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Abstract: The Differentia Importance Measure (DIM) is afirst-order sensitivity measure
that ranks the parameters of the risk model acwrding to the fraction of total change in the risk
that is due to asmall change in the parameters’ values, taken one & atime. However, the DIM
does not aacount for the effeds of interadions among components. In this paper, a second-
order extension of the DIM, named DIM", is proposed for acoounting of the interadions of
pairs of components when evaluating the change in system performance due to changes of the
reliability parameters of the components. A numericd application is presented in which the
informative mntents of DIM and DIM" are compared.

Keywords: Differentia Importance Measure, Joint Importance, seoond ader sensitivity
measure.

1. INTRODUCTION

A limitation of the Importance Measures (IM) [1-3] currently used in reliability and risk
analysis is that they rank only individual components or basic events whereas they are not
directly applicable to combinations or groups of components or basic events [2]. In pradice
different basic events may, for example, represent diff erent modes of fail ure or unavail ability
of asingle cmmponent and in order to determine the importance of such component one has to
consider al the related basic events as a group. Furthermore, many risk-informed appli cations
deal with evaluating the risk change associated to changes in the plant technicd specifications
(surveillance and/or test frequencies, etc): such changes may indeed impact a group o
components. To partialy overcome this limitation, recently, the Differentia Importance
Measure, DIM, has been introduced for use in risk-informed dedsion making [3]. The DIM is
a first-order sensitivity measure that ranks the parameters of the risk model according to the
fradion of the total change in the risk that is due to a small change in the parameters’ values,
taken one & atime. The DIM beas an important property of additivity: the DIM of a group of
components or basic events is the sum of the DIMs of the single components or basic events
of the group. However, since DIM considers risk changes due to small changes of the
parameters’ values, it does not account for interadions among components.

The nee for IMs cgpable of considering combinations of components arises also when
planning a budget-constrained improvement in the reliability of a system design for example
by repladng one of its components with a better-performing one, or by inspecting and
maintaining it more frequently. Due to the budget constraints, the improvement may need to
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be accompanied by the sacrifice of the performance of another, less important component.
The interadions of these cupled changes to system design must be accounted for when
asessng the importance of the system components. To this aim, second order sensitivity
measures such as the Joint Reliability Importance (JRI) and Joint Failure Importance (JFI)
measures have been introduced [4, 5].

In this paper, a second-order extension d the DIM, named DIM", is proposed for
accounting of the interactions of pairs of components when evaluating the change in system
performance due to changes of the reliability parameters of the components. The extension
aims at supplementing the first-order information provided by DIM with the second-order
information provided by JRI and JFI. Obviously, the need of resorting to information on
second-order eff eds depends on the magnitude of the changes of the parameters values and on
the nonlinearity of the system.

2. EVALUATING THE CHANGE IN THE SYSTEM PERFORMANCE

We consider a system of n components. Let O be a generic measure of the system
performance (e.g unreliabili ty, unavail abili ty, risk, etc., depending on the goplicdion at hand).
The performance O is a function of the components’ unavailabili ties (or failure probabilit ies)
g, i=1, 2, ..., n, i.e. O=gq(tly, O, ..., On). A change in system performance due to arbitrary
changesin the values of the g, i=1, 2, n can be expanded in McLaurin series as:
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Using the rare event approximation, the risk measure O can be written in terms of the
probabiliti es of the ns minimal cutsets:

0= @

where M; is the probability of the j-th cutset. Then, alternatively, the change in O due to
generic changes of the parameters Aq;, i=1, 2, ..., nis[6]:
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where S = Z—' S, = Z L, and so on Eq. (1) reduces to eq. (3) if the rare
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event approximation of eg. (2) holds. The right-hand part of eg. (3) contains as many terms as
the largest number of components in any minima cutset. The quantities S, Sy, Sh..r can be
straightforwardly calculated as follows [6]: S is the sum of the contributionsto O in eq. (2) of
the minimal cutsets containing element i, with its unavailability set to 1; Sy, is the sum of the
contributions to O of the minimal cutset containing elements i and h with their unavail abilit ies
set to 1, Sy ; is the sum of the contributions of the minimal cutset containing elements i, h,
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..., I with their unavailabilities st to 1. Note from eqg. (3) that the interactionterms Sy, Sh..r
asume a value of zero if the cmponents i and h, i, h, ... and r, respectively do not appea
together in one of the minimal cutsets. Thus, for example when the rare event approximation
holds, for groups of components belonging to different blocks in series only the first-order
terms in eg. (3) contribute to AO since they do not appear together in any minimal cutset. On
the @ntrary, for components in perallel logic, contributions from the higher-order termsin eq.
(3) are expeded, sincethe components always appea together in aminimal cutset.

