of sensitivity is often the proportional effect of variability in each variable on the 
model, which is computed as the variance in the risk distribution from each of the simulations 
divided by the variance in the risk distribution from the base model result.  Although the 
general idea of pinching is known to Monte Carlo analysts, the notions of pinching to a 
precise distribution and pinching to a zero-variance interval has no analog in Monte Carlo 
sensitivity analyses. 

Figure 2 shows a numerical example of pinching to a precise distribution.  The top panel 
of the figure depicts of addition of two p-boxes a and b (assuming independence).  This is the 
“base case” against which the pinchings will be compared.  The area between the upper and 
lower bounds for the sum a+b is 2.12.  The middle panel of the figure shows the first 
pinching.  The p-box a is replaced with a precise probability distribution that lies entirely 
within the p-box.  When a distribution replaces the p-box in the addition with b (which is still 
the same p-box), the result is the p-box shown at the far right on the middle panel.  This p-box 
has an area of about 1.14.  The percentage reduction in this area compared to that of the p-box 
for the sum shown on the top panel is 46.24%.  This percent, which labels the sum on the 
middle panel, represents the sensitivity measure for pinching the variable a to a precise 
probability distribution.  The bottom panel of Figure 2 shows the reduction of uncertainty 
(area) for the sum a+b from pinching the p-box for b to a precise distribution.  Compared to 
the base case in the top panel, the area is reduced by 47.17%.  In this case, the potential 
reduction in uncertainty from additional information about a and b are roughly the same. 

Figure 3 shows a similar set of sensitivity analyses based on pinching p-boxes to precise 
distribution functions.  The calculation for the base case in this figure (shown in the top panel) 
was made without making any assumption about the dependence between the variables a and 
b.  For this reason, even though the p-boxes for the variables a and b are just the same as were 
used in Figure 2, the area of the sum grows to about 3.05.  The second panel of Figure 3 
depicts pinching the p-box for the variable a to a precise distribution and its consequence for 
the resulting uncertainty about the sum.  The third panel likewise shows the pinching for 
variable b.  Both panels are annotated with the percent reduction in the area of the p-box for 
the sum compared to the base case in the top panel.  The reduction in uncertainty from 
pinching the variable a in this situation is perhaps surprisingly small.  The sensitivity to 
changing b is more than three times greater than that of a.  The bottom panel shows the effect 
of pinching the dependence from the Fréchet case of assuming nothing about dependence to 
assuming independence.  (The pinching could have specified any particular dependence.) 
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Figure 2.  Meta-sensitivity analysis by pinching a p-box to a precise distribution. 
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Figure 3.  Meta-sensitivity analysis for the Fréchet case without dependence assumptions. 
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Figure 4 shows a third hypothetical sensitivity study.  The base case in the top panel is 
identical to the base case shown in Figure 2, but in this study, the p-boxes are pinched to 
scalar values.  The second and third panels of Figure 4 depict the additions resulting from 
pinching one of the addends to a point value.  The observed percentage reduction in the area 
of each resulting sum compared to the base case is shown beside its p-box.  What would the 
reductions in uncertainty have been if the base calculation had not assumed independence?  
The pinchings would have yielded exactly the same results, simply because dependence 
assumptions have no effect when either of the addends is a point.  Thus, the lower two panels 
of Figure 4 would look exactly the same.  However, if the base calculation had not assumed 
independence, then the base uncertainty about the sum a+b would have been slightly greater 
(area = 3.05, compared to 2.12 under independence).  That would make the rightmost p-box 
in the top panel of Figure 4 noticeably wider.  Therefore the reductions in uncertainty by 
pinching to a point would have been somewhat greater than they were for the independent 
case.  Instead of 50.4% and 52.36% reductions, pinching the variables a and b to points under 
no assumption about dependence would have respectively yielded 65.54% and 66.9% 
reductions in uncertainty as measured by the area within the resulting p-boxes. 
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Figure 4.  Meta-sensitivity analysis by pinching a p-box to a point value. 

 

4. CONCLUSIONS 
Many probabilistic assessment conducted using Monte Carlo simulations employ what-if 
sensitivity studies to explore the possible impact on the assessment results of varying the 
inputs.  For instance, the effect of the truncation of some variable might be explored by re-
running the model with various truncation settings, and observing the effect on the risk 
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estimate.  The effect of particular parameter and probability distribution choices, and 
assumptions regarding dependencies between variables can also be examined in this way.  
Model uncertainty can be probed by running simulations using different models.  However, 
such studies are often very difficult to conduct because of the large number of calculations 
that are required.  While informative, this approach is rarely comprehensive because when 
there are multiple uncertainties at issue (as there usually are), the shear factorial problem of 
computing all of the possible combinations becomes prohibitive.  Usually, in practice, only a 
relatively tiny number of such analyses can be performed.  Probability bounds analysis can be 
used to automate such what-if sensitivity studies and vastly increase their comprehensiveness. 

Sensitivity analysis can also be conducted at a meta-level by hypothetically replacing a p-
box in a probability bounds analysis with a precise distribution or perhaps a scalar number to 
evaluate the potential reduction of uncertainty of the result under additional knowledge. 
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