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Abstract:   Often, the objectives in a computational analysis involve characterization of 

system performance based on some function of the computer response.  In general, this 

characterization includes (at least) an estimate or prediction for the performance measure and 

an estimate of the associated uncertainty.   Surrogate models can be used to approximate the 

response in regions where simulations were not performed.  Most surrogate modeling 

approaches, however, are based on smoothing and uncertainty in the response is typically 

specified in a point-wise (in the input space) fashion.  Together these aspects of the surrogate 

model construction might limit their capabilities. 

One alternative is to construct a probability measure, G(r) for the computer response, r, 

based on available data.  This “response-modeling” approach will permit probability 

estimation for an arbitrary event, E(r), based on the computer response.  In this general 

setting:  prob(E)= ( )( ) ( )∫r dGEI rr   where I is an indicator function.  Furthermore, one can use 

G(r) to calculate an induced distribution on the performance measure, pm.  For prediction 

problems where the performance measure is a scalar, the performance measure distribution 

pmF  is determined by: ( ) ( ) ( )∫ ≤=
r

pm dGzpmIzF rr)( .  We introduce response models for 

scalar computer output and then generalize the approach to more complicated responses that 

utilize multiple response models. 

Keywords: computational simulation, experimental design, meta-model, prediction, 
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1. INTRODUCTION 

Enhanced software methodology and improved computing hardware have advanced the 

state of simulation technology to a point where large physics-based codes can be a major 

contributor in many systems analyses.  This shift toward the use of computational methods 

has brought with it new research challenges in a number of areas including model validation, 

(model-based) prediction and characterization of input, modeling and predictive uncertainty.  

It is these challenges that have motivated the work described in this paper. 

The problem considered here is one of characterizing system performance based on results 

of a computer model.  It is assumed that the model is expensive to run and consequently only 

a limited number of evaluations can be performed.  It is assumed, further, that the model has 

been validated and hence the model has been determined to provide adequate results for the 

present application.  For simplicity of presentation, we assume the model produces a single 

response for a given set of inputs.  Different responses depending on uncertain model 
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parameters (calibration parameters) can, however, be accommodated through the methods 

discussed here.  The tough issues of model validation and calibration are not addressed here. 

We consider a number of specific system performance measures for illustration -- others 

are possible.  These performance measures are based on the model responses that may be 

scalars or may be vectors or functions.  In the introduction to the response models, we work 

with a scalar computer response.  A scalar response is modeled by one response model.  In the 

remainder of the paper, we generalize the approach using a functional response over time.  

The later applications illustrate methodology for using multiple response models to 

accommodate more general computer model outputs. 

The response model described here is an atomic probability measure for the response 

calculated using a limited number of computational results.  We use this measure to 

approximate probabilities associated with arbitrary events that are based on the response, 

although the major objective is to obtain a probability distribution function for the 

performance measure.  We provide details on how the response models can be constructed 

and how they can be used in fairly general applications.   

In this introductory section, we: (1.1) review some of the possible objectives in 

computational modeling; (1.2) discuss how surrogate models can assist in addressing these 

objectives, review one specific parametric form for surrogate models and mention some 

possible limitations in their use;  and (1.3) discuss an alternative response-modeling strategy 

that overcomes some of these limitations.  In the remainder of this paper, Section 2 provides a 

more detailed account of the response-modeling approach.  A simple example is introduced 

that illustrates the construction of the measure G(r) for a scalar computer response.  Section 3 

extends the approach to more general types of computer responses providing two examples 

where multiple response models are used to characterize a functional output in time.  

1.1. Objectives in Computational Modeling 

Often, the objectives in a computational analysis involve the characterization of system 

performance based on some function of the response, r.  We consider applications where r(x) 

is the computer response depending on the p-dimensional input x.  The inputs may or my not 

be modeled probabilistically (with distribution F(x)).  For given r, some common 

performance measures may be computed as: 

( ) ( )*xrr =pm
 
 (simple performance prediction problem);  

( ) ( ) ( )∫= xx dFpm rr  (average performance prediction problem);  

( ) ( )xx rr min=pm  (worst-case performance prediction problem);  

( ) ( ){ }))((min: xr*xx* x== rrpm  (engineering design or optimization problem);   

or 

( ) ( )( ) ( )∫−= xx dFRIpm *1 εrr   (reliability prediction problem) 

where, R*, the failure region, is some subset of the response space and I is an indicator 

function taking on the value 1 when the enclosed expression is true.  In general, we desire 

both a prediction for the performance measure and an estimate of prediction uncertainty. 
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1.2. Surrogate Modeling for Computational Analyses 

1.2.1. Surrogate models in computational analysis 

Surrogate models can perform a number of functions in support of a computational 

analysis.  Through interpolation extrapolation and/or integration, these models can be used to 

address complex problems involving experimental design, system analysis and prediction.   

