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ABSTRACT

GIRM (Graphite Isotope Ratio Method) is a technique that can determine total Pluto-
nium (Pu) production in a graphite moderated reactor. In the GIRM methodology, total
Pu production is estimated by measuring isotopic ratios of trace elements in extracted
graphite samples from the target reactor.

Many safeguards problems require an estimate of total Pu production. For example,
a declaration of total Pu might need to be verified through GIRM. In some cases, reactor
information (such as core dimensions, coolant details, and operating history) are so well
documented that reactor computer-models can predict total Pu production. In most
cases however, reactor information is imperfectly known or of questionable validity, so a
measurement-based method such as GIRM is essential to such a verification strategy.

In this article we concentrate on GIRM’s estimation procedure and its associated
uncertainty. We describe a simulation strategy to estimate its uncertainty, including the
impact of local and global computer codes, and illustrate GIRM for a specific reactor.

Keywords: reactor code errors, simulation, uncertainty in estimated Plutonium

1. INTRODUCTION

In GIRM, samples from the graphite moderator are taken along the fuel channels in the
reactor of interest, and isotopic ratios in the samples are measured with mass spectrogra-
phy (TIMS for Uranium or Pu isotope ratios and SIMS for Boron isotope ratios). These
isotopic ratios are converted to local plutonium production rates (i.e. grams of Pu pro-
duced per cm of fuel rod) using a lattice physics code (WIMS). Finally, a 3D regression
model is used to estimate a Pu fluence field for the reactor which is then integrated over
the fuel channels to estimate the total Pu produced. The 3D regression model used in a
specific application is determined from a reactor physics code (such as KENO).

The basic scheme has been subjected to several feasibility studies and experimental
tests (see [1], [2], and [3]). Two previous error analyses of this methodology have been
conducted. The earliest analysis, Reference [1] evaluated uncertainties associated with a
“generic” reactor. The other, Reference [3] evaluated actual measurements taken from a
British reactor, Trawsfynydd. Because the GIRM methodology has changed substantially
in recent years [4] and additional sources of error have been included (i.e. WIMS reactor
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code error and 3D fluence model errors), it is timely to re-evaluate the total uncertainty
with the GIRM-based estimate of total Pu production. The procedures described in the
next section are illustrated by applying them to a “generic” reactor, which is described
in [4].

2. METHODOLOGY

GIRM can be organized into three steps: (1) a planning step that assembles and evaluates
information about the target reactor; (2) a sampling step that extracts graphite samples
from the target reactor, and (3) an analysis/estimation step that measures the isotopic
ratios and converts them to a Pu estimate.

In the planning step, information concerning a target reactor is gathered. This includes
reactor core dimensions, fuel channel locations, control rod locations, coolant details, fuel
rod specifications, and operating history. WIMS produces curves that relate the isotopic
ratios to local Pu fluence. WIMS runs also generate a parametric evaluation of the
main reactor variables such as temperature, density, and dimensions. A sampling plan is
designed that describes where graphite samples will be taken from the target reactor.

The analysis step includes mass spectrographic measurements of the isotopic ratios of
each sample, and statistical analysis to combine all the measurements to estimate total
Pu production. In the first step in this statistical analysis, the measured isotopic ratios
are converted to local Pu fluence (g/cm) estimates using curves calculated by WIMS.

The second step in statistical analysis fits a 3D linear regression model to the local
Pu fluence estimates produced by the first step. The 3D regression model (called the
global regression model), is produced from 3D reactor-physics solutions. After the global
regression model has been fit to the local fluence estimates, it is easy to determine the
total Pu production by integration. Standard propagation-of-error (POE) formulas also
produce the uncertainty associated with this estimate in the form of a standard error.
Uncertainties of the entire estimation procedure are verified using Monte-Carlo simulation.
Because of deficiencies in the POE methods, we presently rely on simulation to produce
the most comprehensive estimate of total uncertainty.

2.1. Pu-fluence from U/Pu Data and B data

At a given sample location, the TIMS mass spectrograph produces a vector of 5 isotopic
ratios (236U /238U, 236U /2350, 240 Py /239 Py, 2M Pu /3% Pu, 242 Pu/?3° Pu), while SIMS pro-
duces a single isotopic ratio for 1B /11 B. All measured isotopic ratios have an associated
uncertainty, supplied by the chemical analysis. It should be noted that Boron is particu-
larly suited to a low burn-up reactor. For a high burn-up reactor, the Boron measurements
would be replaced by Titanium.