3. FIRST-ORDER IMPORTANCE MEASURES: BIRNBAUM AND DIM

The Marginal Reliability Importance (MRI) (often referred to as the Birnbaum IM) of
component i is defined with resped to its unavail ability g as[1, 4]:
MRI(i) = 90 4
a i
According to the MRI, components for which a variation in unavail ability results in the
largest variation dof the system performance have the highest importance

The MRI applies when the mmponents unavail abili ties or failure probabiliti es g, i=1, 2,
..., n are known explicitly. However, the quantities g are often expresed in terms of
additional reliability parameters xi, k=1, 2,..., n, such as failure and repair rates, maintenance
and inspedion frequencies, etc: in turn, the system performance O can be expressed in terms
of the parameters X, i.e. O=0,(X,X,,...X, ). Furthermore, the MRI applies to single

components. However, the changes may affed a number of components at the same time. For
example, a change in a maintenance frequency will affect the unavailabilities of all of the
components that undergo that particular maintenance policy.

Reaently, the Differential Importance Measure (DIM) has been introduced to quantify the
importance of the parameters X, entering the system performance model [3]. DIM considers
the total variation of the output function O due to a small variation of its parameters, taken
one & atime. If the variation of the parameter is snal enough, the variation of O is the total
differential dO:

> 00
g 0%, %
The DIM of the parameter x, DIM(X), is defined as the fradion of the total change in O
which pertains to the change in the parameter x;:

C)
do
My (6)
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The DIM is additi ve in the sense that the DIM of a subset of parameters x;, Xs, .., X;, iS[3]:
DIM(x O xs O ... O %)= DIM(X)+ DIM(xg)+...+ DIM(X).
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The DIM can be useful in risk-informed applicaions involving the quantification of risk
changes in O due to proposed changes of a plant technical specification, eg. a
surveillance/test/maintenance frequency. Being a first order locd sensitivity measure, the
DIM can be used to forecast a finite dnange AO due to any change in the parameters’ values
only provided that these latter changes are small enough to be used in (6). Only in this case, in
fad, the higher-order contributions to AO in egs. (1) and (3), which describe the interactions
due to ssimultaneous change in pairs of parameters, triplets, etc. can be negleded. The dfeds
of these interactions are ill ustrated in the next Sedion with referenceto pairs of components.

4. JOINT FAILURE AND RELIABILITY IMPORTANCES

To evaluate quantitatively the interaction between components, the concepts of Joint
Failure Importance (JFI) and of Joint Reliability Importance (JRI) of pairs of components
have been introduced as an extension to the single-component MRI [4, 5]. JFI is introduced
when the @nsidered system performance O is a measure of the system loss(i.e. unreliability,
unavailability, risk, etc.) and it is expressd in terms of the components’ unavailabilities q;,
i=1, 2, ..., n. JRI refers to the cae in which O is a measure of the system gain (i.e. reliability,
availability, etc.) and is expressed in terms of the components’ availabilities pj=1-¢. JFI and
JRI for componentsi and h are defined as:

2 2
JFI(i,h):aaao ; JRI(i,h):aaO =-JFI(i,h) )

i h i h

An interesting property of the joint importance measures is the posshility of determining
the sign of JFI(i,h) and JRI(i,h) based on the relative logical paosition of componentsi and h
within the system. In particular [4]:

JFI(i,h) = 0 (JRI(i,h) < 0) for componentsin parallée
JFI(i,h) < 0 (JRI(i,h) = 0) for components in series
More generaly:

JFI(i,h) = 0 (JRI(i,h) < 0) if components i and h appear together in at least one minimal
cut-set but not in any minimal path-set.

