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Abstract: In this paper we use State Dependent Parameter (SDP) models (a non-parametric 
model estimation approach, based on recursive filtering and smoothing estimation) to estimate 
the main effect sensitivity indices of computational models. Especially when coupled with 
efficient sampling methods, such as the quasi-random LP-tau sequence, this method is 
extremely efficient, allowing for drastic reduction in the cost of the sensitivity analysis. 
Moreover, the method allows us also to estimate the first order terms of the High Dimensional 
Model Representation of the model under analysis, at no additional cost. 
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1. STATE OF THE ART 
Consider the mathematical or computational model ( )kXXXfY ...,,, 21= , where some of 

the input factors iX  are uncertain. For the non-correlated case, sensitivity indices are related 
to the Sobol’ decomposition [1] 
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,X  and so on. This is also 
related to a decomposition of the function f  itself into terms of increasing dimensionality 
(HDMR, [2-3]), i.e. 

∑ ∑∑
>

++++=
i i ij

kiji ffffYf ...120 ...)(  (2)

where each term is a function only of the factors in its index, i.e. 
( )jiijijiii XXffXff ,),( ==  and so on. The various terms can be expressed as: 
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Variance-based sensitivity measures are based on the terms in the decomposition (1), 
normalised by the total unconditional variance )(YV : 
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The iS  are called the main effects, the ijS  are the second order pure interaction terms, 

while the c
ijS  are the called the second order closed effects, giving the overall effect of a 

group of two factors, i.e. for orthogonal input factors ijji
c
ij SSSS ++= , and so on until the 

closed term of order k equal to 1. All indices are nicely scaled in [0, 1] and, as discussed in [4] 
and in the Keynote lecture by A. Saltelli at this conference [5], are related to rigorous settings, 
applicable to different contexts for SA. In particular, main effects are related to the setting 
“Prioritising Factors”, i.e. to identify the factor which, if determined (i.e., fixed to its true, 
albeit unknown, value), would lead to the greatest reduction in the variance of the target 
output , and so on for the second most important factor etc., till all factors are ranked.  

Let us then concentrate on the main effects iS . The classical strategy for global sensitivity 
analysis methods is to directly estimate the iV  terms, without passing through the elementary 
functions if , and then to normalise by V. These methods (FAST, Extended FAST, correlation 
ratios, Sobol’, etc, see [4-6] for reference) are conceived as black-box methods and do not try 
to use information present in the Monte Carlo sample, e.g. analysing scatter plots and trying 
some smoothing of the pattern, if any, between to model output and a given input. So, even if 
they are robust, unbiased and applicable to whatever non-linear and complex computational 
model, they do not make the best use of all the information contained in the Monte Carlo 
sample. This makes such methods computationally expensive, with a required number of 
model evaluations that is proportional to the number of factor k, e.g. of at least some 
thousands for a good approximation of the solution. This limits the application of variance 
based methods to not too complex computational models, which allow the required number of 
model evaluations to be carried out in a reasonable time. A lot of effort has been expended in 
recent years to reduce the cost of the analysis, either by improving the efficiency of the 
available methods (see e.g. [7]), or by exploring more efficient routes, such as the Bayesian 
approach presented by Oakley and O’Hagan [8]. In the latter case, Bayesian tools are used to 
exploit the information about the input-output mapping more efficiently than classical 
variance based methods, thus reducing drastically the computational cost of the analysis. 

In this paper, we first estimate the if ’s, using recursive filtering and Fixed Interval 
Smoothing (FIS) algorithms to fit SDP models to the input-output mapping [9], then we 
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compute the variance of if  to estimate the main effects. As in [8] this method allows us to 
estimate both if , and iV  (i.e. iS ), adding valuable information to the sensitivity analysis at a 
much smaller computational cost than classical methods. The convergence rate is of the same 
order of the Bayesian approach by Oakley and O’Hagan [8] and, at the same time, the method 
presented here is simple, since it is based on ‘classical’ recursive algorithms, such as the 
Kalman filter [10-11] and recursive FIS. 

2. THE METHOD 
The present methodology exploits signal processing and time series analysis tools, in 

particular an approach to non-stationary and nonlinear signal processing based on the 
identification and estimation of stochastic models with time variable (TVP) or state dependent 
(SDP) parameters. The works of P.C. Young [12-13] illustrate TVP/SDP algorithms and 
provide full references on the subject.  

Often non-stationary and nonlinear systems can be approximated well by TVP (or piece-
wise linear) models, the parameters of which can be estimated using recursive methods of 
estimation, where parameters are assumed to evolve in a simple stochastic manner (e.g. [12-
14]). When instead the changes in the parameters are functions of the state or input variables 
(i.e. they actually constitute stochastic state variables), then the system is truly nonlinear and 
likely to exhibit severe nonlinear behaviour. Normally, this cannot be approximated in a 
simple TVP manner; in which case, the alternative and more powerful SDP modelling 
methods must be used.  

