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Abstract: The Differential Importance Measure (DIM) is a first-order sensitivity measure 
that ranks the parameters of the risk model according to the fraction of total change in the risk 
that is due to a small  change in the parameters’ values, taken one at a time. However, the DIM 
does not account for the effects of interactions among components. In this paper, a second-
order extension of the DIM, named DIMII, is proposed for accounting of the interactions of 
pairs of components when evaluating the change in system performance due to changes of the 
reliabilit y parameters of the components. A numerical application is presented in which the 
informative contents of DIM and DIMII are compared.  

Keywords: Differential Importance Measure, Joint Importance, second order sensitivity 
measure.  

 

1. INTRODUCTION  

A limitation of the Importance Measures (IM) [1-3] currently used in reliabili ty and risk 
analysis is that they rank only individual components or basic events whereas they are not 
directly applicable to combinations or groups of components or basic events [2]. In practice 
different basic events may, for example, represent different modes of failure or unavailability 
of a single component and in order to determine the importance of such component one has to 
consider all the related basic events as a group. Furthermore, many risk-informed applications 
deal with evaluating the risk change associated to changes in the plant technical specifications 
(surveil lance and/or test frequencies, etc): such changes may indeed impact a group of 
components. To partially overcome this limitation, recently, the Differential Importance 
Measure, DIM, has been introduced for use in risk-informed decision making [3]. The DIM is 
a first-order sensitivity measure that ranks the parameters of the risk model according to the 
fraction of the total change in the risk that is due to a small change in the parameters’ values, 
taken one at a time. The DIM bears an important property of additivity: the DIM of a group of 
components or basic events is the sum of the DIMs of the single components or basic events 
of the group. However, since DIM considers risk changes due to small changes of the 
parameters’ values, it does not account for interactions among components.  

The need for IMs capable of considering combinations of components arises also when 
planning a budget-constrained improvement in the reliabil ity of a system design for example 
by replacing one of its components with a better-performing one, or by inspecting and 
maintaining it more frequently. Due to the budget constraints, the improvement may need to 
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be accompanied by the sacrifice of the performance of another, less important component. 
The interactions of these coupled changes to system design must be accounted for when 
assessing the importance of the system components. To this aim, second order sensitivity 
measures such as the Joint Reliabil ity Importance (JRI) and Joint Failure Importance (JFI) 
measures have been introduced [4, 5]. 

In this paper, a second-order extension of the DIM, named DIM II, is proposed for 
accounting of the interactions of pairs of components when evaluating the change in system 
performance due to changes of the reliabilit y parameters of the components. The extension 
aims at supplementing the first-order information provided by DIM with the second-order 
information provided by JRI and JFI. Obviously, the need of resorting to information on 
second-order effects depends on the magnitude of the changes of the parameters values and on 
the non linearity of the system.  

 

2. EVALUATING THE CHANGE IN THE SYSTEM PERFORMANCE 

We consider a system of n components. Let O be a generic measure of the system 
performance (e.g unreliabili ty, unavailabili ty, risk, etc., depending on the application at hand). 
The performance O is a function of the components’ unavailabili ties (or failure probabilit ies) 
qi, i=1, 2, …, n, i.e. O=gq(q1, q2, …, qn). A change in system performance due to arbitrary 
changes in the values of the qi, i=1, 2, n can be expanded in McLaurin series as: 
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Using the rare event approximation, the risk measure O can be written in terms of the 
probabilities of the ncs minimal cutsets: 
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where Mj is the probabil ity of the j-th cutset. Then, alternatively, the change in O due to 
generic changes of the parameters ∆qi, i=1, 2, …, n is [6]: 
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, and so on. Eq. (1) reduces to eq. (3) if the rare 