JFI(i,h) < 0 (JRI(i,h) = 0) if components i and h appear together in at least one minimal
path-set but not in any minimal cut-set.

Joint importance measures are useful to quantify the interactions of components with
resped to the system performance. Awareness of such interactions among components is
useful when the analysts are interested in evaluating the df ects on the system of modifications
regarding two components or, in a more general sense, two parameters (e.g. failure rates,
maintenance periods, etc). Indeed, when planning a modification of a reliability parameter of
a component towards a better performance (e.g. replacing it with a better-performing one,
inspeding or maintaining it more frequently) one is often forced, by budget constraints, to
sacrifice the performance of another.
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5. SECOND ORDER DIFFERENTIAL IMPORTANCE MEASURE

For finite changes in the components unavail abilities Aqg;, it may be relevant to evaluate
also the seaond order contribution to AO. With reference to components i and h, the variation
of O, AO,, dueto the variations of the parameters Ag; and Agp is:

00 00 0%0
A0, =—Ag +—Aq +—AqAg, =
' oq, 4 0q, % 00q,0q;, 44

MRI (i )Ag, + MRI(h)Ag, + JFI(i,h)Aq Aq,
A seoond arder DIM, DIM" can thus be defined as:

(8)

DIM“(i,h):igilT (©)

Note that, as dated in Section 2, when the rare event approximation can be used in the
system modeling, one can neglect the computation of the JF of pairs of components if the
they do not belong to the same minimal cutset.

6. NUMERICAL EXAMPLE

6.1. Comparing theinformation of DIM and DIM"

Consider the system of Figure 1. As system performance O we nsider its limit
unavailability. The comporents unavailabilities are qu=q, =107, gs=q,=g<<1. In this
numerica example we will compare the informative cntent of the measures DIM and DIM"
when assesdng the effed on the system performance O of changes in the mmponents
unavailabilities of pairs of components.

1= HETF

Figure 1. System reliabili ty block diagram

Consider at first the behavior of DIM(1)=DIM(2) and DIM(3)=DIM(4) as functions of the
parameter g=gs=q. in the interval (510, 2010°) shown in Figue 2. The change in the
parameters values is Aq=10°[;, for i=1, 2, 3, 4. For g=10° (i.e. 1.=0,=0s=q4), the four
components have the same DIM, due to the symmetry of the system. Then, as expected, in the
cases g£0;1=0 the most unavail able mmponents are the most important aacording to the DIM.
Indeed, DIM(1)=DIM(2) > DIM(3)=DIM(4) for q:=0,=10">> g=gs=q, and DIM(1)=DIM(2) <
DIM(3)=DIM(4) for ;=0,=10°<q= gs=qa.

From the aditivity property [3], the first order DIMs for the pairs of components are:

DIM(1,2) = DIM(1) + DIM(2) = 2IDIM(1) (10)
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DIM(3,4) = DIM(3) + DIM(4) = 2IDIM(3)
DIM(1,3) = DIM(1) + DIM(3) = DIM(2) + DIM(4) = DIM(2,4)

The behavior of the DIMs for the above pairs of parameters in the system is reported in
Figure 3 as functions of g. Note that for q=10°=g,=qp, all measures DIM(1,2), DIM(1,3),
DIM(2,4), are equal, due to the symmetry of the system and to the fad that the DIM considers
the variation of one parameter value & a time. Still, when varying the values of the
unavailabilities of two components smultaneously, one would expect a difference between
the aase of a pair of componentsin paral e, say (1, 2), and the cae of apair of componentsin
series, say (1, 3). This difference can be tracal by considering second-order interactions
among the mponents, i.e. the DIM". In the @ses q#zgi=0p, the measures
DIM(1,2)=2- DIM(1) andDIM(3,4)=2- DIM(3) duplicatethe behavior of DIM(1)=DIM(2) and
DIM(3)=DIM(4). Instead, DIM(1,3) =DIM(2,4) is independent on q. Indeed,