1.2.2. A common surrogate model form 

One model that is commonly used as a surrogate response is the Gaussian Process model 

η(x).  A general form of the model is specified through its mean function m(x) and spatial 

covariance function σ2
C(x,x’) for input vectors x and x’.  This model has been used 

successfully in numerous engineering applications, see [1] – [3] for typical assumptions and 

restrictions on the forms of m and C.  

1.2.3. Possible limitations to surrogate modeling 

Depending on the performance measure, the smoothing involved in surrogate model 

construction and method of uncertainty characterization of the surrogate model might lead to 

difficulties.  Consider the worst-case performance measure where ( ) ( )xx rr min=pm .  The 

performance measure estimate based in the surrogate model will not give an accurate estimate 

of the minimum response value.  Even an expected value for the worst-case response would 

be difficult to approximate using the information retained.  Figure 1(a) illustrates the 

difficulty.  Without information on the relationships of points in the lower regions of the 

curve, the probabilities are difficult to determine.  Similarly, for the reliability performance 

measure,
 

( ) ( )( ) ( )∫−= xx dFRIpm *1 εrr , while the surrogate model estimate might provide a 

reasonable estimate of reliability, the needed information is not retained in the surrogate 

model construct to accurately quantify uncertainty in this estimate. 

 

Figure 1.  Hypothetical models for the response in a 1-input problem: (a) a surrogate model estimate 

with point-wise uncertainty bounds; and (b) a response-model with individual “realizations” forming 

an atomic measure over the response space.  The histogram on the left indicates how a distribution 

might be constructed for a worst-case performance measure. 
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1.3. An Alternative Model for the Response 

One alternative characterization for the system response is illustrated in Figure 1b and 

discussed in detail in Section 2 below.  This “response-modeling” approach can avoid the 

problems discussed in the previous subsection.  It consists of constructing an atomic measure 

over the response space that is based on assumptions concerning the appropriate model form 

and on the available computer response data.  We refer to elements of the measure as 

“realizations” and assign them equal probability. 

Once this measure has been established for the response space, we can approximate the 

probability associated with any event E(r) through prob(E)= ( )( ) ( )∫r dGEI rr and for the 

performance measure distribution through ( ) ( ) ( )∫ ≤=
r

pm dGzpmIzF rr)( .  In Figure 1b we 

illustrate how this measure might be used on that 1-input problem.  The histogram on the left 

of the figure provides an approximation to the density function for the worst-case 

performance measure -- a value that was difficult to estimate using the surrogate model.  

Similarly, we could demonstrate the uncertainty related to the reliability prediction by 

drawing a histogram of the reliability values computed using the individual realizations. 

2. RESPONSE MODELING 

2.1. Modeling Objectives 

We construct a response-model as a discrete ensemble of realizations that could be 

interpreted as “probable” descriptions of the computer response as a function of the computer 

inputs.  The realizations are constructed in the spirit of a Latin Hypercube sample [4] where 

they are generated to span the uncertainty range of the response while attempting to satisfy the 

consistency property stated in the next paragraph. The ensemble is used to approximate an 

uncertainty distribution for the fixed but unknown true response surface that captures the 

uncertainty in the response resulting from the knowledge being based on a limited number, n 

system evaluations. Formally, the response ensemble consists of a set of k realizations: 

( )xxR ∀== ,,...,1 ),( kir i ; G(r) assigns a probability 
k

1  to each realization r
i
(x).  Using this 

formulation, the expressions above become:   prob(E)= ( )( )∑i

i
rEI

k
1   and  

( ) ( )∑ ≤=
i

i

pm zrpmI
k

zF )(1 .  

Ideally, R is constructed in a manner consistent with the data  y = y(xi), i=1,…,n  in the 

following sense:   for any given event E based on the response, if the conditional probability 

( ) pEP =y|  then the expected number of realizations )(xir  satisfying E, (the expectation 

taken over repeated application of the response-modeling process) is kp.   

The assertion ( ) pEP =y| requires assumptions for mathematical formalization.  The 

response model is based on these assumptions addressing functional form and appropriate 

methods of construction.  Decisions regarding the modeling assumptions are necessarily 

somewhat arbitrary.  Some of the issues are addressed in [5] – [6], others are the topic of our 

current research.  Some of the possible inaccuracies resulting from the assumptions tend to 

cancel each other out when making relative evaluations like comparing experimental design 

alternatives (our primary application of the response models).   Figure 2 shows an example 
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response that is used throughout this section.  The response is an analytical function that is 

simple to evaluate, but is used here, for illustration, in place of the expensive computational 

simulation model.  A twenty-five-realization response model is constructed based on fifteen 

functional evaluations as indicated by the stars in Figure 2b.  In the next subsection, we 

provide the details for constructing the response model. 

 

Figure 2.  Analytical example response surface and contours based on two inputs.  