event approximation of eq. (2) holds. The right-hand part of eq. (3) contains as many terms as 
the largest number of components in any minimal cutset. The quantities Si, Sih, Sih…r can be 
straightforwardly calculated as follows [6]: Si is the sum of the contributions to O in eq. (2) of 
the minimal cutsets containing element i, with its unavailabil ity set to 1; Sih is the sum of the 
contributions to O of the minimal cutset containing elements i and h with their unavailabilit ies 
set to 1, Sih…r is the sum of the contributions of the minimal cutset containing elements i, h, 
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…, r with their unavailabil ities set to 1. Note from eq. (3) that the interaction terms Sih, Sih…r 
assume a value of zero if the components i and h, i, h, … and r, respectively do not appear 
together in one of the minimal cutsets. Thus, for example when the rare event approximation 
holds, for groups of components belonging to different blocks in series only the first-order 
terms in eq. (3) contribute to ∆O since they do not appear together in any minimal cutset. On 
the contrary, for components in parallel logic, contributions from the higher-order terms in eq. 
(3) are expected, since the components always appear together in a minimal cutset. 

 

3. FIRST-ORDER IMPORTANCE MEASURES: BIRNBAUM AND DIM 

The Marginal Reliability Importance (MRI) (often referred to as the Birnbaum IM) of 
component i is defined with respect to its unavailabili ty qi as [1, 4]: 

iq
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According to the MRI, components for which a variation in unavailability results in the 
largest variation of the system performance have the highest importance. 

The MRI applies when the components’ unavailabili ties or failure probabiliti es qi, i=1, 2, 
…, n are known explicitly. However, the quantities qi are often expressed in terms of 
additional reliability parameters xk, k=1, 2,…, np such as failure and repair rates, maintenance 
and inspection frequencies, etc: in turn, the system performance O can be expressed in terms 
of the parameters xk, i.e. )x,...,x,x(gO

pnx 21= . Furthermore, the MRI applies to single 

components. However, the changes may affect a number of components at the same time. For 
example, a change in a maintenance frequency will affect the unavailabili ties of all of the 
components that undergo that particular maintenance policy.  

Recently, the Differential Importance Measure (DIM) has been introduced to quantify the 
importance of the parameters xk entering the system performance model [3]. DIM considers 
the total variation of the output function O due to a small variation of its parameters, taken 
one at a time. If the variation of the parameter is small enough, the variation of O is the total 
differential dO: 
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The DIM of the parameter xl, DIM(xl), is defined as the fraction of the total change in O 
which pertains to the change in the parameter xl: 
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The DIM is additive in the sense that the DIM of a subset of parameters xr, xs, .., xt, is [3]: 
DIM(xr ∪ xs ∪ … ∪ xt)= DIM(xr)+ DIM(xs)+...+ DIM(xt). 
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The DIM can be useful in risk-informed applications involving the quantification of risk 
changes in O due to proposed changes of a plant technical specification, e.g. a 
surveil lance/test/maintenance frequency. Being a first order local sensitivity measure, the 
DIM can be used to forecast a finite change ∆O due to any change in the parameters’ values 
only provided that these latter changes are small enough to be used in (6). Only in this case, in 
fact, the higher-order contributions to ∆O in eqs. (1) and (3), which describe the interactions 
due to simultaneous change in pairs of parameters, triplets, etc. can be neglected. The effects 
of these interactions are ill ustrated in the next Section with reference to pairs of components. 

 

4. JOINT FAILURE AND RELIABILITY IMPORTANCES 

To evaluate quantitatively the interaction between components, the concepts of Joint 
Failure Importance (JFI) and of Joint Reliabilit y Importance (JRI) of pairs of components 
have been introduced as an extension to the single-component MRI [4, 5]. JFI is introduced 
when the  considered system performance O is a measure of the system loss (i.e. unreliabili ty, 
unavailabil ity, risk, etc.) and it is expressed in terms of the components’ unavailabil ities qi, 
i=1, 2, …, n. JRI refers to the case in which O is a measure of the system gain (i.e. reliability, 
availabili ty, etc.) and is expressed in terms of the components’ availabilities pi=1-qi. JFI and 
JRI for components i and h are defined as: 
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An interesting property of the joint importance measures is the possibility of determining 
the sign of JFI(i,h) and JRI(i,h) based on the relative logical position of components i and h 
within the system. In particular [4]: 

JFI(i,h) ≥ 0 (JRI(i,h) ≤ 0) for components in parallel  

JFI(i,h) ≤ 0 (JRI(i,h) ≥ 0) for components in series 

More generally: 

JFI(i,h) ≥ 0 (JRI(i,h) ≤ 0) if components i and h appear together in at least one minimal 
cut-set but not in any minimal path-set. 