DIM(13) = DIMn(1)+DIM(3) - D[|)|\I/||\§|1)1++D[|)|\I/|l\§|3; “o.
J=1
Let us now compute the seaond-order sensitivity coefficients (eg. (7)):
— 620 — — 2 — — -3
JFI(1,2) = 3 =1-g,9,=1-q JFI(13)=-9,q, =-10"¢q
1 2
JFI(3,4) = 1-ou0p=1 - 10° JFI(2,4) = - qug= - 10°3%q

As expected [4], JFI<0 for the cmmponents 1 and 3 in series and JFI>0 for the components
1and 2and 3 and 4 in parallel. Furthermore, as anticipated in Sedion 2, the &solute value of
the JFI(1, 3) of components 1 and 3in seriesis smaller than that of the two perallel pairs (1,2)
and (3, 4). Indeed the values of the unavailabilities g are such that the rare event
approximation in eg. (2) certainly holds. This would suggest that, actually, one @muld negled
the @ntribution corresponding to the interadion term of the auple of components in series.

Figure 3 also reports the measures DIM'"(1, 2), DIM"(1, 3) and DIM"(3, 4) (symbols 9,
dots and *, respedively). Due to the small values of the variation of the parameters considered
(Ag= 10° O0g; i=1, 2, 3, 4), the measures DIM" do ot differ appreciably from the DIM, since
the contribution to the total change in the output performance O of the second-order terms are
negligible. In the same Figure the DIM and DIM" measures are reported for pairs of
components in correspondence of larger values of the relative parameters' change, Aqgi/q;, i=1,
2, 3, 4. As expected, the values of DIM and DIM" differ progressvely when higher values of
Aqi/q are considered. As a general observation, DIM" differs sgnificantly from DIM for the
pair (1,3) of components in series logic, whereas DIM" reproduces the behaviour of DIM for
the pairs (1,2) and (3,4) of components in paralel logic. This behaviour could seem
unexpeded since, as above stated, the interadion term JFl of components in series logic is
negligible, whereas that of the cmponentsin paralé logic islarge. In words, this fad can be
explained as follows. In pradice due to the vaues of JFI(1,3)=0 and JFI(1,2)=1 (and
JFI(3,4)=1) we aan writefor DIM"(1,3) and DIM"(1,2):
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o0, + 22 1q, 00 8, + 52 4q, + 2,49,

DIM " (13) 0Z% AO”% . DIM"(12) 0ZE quo“ (12)

Due to the small value of the interaction term JFI(1,3)=0, the numerator of DIM"(1,3) is
equa to that of the DIM(1,3) for any value of Aqg/qi, whereas the denominator, which
accounts for all of the JFIs, progressively increases for increasing values of Ag/q. As a
consequence of this fad, the value of DIM"(1,3) is progressively shifted downwards for
increasing values of Aq/q. Instead, as for the pair (1,2), both the numerator and the
denominator of eg. (12) change their values from those of the numerator and the denominator

of DIM(1,2), but the changeis such that the ratio is approximately independent on Ag;.

Let us first consider the case g=10°=g,=q,. While still DIM(1,2)=DIM(1,3)= DIM(3,4)=
0.5 by construction, DIM"(1,2) = DIM"(3,4) > DIM"(1,3) (Table 1). The ranking produced by
the measure DIM" suggests that increasing simultaneously the unavail abili ties of the pairs of
components in parallel logic (1,2) or (3,4) has a greater impact on the system unavail ability
than the same adion performed on the pairs of components in series (1,3). This result is
physically reasonable. An increase in unavailability of two components has more dfect on the
system unavailability if performed on components on the same node (i.e. in parallel) rather
than on components on different nodes (i.e. in series). Indeed, with reference to the values of
the AOy" reported in Table 2, in the former situation the change in components
unavailabilities is more aitical since it impacts components on the same node, thus creaing a
system bottlened. Instead, the latter situation is less criticd for the system unavail ability
since the increase in components unavail ability is dhared by the two nades. Table 1 aso
reports the values of DIM and DIM" corresponding to g=9010* and ¢=1.2[10°3, for the case
Aq/q =0.5. As for the case =910, DIM(1, 2)>DIM(1, 3)>DIM(3, 4), whereas DIM" (1,
2)>DIM"(3, 4)>DIM" (1, 3). Again, DIM considers the contribution to AO arising from a
change in the unavail ability of one of the components at a time. Therefore, the pair (1,2)
results the most important acording to this measure, since the two components 1 and 2, have
the largest values of the first-order DIM (Figure 2), being more unavail able than components 3
and 4 (q:=0,=10°>05=0,=910%). The ranking provided by DIM" is different and it reflects
again that an increase in the unavail abiliti es of two components has more dfed on the system
unavailability if performed on components on the same node rather than on components on
different nodes (refer also to the values of AOy," reported in Table 2). This leads to the ranking
inversiongbetween the pairs (3,4) and (1,3). Similar considerations apply to the case of
g=1.2110".

