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Abstract

A recently developed Centroidal Voronoi Tessellation (CVT) sampling method is investigated here to
assess its suitability for use in statistical sampling applications. CVT efficiently generates a highly uni-
form distribution of sample points over arbitrarily shaped M-Dimensional parameter spaces. On sev-
eral 2-D test problems CVT has recently been found to provide exceedingly effective and efficient
point distributions for response surface generation. Additionally, for statistical function integration and
estimation of response statistics associated with uniformly distributed random-variable inputs (uncor-
related), CVT has been found in initial investigations to provide superior points sets when compared
against Latin-Hypercube and Simple-Random Monte Carlo methods and Halton and Hammersley
quasi-Monte-Carlo sequence methods. In this paper, the performance of all these sampling methods
and a new variant (“Latinized” CVT) are further compared for non-uniform input distributions. Spe-
cifically, given uncorrelated normal inputs in a 2-D test problem, statistical sampling efficiencies are
compared for resolving various statistics of response: mean, variance, and exceedence probabilities.

Keywords: Centroidal Voronoi tessellation, statistical sampling methods, uncertainty propagation

1. INTRODUCTION AND BACKGROUND

It is often beneficial in statistical sampling and function integration to sample "uniformly" over the
applicable parameter space. Such uniformity, while conceptually simple and intuitive on a qualitative
level, is on a quantitative level somewhat complicated to describe and characterize mathematically.
Quantitative aspects of uniformity involve: 1) the equality with which points are spaced relative to one
another in the parameter space (are they all nominally the same distance from one another?); 2) uni-
formity of point density over the entire domain of the parameter space (i.e., uniform "coverage" of the
whole domain by the set of points, and not just good uniformity within certain regions of the space);
and 3) isotropy in the point placement pattern. Each of these aspects of uniformity can be quantified
by several mathematical measures as described in reference [2]. We will not discuss these measures
further here, but mention them to indicate that quantitative measures do exist for the notion of unifor-
mity.
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We find that for 2-D data sets the eye is an excellent integrator of the different aspects of
uniformity listed above. The intuitive sense of uniformity obtained from viewing sample sets in
a unit square (2-D hypercube) usually correlates very strongly with the quantitative measures.
Thus, for 2-D data sets like the ones we present later, fairly accurate visual judgements can be
made about whether one particular layout of sample points is mathematically more uniform than
another, or whether the uniformity varies significantly over the parameter space.

Achieving high sampling uniformity over generic domains is an area of active research.
Much effort has been applied to the problem of achieving uniform placement of N samples over
M-dimensional hypercubes, where M and N are both arbitrary. It is well recognized that Simple-
Random sampling (SRS) Monte Carlo does not do a particularly good job of uniformly spread-
ing out the sample points. The popular Latin Hypercube Sampling (LHS) method ([5]) generally
does a much better job of uniformly spreading out the points. This is due to the greater sampling
regularity over each individual parameter dimension before the individually generated parame-
ter values are randomly combined into parameter sets which define the coordinates of the sam-
pling points.

Recent efforts to modify LHS to get an even more uniform distribution of points over the
parameter space have included Distributed Hypercube Sampling (DHS, [12]) and Improved
[Distributed] Hypercube Sampling (IHS, [1]). The fundamentals and history of these are re-
viewed briefly in [18]. Though the quantitative measure of uniformity used for comparisons in
[1] and [12] was somewhat flawed, it does appear that DHS gives better sampling uniformity
than LHS, and IHS gives better sampling uniformity than DHS (but is increasingly more com-
putationally expensive as the dimensionality of the parameter space increases). We have recent-
ly become aware of another LHS variant, “Optimal Symmetric LHS” (OSLHS, [21]) which also
seems to improve the spatial uniformity of LHS samples. Its computational cost and perfor-
mance relative to DHS and IHS are not yet known, however.

A number of other potential approaches for achieving uniform point placement that are not
evolved from an LHS basis are reviewed (and some new ones are presented) in [7]. There, some
quantitative metrics related to visual/sensory perception of point uniformity in 2-D are reviewed
and some new ones are presented. Many of these non-LHS-based approaches appear to work
very well in 2-D, but it is said in [7] that some of the methods may not be applicable or may not
perform well in more than two dimensions, and some clearly will not scale up to high dimen-
sions affordably. Others seem more promising for high dimensions, but have not yet been inves-
tigated enough.

The so-called “Quasi- Monte Carlo” (QMC, see e.g. [14]) sub-random low-discrepancy se-
quence methods can often achieve reasonably uniform sample placement in hypercubes. The
strength of these sequence methods (Halton, Hammersley, Sobol, etc.), is that they can produce
fairly uniform point distributions even though samples are added one at a time to the parameter
space. The one-at-a-time incremental sampling of QMC (and SRS) enables these methods to
have better efficiency prospects than CVT and LHS-type methods in the area of error estimation
and control. Not only this, the results achieved are often quite good. For resolving the mean and
standard deviation of response measures, Hammersley sequences were found in [11] to con-
verge to within 1% of exact results 3 to 100 times faster than LHS over a large range of test prob-
lems. For resolving response probabilities, Hammersley and modified-Halton were found in
[15] to perform roughly the same as LHS on balance over several test problems.
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However, when the hyperspace dimension becomes moderate to large and/or the sampling
density becomes high, some (perhaps all?) sequences suffer from spurious correlation of the
samples. This is shown for standard Halton sequences in 16-D (ref. [12]) and 40-D (ref. [15]).
Sometimes a modification can be found to suppress or delay the onset of spurious correlation –
as a fix from the literature implemented in [15] shows for Halton sequences.