JFI(i,h) ≤ 0 (JRI(i,h) ≥ 0) if components i and h appear together in at least one minimal 
path-set but not in any minimal cut-set. 

Joint importance measures are useful to quantify the interactions of components with 
respect to the system performance. Awareness of such interactions among components is 
useful when the analysts are interested in evaluating the effects on the system of modifications 
regarding two components or, in a more general sense, two parameters (e.g. failure rates, 
maintenance periods, etc). Indeed, when planning a modification of a reliabili ty parameter of 
a component towards a better performance (e.g. replacing it with a better-performing one, 
inspecting or maintaining it more frequently) one is often forced, by budget constraints, to 
sacrifice the performance of another. 
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5. SECOND ORDER DIFFERENTIAL IMPORTANCE MEASURE 

For finite changes in the components unavailabilit ies ∆qi, it may be relevant to evaluate 
also the second order contribution to ∆O. With reference to components i and h, the variation 
of O, ∆Oih, due to the variations of the parameters ∆qi and ∆qh is: 
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A second order DIM, DIM II can thus be defined as: 
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Note that, as stated in Section 2, when the rare event approximation can be used in the 
system modeling, one can neglect the computation of the JFI of pairs of components if the 
they do not belong to the same minimal cutset.  

 

6. NUMERICAL EXAMPLE  

6.1. Comparing the information of DIM and DIMII 
Consider the system of Figure 1. As system performance O we consider its limit 

unavailabil ity. The components’ unavailabil ities are q1=q2 =10-3, q3=q4=q<<1. In this 
numerical example we will compare the informative content of the measures DIM and DIMII 
when assessing the effect on the system performance O of changes in the components’ 
unavailabil ities of pairs of components. 

 

 

 

 

Figure 1. System reliabili ty block diagram 

 

Consider at first the behavior of DIM(1)=DIM(2) and DIM(3)=DIM(4) as functions of the 
parameter q=q3=q4 in the interval (5⋅10-4, 2⋅10-3) shown in Figure 2. The change in the 
parameters’ values is ∆qi=10-3⋅qi, for i=1, 2, 3, 4. For q=10-3 (i.e. q1=q2=q3=q4), the four 
components have the same DIM, due to the symmetry of the system. Then, as expected, in the 
cases q≠q1=q2 the most unavailable components are the most important according to the DIM. 
Indeed, DIM(1)=DIM(2) > DIM(3)=DIM(4) for q1=q2=10-3> q=q3=q4 and DIM(1)=DIM(2) < 
DIM(3)=DIM(4) for q1=q2=10-3<q= q3=q4. 

From the additivity property [3], the first order DIMs for the pairs of components are:  

DIM(1,2) = DIM(1) + DIM(2) = 2⋅DIM(1) (10) 
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DIM(3,4) = DIM(3) + DIM(4) = 2⋅DIM(3) 

DIM(1,3) = DIM(1) + DIM(3) = DIM(2) + DIM(4) = DIM(2,4) 

The behavior of the DIMs for the above pairs of parameters in the system is reported in 
Figure 3 as functions of q. Note that for q=10-3=q1=q2, all measures DIM(1,2), DIM(1,3), 
DIM(2,4), are equal, due to the symmetry of the system and to the fact that the DIM considers 
the variation of one parameter value at a time. Still , when varying the values of the 
unavailabil ities of two components simultaneously, one would expect a difference between 
the case of a pair of components in parallel, say (1, 2), and the case of a pair of components in 
series, say (1, 3). This difference can be traced by considering second-order interactions 
among the components, i.e. the DIMII. In the cases q≠q1=q2, the measures 
DIM(1,2)=2· DIM(1) and DIM(3,4)=2· DIM(3) duplicate the behavior of DIM(1)=DIM(2) and 
DIM(3)=DIM(4). Instead, DIM(1,3) =DIM(2,4) is independent on q. Indeed,  
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Let us now compute the second-order sensitivity coeff icients (eq. (7)): 
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JFI(3,4) = 1-q1q2=1 - 10-6     JFI(2,4) = - q1q2= - 10-3q 

As expected [4], JFI<0 for the components 1 and 3 in series and JFI>0 for the components 
1 and 2 and 3 and 4 in parallel. Furthermore, as anticipated in Section 2, the absolute value of 
the JFI(1, 3) of components 1 and 3 in series is smaller than that of the two parallel pairs (1,2) 
and (3, 4). Indeed the values of the unavailabiliti es qi are such that the rare event 
approximation in eq. (2) certainly holds. This would suggest that, actually, one could neglect 
the contribution corresponding to the interaction term of the couple of components in series.  

