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Abstract: The problem of calculating local parametric sensitivities is addressed. We
propose a computationally low-cost method to estimate local sensitivities in Bayesian
models. The proposed general method introduces a great flexibility because it can be
applied to complex models that need to be solved by MCMC methods, and it allows to
estimate the sensitivity measures and their errors with no additional random sampling.
This sensitivity analysis method is easy to apply in practice as we show with an illustrative
example.
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1. INTRODUCTION

Many problems in statistics and operational research involve making decisions under un-
certainty. Bayesian statistical methods provide a complete paradigm for both statistical
inference and decision making under uncertainty. This methodology allows to combine
information derived from observations with information elicited from experts. The range
of its potential applicability is very wide. It is particularly useful for highly reliable com-
ponents and systems where failures in test and field operations are very rare, requiring
the use of all other engineering information. This methodology has become more popular
due to the appearance of Markov Chain Monte Carlo (MCMC) methods (see Brooks [1]
for a review). The application of these simulation techniques allows to obtain a numerical
solution of problems based on really complex models. Sometimes, MCMC methods are
the only computationally efficient alternative.

In addition to the solution, we need some description of its sensitivity with respect to
reasonable changes and uncertainties in the specification of the inputs. Sensitivity analysis
seeks to find out how the output of a model changes with variations in the inputs (see
Saltelli et al. [2]). Such knowledge is important for (a) evaluating the applicability of the
model, (b) determining parameters for which it is important to have more accurate values,
and (c) understanding the behavior of the system being modeled. The output needs to
be interpreted carefully whenever it changes significantly for input variations that are
within the bounds of possible error. There are two kinds of sensitivity analysis: local and
global. Local sensitivity studies parameter variations over neighborhoods around what
are believed to be appropriate values, while global sensitivity considers parameter changes
over the whole domain.
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Sensitivity analysis is required in many applications, for example, in those arising in
engineering, medicine, archeology, or environment. It is particularly useful in reliability of
hardware systems, space systems probabilistic risk analysis, nuclear power risk analysis or
information security risk analysis. Sensitivity studies are demanded by several authors to
be applied in models solved by MCMC methods (see, for example, Ŕıos and Ruggeri [3]).
Some authors, like Hall et al. [4] and Halekoh and Vach [5], study parametric sensitivity
by solving the model for some values of the parameters. The main disadvantage of this
procedure is that they have to re-run the Markov chain, i.e, they have to generate new
samples for the different parameter values. Therefore, it would be convenient to develop
a general sensitivity method that can be applied to estimate local parametric sensitivities
in Bayesian models solved by MCMC techniques. We address that issue in this paper.

The outline is as follows. In Section 2, a computationally low-cost method to estimate
local parametric sensitivities is proposed. In order to show how the proposed method is
easily applied in practice, an illustrative example is presented in Section 3. Finally, the
conclusion is presented in Section 4.

2. LOCAL PARAMETRIC SENSITIVITY ESTIMATIONS

Suppose we are interested in the estimation of a quantity I that can be expressed as an
integral of a function f over a multiple dimension domain with respect to a density g, i.e:

I =

∫
Θ

f(θ) g(θ) dθ. (1)

When g is the posterior distribution for θ, i.e, g(θ|x), this quantity could be, for example,
the posterior mean. Note that g(θ) (f(θ)) could depend on parameters, so a more conve-
nient notation is gλ(θ) (fλ(θ)) where λ represents a possibly multidimensional parameter
in the space Λ. Firstly, we study the problem considering imprecision in gλ, later we
present a similar study for fλ. In the former case, expression (1) becomes:

Iλ =

∫
Θ

f(θ) gλ(θ) dθ, (2)

where Θ is independent of λ.

Suppose that sampling directly from gλ(θ) is so complex that we need to use MCMC
methods. Note that this is the case for most of the real problems. Let θ1, θ2, . . . , θn be a
sample generated from gλ0(θ) by MCMC methods, where λ0 is a fixed quantity interior
to Λ. Then, an estimate of Iλ0 is given by:

Îλ0 =
1

n

n∑
i=1

f(θi). (3)

Now, our interest is focused on evaluating the impact of changes on Iλ when λ varies in
an infinitesimal neighborhood of λ0, i.e, we want to make a local sensitivity analysis. The
choice of a sensitivity analysis method depends on a great extent on (a) the sensitivity
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measures employed, (b) the accuracy in the estimates of the sensitivity measures, and (c)
the computational cost involved. All these topics are studied in this section.