Recently, a long-recognized approach for achieving uniformity of point placement in M-di-
mensional volumes, called “Centroidal Voronoi Tessellation” (CVT), has been made compu-
tationally efficient ([10]) for implementing the principles of Centroidal Voronoi diagrams
([6],[13]). These diagrams subdivide arbitrarily shaped domains in arbitrary-dimensional space
into arbitrary numbers of nearly uniform subvolumes, or Voronoi cells/regions. Given a set of
N points {zi} (i=1,...,N) in an M-dimensional hypercube, the Voronoi region or Voronoi cell Vj
(j=1,...,N) corresponding to zj is defined to be all points in the hypercube that are closer to zj than
to any of the other zi’s. The set {Vi} (i=1,...,N) is called a Voronoi tessellation or Voronoi dia-
gram of the hypercube, the set {zi} (i=1,...,N) being the generating points or generators. A cen-
troidal Voronoi tessellation (CVT) is a special Voronoi tessellation with the property that each
generating point zi is itself the mass centroid of the corresponding Voronoi region Vi.

Although CVTs are deterministic, they can be converged to with probabilistic sampling
methods. In [10], new probabilistic CVT construction algorithms were introduced, implement-
ed, and tested. These methods are generally much more computationally efficient than previous
deterministic and probabilistic methods for constructing CVTs.

The CVT concept and the algorithms in [10] for their construction can be generalized in
many ways (see [3] for details). For example, instead of a hypercube, general regions in M-di-
mensional space can be treated. This feature has been exploited with great success (see [6]) for
discretizing arbitrary 2-D and 3-D domain volumes for computational mechanics analysis with
meshless analogues of finite element methods. Furthermore, points can be distributed non-uni-
formly according to a prescribed density function over the space (like the bi-normal density
function that Figure 7 corresponds to).

In initial investigations ([2]) for 2-D, 7-D, and 20-D test cases, CVT has provided greater
sampling uniformity than Halton, Hammersley, Sobol, SRS, LHS, DHS, and IHS according to
a meaningful subset of non-flawed quantitative quality measures. Additionally, no degradation
of sampling uniformity has been detected in higher dimensions (i.e., for the 20-D case).

It is therefore natural to ask whether CVT can be applied for: A) statistical sampling over
arbitrary-dimensional spaces of input random variables to calculate various statistics of output
response behavior; B) function integration over arbitrarily shaped domains; and C) whether it
can serve as a method for generating favorable point distributions for improved response-sur-
face accuracy.

A preliminary positive indication regarding item C) for response surface generation is pre-
sented in [18]. There, CVT was shown on several 2-D test problems to provide superior point
distributions for generating locally-conforming Moving Least Squares response surfaces. Point
distributions by CVT, SRS, LHS, and a structured sampling method with deterministically uni-
form point placement ([17]) were tried in the study.

Reference [19] compared the above sampling methods for sampling performance in 2-D test
problems of statistical function integration and estimation of response statistics associated with
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uniformly distributed random-variable inputs (uncorrelated). By the same weighted measure of
sampling effectiveness defined and used in Section 3.3 of this paper, CVT handily outperformed
SRS, LHS, Halton, and Hammersley in resolving various statistics of response: mean, variance,
and exceedence probabilities.

In this paper we take a first step toward examining the potential of CVT for improved sta-
tistical sampling given non-uniform inputs. Specifically, the performance of the above sampling
methods and a new CVT variant (“Latinized” CVT) are compared for non-uniform uncorrelated
input distributions in a 2-D test problem. Statistical sampling efficiencies are compared for cal-
culating response mean, variance, and exceedence probabilities.

2. UNIFORMLY DISTRIBUTED TEST POINT-SETS AND THEIR MAPPING TO BINORMAL JOINT

DENSITIES

Figure 1 shows three LHS and three corresponding CVT point sets for 100 samples in a 2D
unit hypercube. The three LHS point sets were generated with the software [9] for different ini-
tial seeds (Seed1 = 123456789, Seed2 = 192837465, Seed3 = 987654321) and a uniform joint
probability density function (JPDF) over the unit-square parameter space. The three corre-
sponding CVT point sets were generated with the software [4] by using the LHS sets as initial
conditions (starting point locations) from which the CVT iterations begin. In all cases each CVT
set is much more uniform visually (and quantitatively, see [2]) than its associated LHS set. All
three CVT sets are relatively similar visually and quantitatively, even though starting from three
very different initial conditions given by the LHS sets.

The LHS sets exhibit significantly more clustering and non-uniformity of the points than the
CVT sets. For a visual indicator of sampling uniformity, Figure 5 compares a 25-sample LHS
set and a 25-sample CVT set started from the LHS set. Non-overlapping circles are drawn in
each domain, where each sample point has a circle centered about it having a radius proportional
to the distance from the point to its nearest neighbor. The surrounding circles for the CVT set
are all fairly uniform in size, whereas the variance in circle size is very large for the LHS set.
Thus, the LHS point sets are relatively non-uniform in their “coverage” of the domain.