In SDP time series modelling, the natural ordering of the data along the time coordinate is 
replaced by an ordering based on the ascending value of the state variables (or inputs), 
making the SDP model estimation similar to ‘pattern recognition’, i.e. to analysing scatter 
plots between a model input jX  and the output Y . In the SA framework, the analyst has a set 
of Monte Carlo simulations from which sensitivity indices and HDMR terms have to be 
estimated. Nothing impedes to consider such a set of Monte Carlo model evaluations as a time 
series and therefore to try to apply SDP modelling to estimate the first order terms in the 
decomposition of the computational model given in (2).  

2.1. SDP models and HDMR 
The general SDARX (State Dependent Auto-Regressive with eXogenous variables) 

specification for a dynamical system is: 

tt
T
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and nia ti ,,),( K1 =Z  miti ,,),( K0 =Zb  are the state dependent parameters, which are 
assumed to be functions of the state vector tZ . We keep here the time series notation, with 
the index t spanning the set of Monte Carlo simulations, Nt ,,1K= . 

In the SDP modelling framework the identification of the model structure itself is a 
critical issue. Observations of the input and output series are available and the analyst has to 
identify the dynamical model which best fits the observations, in the most parsimonious way 
(Data-Based Mechanistic modelling, [15]).  

This involves finding which and how many lags and/or delays characterise the input state 
variables as well as if and how many autoregressive terms of the output have to be included. 
Moreover, the analyst has to make hypotheses on (i) which state variable are parameters 
dependent to and (ii) whether all parameters are state dependent or some of them are only 
time-dependent or simply constant. 

In the present context, however, considerable simplifications can be achieved considering 
that model is deterministic and that, from (2), we know that, truncating all terms of order two 
and higher, the model can be written as: 

ttkkttt eXfXfXffY ++++=− )(...)()( ,,22,110  ),0(~ 2σNet  (6)

where we assume that all terms of high order can be approximated by a Gaussian white noise 
with zero mean and variance 2σ , i.e. the truncated HDMR is seen as a stochastic non-linear 
system. This can be justified by a version of the central limit theorem [16], since the truncated 
terms can be seen as the sum of a large number of independent random variables with equal 
zero mean and arbitrary probability distribution. 

Comparing the representation (6) to the SDP model definition (5) we can see that: 

1. no autoregressive terms of the output variable are present in (6), i.e. n=0;  

2. no lags or delays in the input variables are present in (6), i.e. m=0, δ=0; 

3. items 1 and 2 imply that the state vector reduces to the vector of input variables, i.e. 

tt XZ =  and that the vector of time dependent parameters reduces to )(0 tt Xbp = ; 

4. each term of the sum (6) is a function of a single input variable, so each state 
dependent parameter ib0  depends only on the corresponding input variable iX , i.e. 

)()( ,00, tjjtjti Xbbp ≡= X . Without loss of generality, we can then re-write each 
term of (6) as tjtjtjtjjtji XpXXbXf ,,,,0, )()( =≡ . 

So, the general, dynamic, time series specification (5), including lagged variables and 
delays, can be specialised to the HDMR of the computational model stopped to the first order 
(6) as follows: 

ttktkttttt eXpXpXpfY ++++=− ,,,2,2,1,10 ...  ),0( 2σNet =  (7)
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Estimating the state dependent parameters tjp ,  is hence equivalent to estimating the first 
order terms of the HDMR. The estimation of tjp ,  requires the following steps (see [12-13] 
for more details): 

1. characterise the variability of tjp ,  in some stochastic manner: this is done using 
generalised random walk processes (GRW), specifically our choice is limited to the random 
walk (RW) and the integrated random walk (IRW) processes; 

2. estimate via maximum likelihood (ML) the hyper-parameters (i.e. the variance of the 
innovations) of the RW/IRW processes of the state dependent parameters; 

3. estimate the state dependent parameters and hence the first order terms of (2) applying 
recursive filtering and smoothing estimation, within an iterative backfitting procedure (The 
ML estimation in step 2. can also be iterated within the backfitting procedure). 

With this procedure we estimate all the terms simultaneously, allowing us to use a single 
sample to estimate all indices. Moreover, the Monte Carlo sample is a standard one (pure 
random sample, Latin Hypercube, LP-tau, etc) and does not require a particular design, such 
as the classical variance based methods. This also allows it to be applied in the case of 
dependent inputs. We warn however that the convergence rate depends somehow on how the 
sample is generated. If quasi-random LP-tau random numbers are used, the convergence rate 
is very high, while using Latin Hypercube or pure random samples convergence is slower. 
This is clearly due to the more efficient exploration of the parameter space provided by the 
LP-tau quasi-random sequence. 

2.2. The backfitting algorithm 
The ’time scale’ of the SDP model used for SA is just given by the sequence of the Monte 

Carlo evaluations of the computational model, so no ’logical’ ordering can be expected in this 
sequence. In practice, the tp  values will continuously ’jump’ in an extremely noisy way from 
one run to the subsequent in the Monte Carlo sample. So, it cannot be assumed that the simple 
GRW model is appropriate to describe such a variation over ’time’. However, it is possible to 
solve this problem if we sort the data in an ad-hoc manner. Specifically, if the ordering is 
chosen so that the SDP variations associated with the sorted series are smoother, it is more 
likely that a simple GRW process can be utilized to describe their evolution. 