The first step is to define a local sensitivity measure. This measure must be easily
interpretable and efficiently computed. Sometimes sensitivity is characterized through
gradients or partial derivatives at the target point (see Turányi and Rabitz [6] and ref-
erences therein). Suppose that all the partial derivatives exist. As a local sensitivity
measure, we consider the gradient vector evaluated at λ0 , i.e:

∇Iλ0 = (∂λ1
Iλ0 , ∂λ2

Iλ0 , . . . , ∂λmIλ0) . (4)

Components in (4), i.e. the partial derivatives with respect to each λj evaluated at
λ0, indicate how rapidly Iλ is changing around an infinitesimal neighborhood of λ0 along
that axis. Therefore, they can be used as rates of change with respect to the parameter
components. Then ∇Iλ0 can be considered as a local sensitivity measure for the parameter
λ at λ0. The gradient vector represents the precise direction which has maximum increase
of Iλ at λ0. Furthermore, it indicates which component has the largest influence on the
output.

In this context, the main problem is to calculate the gradient vector. We present a
computationally low-cost method to estimate the components of (4). Under mild condi-
tions, each component of ∇Iλ0 can be expressed as:

∂λj
Iλ0 =

∫
Θ

∂λj
(f(θ) gλ0(θ)) dθ =

∫
Θ

f(θ)∂λj
gλ0(θ)dθ =

=

∫
Θ

f(θ)∂λj
gλ0(θ)

gλ0(θ)
gλ0(θ) dθ = Egλ0

(
f(θ) ∂λj

gλ0(θ)

gλ0(θ)

) (5)

and estimated by:

∂̂λj
Iλ0 =

1

n

n∑
i=1

f(θi) ∂λj
gλ0(θi)

gλ0(θi)
. (6)

Also, we can estimate the error committed when estimating (5) by using (6). For
each j, the estimate given in (6) is unbiased, so its error can be measured by its standard
error (see e.g. Tanner [7]). The estimation of the error can be easily obtained from the
generated sample that has been used to estimate Iλ0 and ∂λj

Iλ0 .

The advantages of this local sensitivity analysis procedure are mainly two. First, it can
be applied to complex models that need MCMC methods to sample from the objective
densities. Second, the computations generally represent a very low additional cost because
no further sampling is required. The same MCMC outputs obtained to estimate Iλ0 are
used to estimate its sensitivity and the errors in the estimations. However, this approach
can only be applied when we know a closed expression for gλ0 and we can calculate
its partial derivatives, what is not always possible. In fact, for complex models the
explicit form for gλ0 is usually analytically intractable. Nevertheless, we can obtain some
results studying the practical implementation when gλ0 is the posterior distribution. The
following two cases are considered.
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1. Prior sensitivity. Suppose that the prior distribution πλ(θ) depends on a parameter λ,
and let λ0 be interior to Λ, then:

Iλ0 =

∫
Θ

f(θ) pλ0(θ|x) dθ =

∫
Θ

f(θ) l(x|θ) πλ0(θ) dθ∫
Θ

l(x|θ) πλ0(θ) dθ
. (7)

Under mild conditions that allow a derivative-integral interchange (see Spall [8]), we
find that each component of ∇Iλ0 can be expressed as:

∂λj
Iλ0 =

∫
Θ

(f(θ) − Iλ0)
∂λj

πλ0(θ)

πλ0(θ)
pλ0(θ|x) dθ.

The proof is mainly based on the derivative-integral interchange. The posterior steps
are basic manipulations addressed to get the integral of a function with respect to the
posterior distribution.