2.2. Response Model Construction 

Listed next are the steps used in construction of the realizations for the examples given in this 

paper.  We utilize the Gaussian process model referenced in Subsection 1.2.2.  We consider m 

to be a low order polynomial in x and restrict C to be of the form:  

C(x ,x') = ( )∏ −
=

p

i
ii xxC

1

'  = ∏
−

=

p

i

i iie
1

'-xxφ
for any x  and x'  

where   ⋅  is the Euclidian norm and the φi are estimated from the data.  In our case, C is the 

covariance for the residual response after fitting the low order polynomial as described in 

more detail below.  It is more convenient for our application to decompose the Gaussian 

process model and use the form η(x) = P(x) + ε(x) where P(x) is a polynomial in x and ε(x) is 

a zero-mean Gaussian process model.  Steps (1) through (3) below describe construction of 

the polynomial component;  steps (4), (5) and (6) describe construction of the Gaussian 

process term;  step (7) combines the two elements. 

1) Evaluate main effects, quadratic terms, and interactions, where possible, using the 

initial data, settling on an appropriate polynomial regression model. 

2) Estimate the regression coefficients and their covariance structure. 

3) Generate k sets of coefficients (assuming a multivariate normal for their joint 

distribution) using a Latin Hypercube design with the appropriate correlation structure 

imposed on the sets of coefficients using rank correlation procedures described in [7].  

The remaining 4 steps are applied to each realization. 

4) The residuals to the regression surface are transformed using the “Normal-scores 

transform” as recommended in [8]. 

5) The transformed residuals can then be used to estimate parameters of the spatial 

covariance function given above.  We used a maximum likelihood procedure to 
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estimate the parameters for the combined set of residual (spatial difference) data from 

all realizations.  Differences in residual magnitude and distribution are maintained 

through the transformation and back-transformation in 4) and 6). 

6) The “sequential-Gaussian” conditional simulation procedure is used to generate the 

random function component ε x( ).  More detail (of a mechanical nature) on the 

sequential Gaussian approach is given in [8] Chapter V.  The algorithm generates a 

response surface over the grid in transformed space and then back-transforms the 

values according to a set of tables constructed during the transformation in 4).  The 

conditioning data are the transformed residuals to the polynomial surface 

7) The back-transformed random function term is added to the polynomial surface to 

complete the realization. 

We illustrate some of these steps using the analytical example.   Figure 3 shows the 

construction for two realizations.  The regression component is in Figure 3a, the random 

function component in 3b and the completed realization in 3c.   The pair of realizations 

illustrate possible differences within the ensemble.  Figure 4 provides further illustration with 

three additional completed realizations for this example. 

 

Figure 3.  Components of the response realizations for the analytical example. 

 

Figure 4.  Three of twenty-five realizations constructed for the analytical example. 

2.3. Response Model Application 

Once the response model has been constructed, it can be used as described earlier to 

evaluate arbitrary events based on the response.  The events of primary interest here relate to 

system performance.  We demonstrate how probabilities for three different performance 
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measures can be assessed using the response model generated for the analytical example.  The 

procedure for the first and last performance measure is to apply the formulas given early using 

the equally weighted realizations for ( )rG .  We illustrate the performance measure 

distribution here by showing the corresponding histograms. 

Consider, first, the “best-case” performance measure where we will assume high values of 

the response are “good”.  Figure 5a shows a histogram of realization results for this quantity – 

from this we can easily approximate its distribution.  In Figure 5b, the locations in the input 

space where these maximum values occurred are plotted.  This plot addresses the optimization 

problem where we are interested in the input location yielding the maximum value.  The next 

step might be to quantify in some way (some measure based on clustering metrics, for 

example) the spread of probable input locations.  The maximum values in this example are 

confined to the discrete grid used to record values for ( )rG .  The final performance measure 

considered here is reliability where we assume the failure region R* is that part of the 

response space exceeding 18.  We need distributions concerning the inputs a and b to 

determine a probability of failure.  For simplicity, we arbitrarily choose to assume both input 

parameters are uniformly distributed over their ranges.  Figure 5c provides a histogram for 

reliability under these assumptions. 

 

Figure 5.  Performance measures for the analytical example.   

3. EXTENSIONS TO FUNCTIONAL COMPUTER RESPONSES 

Computer responses may be scalars or vectors but can also be functions of time and/or 

space.  The examples that follow illustrate how these more complicated responses can be 

addressed using the response modeling approach.  We refer to the relatively complicated 

empirical models used to create the probability measures for these responses as “behavioral 

models.”  They combine multiple components, including the response models and a  

“response assembly” model.  For the examples considered here, the response assembly model 

creates a pulse over time based on a discrete set of “intermediate” parameter values that are 

modeled using one response model each.  The Device #1 example illustrates a case where the 

response can be modeled adequately through a four-parameter circuit model.  In this example 

the response models are used to approximate probability measures for these four parameters.  