Figure 3 also reports the measures DIM II(1, 2), DIMII(1, 3) and DIM II(3, 4) (symbols ◊, 
dots and *, respectively). Due to the small values of the variation of the parameters considered 
(∆qi= 10-3 ⋅ qi i=1, 2, 3, 4), the measures DIM II do not differ appreciably from the DIM, since 
the contribution to the total change in the output performance O of the second-order terms are 
negligible. In the same Figure the DIM and DIM II measures are reported for pairs of 
components in correspondence of larger values of the relative parameters’ change, ∆qi/qi, i=1, 
2, 3, 4. As expected, the values of DIM and DIMII differ progressively when higher values of 
∆qi/qi are considered. As a general observation, DIMII differs significantly from DIM for the 
pair (1,3) of components in series logic, whereas DIMII reproduces the behaviour of DIM for 
the pairs (1,2) and (3,4) of components in parallel logic. This behaviour could seem 
unexpected since, as above stated, the interaction term JFI of components in series logic is 
negligible, whereas that of the components in parallel logic is large. In words, this fact can be 
explained as follows. In practice, due to the values of JFI(1,3)≈0 and JFI(1,2)≈1 (and 
JFI(3,4)≈1) we can write for DIMII(1,3) and DIM II(1,2): 
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Due to the small value of the interaction term JFI(1,3)≈0, the numerator of DIMII(1,3) is 
equal to that of the DIM(1,3) for any value of ∆qi/qi, whereas the denominator, which 
accounts for all of the JFIs, progressively increases for increasing values of ∆qi/qi. As a 
consequence of this fact, the value of DIMII(1,3) is progressively shifted downwards for 
increasing values of ∆qi/qi. Instead, as for the pair (1,2), both the numerator and the 
denominator of eq. (12) change their values from those of the numerator and the denominator 
of DIM(1,2), but the change is such that the ratio is approximately independent on ∆qi.  

Let us first consider the case q=10-3=q1=q2. While still DIM(1,2)=DIM(1,3)= DIM(3,4)= 
0.5 by construction, DIMII(1,2) = DIM II(3,4) > DIM II(1,3) (Table 1). The ranking produced by 
the measure DIMII suggests that increasing simultaneously the unavailabili ties of the pairs of 
components in parallel logic (1,2) or (3,4) has a greater impact on the system unavailability 
than the same action performed on the pairs of components in series (1,3). This result is 
physically reasonable. An increase in unavailabil ity of two components has more effect on the 
system unavailability if performed on components on the same node (i.e. in parallel) rather 
than on components on different nodes (i.e. in series). Indeed, with reference to the values of 
the ∆Oih

II reported in Table 2, in the former situation the change in components 
unavailabil ities is more critical since it impacts components on the same node, thus creating a 
system bottleneck. Instead, the latter situation is less critical for the system unavailability 
since the increase in components unavailability is shared by the two nodes. Table 1 also 
reports the values of DIM and DIM II corresponding to q=9⋅10-4 and q=1.2⋅10-3, for the case 
∆qi/qi =0.5. As for the case q=9⋅10-4, DIM(1, 2)>DIM(1, 3)>DIM(3, 4), whereas DIM II(1, 
2)>DIMII(3, 4)>DIMII(1, 3). Again, DIM considers the contribution to ∆O arising from a 
change in the unavailabilit y of one of the components at a time. Therefore, the pair (1,2) 
results the most important according to this measure, since the two components 1 and 2, have 
the largest values of the first-order DIM (Figure 2), being more unavailable than components 3 
and 4 (q1=q2=10-3>q3=q4=9⋅10-4). The ranking provided by DIMII is different and it reflects 
again that an increase in the unavailabiliti es of two components has more effect on the system 
unavailabil ity if performed on components on the same node rather than on components on 
different nodes (refer also to the values of ∆Oih

II reported in Table 2). This leads to the ranking 
inversion between the pairs (3,4) and (1,3). Similar considerations apply to the case of 
q=1.2⋅10-3. 