These isotopic ratios are used to estimate the local Pu-fluence, ¢,, at each sample

location, and produce se(¢,,). To accomplish this, a nonlinear regression model is used
to relate Pu-fluence ¢; to the measured isotopic ratios, I2;;. The model is;

Rij = Hj(¢i) + €4 (1)
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where the index ¢ identifies the sample location, and the index j the specific isotopic ratio
measured. The function H;(¢) represents the isotopic ratio curves produced by WIMS
runs for the target reactor and the error term, e;;, represents error. The least-squares
estimator for the vector of ¢; is the value that minimizes the quadratic form*;

SSE; = [R; — H(¢:)]" Cov(e;) ™ [R; — H(¢1)] (2)

while its standard error is given by an asymptotic approximation used for non-linear
regression (i.e., the inverse of Fisher information matrix).

The covariance of the regression uncertainties includes measurement error, and reactor
physics error (RPE). In other words, the covariance matrix used by the regression is
Cov(e) = Cov(Meas. Error)+Cov(Reactor Phy. Error). Including RPE in the regression
weights improves the total Pu estimates by 50% because it is the dominant source of
uncertainty in the data. RPE describes the effect that uncertainties in important reactor
parameters (such as graphite temperature) have on this regression problem.

We note here that the se’s produced by this algorithm do not account for calibration
bias. Although the se of the result does include RPE, correlation between local estimates
is not produced, which also can have an important effect on total Pu uncertainty and is the
chief reason that Monte-Carlo generated uncertainties are better than POE uncertainties.

2.2. Global Regression and Estimate of Total Pu

Linear regression is used to fit a 3D fluence field to the local fluence estimates produced
by the previous local estimation step. Let ®(x; ) represent the fluence field model, with
x representing a location in the reactor core, and 3 a set of unknown parameters that
determines the shape of the fluence field. Linear regression is used to determine parameter
estimates that produce a fluence field that is as close as possible to the local fluence values.

We call this “global” regression because it transforms the local Pu estimates into
a fluence field that is defined at any point within the entire reactor core. The global
regression model is described by; QASZ = O(x;; 0) + e; with weight W; associated with
location x;. The weight is determined by the se assigned to quu(x) from the local Pu
estimation step, W; = se(dgpu(x))_? Weighted regression is then performed to produce
estimates, B , of the unknown parameter vector (3, and its covariance matrix, Cov([?). The

form used for the 3D fluence field model is

B(a: ) = kiﬁk%(r)- 3)

The Wi(z) must be known functions, that are relatively good at approximating the
target reactor fluence field. An estimate of the total Plutonium production, Tpu, is then
determined by integrating the estimated fluence field over all fuel channels in the reactor.
The integration result is a linear combination of the unknown beta parameters; conse-
quently, it is simple to calculate the standard error of the estimate, T pu, from COU(B).

*R; = (R11,R12, ...R1,,) and similarly for H(@), and e;.
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Let (14, x9¢) represent the horizontal coordinates of the ¢’th fuel channel, so that Tpu
is given by;

Ztop

Ztop
Z/ D(1,0, e, 233 B)d s = ZﬁkZ/ k(T1,0, Top, 23)d23 = Zﬁkwk

Zbottom Zbottom
(4)

top

with the integration constants wy defined by wy =3, [, Ui (210, Toy, 23)d2s.

bottom

An estimate for the total Pu can therefore be found by multiplying the beta estimates
by the integration constants wy. In vector notation this reduces to; T = wTﬁ and the
estimate of total Pu has se(T},)? = wTCov(B)w. These formulas produce an estimate of
T,., and its se, which is the final objective of this statistical procedure. Incidentally, if the
regression model ®(z, 3) can fit the true fluence field without any error, then the estimate
is unbiased and the true total fluence, 7}, can be expressed as a linear combination of the
wi and true fj that resembles Eq. (4).

The adequacy of the global regression model depends upon the proper selection of the
set of “basis functions”, Wy (z). 3D reactor physics models are used to produce a “basis
set” of reactor fluence profiles, based on reactor operating history. If one is fairly certain
about the operating history, this set will be small, if one is less certain, the set will contain
more profiles and uncertainty related to global regression will be correspondingly greater.

In the generic example presented in this article, the KENO code has been used to
produce a “best estimate” for fluence, which is included in the basis set, along with
44 “eigen-function” profiles from an homogeneous-core solution. The homogeneous-core
“eigen-function” profiles are the functions we would use when little reliable information is
available for the target reactor. Thus the example global regression model is constructed
from generic information and one “best estimate” profile.