Besides the three LHS sets and three corresponding CVT sets shown in Figure 1, three SRS
sets generated from initial seeds 1, 2, and 3 will also be tested here. These point sets can be seen
in reference [18]. They exhibit even less uniformity than the LHS sets in Figure 1. Three CVT
sets derived from the three different SRS sets as initial conditions can also be seen in [18]. The
different LHS and SRS initial conditions do not have much of an impact on final CVT point uni-
formity, so the CVT algorithms appear to be robust in this regard.

Figures 2 and 3 show Halton and Hammersley point sets and the corresponding CVT sets
derived from them. Again, the resulting CVT sets are of essentially equivalent uniformity. The
Halton point set is noticeable and quantitatively more uniform than any of the LHS sets; the
Hammersley set is even more uniform than the Halton set; and the CVT sets in Figures 1, 2, and
3 are even more uniform than the Hammersley set.

In reference [19] we compared the mentioned point sets for effectiveness in 2-D test prob-
lems of statistical function integration and estimation of response statistics for the case of uni-
formly distributed input random variables (uncorrelated). The CVT point sets performed best,
as will be summarized in Section 4 of this paper. In this paper we focus on comparing the per-
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Level 4 Level 6

Figure 1. 100-point sample sets on a 2-D unit hypercube for: A) Left Column– uniform JPDF
LHS Monte Carlo with three different initial seeds; and B) Right Column–
corresponding uniform JPDF CVT sets starting from LHS sets as initial conditions.

LHS2 point set (from seed 2) CVT-LHS2 point set (from LHS2)

LHS3 point set (from seed 3) CVT-LHS3 point set (from LHS3)

LHS1 point set (from seed 1) CVT-LHS1 point set (from LHS1)
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formance of the above sampling methods and a new CVT variant (“Latinized” CVT, see [2]) as
starting sets for mapped non-uniform point distributions intended to reflect a JPDF of uncorre-
lated normal inputs.

Our 2-D test problem has two random inputs p1 and p2 from independent normal distribu-
tions having means 0.5 and standard deviations =0.5/3. The corresponding JPDF is shown in
Figure 4 after truncation of the function beyond the unit p1-p2 parameter space and renormal-
ization to integrate to one over the space.

The following procedure is used to map a set of uniformly distributed points to a set that
reflects the desired non-uniform JPDF. First, for each random variable p in the problem, we con-
sider its cumulative distribution function CDF(p), where

Figure 2. 100-point sample sets on 2-D unit hypercube for:
A) Left plot– Halton QMC sequence;
B) Right plot– corresponding CVT set starting from the Halton set as initial
conditions.

Figure 3. 100-point sample sets on 2-D unit hypercube for:
A) Left plot– Hammersley QMC sequence;
B) Right plot– corresponding CVT set starting from the Hammersley set as initial
conditions.

σ
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EQ 1

and PDF(p) is the probability density function of the random input p. We note that the value of
the CDF ranges from 0 to 1 as the coordinate p ranges from 0 to 1 over our unit hypercube
domain. It can also be shown that realizations {pi} drawn at random from a density function
PDF(p) map through EQ 1 (setting p=pi) into a uniformly distributed set of realizations
{CDF(pi)}. This set is therefore distributed uniformly between 0 and 1.

Hence, we recognize that the above properties can be used to inverse-map numbers uniform-
ly distributed between 0 and 1 (produced, e.g., by a random number generator), into realizations
{pi} that would appear to be drawn from the density function PDF(p). In a multidimensional
problem, we inverse-map the coordinates of points uniformly distributed in the hypercube into
transformed point sets that reflect the individual or “marginal” PDFs of the random inputs con-
tributing to the Joint PDF. Figure 5 helps visualize the multidimensional mapping process. The
tick marks on the coordinate axes indicate the projections of the points onto the coordinate axes.
The (hopefully) uniformly distributed tick marks ranging from 0 to 1 on each coordinate axis
give the random values that are inverse-mapped through the marginal CDFs into transformed
tick locations ranging from 0 to 1 on the coordinate axes of the JPDF space. Thus, uniformly
distributed points in a unit hypercube are transformed to new locations in the unit hypercube.
The transformed coordinate sets define point locations distributed according to the target JPDF.
(Our transformation algorithm for mapping uncorrelated uniformly distributed points sets to bi-
normally distributed point sets was verified as described in Section 3.2.) Correlation between
random variables can be imparted with the rank correlation procedure described in [8].

Figure 4. Joint Probability Density Function describing the random variables in
the problem: normally distributed parameters p1 and p2 with means
0.5, std. deviations =0.167, and truncation of the unit square
parameter space at 3  above and below the mean values.

