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Abstract: Conventional variance-based sensitivity indices are extended to deal with the
case when information is available as closed convex sets of probability measures, a situation
that exists when probability distributions are specified with interval-valued parameters.
The generalization to closed convex sets of probability measures yields lower and upper
sensitivity indices. An example demonstrates a numerical method for estimating these
sensitivity indices.
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1. INTRODUCTION

The information input into computer models may be imprecise for several reasons. Impre-
cision is often a consequence of measurement processes, for example using digital sensors.
Prior information is sometimes recorded in the literatures as intervals without any infor-
mation about probability distributions [1]. Given only finite time, it is argued that it may
be impossible to elicit precise probability distributions from experts [2]. Indeed experts
may deliberately use imprecision to express their uncertainty.

The extension of probabilistic analysis to include imprecise information is now well
established in the theory of imprecise probabilities [3], robust Bayesian analysis [4, 5] and
fuzzy statistics [6]. In this paper we explore the notion of sensitivity within this framework.
We confine ourselves to the theory of coherent lower and upper probabilities, which,
whilst not the most general theory of imprecise probabilities, is sufficient to deal with the
situation in which probability distributions are specified by interval-valued parameters.

2. COHERENT LOWER AND UPPER PROBABILITIES

Consider a probability density function f(x, a), where x ∈ R and a = (a1, a2, . . . , am), a
vector of parameters of the probability density function. By definition

Pr(A) =

∫
A

f(x, a)dx, ∀A ⊆ R. (1)

If each parameter ai in a is specified by a closed interval [li, ui] then a is constrained by
an m-dimensional box Q, defining a closed set of probability measures that imply lower
and upper probabilities, P (A) and P (A):

Pr(A) = inf
a∈Q

∫
A

f(x, a)dx (2)
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Pr(A) = sup
a∈Q

∫
A

f(x, a)dx. (3)

P (A) and 1 − P (A) will be located at the same point a, so P (A) = 1 − P (A), meaning
that P (A) and P (A) are coherent lower and upper probabilities [7].

The lower and upper expectations, E(X) and E(X), are given by

E(X) = inf
a∈Q

∫ ∞

−∞
xf(x, a)dx (4)

E(X) = sup
a∈Q

∫ ∞

−∞
xf(x, a)dx. (5)

The definitions in Equations 2 to 5 can be extended to the case when f(x, a) is a joint
probability distribution on Rn and x = (x1, . . . , xn).

2.1. Lower and upper variance

The standard definition of the variance V (X) of a random variable X is

V (X) = E([X − E(X)]2). (6)

If M is a closed convex set of probability measures P : X → [0, 1], then the lower and
upper variances V (X) and V (X) are given by:

V (X) = min
P∈M

V (X) (7)

V (X) = max
P∈M

V (X). (8)

2.2. Natural extension of imprecise probabilities

Let g be a function such that y = g(x) : x = (x1, . . . , xn), and let By ⊆ Rn containing
all of the points (x1, . . . , xn) such that g(x) ∈ C : C ∈ R, then the lower and upper
probabilities P (C) and P (C) are:

P (C) = inf
a∈Q

∫
By

· · ·
∫

f(x1, . . . , xn, a)dx1 . . . dxn (9)

and

P (C) = sup
a∈Q

∫
By

· · ·
∫

f(x1, . . . , xn, a)dx1 . . . dxn. (10)
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3. VARIANCE-BASED SENSITIVITY ANALYSIS

Consider now the conventional probabilistic case in which the uncertainties in x1, . . . , xn

are expressed as precise probability distributions, i.e. x1, . . . , xn and y are replaced by ran-
dom variables X1, . . . , Xn and Y respectively. In variance-based sensitivity analysis, the
first order sensitivity indices Si represents the fractional contribution of a given variable
Xi to the variance in a given output variable Y [8]. In order to calculate the sensitivity
indices the total variance V in the model output Y is apportioned to all the input factors
Xi as [9]