2.3. Monte Carlo Simulation for Error Analysis

The steps for our simulation are: (1) Calculate a “true state” for the target reactor
(the global Pu-fluence, ®(x) at locations z;) (see the next paragraph); (2) Add error
to locations x; that arises due to limitations of the sampler; (3) Sample the reactor
parameters (such as coolant and fuel temperature, etc.) from distributions centered on
true values with standard deviations estimated using linear approximations to results of
auxiliary WIMS runs. The “true” isotopic/fluence curves are generated WIMS using these
sampled reactor parameters; (4) Add error to the true isotopic ratios to create measured
values at samples (with sample contamination, calibration, and random errors), (5) Run
the simulated measurements through the Pu estimation algorithm, and finally (6) compare
the estimated result to the “true” Pu value, and repeat many times.

The “true” global fluence is simulated by random selection from a set of “representa-
tive” 3D fluence fields. This set is related to, but not the same as the “basis” set used
to construct the global regression model. The set of 3D fluence fields contains plausible
(best-estimate) and extreme fluence shapes, calculated from what is known about the
target reactor’s operating history. For the generic reactor used here, this set consists of
seven fields calculated by KENO. Of these seven fields, three represent best-estimates
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versions of reactor fluence, while the other four represent extreme fields. The extreme
fields are calculated with unusual control rod configurations which are possible, but it is
unlikely that the reactor would be operated in this configuration for any length of time.

The local RPE is the result of errors in certain reactor parameters required to complete
a WIMs calculation. The WIMs code result can be mathematically described by the
function R = H(¢;«), where R is a vector whose components represent the ratios of all
of the measured isotopes in graphite, while ¢ represents the corresponding Pu-fluence.
H(-) is also a function of reactor parameters, as represented by the vector a. There is
some error associated with the best-estimate value for o used in the estimation procedure,
and to account for this, a is considered a random vector, with a mean centered around
the “best estimate” and standard deviation representative of the uncertainty associated
with these parameters. In the Monte-Carlo, a set of “true” fluence curves is simulated by
sampling « from this distribution and computing H (¢, Asampied)-

For the example reactor, the reactor parameter vector o represents the following; fuel
pin radius, fuel temperature, graphite density, graphite temperature, graphite equivalent
boron concentration, and WIMS code uncertainty. “WIMS code uncertainty” represents
numerical errors produced in WIMS, estimated by comparing WIMS results to results from
another code. It is supposed to represent the difference between the answer produced by
WIMS in GIRM, and a computer code that could solve the problem without error.

As a final step, the Monte Carlo simulates SIMS and TIMS measurement errors.
These consist of random, calibration, and contamination errors, which are added to the
true isotopic ratios to produce a measured value. These operations are summarized by
the formula Rcqs = (1 — C)Ripr + C Ruat + €car + €ran Where, for example, Ry, is the true
(irradiated) ratio of Boron in the sample, which is contaminated by C'% of natural Boron
(that has ratio R, ). A calibration error of e., and a random error of e, is then added
to this result to obtain the measured ratio, R,,cqs-

It is important to note that the simulated measurements are more complicated than
those assumed for the regression model (Equation 1) used in the estimation step. The
contamination can cause bias, while the calibration errors can cause correlations, and
neither of these effects are accounted for in the regression model.

2.4. Sampling as an Optimization Problem

A sampling plan consists of a set of specified locations in a reactor. These locations are
represented by x1, 9, ....x,, with each z; a 3D vector representing the coordinates of a
sampling location. The Monte Carlo error analysis methodology can be used to select
the best sampling plan from a limited set of candidate plans. However, Monte Carlo
evaluation is unsuited (too slow) to be used as part of a sample optimization scheme.

To find the optimal sample design, we have utilized the global regression model de-
scribed in the estimation step. This global regression model can be quickly evaluated to
produce an approximate RMSE for a particular to a sample design. These results are used
by an optimization algorithm to find the sample design with a small root mean square
error. The optimization is typically done with constraints; Samples can only be taken in
certain allowed channels, and the sample locations within a channel are fixed.
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Our optimization evaluations for the example reactor resulted in a design with 100
sample locations, taken in 10 channels. Roughly, the design consists of three “half-planes”
in three radial directions. An experimental design tool (ECHIP, available at echip.com)
was also employed to evaluate the designs and identify “high-bias” sample locations, which
were eliminated. This optimized design was used in the example evaluations presented in
this article.