σ
σ

CDF p( ) PDF p'( ) p'd

0

p 1≤
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The mapping transformation presupposes a point set in an M-dimensional unit hypercube
with point locations that project with uniform spacing onto all coordinate axes. However, con-
sider the point sets in Figure 5. Though the CVT set is more uniform volumetrically than the
LHS set, the LHS points clearly project more uniformly onto the coordinate axes. The projec-
tions of the CVT points occur in clusters that portray a “banded” distribution over the 0 to 1
range on each axis, as opposed to the desired uniform distribution. In the limit of a perfectly
volumetrically uniform distribution of points over the domain, say a 5x5 rectangular array of
points on the unit square, the points would project onto the coordinate axes making 5 uniformly
spaced tick marks. These marks would inverse map through the marginal CDFs into only 5 dif-
ferent values or samples of each input variable. Thus, out of twenty-five sampling opportunities,
each input variable is sampled at only five values. However, this is not automatically bad; the
25 particular sets or combinations of the five values of each input variable (when the uniform
5x5 grid of points is mapped to the JPDF space) may pose certain advantages over other point
layouts. We are presently striving to understand the particular benefits and disadvantages that
arise here.

The LHS point set, on the other hand, would sample each of the input variables at 25 differ-
ent values. By the nature of LHS ([5]), a sample value would be picked at random from within
each of the 25 equal intervals on the 0 to 1 range of each marginal CDF. These would map to 25
points in the JPDF space that each sample a different value of the input variables.

One measure of a point set’s uniformity of projection onto all the coordinate axes is called
its discrepancy. As uniformity increases, discrepancy decreases. LHS is a lower-discrepancy
sampling method than CVT is. Methods specifically designed with low discrepancy in mind are
the quasi- or sub- random low-discrepancy sequence methods Halton, Hammersley, Sobol, etc.
([14]). These can have both lower discrepancy than standard LHS and higher volumetric uni-
formity. Though CVT tends to have better volumetric uniformity than the sequence methods,
which helps its relative performance in other areas (cf. [18], [19]), it also has much higher dis-
crepancy, which hurts its relative performance as a sampling basis for non-uniformly-random

25 LHS points on Unit Square 25 CVT points on Unit Square
Figure 5. LHS and CVT sample sets showing relative uniformities of point spacing and

discrepancies of point projections onto coordinate axes.
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inputs. Therefore, a hybrid of CVT and LHS has recently been formulated ([2]) with appears to
have both lower discrepancy than pure CVT and higher volumetric uniformity than pure LHS.
In the next section we compare the performance of this hybrid “Latinized” CVT (LCVT) against
pure CVT and the other sampling methods.

Figure 6 shows uniformly distributed point sets from SRS, LHS, CVT, LCVT, Halton, and
Hammersley methods, and corresponding mapped bi-normal point sets. The SRS, LHS, CVT,
and LCVT uniform and mapped sets are typical of the three sets obtained from three different
initial seeds described at the start of this Section. The SRS, LHS, CVT, and LCVT sets plotted
in Figure 6 correspond to Seed 1. Our mapping process was checked by verifying that our bi-
normal results mapped from the Seed 1, 2, and 3 uniform LHS sets in Figure 1 were essentially
identical to bi-normal LHS sets generated directly from the LHS code ([8]) that produced the
three uniform LHS sets. Thus, our mapping process corresponds almost exactly to the mapping
process used in the well-pedigreed code [8].

The effect of high discrepancy in uniform CVT sets is immediately apparent in the mapped
set in Figure 6. The mapped CVT set has a rectangular shaped layout of points rather than a cir-
cularly oriented layout seemingly more appropriate for the circularly symmetric bi-normal
JPDF targeted (Figure 4). Unexpectedly, we find in the next section that this non-intuitive rect-
angular shaped set of points actually performs relatively well among the six types of mapped
sets shown in Figure 6. This rectangular-shaped set performs much better, in fact, than the much
more likely looking set shown in Figure 7, which was generated directly with density-weighted
CVT. The set mapped from uniform Latinized CVT appears much closer to a bi-normal density
than the rectangular mapped CVT set, but actually doesn’t perform quite as well. The perfor-
mance of the various mapped sets is examined more closely in the next Section.

3. EVALUATION OF STATISTICAL SAMPLING EFFECTIVENESS OF THE METHODS

3.1. 2-D Model Response Function and Statistical Measures of Response in Performance
Evaluation

Figure 8 shows an analytic multi-modal function describing system response r as a function
of two system inputs p1 and p2:

EQ 2

on the domain  and , where , .

A statistical problem arises if p1 and p2 are random variables. In that case, any particular
realization p1i and p2i of the stochastic variables yields a deterministic response ri as given by
the above functional relationship. An ensemble of responses accompanies the different realiza-
tions of p1 and p2 as they vary stochastically or randomly according to their individual propen-
sities, or joint propensities if the two variables are correlated.

The JPDF likelihood function for attaining various input combinations of p1 and p2 maps
through the response function r(p1,p2) into a corresponding likelihood function for response
values. Operationally, the resulting response probability density function, PDF(r), can be ap-
proached closer and closer via Monte Carlo sampling as more and more parameter sets or real-

r(p1,p2)= 0.8κ 0.35 2.4π κ
2

------- 
 sin+ 1.5 1.3θ( )sin[ ]

0 p1 1≤ ≤ 0 p2 1≤ ≤ κ p1( )2
p2( )2

+= θ p2
p1
------- 

 atan=
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Unmapped, Uniform Mapped Bi-normal

Figure 6. 100-point sample sets on a 2-D unit hypercube for:
Left Column– uniformly distributed point sets
Right Column– corresponding bi-normally distributed point sets
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izations (p1,p2)i are randomly generated from the governing input JPDF and are propagated
through the response function r(p1,p2) into response realizations ri. The response realizations
are distributed in the response space (i.e., along the response coordinate axis r) with a density
that, as more and more samples are added, trends toward the exact PDF of response.