If θ1, θ2, . . . , θn is generated from the posterior distribution pλ0(θ|x) (mainly by MCMC
methods), then the estimate of ∂λj

Iλ0 is given by:

∂̂λj
Iλ0 =

1

n

n∑
i=1

(
f(θi) − Îλ0

) ∂λj
πλ0(θi)

πλ0(θi)
, (8)

where Îλ0 = 1
n

∑n
i=1 f(θi) is the estimate of Iλ0 . The Monte Carlo standard error estimate

of (8) is given by:

ŜE(∂̂λj
Iλ0) =

√√√√ 1

n (n − 1)

n∑
i=1

(
(f(θi) − Îλ0)∂λj

πλ0(θi)

πλ0(θi)
− ∂̂λj

Iλ0

)2

(9)

Note that this case is more tractable because we need the partial derivatives for the
prior distribution instead of the partial derivatives for the posterior distribution.

2. Function f sensitivity. If we consider that f belongs to a parametric class of functions,
Fλ = {fλ, λ ∈ Λ}, then:

Iλ0 =

∫
Θ

fλ0(θ) p(θ|x) dθ =

∫
Θ

fλ0(θ) l(x|θ) π(θ) dθ∫
Θ

l(x|θ) π(θ) dθ
.

Under the mild conditions analogous to the previous case, for each j we have:

∂λj
Iλ0 =

∫
Θ

∂λj
fλ0(θ) p(θ|x) dθ,

and its estimate is given by:

∂̂λj
Iλ0 =

1

n

n∑
i=1

∂λj
fλ0(θi), (10)
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where θ1, θ2, . . . , θn ∼ p(θ|x). Now, the Monte Carlo standard error estimate of (10) is
given by:

ŜE(∂̂λj
Iλ0) =

√√√√ 1

n (n − 1)

n∑
i=1

(
∂λj

fλ0(θi) − ∂̂λj
Iλ0

)2

(11)

Note that if in any problem, the functions g and f depend on the same parameter λ,
then the sensitivity measure proposed in this section can be estimated in the same sense.
The estimate of each component can be expressed as the sum of analogous quantities to
(8) and (10).

As a particular case, we can study the practical implementation of the proposed sen-
sitivity measure in the context of Bayesian decision theory (among the many fine reviews
are, for example, Berger [9] and French and Ŕıos [10]). Bayesian decision theory and
inference describe a decision problem by a set of possible actions a ∈ ∆, a set of states, or
parameters, θ ∈ Θ, a prior distribution π(θ), a likelihood, l(x|θ) for the observed data x,
and a loss (utility) function l(a, θ) (u(a, θ)). The actions are ranked by the expected loss
(utility). The optimal decision a∗ is the action that minimizes (maximizes) the posterior
expected loss (utility):

a∗ = arg min
a∈∆

L(a),

L(a) =

∫
l(a, θ) p(θ|x) dθ =

∫
l(a, θ) l(x|θ) π(θ) dθ∫

l(x|θ) π(θ) dθ
.

Practical implementation is hindered by the fact that L(a) and hence the minimum
a∗ could be sensitive to the chosen prior π(·), likelihood l(·|·) and/or loss function l(·). A
skeptical decision maker will require, in addition to the optimal solution, some description
of the sensitivity of a∗ with respect to reasonable changes and uncertainties in the specifi-
cation of the inputs. This type of sensitivity is known as functional sensitivity because the
inputs are functions. Excellent summaries of Bayesian literature in this area are provided
by Berger [11] and Ŕıos and Ruggeri [3].

In this context, we can investigate the local parametric sensitivity of Lλ(a
∗) where λ

is a possibly multidimensional parameter that models the loss function and/or the prior
distribution. Now, fλ(θ) = lλ(a

∗, θ) and the quantity of interest Iλ0 is Lλ0(a∗). Note
that we refer to expected loss sensitivity instead of decision sensitivity (see Kadane and
Srinivasan [12] for a distinction).

In the next section, we show how the proposed computationally low-cost sensitivity
estimations and their errors can be easily calculated in practice.