 

Table 1. Values of DIM and DIM II for the pairs of components (1,2), (1,3) and (3,4) for different 
values of q and ∆qi/qi, i=1, 2, …, n 

 ∆qi/qi DIM DIM II 
q i=1 i=2 i=3 i=4 (1,2) (1,3) (3,4) (1,2) (1,3) (3,4) 

10-3 0.5 0.5 0.5 0.5 0.50 0.50 0.50 0.50 0.40 0.50 
9⋅10-4 0.5 0.5 0.5 0.5 0.55 0.50 0.45 0.55 0.40 0.45 

1.2⋅10-3 0.5 0.5 0.5 0.5 0.41 0.50 0.59 0.41 0.40 0.59 
10-3 -0.5 -0.5 -0.5 -0.5 0.50 0.50 0.50 0.50 0.67 0.50 
10-3 0.5 -0.5 -0.5 +0.5 0.50 0.50 0.50 0.50 0.00 0.50 
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Table 2. Values of ∆Oih and ∆Oih
II for the pairs of components (i, h), for different values of q and 

∆qi/qi, i=1, 2, …, n 

 ∆qi/qi ∆Oih ∆Oih
II 

q i=1 i=2 i=3 i=4 (1,2) (1,3) (3,4) (1,2) (1,3) (3,4) 
10-3 0.5 0.5 0.5 0.5 10-6 10-6 10-6 1.25⋅10-6 10-6 1.25⋅10-6 

9⋅10-4 0.5 0.5 0.5 0.5 10-6 9.05⋅10-7 8.10⋅10-7 1.25⋅10-6 9.05⋅10-7 1.01⋅10-6 

1.2⋅10-3 0.5 0.5 0.5 0.5 10-6 1.22⋅10-6 1.44⋅10-6 1.25⋅10-6 1.22⋅10-6 1.80⋅10-6 
10-3 -0.5 -0.5 -0.5 -0.5 -10-6 -10-6 -10-6 -7.50⋅10-7 -10-6 -7.50⋅10-7 
10-3 0.5 -0.5 -0.5 +0.5 0 0 0 -2.50⋅10-7 0 -2.50⋅10-7 

 

 

 

 

 

 

 

 
 

Figure 2. Values of DIM(1)=DIM(2) and DIM(3)=DIM(4) for different values of q, ∆qi=10-3qi 
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Figure 3. Values of DIM and DIMII for the pairs of components (1,2), (1,3)=(2,4) and (3,4) for 

different values of q. Case of ∆qi = 10-3 qi, i=1, 2, …, n 
 

6.2. Use of DIMII in risk-informed applications 
In risk-informed applications, the information provided by DIM II is handled by a decision-

maker in different ways, depending on his/her goals.  

Consider firstly the case of an analyst interested in reducing the costs associated to the 
system operation by replacing two components with two less expensive, but also less 
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performing, ones or by extending their maintenance frequencies. For example, with reference 
to the case of q=10-3=q1=q2 and ∆qi/qi=0.5, the performance of the pair of components (1, 3) 
can be sacrificed if required by budget constraints with minor consequences on the system 
unavailability, contrary to the case of acting on the pairs of components (1, 2) or (3, 4) in 
parallel logic, as DIMII(1,2) = DIMII(3,4) > DIMII(1,3). Note that this conclusion can be 
inferred only on the basis of the ranking produced by the second-order measure DIMII, as 
DIM(1, 2)=DIM(1, 3)=DIM(2 ,4). 