Very often, only certain statistical measures of the PDF of response are desired or can be
reasonably estimated. Response mean, , and standard deviation, , can be estimated directly
from the mean and standard deviation of the population or set {ri} of realizations. We have
the following definitions:

Figure 7. 100-point set in a unit square, generated directly with density-weighted
CVT to model the bi-normal joint probability density function shown in
Figure 4.

Figure 8. 2-D model function for system response as a function of
input parameters p1 and p2.

µr σr

µ̂r σ̂r
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EQ 3

EQ 4

where N is the number of realizations or samples of response.

Also of interest is the probability of response exceeding (or not exceeding) some particular
threshold value rT. The former is equivalent to the volume integral of the joint probability den-
sity function JPDF(p1,p2) integrated over the region of the p1-p2 domain where response ex-
ceeds the stipulated threshold rT. Three such regions corresponding to thresholds rT=1.0, 0.5,
and 0.2 are shown in Figure 9 (as shaded areas on the cutting planes rT=1.0, 0.5, 0.2) for our
model function EQ 2.

Exceedence probability is very simply estimated as the ratio of the number of calculated re-
sponse values at or above the given threshold value, to the total number of samples N drawn
from the JPDF. As the number of response realizations increases, the estimate (quotient) trends
toward greater accuracy, i.e., toward the actual exceedence probability. This is of course also
true for the estimates  and  of response mean and standard deviation.

3.2. Comparison of Response Statistics from Various Sampling Methods

Here we compare estimates of response mean, standard deviation, and exceedence probabil-
ities as obtained from the various sample sets represented by the right column in Figure 6. We
map these {(p1,p2)i} sets through our response function EQ 2 to obtain corresponding response
sets, and then calculate the aforementioned statistics of the response populations. We then com-
pare the calculated statistics of each response set to reference values obtained from using three
million SRS samples at parameter values generated by the sampling code [9]. The reference val-

µ̂r
1
N
---- ri

i 1=

N

∑=

σ̂r
1

N 1–
------------- ri µ̂r–( )2

i 1=

N

∑
1
2
---

=

µ̂r σ̂r

Figure 9. Cutting planes through exact function showing associated exceedence
(shaded) and complement (unshaded) regions of the p1-p2 parameter space
for response threshold values of 1.0, 0.5, and 0.2, respectively.

(A) (B) (C)

391



ues are actually averages of three results, each obtained from one million samples generated
from random initial seeds “X”, “Y”, and “Z” (different from seeds 1, 2, and 3 used to generate
the 100-sample sets).

Three “replicate” sets of one million samples each are used in preference to one set of three
million samples so that empirical confidence intervals (CI) on the calculated averages could be
compared against their classical CI to reaffirm or caveat them. (Recent research ([16], [20]) has
shown that for SRS, empirical CI appear to be somewhat more accurate than classical CI.) Em-
pirical CI are formed by assuming the calculated statistic (response mean, standard deviation,
or exceedence probability) is a random realization from a normal or nearly normal distribution
about the exact result. Hence a T-distribution with 3 - 1 = 2 degrees of freedom can be used to
get confidence intervals about the small-sample average of the three replicates. Thus, for 95%
empirical CI the following formula is used:

95% confidence half-interval = EQ 5

where  is the sample standard deviation (cf. EQ 4) of the three estimates.

Table 1 shows various estimates of response mean, standard deviation, and exceedence
probabilities calculated from the three one-million-sample SRS sets. The average and standard
deviation of the estimates is also shown in the table.

3.2.1. Mean of Response

The average of the three 106-sample estimates of mean response is taken as the reference
value, =0.511879 from Table 1. Empirical confidence intervals on this reference mean are
obtained by substituting the standard deviation of the estimates, =5.829E-05 from Table 1,
into EQ 5. Thus, empirical 95% half-CI are 0.000145. When the reference mean is calculated
based on the entire population of N=3x106 samples, the value doesn’t change from the averaged
value based on three separate 106-sample sets, but the classical CI can be computed. The clas-
sical 95% half-CI from standard statistical formulas is somewhat larger, at 0.000185. Using the
larger (classical) CI here to be conservative, we say that with at least 95% certainty the true re-

Table 1.  Calculated response statistics for reference values (10^6 samples, Bi-normal JPDF,
SRS

response statistic

R
E

A
LI

Z
AT

IO
N 1 0.511872 0.162834 0.984429 0.448457

2 0.511824 0.162733 0.984585 0.447915

3 0.511940 0.162737 0.984511 0.449029

average 0.511879 0.162768 0.984508 0.448467

std. dev. 5.829E-05 5.720E-05 7.803E-05 0.000557

4.303
σ̂est

3
---------

σ̂est

µ̂r σ̂r P̂0.2 P̂0.5

µ̂ref

σ̂est
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sponse mean lies within the range ±0.000185 = (0.511694, 0.512064). The CI range
±0.000185 is typically very small compared to the nominal differences listed in Tables 2 and 3
between  and the estimates of mean response from the 100-sample sets.