Table 1. Values of DIM and DIM" for the pairs of components (1,2), (1,3) and (3,4) for different
values of gand Aqg/q;, i=1, 2, ..., n

Aqi/q; DIM DIM"

q i=1 [ i=2 | i=3] i=4 | (1,2) (1,3) (3,4) (1,2) (1,3 (3,4)
10° [05|05] 05| 05 | 050 0.50 0.50 0.50 0.40 0.50
oMo* | 05|05 | 05| 05 | 055 0.50 0.45 0.55 0.40 0.45
1.210° | 05| 05| 05| 05 | 041 0.50 0.59 0.41 0.40 0.59
10° |-05|-05|-05| -05 | 050 0.50 0.50 0.50 0.67 0.50
10° [ 05[-05]-05| +0.5 | 0.50 0.50 0.50 0.50 0.00 0.50
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Table 2. Values of AOy, and AQ,," for the pairs of components (i, h), for different values of q and
Aglg;,i=1,2,...,n

0.05

—— DIM(1)=DIM(2)
- . DIM(3)=DIM(4)

x 10

Ag/q; AQ;, 20"

q i=1 [i=2]i=3] i= 12) | (1,3 (34) (1,2) (1,3) (3,4)
10° |0o5|05|05| 05 | 10° 10° 10° 1.25[10° 10° 1.25010°
910“* | 05| 05| 05| 05 | 10° | 9050107 | 8.100107 | 1.25[10° | 9.050107 | 1.0110°
1.2010% | 05 | 05 | 05| 05 | 10° | 1.2210° | 1.44010° | 1.25110° | 1.22110° | 1.80110°
10° |-05|-05|-05| -05 | -10° -10° -10° | -750107| -10° |-7.50010°
10° | 05|-05[-05| +05 | O 0 0 -2.50110" 0 -2.50110°"

Figure 2. Values of DIM(1)=DIM(2) and DIM(3)=DIM(4) for different values of q, Aq=103q,

DIM and DIM"
o
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Figure 3. Values of DIM and DIM" for the pairs of components (1,2), (1,3)=(2,4) and (3,4) for

6.2. Useof DIM" in risk-informed applications

In risk-informed appli cations, the information provided by DIM" is handled by a decision-
maker in diff erent ways, depending on his’her goals.

different values of q. Case of Aq = 103 ¢}, i=1, 2, ..., n

Consider firstly the case of an analyst interested in reducing the costs associated to the
system operation by repladng two components with two less expensive, but also less
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performing, ones or by extending their maintenance frequencies. For example, with reference
to the case of q=10=qu=q, and Aq;/q;=0.5, the performance of the pair of components (1, 3)
can be sacrificed if required by budget constraints with minor consequences on the system
unavailability, contrary to the case of acting on the pairs of components (1, 2) or (3, 4) in
parale logic, as DIM"(1,2) = DIM"(3,4) > DIM"(1,3). Note that this conclusion can be
inferred only on the basis of the ranking produced by the second-order measure DIM", as
DIM(L, 2)=DIM(1, 3)=DIM(2 ,4).