Consider now the case in which the analyst is interested in identifying the pairs of 
components to be improved to get the largest improvement in system performance. In the case 
of q=10-3=q1=q2 and ∆qi/qi= - 0.5, i=1, 2, 3, 4 the values of the DIMII (reported in Table 1) 
suggest that the improvement efforts should be devoted to the pair of components (1, 3) in 
series, characterized by the largest value of DIMII, and thus leading to the largest reduction in 
system unavailability (see also the values of ∆Oih

II in Table 2). Again, this result is obvious 
from the physical viewpoint: the improvement has more beneficial effects on the system 
availability if performed on components on different nodes (i.e. in series) rather than on 
components on the same node (i.e. in parallel). Indeed, in the latter case, the improvement 
would be less effective due to the presence of the other non-improved node in series, which 
remains an unvaried system bottleneck. 

Another situation that can occur in risk-informed decision-making arises from the fact 
that, in practice, the analyst has often to cope with a constrained budget that might forbid 
spending resources on two components of a pair. Thus, in this case the final decision of the 
analyst must be a trade-off between improving the availability of a component while 
worsening that of another, still with the goal of attaining the largest improvement in the 
system availability. In this case, the analyst is looking at changes in the components 
unavailabilities ∆qi and ∆qh with opposite signs (i.e. if ∆qi>0 then ∆qh<0 and viceversa) and, 
thus, it is preferable to act on pairs of components with JFI>0. In this case, if we refer again to 
the case q=q3=q4= 10-3=q1=q2, for the generic pair (i, h), the net contribution of the first-order 
terms of eq. (1) equals zero since MRI(i)=MRI(h) and ∆qi =-∆qh and the system output 
variation ∆Oih

II becomes: 

0
2

≤=
∂∂

∂= hihi
hi

II
ih qq)h,i(JFIqq

qq

O
O ∆∆∆∆∆  (13) 

The values of the DIM(i, h) and DIMII(i, h) and of the corresponding ∆Oih and ∆Oih
II for 

the pairs (i, h)=(1, 2), (1, 3) and (2, 4) are reported in Table 1 and Table 2 respectively with 
reference to the case q=q3=q4= 10-3=q1=q2, ∆qi/qi=0.5, i=1, 2, 3, 4. Evidently, those pairs of 
components with JFI>0, i.e. (1, 2) and (3, 4), are characterized by negative contributions 
∆Oih

II, corresponding to an increase in system unavailability. Indeed, if the unavailabilities of 
two components in parallel logic are changed in opposite directions, then, since the 
components with the lowest unavailability determines the unavailability of the pair, the 
overall system unavailability decreases. On the contrary, if the unavailabilities of two 
components belonging to different nodes in series are changed in opposite directions, then due 
to the weak interactions among the components (JFI≈0 in eq. (25)) the system unavailability 
remains basically unchanged. 
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CONCLUSIONS 

This paper considers the differential importance measure, DIM, and the Joint Failure 
Importance measure, JFI, recently introduced in literature. The DIM is a first-order sensitivity 
measure that ranks the parameters of the risk model according to the fraction of the total 
change in the risk that is due to a small change in the parameters’ values, taken one at a time, 
and, by construction, it does not account for second-order interactions among components. 
Instead, the JFI measure is a second order sensitivity measure, which considers the 
interactions of coupled changes to system design. 

In this paper, a second-order extension of the DIM, named DIM II, is proposed for 
accounting of the interactions of pairs of components when evaluating the change in system 
performance due to changes of the reliabilit y parameters of the components. The extension 
aims at supplementing the first-order information provided by DIM with the second-order 
information provided by JRI and JFI.  

A numerical application is presented in which the informative contents of DIM and DIM II 
are compared. The results confirm that in certain cases when second-order interactions among 
components are accounted for, the importance ranking of the components may differ from 
those produced by a first-order sensitivity measure. Obviously, the need of resorting to 
information on second-order effects depends on the magnitude of the changes of the 
parameters values and on the non linearity of the system.  

It is shown in the paper that in some applications it is possible to determine a priori 
whether the interaction term in DIMII can be neglected even for large changes in the 
parameters, thus avoiding the computation of the JRI and JFI measures for all of the possible 
pairs of components. In particular, second-order interactions among components are 
negligible if the components do not appear together in the same minimal cutset. Furthermore, 
guidelines for the use of DIMII in risk-informed decision-making are provided for different 
cases.  
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