We take the differences from in Tables 2 and 3 as nominal measures of the error of the
estimates from the 100-sample sets. For SRS, LHS, CVT, and LCVT methods there is no unique
100-sample set. For SRS and LHS the sets depend on the initial seed and the particular pairing
of the 0 to 1 random variates on the p1 and p2 axes (of a uniform JPDF set). The CVT, and
LCVT sets further depend –fairly insensitively if enough iterations are performed to stabilize
certain uniformity measures, see [2]– on the starting sample set (initial condition). We therefore
use three instantiations of SRS, LHS, CVT, and LCVT sets to begin to obtain a representative
picture of the errors we might expect from a random realization of each of these types of sets.
For each of these methods we average the individual errors from the three instantiations to de-
termine an average magnitude of error. This measure reflects contributions from both the aver-
age error (bias) in the three estimates, as well as the variance of the three results. (This error
measure is zero only if both the average error (bias) is zero and the variance of the estimates is
zero.) Furthermore, this error measure applies as well to the Halton and Hammersley results
which consist of only one instantiation because they are deterministic sampling methods.

To also obtain a broad picture of the each method’s sampling efficacy across the different
types of statistics calculated, we just use a simple ranking scheme for method accuracy for each
of the various calculated statistics (response mean, variance, and exceedence probabilities). This
allows us to compare method performance across the different types of statistics calculated. This
is perhaps somewhat more satisfying than the piecemeal comparisons in, e.g., [15] and [19] that
fail to give an explicit impression (quantitative balanced indicator) of the overall performance
of the various sampling methods across a matrix of test problems. Hence, the accuracy ranking
of each method with respect to average magnitude of error is given on the final lines in Tables
2 and 3. Rank 1 indicates the method was the most accurate and therefore ranked first in perfor-
mance. Rank 6 indicates the method was the least accurate among the sampling schemes tried.

Table 2.  Calculated response means (100 samples, Normal 2D JPDF)

SRS LHS Latinized CVT

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.49980 -0.01208 0.51466 +0.00278 0.51238 +0.00050

2 0.51058 -0.00130 0.51110 -0.00079 0.50780 -0.00408

3 0.50315 -0.00873 0.50752 -0.00436 0.51182 -5.867E-05

average 0.50451 -0.00737 0.51109 -0.00079 0.51067 -0.00121

std. dev. 0.00552 0.00552 0.00357 0.00357 0.00250 0.00250

avg. error mag. 0.00737
Rank 6

0.00264
Rank 4

0.00155
Rank 1

µ µ̂ref

µ̂ref

µ̂ref

µ̂r µ̂r µ̂r µ̂r µ̂r µ̂r
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3.2.2. Standard Deviation of Response

Tables 4 and 5 show the estimates of the standard deviation of response. Nominal errors
from the reference value =0.162768 are also shown. This value is the average of the three
standard deviations in Table 1 calculated from the three 106 SRS sets. The standard deviation of
these three estimates is =5.719E-05. Empirical 95% half-CI by EQ 5 are 0.000142. Accord-
ingly, we say that with 95% confidence the true response standard deviation lies within the
range ±0.000142 = (0.162626, 0.162910). The CI are negligibly small.

Table 3.  Calculated response means (100 samples, Normal 2D JPDF)

CVT Halton Hammersley

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.50868 -0.00320 0.50565 -0.00623 0.51029 -0.00159

2 0.51148 -0.00040

3 0.50840 -0.00348

average 0.50952 -0.00236 0.50565 -0.00623 0.51029 -0.00159

std. dev. 0.00170 0.00170

avg. error mag. 0.00236
Rank 3

0.00623
Rank 5

0.00159
Rank 2

Table 4. Calculated response standard deviations (100 samples, Normal 2D JPDF)

SRS LHS Latinized CVT

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.16874 +0.00597 0.18054 +0.01777 0.15782 -0.00495

2 0.16265 -0.00012 0.15570 -0.00707 0.15532 -0.00745

3 0.15699 -0.00578 0.14191 -0.02086 0.15554 -0.00723

average 0.16279 2.533E-05 0.15938 -0.00339 0.15623 -0.00654

std. dev. 0.00588 0.00588 0.01958 0.01958 0.00138 0.00138

avg. error mag. 0.00396
Rank 2

0.01523
Rank 6

0.00654
Rank 3

µ̂r µ̂r µ̂r µ̂r µ̂r µ̂r

σ̂ref

σ̂est

σ
σ̂ref

σ̂r σ̂r σ̂r σ̂r σ̂r σ̂r
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3.2.3. Response Exceedence Probability for rT=0.2

Tables 6 and 7 show the estimates of the exceedence probability (EP) corresponding to a re-
sponse threshold level of rT=0.2. Nominal errors from the reference value =0.984508 are
also shown. This value is the average of the three EPs in Table 1 calculated from the three 106

SRS sets. The standard deviation of these three estimates is =7.803E-05. Empirical 95%
half-CI by EQ 5 are 0.000194. When the reference EP is calculated based on the entire popula-
tion of N=3x106 samples, the value doesn’t change from the averaged value based on three sep-
arate 106-sample sets, but classical CI can be computed. The classical 95% half-CI from stan-
dard statistical formulas is somewhat smaller, at 0.000140. Using the larger (empirical) 95%
half-CI for conservatism, we say that to 95% confidence the true probability P0.2 of response
exceeding the threshold value rT=0.2 lies within the range ±0.000194 = (0.984314,
0.984702). The CI are negligibly small. We note that the SRS and LHS results are both ranked
at 4.5 because together they occupy the 4th and 5th ranks and both have the same error magni-
tude.