3. EXAMPLE RESULTS FOR A LOW-BURNUP REACTOR

This example provides an upper-bound case for uncertainties when GIRM is applied to
a low-burnup reactor. This means the uncertainties in RPE, contamination, instrument
error, etc. are large, but not unreasonably large.

3.1. Estimation Uncertainty for the Example

To determine Pu estimation error for the example, 1400 sets of measurements were simu-
lated, resulting in 1400 “total Pu estimates,” which were compared to the “true Pu” (250
Kg for the generic case). Table 1 illustrates a few of these results.

Table 1. Simulations for Generic Case

Estimation Results Est Error

(Kg)  (Kg) (Kg) ~ (Kg)
Run | Tp, TrueTp, se(Tp,) GOF | Tp, — Tp,
1] 253.80 250.00 1.22  4.46 3.80
2 | 247.66 250.00 1.40 3.88 -2.33
3| 252.76 250.00 1.00 2.54 2.76
1400 | 252.08 250.00 1.59 3.27 2.08

RMSE = 4.04Kg %RMSE= 1.62

~

Mean se(7},)=1.11Kg (Prop. Error SE)

In Table 1, each row summarizes one simulation. The total Pu estimate is in column
2 and the POE-based estimate of (se(Tp,)) is in column 3. Column 4 is a “Goodness
of Fit” statistic computed by the fluence regression. When the data fits the statistical
models presented in the previous sections, the GOF statistic should be approximately 1.
Theoretically a value above 1.5 indicates significant lack of fit. Note that GOF statistic
is typically higher than it should be. This is because the simulated data contains non-
independent errors (i.e. contamination, RPE, measurement calibration errors) that are
being detected by this statistic. The GOF statistic measures how severely the data devi-
ates from the assumed model, which assumes independent, zero-mean errors. We expect
the GOF statistic to be larger than its theoretical value for real data, because real data
will have calibration and contamination problems to some degree. At the bottom of the
table are the average RMSE and %RMSE over the 1400 simulations. As one can see from

235



the example, the POE-based se is too small; actual errors are more than 3 times larger in
this example (average RMSE of 404 compared to average POE-based se of 111).

Table 2 decomposes the generic scenario RMSE into the three main components. Bias
describes a general bias that may be due to any combination of global regression model
misfit, measurement contamination, calibration bias, or RPE. Although significant, this
bias is relatively small. Because bias is influenced by many inputs, it can be altered
significantly by changing the above-mentioned inputs.

Table 2. Decomposition of RMSE for Generic Scenario

Source of Absolute Relative

Variation (g) % of Ty,
Bias: Due to various sources. 74 0.30
Between Model SE: Global Model Uncertainty 111 0.44
Within Model SE: All Sources Except Global Modal Uncertainty 381 1.52
Decomposition of Within SE:
—Random Measurement Error: 50 0.20
—~Measurement Calibration Error: 30 0.12
—Contamination Error: 25 0.10
—Location Error 0 0
—Reactor Physics Error 375 1.50
Total RMSE* 404 1.62

* RMSE = y/Bias® + SE?

The between model error describes the bias in the global regression model when applied
to the population of seven global fluence models used as truth. This error is the second
largest component of error, but still relatively small. The major difference in these results
is not in the se’s (which are all approximately 1.50%), but in the bias. Biases range from
-0.18 to 0.81 for the seven fluence fields. These seven biases correspond to a between
model se of 0.44%, which is about half of the maximum, and describes the error in the
population of “true state” fields.

The third and largest source of error, “within model” error, comprises all other sources
of error in the data (contamination, measurement error, calibration error and local RPE).
By switching specific sources of error off and re-running the Monte Carlo program, one
can decompose this within model error further, into its major sources. The results of the
Monte Carlo runs are also listed in Table 2. The decomposition of within model error
shows that local RPE is the largest contributor to Total Pu error, producing an error
of 1.50%. The next largest contributor is SIMS and TIMS random measurement error,
producing a contribution of 0.20%. SIMs and TIMs calibration error produce a 0.12%
error, which roughly corresponds to the magnitude of calibration error with respect to
random error. The assumed contamination for SIMS and TIMS measurements produces
a 0.10% error, which is the smallest of the measurement error effects. Finally, sampler
location error is less than 0.01% and we have therefore set it to zero. Even a unrealistically
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large location error of 2cm only increases the se in total Pu to 0.03%, so it is safe to
eliminate location error as a serious source of estimation error.