V =
∑

i

Vi +
∑
i<j

Vij +
∑

i<j<k

Vijk + . . . + V12...n (11)

where
Vi = V [E(Y |Xi = x∗i )] (12)

Vij = V [E(Y |Xi = x∗i , Xj = x∗j)]− Vi − Vj (13)

and so on. V [E(Y |Xi = x∗i )] is the Variance of the Conditional Expectation (VCE) and
is the variance over all values of x∗i in the expectation of Y given that Xi has a fixed value
x∗i . The first order (or ‘main effect’) sensitivity index Si for variable Xi is:

Si = Vi/V (14)

and the ‘total effect’ sensitivity index is [10]

STi = 1− V [E(Y |X∼i = x∗∼i)]

V (Y )
(15)

where X∼i denotes all of the variables other than Xi.

4. IMPRECISE SENSITIVITY INDICES

In the case when the uncertainty in the variables X1 . . . Xn is described by a closed convex
setM of probability measures P , the lower and upper variances introduced in Equations 7
and 8 above can be extended to lower and upper sensitivity indices, Si and Si, i = 1, . . . , n:

Si = min
P∈M

Si (16)

and
Si = max

P∈M
Si (17)

where
n∑

i=1

Si ≤ 1. (18)

The additional constraint in Equation 18 means that the upper sensitivity indices Si,
i = 1, . . . , n may not co-exist. Indeed there is a closed convex set S of sensitivity indices
S ∈ S : S = {S1, . . . Sn} constrained such that ∀Si, i = 1, . . . , n : Si ≤ Si ≤ Si and∑n

i=1 Si ≤ 1.
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4.1. Numerical method

Estimating the lower and upper sensitivity indices in Equations 16 and 17 is a problem
of non-linear optimization. Each iteration j of the optimization involves estimating the
precise sensitivity indices for some Pj ∈ M, specified by a vector of parameters aj =
(a1, . . . , am). For each aj the corresponding precise joint probability distribution f(x, aj)
is randomly sampled d times, yielding a precise estimate of the variance [8]:

V̂ (Yj) =
1

d

d∑
k=1

g2(xk, aj)− ĝ2
0,j (19)

where

ĝ0,j =
1

d

d∑
k=1

g(xk, aj). (20)

The Monte Carlo estimate V̂i(Yj) of the ith partial variance is given by

V̂i(Yj) =
1

d

d∑
k=1

g(x
(1)
∼i,k,x

(1)
i,k , aj)g(x

(2)
∼i,k,x

(1)
i,k , aj)− ĝ2

0,j (21)

where
x∼i,k = (x1,k, x2,k, . . . , xi−1,k, xi+1,k. . . . , xn,k). (22)

The superscripts (1) and (2) in Equation 21 indicate that two sampling matrices are being
used for xk. Both matrices have dimensions d× n. In computing V̂i(Yj) the values of Yj

corresponding to xk from matrix (1) are multiplied by the values of Yj computed using a
different matrix (2), but for the ith column, which is kept constant [8]. This resampling
yields a precise estimate of the sensitivity indices Si,j. The lower and upper variances are
then given by

V (Y ) = min
j

(V (Yj)) (23)

V (Y ) = max
j

(V (Yj)) (24)

and the lower and upper sensitivity indices are given by

Si(Y ) = min
j

(Si(Yj)) (25)

Si(Y ) = max
j

(Si(Yj)), i = 1, . . . , n (26)

where Si(Yj) = Vi(Yj)/V (Yj).

5. APPLICATION

Oberkampf et al. [11] have proposed a series of Challenge Problems to compare and
evaluate alternative theories of uncertainty. One of the Challenge Problems relates to a
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damped linear oscillator (a single degree of freedom mass-spring-damper system), whose
steady-state magnification factor Ds is given by

Ds =
k√

(k −mω2)2 + (cω)2
(27)

where k is the spring constant, m is the mass of the oscillator, ω is the frequency of
oscillation and c is the damping coefficient. In this Challenge Problem, the variables in
Equation 27 were specified as follows:

m is given by a precise triangular probability distribution defined on the interval [10,12],
with a median value 11.

k is given by an imprecise triangular probability distribution, specified by three imprecise
parameters kmin, kmod and kmax, whose values are contained in the closed intervals
kmin ∈ [90, 100], kmod ∈ [150, 160] and kmax ∈ [90, 100].

c is given by a closed interval of possible values c ∈ [5, 10]. No probability distribution
over this interval is specified or to be assumed.