Table 5.  Calculated response standard deviations (100 samples, Normal 2D JPDF)

CVT Halton Hammersley

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.14804 -0.01473 0.15415 -0.00862 0.16077 -0.00200

2 0.14906 -0.01371

3 0.14615 -0.01662

average 0.14775 -0.01502 0.15415 -0.00862 0.16077 -0.00200

std. dev. 0.00148 0.00148

avg. error mag. 0.01502
Rank 5

0.00862
Rank 4

0.00200
Rank 1

σ̂r σ̂r σ̂r σ̂r σ̂r σ̂r

P̂0.2 ref,

σ̂est

P̂0.2 ref,
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3.2.4. Response Exceedence Probability for rT=0.5

Tables 8 and 9 show the estimates of the exceedence probability (EP) corresponding to a re-
sponse threshold of rT=0.5. Nominal errors from the reference value =0.448467 are also
shown. This value is the average of the three EPs in Table 1 calculated from the three 106 SRS
sets. The standard deviation of these three estimates is =0.000557. Empirical 95% half-CI
by EQ 5 are 0.001384. When the reference EP is calculated based on the entire population of
N=3x106 samples, the value doesn’t change from the averaged value based on three separate
106-sample sets, but classical CI can be computed. The classical 95% half-CI from standard sta-

Table 6. Calculated response exceedence probabilities, threshold=0.2 (100 samples, Normal 2D
JPDF)

SRS LHS Latinized CVT

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.97 -0.01451 0.98 -0.00451 0.99 +0.00549

2 0.99 +0.00549 0.99 +0.00549 0.98 -0.00451

3 0.99 +0.00549 1.00 +0.01549 0.98 -0.00451

average 0.98333 -0.00117 0.99 +0.00549 0.98333 -0.00118

std. dev. 0.01155 0.01155 0.01 0.01 0.00577 0.00577

avg. error mag. 0.00850
Rank 4.5

0.00850
Rank 4.5

0.00484
Rank 2

Table 7. Calculated response exceedence probabilities, threshold=0.2 (100 samples, Normal 2D
JPDF)

CVT Halton Hammersley

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.99 +0.00549 0.97 -0.01451 0.98 -0.00451

2 0.99 +0.00549

3 0.99 +0.00549

average 0.99 +0.00549 0.97 -0.01451 0.98 -0.00451

std. dev. 0.0 0.0

avg. error mag. 0.00549
Rank 3

0.01451
Rank 6

0.00451
Rank 1

P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2

P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2

P̂0.5 ref,

σ̂est
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tistical formulas is considerably smaller, at 0.000563. Using the larger (empirical) 95% half-CI
for conservatism, we say that to 95% confidence the true probability P0.5 of response exceeding
the threshold value rT=0.5 lies within the range ±0.001384 = (0.447083, 0.449851). The
CI are negligibly small.

Table 8. Calculated response exceedence probabilities, threshold=0.5 (100 samples, Normal 2D
JPDF)

SRS LHS Latinized CVT

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.43 -0.01847 0.44 -0.00847 0.46 +0.01153

2 0.41 -0.03847 0.45 +0.00153 0.43 -0.01847

3 0.43 -0.01847 0.45 -0.00847 0.47 +0.02153

average 0.42333 -0.02513 0.44667 -0.0018 0.45333 +0.00487

std. dev. 0.01155 0.01155 0.00577 0.00577 0.02082 0.02082

avg. error mag. 0.02513
Rank 6

0.00384
Rank 1

0.01718
Rank 5

Table 9. Calculated response exceedence probabilities, threshold=0.5 (100 samples, Normal 2D
JPDF)

CVT Halton Hammersley

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.44 -0.00847 0.46 +0.01153 0.44 -0.00847

2 0.46 +0.01153

3 0.46 +0.01153

average 0.45333 +0.00487 0.46 +0.01153 0.44 -0.00847

std. dev. 0.01155 0.01155

avg. error mag. 0.01051
Rank 3

0.01153
Rank 4

0.00847
Rank 2

P̂0.5 ref,

P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5

P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5
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3.3. Weighted Measure of Statistical Sampling Merit

The performance rankings for the sampling schemes and statistical quantities tested are
summarized in Table 10. The last column contains a normalized weighted figure of merit which
is a broad measure of each method’s sampling performance across the different types of statis-
tics calculated. This figure of merit is obtained by first averaging the rankings for the (two) ex-
ceedence probabilities calculated, and then averaging this rank for EPs in with the ranks for the
mean and standard deviation calculations. These averages are then divided by the number of
sampling methods involved. Hence, the normalized ranks in this column add up to unity. This
type of normalization allows comparison to other investigations such as those in, e.g., [11], [15]
and [19], if their results are also normalized in this manner. The bar chart in Figure 10 helps
visually assess the relative performance of the sampling methods according to our normalized
figure of merit. The shorter the bar, the better the particular method ranks on balance across all
the statistical quantities calculated. We see that Hammersley sampling ranked overall best on
this series of test problems, then LCVT, CVT, LHS, SRS, and finally Halton.