RPE is the largest error source (1.50%), and the contributions of the key components
of RPE are fuel pin radius (1.05%), fuel temperature (0.30%), graphite density (0.24%),
equivalent boron concentration (0.16%), graphite temperature (0.63%), and specific power
(0.17%), and WIMs Code (0.25%).

Figure 1 illustrates the effect of different sources of error. In the first five plots, the
local errors are illustrated for each of the measured isotopic ratios. In these plots, the
dashed line represents the “true” relationship between fluence and the ratio, while the
solid line represents the relationship used in the local estimation procedure. The difference
between the two curves is local RPE. The points scattered about the dashed line represent
measurement error. The local estimation procedure uses the solid curves to produce a
best estimate for Pu-fluence at each sampling location.

The last plot in Fig. 1 represents the results of the global regression procedure. In
this plot the estimated fluence is plotted against true fluence at each sample location.
Heasler et al. [4] includes more details, including some additional worst-case results in
which all error sources were increased to extremely large values, and and in one example,
the RPEs were forced to vary in the same direction. So, for example, both fuel pin radius
and temperature would be forced to have positive errors. These addition results resulted
in RMSEs of 2% to 6% (the 6% is arguably worse than worst-case).

4. DISCUSSION

We presented GIRM and a simulation method for assessing its RMSE. Local and global
RPEs have been considered, with local RPEs appearing to be the largest error source.
Although we focused on estimating Pu production for a specific example reactor, clearly
the approach can be applied to almost any graphite reactor.

Although some basic knowledge of the reactor operating parameters should be avail-
able, the methodology can be applied to reactors for which no detailed operating history
is available. If a sufficient number of samples (say 100 or so) can be taken, total Pu
production can be estimated to within a few percent. If, on the other hand, a basic shape
of the fluence profile can be calculated from operating history, a better estimate of total
Pu production can be obtained with fewer samples. For example, in the Trawsfynydd
exercise [3], estimates were produced from approximately 30 samples.

GIRM is a unique blend of reactor physics models and empirical data. Any error
associated with the local (WIMS) model or global 3D model has important consequences
for the resulting total Pu estimate. The simulation quantifies the effects of error sources,
and allows us to evaluate sampling schemes. Benchmark comparisons [3] add to our
confidence in the performance claims here. However, RPE remain the dominant error
source and it is important to understand potential pitfalls.

The local RPE considered here are due to improperly specified parameters; implicitly
we have assumed that the model is truth, provided the parameter values (such as fuel
pin radius) are accurately specified and that numerical accuracy is good. In experimental
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data, any outlying ratios in curves such as in Fig. 1 are assumed to be due to sample
contamination or other measurement problems. The fact that other models give similar
results provides some assurance that pure model error is minimal, but the main assurance
is the experimental data such as in [3].

The impact of global (KENO) model error in predicting the 3D fluence field depends
critically on the GIRM strategy involving fitting the local Pu estimates using a special
set of basis functions, and sample size/location choice. Because there are constraints
on the 3D shape of the flux (it can have spikes near control rods, but generally it is
relatively smooth), it is reasonable to assume that not too large a basis set is required
for a good fit (allowing accurate integration of the local Pu estimates). Also because of
known constraints on flux shapes, we did not allow arbitrary true flux shapes. Instead,
in the simulations, the true flux was randomly selected to be one of the seven shapes
described. All seven shapes were relatively smooth, and it is possible in a new application
(although highly unlikely) that the true shape would have sharp peaks and valleys, leading
to understatement of the 3D model error. The use of basis functions to fit the 3D fluence
field has several advantages compared to using the single best-guess field shape. For
example, in the evaluation presented here if the true field shape were assumed to vary
randomly around the best-guess field shape then the estimated impact of global model
error would most likely have been too low. In addition, the sampling was optimized
under the assumption that the true shape was among the seven choices. However, a
linear combination of the basis functions can accurately approximate an arbitrary field if
enough terms are used. In the example provided, because sufficient detail was provided
for the target reactor to have a “best guess” shape that is close to the true shape, it is
unlikely that the 3D shape could be even as misspecified as assumed in the simulation,
so if anything, experts believe that Table 2 overstates, but not drastically, the impact of
global model uncertainty. Therefore, performance claims have not yet been attempted
for the situation where initial sample results indicated an extremely rough 3D flux field,
leading to a request for more samples at key locations. So, performance claims for the
situation in which test samples not used for fitting indicated a problem with the 3D fit
would be desired on an as-needed basis.
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