Consider now the case in which the analyst is interested in identifying the pairs of
components to be improved to get the largest improvement in system performance. In the case
of g=10°=qg,=q, and Aq/q= - 0.5, i=1, 2, 3, 4 the values of the DIM" (reported in Table 1)
suggest that the improvement efforts should be devoted to the pair of components (1, 3) in
series, characterized by the largest value of DIM", and thus leading to the largest reduction in
system unavailability (see also the values of AO;," in Table 2). Again, this result is obvious
from the physical viewpoint: the improvement has more beneficial effects on the system
availability if performed on components on different nodes (i.e. in series) rather than on
components on the same node (i.e. in parallel). Indeed, in the latter case, the improvement
would be less effective due to the presence of the other non-improved node in series, which
remains an unvaried system bottleneck.

Another situation that can occur in risk-informed decision-making arises from the fact
that, in practice, the analyst has often to cope with a constrained budget that might forbid
spending resources on two components of a pair. Thus, in this case the final decision of the
analyst must be a trade-off between improving the availability of a component while
worsening that of another, still with the goal of attaining the largest improvement in the
system availability. In this case, the anayst is looking at changes in the components
unavailabilities Ag; and Agy, with opposite signs (i.e. if Agi>0 then Ag,<0 and viceversa) and,
thus, it is preferable to act on pairs of components with JFI>0. In this case, if we refer again to
the case g=0s=qs= 10°=q;=0p, for the generic pair (i, h), the net contribution of the first-order
terms of eg. (1) equas zero since MRI(I)=MRI(h) and Aqg =-Aqg, and the system output
variation AO;," becomes:

2
A0, = aa—oAinqh = JFI(i,h)Aq Aq, <0 (13)

i h

The values of the DIM(i, h) and DIM'(i, h) and of the corresponding AOj, and AO;," for

the pairs (i, h)=(1, 2), (1, 3) and (2, 4) are reported in Table 1 and Table 2 respectively with
reference to the case 0=0s=0,= 10°=q,=0p, Aqi/qi=0.5, i=1, 2, 3, 4. Evidently, those pairs of
components with JFI>0, i.e. (1, 2) and (3, 4), are characterized by negative contributions
AO;,", corresponding to an increase in system unavailability. Indeed, if the unavailabilities of
two components in paralel logic are changed in opposite directions, then, since the
components with the lowest unavailability determines the unavailability of the pair, the
overall system unavailability decreases. On the contrary, if the unavailabilities of two
components belonging to different nodes in series are changed in opposite directions, then due
to the weak interactions among the components (JFI=0 in eg. (25)) the system unavailability
remains basically unchanged.
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CONCLUSIONS

This paper considers the differential importance measure, DIM, and the Joint Failure
Importance measure, JFI, recantly introduced in literature. The DIM is a first-order sensitivity
measure that ranks the parameters of the risk model acwrding to the fradion d the total
change in the risk that is due to a small change in the parameters values, taken one & atime,
and, by construction, it does not account for second-order interactions among components.
Instead, the JFI meeasure is a second order sensitivity measure, which considers the
interactions of coupled changes to system design.

In this paper, a second-order extension d the DIM, named DIM", is proposed for
accounting of the interactions of pairs of components when evaluating the change in system
performance due to changes of the reliability parameters of the components. The extension
aims at supplementing the first-order information provided by DIM with the secnd-order
information provided by JRI and JFI.

A numericd application is presented in which the informative contents of DIM and DIM"
are ommpared. The results confirm that in certain cases when second-order interadions among
components are accounted for, the importance ranking of the cmmponents may differ from
those produced by a first-order sensitivity measure. Obviously, the need o resorting to
information an sewnd-order effeds depends on the magnitude of the changes of the
parameters values and on the non linearity of the system.

It is down in the paper that in some gplications it is possble to determine a priori
whether the interadion term in DIM" can be neglected even for large changes in the
parameters, thus avoiding the computation of the JRI and JFI measures for all of the possble
pairs of components. In particular, second-order interactions among components are
negligible if the components do not appea together in the same minimal cutset. Furthermore,
guidelines for the use of DIM" in risk-informed dedsion-making are provided for different
Cases.
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