A second bar chart corresponding to the investigation in [19] is plotted in Figure 10. The
investigation was similar to the one in this paper, but compared calculated statistics based on a
uniform JPDF, and did not include the LCVT sampling method. Since there is no mapping here
from uniform sets to nonuniform JPDFs, only volumetric uniformity matters here and discrep-
ancy properties are immaterial. Since pure CVT is more volumetrically uniform than LCVT,
and for that matter, more volumetrically uniform than all the other sampling methods we’ve test-
ed, CVT would be expected to generally rank best. This is the case shown in Figure 10 for the
set of test problems investigated in [19].

4. DISCUSSION AND CONCLUSION

According to our weighted figure of merit, Hammersley sampling strongly ranked overall
best on the set of bi-normal JPDF test problems in this paper, then LCVT, CVT, LHS, SRS, and

Table 10.  Sampling Method accuracy rankings for various calculated statistics of response

Sampling
Method

response
mean

response
standard
deviation

exceedence
probability

(0.2 threshold)

exceedence
probability

(0.5 threshold)

normalized
weighted
average

SRS 6 2 4.5 6 0.21

LHS 4 6 4.5 1 0.20

CVT 3 5 3 3 0.17

LCVT 1 3 2 5 0.12

Halton 5 4 6 4 0.22

Hammersley 2 1 1 2 0.07
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finally Halton. Furthermore, in [11], Hammersley was found to be significantly more efficient
than SRS and LHS for resolving mean and standard deviation of response over a large set of test
problems. For resolving response probabilities, Hammersley and modified-Halton were found
in [15] to perform roughly the same as LHS on balance over several test problems.

Hence, Hammersley is consistently the best performer or among the top performers in these
empirical studies. Hammersley is also the only one of the top contenders in these studies that
allows incremental addition of samples to the parameter space (as little as one at a time), which
enables it to have better efficiency prospects in both error estimation and control. Given these
apparent advantages, it seems that Hammersley sampling might be a superior choice in many
circumstances. However, when the number of random inputs grows beyond 10 or so dimensions
and/or the sampling density in the hypercube becomes high, Hammersley might suffer from the
spurious correlation effects that plague other sub-random sequence methods. This is shown,
e.g., for standard Halton sequences in 16-D (ref. [12]) and 40-D (ref. [15]). This is something
the authors need to further inquire about; the answer may already exist in the literature.

Furthermore, we cannot yet dismiss the competitive potential of CVT or LCVT based on the
single limited investigation conducted in this paper. In particular, more than three instantiations
of SRS, LHS, CVT, and LCVT point sets are needed to more reliably reflect the true perfor-
mance tendencies of these methods on our test problems. Also, sample sets of much larger size
than 100 would be valuable particularly to get another significant digit of resolution in the cal-
culated exceedence probabilities in the study. Moreover, our results are somewhat tied to the
specific figure of merit employed in this study. This figure of merit has the advantage that it al-
lows comparison of merit across different types of statistics calculated and different problem

Figure 10.Normalized weighted measure of sampling method relative error
tendency in calculated mean, standard deviation, and rT = 0.2 and 0.5
exceedence probabilities for uniform and bi-normal joint probability
densities in 2D test problems.

Bi-normal JPDF Uniform JPDF
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sets, but other better measures may exist for our purposes. Certainly, our weighted metric does
not reveal method performance in the individual categories of response mean, standard devia-
tion, and exceedence probability (but these can be found in Table 10 for the problems in this
paper).

Finally, empirical studies are only point glimpses of the relative accuracy tendencies of one
method over another under a very specific set of conditions. Certainly, much more empirical
work needs to be performed to assess the performance of CVT and LCVT versus other sampling
methods over a diverse problem space, but even more valuable would be more theoretical work
to ascertain which method might be expected to perform best under given conditions (the char-
acteristics of the function involved; the number of input random variables/dimensions; character
of the JPDF, etc.).

This being said, we have early empirical indications of the promise of CVT in uniform JPDF
problems. In [19], CVT strongly ranked overall best as expected, then Hammersley, LHS, Hal-
ton, and finally SRS. In particular, for statistical integration of functions, which involves uni-
form sampling over the integration domain, CVT appears to be the natural best choice theoret-
ically, as corroborated by findings in [19]. Also, in point placement for response-surfaces, CVT
appears very promising relative to other structured and unstructured sampling methods (see
[18]). Already, for irregular (non-hypercube) interpolation and integration domains, the unifor-
mity of CVT sampling over the domain gives it a well recognized status in the application of 2-
D and 3-D meshless finite-element methods.

Hence, when volumetric sampling uniformity is desirable, early indications are that CVT
performs very well versus other sampling methods. However, to reiterate, much more empirical
and theoretical work remains to be done to broadly assess and characterize the potential of CVT
and LCVT for various sampling tasks.
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