The Device #2 example gives a case where there is no circuit model that showed the 

flexibility needed to accommodate the range of pulses in the data set.  In this case, basis 

functions were established using principle components analysis and the response models were 

used to approximate probability measures for the basis function coefficients.  Before 
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proceeding to the examples we outline briefly the process of constructing the behavioral 

models.  

1. Determine a functional form that has the flexibility to accommodate the range of 

responses anticipated in the application (where possible).  The parameters needed to fully 

specify a response are referred to as intermediate parameters (assume q of them). 

2. Determine the “best fit” values of the intermediate parameters for the computer generated 

conditional response data.  This setup will result in a set of p dimensional input -- q 

dimensional response (intermediate parameter) data. 

3. Use the data above to construct q response models.  The response models should be p-

dimensional unless an analysis of the data indicates that some of the inputs are not 

important for some of the responses. 

The behavioral models can now be used to make predictions.  Any specific set of inputs 

will yield k intermediate parameter values from each of the q response models.  These q
k  sets 

of intermediate parameters can be used to generate a distribution of the response 

corresponding to the specified inputs.  If the performance measure is constructed from the sets 

of responses, q
k  values are available to approximate a distribution. 

3.1. Device #1 Example 

This example provides an illustration of how response modeling can be used for more 

complex responses and performance criteria.  Figure 6 illustrates the behavioral model used in 

the analysis.  The output pulses were modeled using a capacitance discharge unit (CDU) 

mapping voltage (V0), inductance (I), capacitance (C) and resistance (R) to the current pulse.  

Specification of the performance measure, for this example depends on those aspects of the 

pulse considered critical for performance.  Maximum current, for example, is one possible 

quantity of interest.   

 

Figure 6.  Behavioral model for the Device #1 example. 

Following the outline specified above, four response models were constructed for the 

intermediate parameters (the four electrical parameters).  Two objectives of this analysis were 

to be able to make predictions for arbitrary sets of inputs and to investigate performance 

throughout the 6-dimensional input space economically.  Prediction uncertainty (expressed 

through 88% bounds) and computer generated values (the circles) for one of the pulses that was 

not used in constructing the response models are shown in Figure 7a.  The confidence bounds 

apply “point-wise” for individual time values.  Six of the twenty-seven points in three pulses 

used are outside the 88% confidence bounds -- almost twice the number that should fall outside 
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for a typical analysis on average.  This result is not unlikely given the high correlation among 

points and the small sample size of these curves.  It is possible, however, that the uncertainty is 

understated because of assumptions concerning the behavioral model form.  These assumptions 

are difficult to evaluate and this source of uncertainty is not included in computation of the 

bounds. 

 

Figure 7.  Modeling uncertainty for fixed inputs for the Device #1 example.  Figure 7a shows an actual 

response (the circles) and 88% prediction bounds.  Figure 7b shows the pulse yielding the lowest peak 

current and its related uncertainty. 

To illustrate a possible scenario addressing the second objective, consider a hypothetical 

threshold established at T = 550 amps and assume we are concerned that pulses that do not 

achieve this threshold may indicate unacceptable reliability.  The behavioral model was used 

to investigate the entire 6-dimensional input space in several hours.  Figure 7b shows the 

ensemble of output pulses (indicating the prediction and uncertainty associated with the 

prediction) corresponding to the inputs yielding the worst performance according to this 

criteria.  

3.2. Device #2 Example 

In the Device #1 example, the current pulses were of shapes that could be accommodated 

using a circuit model.  In this example, no simple formulation, flexible enough to characterize 

all current pulses, was available.  We include this example to illustrate how a set of basis 

functions can be constructed to provided the flexibility for modeling arbitrary curves or 

surfaces using a response-modeling approach. 

The initial data consisted of 136 runs of the computer model.  The current pulses for these 

runs are shown in Figure 8a.  The pulses were “discretized”  (to 31 points along the time axis) 

and were shifted, “time registered”, in a way that minimized their squared differences 

compared with the average pulse (see Figure 8b).  The average pulse was then subtracted 

leaving the residual curves in Figure 8c.  

The resulting sets of discrete values were evaluated through principle component analysis 

see [9] Chapters 5 and 6 for a complete description of these methods.  Basis functions, using 

the principle components, were constructed as described in that text.  Figure 9 illustrates the 

Device #2 behavioral model.  Given values for the six inputs, the eight response models each 

generate 20 values that span the range of coefficients for the appropriate basis function or the 

time-registration parameter.  Performance assessment for this example could be addressed in a 

similar way to that illustrated for the Device #1 example. 
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Figure 8.  Current pulse responses for the Device #2 example. 

 

Figure 9.  Behavioral model for the Device #2 example. 
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