ω is given by an imprecise triangular probability distribution, specified by three imprecise
parameters ωmin, ωmod and ωmax, whose values are contained in the closed intervals
ωmin ∈ [2.0, 2.3], ωmod ∈ [2.5, 2.7] and ωmax ∈ [3.0, 3.5].

In the Challenge Problem specification, the information concerning k and c was given by
three independent sources. The problem of aggregation of evidence from multiple sources
is beyond the scope of the present paper and is not addressed. The information is used
from the first source only.

There are 6 interval-valued distribution parameters, kmin, kmod, kmax, ωmin, ωmod,
ωmax, and one interval-valued variable, c, in the analysis. If the sensitivity indices Si

were a monotonic function of these imprecise quantities then it would only be necessary
only to test the vertices of the 7 dimensional hypercube that contains all of the possi-
ble values of these quantities. There is, however, no reason to believe that Si should
be a monotonic function of these interval-valued quantities, so in order to find the im-
precise sensitivity indices it was necessary to search the volume contained within these
interval constraints. Besides testing each of the 27 vertices, the volume was searched
by uniformly sampling the space with a total of 30000 samples. At each test point
aj = (kmin,j, kmod,j, kmax,j, ωmin,j, ωmod,j, ωmax,j, cj) (Equations 19 to 26) 50000 Monte
Carlo samples were used in the sensitivity estimates.

The lower and upper upper probability distributions on Ds are shown in Figure 1.
The lower and upper expectations were estimated as E(Ds) = 1.78 and E(Ds) = 2.86
and the lower and upper variances were estimated as V (Ds) = 0.09 and V (Ds) = 1.57.
The imprecise sensitivity indices are listed in Table 1. Note the additional condition in
Equation 18 means that the upper sensitivity indices cannot all coexist.
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Figure 1. Lower and upper cumulative probability distributions of Ds

Table 1. Imprecise sensitivity indices

i Variable Si Si

1 m 0.00 0.07

2 k 0.18 0.76

3 ω 0.19 0.70

6. CONCLUSIONS

Variance-based sensitivity indices provide an intuitive and practical expression of the con-
tribution of model input variables to the variance in the model output [10, 12]. To date,
variance-based sensitivity analysis have been restricted to the situation where uncertain
information is presented as precise probability distributions, yielding precise sensitivity
indices. In this paper this precise probabilistic case has been extended to the situation
in which information appears as imprecise probability distributions or intervals, yielding
interval-valued sensitivity indices for the (precise or imprecise) probabilistic variables.
These imprecise indices complement the insights into the effects of imprecision and ran-
domness provided by generalized uncertainty analysis [13]. A further challenge, which
has not been addressed in this paper, is the problem of aggregation of imprecise and
probabilistic information from multiple sources [14, 15]. Sensitivity analysis has further
potential in this respect in highlighting the influence of different information sources.

The computational expense of calculating imprecise sensitivity indices is considerable.
Furthermore, the advantage over Monte Carlo approaches of efficient methods for calcu-
lating variance-based sensitivity indices, such as FAST and Sobol’ methods [8], is less clear
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than in the precise case. Monte Carlo methods can make use of function evaluations from
previous steps in the optimization to find the lower and upper sensitivity indices, whereas
the FAST and Sobol’ methods would usually require a new sample at each optimization
step. Whilst for the example addressed in this paper little computational advantage was
to be gained by reusing previous function evaluations, clearly this will be desirable in
many practical situations, so methods of this type are the subject of ongoing research.
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