3. APPLICATION

We consider an illustrative example relating to 10 power plant pumps. George et al. [13]
provided a complete Bayesian hierarchical analysis of the pump failure data previously
studied by Gaver and O’Muircheartaigh [14]. For the power plant pump i, the failure rate
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i 1 2 3 4 5 6 7 8 9 10
ti 94.32 15.72 62.88 12.76 5.24 31.44 1.05 1.05 2.09 10.48
xi 5 1 5 14 3 19 1 1 4 22

Table 1. Pump failure data.

is denoted by θi and the length of operation time (in thousands of hours) is denoted by
ti. The data are given in Table 1.

Conditional on θi, the number of failures Xi is assumed to follow a Poisson distribution,
Xi|θi ∼ Poisson(ηi), i = 1, . . . , 10, where ηi = θi ti and Xi is independent of Xj for i �= j.
Conditional on α and β, independent gamma prior distributions are adopted for the failure
rates, θi|α, β ∼ Gamma(α, β). We assume the following prior specification for α and β :

α ∼ Exp(λ1),

β ∼ Gamma(λ2, λ3),

where λ1 = 1, λ2 = 0.1, and λ3 = 1. The model is graphically represented in Figure 1.
This graph has been obtained by using DoodleBUGS that has been developed to specify
graphical models in Bayesian context. This tool is included in WinBUGS PACKAGE
(Spiegelhalter [15]).

Figure 1. Graphical model.

We carry out a sensitivity analysis in the terms described in the previous section. We
focus our interest on the posterior mean for the parameters θi, i = 1, 2, . . . , 10. Those
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quantities represent the means of the failure rates after the Bayes update has been done.
We study if the posterior means of the parameters are sensitive to the initial values of
the prior specification, i.e. we study local sensitivity with respect to the parameter λ =
(λ1, λ2, λ3) in the neighborhood of λ0 = (1, 0.1, 1). In this case, the quantities of interest
are Eλ0 [θi|x], and, in order to simplify, they will be denoted by Eλ0(i), i = 1, 2, . . . , 10 .

By using WinBUBS, we can generate MCMC samples from the posterior distributions
for all parameters. After we consider that the convergence has been achieved, we generate
a sample of size n = 10000. The estimations of Eλ0(i), are given in Table 2.

Parameters θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

Êλ0(i) 0.059 0.102 0.089 0.116 0.604 0.609 0.893 0.881 1.584 1.992

Table 2. Estimations of the posterior means.

Table 3 shows the estimations of the partial derivatives ∂λj
Eλ0(i), j = 1, 2, 3, i =

1, 2, . . . , 10.

λ1 λ2 λ3

θ1 1.34 · 10−4 −7.11 · 10−5 7.25 · 10−5

θ2 4.34 · 10−4 3.46 · 10−4 −4.37 · 10−4

θ3 4.58 · 10−5 2.25 · 10−4 −2.09 · 10−4

θ4 1.13 · 10−5 2.69 · 10−4 −2.28 · 10−4

θ5 1.45 · 10−4 −1.41 · 10−3 7.66 · 10−4

θ6 1.13 · 10−4 3.69 · 10−4 −3.68 · 10−5

θ7 −2.27 · 10−3 −3.09 · 10−3 5.72 · 10−3

θ8 2.41 · 10−3 7.69 · 10−3 −7.33 · 10−3

θ9 3.83 · 10−3 −1.19 · 10−3 5.34 · 10−4

θ10 7.58 · 10−4 −8.09 · 10−2 6.83 · 10−3

Table 3. Estimations of the partial derivatives.

We consider that the rate of change for λ1, λ2 and λ3 are within the reasonable limits

with respect to the values of Êλ0(i), i = 1, 2, . . . , 10. So the components of ∇̂Eλ0(i) indicate
that we can consider λ0 = (1, 0.1, 1) as a robust value for the parameter λ in this model.

4. CONCLUSION

In Bayesian decision theory and inference the proposed local parametric sensitivity pro-
cedure can be very useful because it is a general technique applicable to complex models
that need to be solved by MCMC methods. Besides, the MCMC simulations can be re-
used to estimate the sensitivity measures and their errors, avoiding the need of further
sampling. This computationally low-cost method is easy to apply in practice and it is
specially recommended to study sensitivities in reliability models.
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