In our case, it is logical to assume that the most suitable ordering for each parameter tjp ,  
should be done with respect to the corresponding input factor tjX , . In this way, we can 
expect that the recursive estimation will be able to identify the pattern of tY  vs. tjX , . This 
also implies that each SDP needs a different sorting strategy, each with respect to its input 
factor. To solve this further problem, the backfitting procedure described in [13] can be 
exploited. Here, each parameter is estimated in turn, based on the modified dependent 
variable series obtained by subtracting all the other terms on the right hand side of (7) from 

tY . At each such backfitting iteration, the sorting can then be based on the single variable 
associated with the current SDP being estimated. 
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2.3. Specific issues for SA applications 
2.3.1. Rescaling the inputs 

Suppose that the input factor distribution of a factor jX  contains the zero. Suppose also 
that the corresponding jf  term assumes a non-zero value for 0=jX . This poses a 
singularity problem, since, if 0, =tjX  at a given sample point t, tjp ,  should assume an 
infinite value to yield a non-zero tjf , . So, we propose that in the standard procedure for SA 
estimation, while leaving the output unmodified, all the input factors are transformed via a 
monotonic (invertible) operator into cumulative probabilities, obtaining a uniform distribution 
for all input factors in the [0, 1] interval. Then, to eliminate the zero, all values are then 
shifted to the interval [1, 2]. This allows the elimination of the singularity problems, while 
preserving the scale and shape of the model output.  

Then, after estimation, the *
jf  terms estimated for the transformed variable *

jX , can be 
plotted by putting in the axis of the abscissas the original values jX , fully recovering the true 

jf  terms. In fact, if )( jj XP  is the cumulative distribution of factor jX , at each sample point 

t we can write: )())1(()( ,,
*
,

1
,

*
,

*
, tjtjtjjtjtjtj XfXPfXf =−= − . 

2.3.2. The choice of the GRW model 
A last methodological issue on the use of SDP models for sensitivity analysis of 

computational models concerns the choice of the GRW model, i.e. RW of IRW. Usually, 
sensitivity analysis tools, such as the software SIMLAB [17], aim to be ’black-box’. 
Whatever the model, inputs and outputs are fed to the SA tool to get the sensitivity indices. In 
principle, a priori one does not know whether RW or IRW model is more appropriate for each 

jf  term of the HDMR decomposition. In order to make this choice ’automatic’, we propose 
the following preliminary step to the backfitting algorithm: 

1. for each factor jX  perform the ML estimation of both RW and IRW models of the 
univariate model ttjtjt eXpY += ,, ; 

2. for each estimated model, compute the 2R  measure or fit; 

3. select the model with the highest 2R  in the subsequent SDP estimation. 

3. APPLICATION 
We have tested the method with several models, with up to 15 input factors. We first 

considered models with known analytical solutions for sensitivity indices and HDMR, such as 
the g-function of Sobol’ [9]. Such tests allowed the convergence rate of the numeric to 
analytic solution to be measured. In general, a number of model runs of about 1,000 is 
sufficient for quite accurate estimates, with an absolute errors of about 0.01 on a scale [0, 1]. 
An extremely important improvement with respect to the classical estimation methods is that, 
in all the tests done, the computational cost was almost independent of the number of input 
factors. Clearly, it has to be expected that for a number of factors larger than 15-20, the 
convergence rate will start decreasing, but cases with such a large number of input factors are 
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usually preliminary passed through a screening method (e.g. the method of Morris or others) 
and only at a later stage the variance based/HDMR analysis is performed for fewer inputs. 
Convergence also becomes slower for non-monotonic models for which the parameters tend 
to be all rather equally important. Note that the latter condition is not usual, as most often 
factors follow a Pareto law, with few factors accounting for most of the importance. In all 
cases, the convergence is reached with a few thousand runs, with a considerable saving in 
computational effort with respect to the standard estimation methods (FAST, Sobol’). Even in 
the nastiest cases, convergence did not require more than 8000 runs. 

Here, we show some significant results for the Level E model. Level E was used both as a 
benchmark of Monte Carlo computation [18] and as a benchmark for sensitivity analysis 
methods [19]. This test case has been extensively used by several authors; see [20] for a 
review. The model predicts the radiological dose to humans over geological time scales due to 
the underground migration of radionuclides from a nuclear waste disposal site. In a 
companion paper to this conference [21], readers can find another application of SDP 
modelling for the SA of a basin model to evaluate hydrocarbon exploration risk. 

The Level E model has 12 input factors and is characterised by a strong non-linearity. 
Among the 12 parameters, 4X  (=v(1), water velocity in the first geosphere layer) and 12X  
(=W, stream flow rate) have the largest main effect over the simulated period. In Figures 1 
and 2 we show the sensitivity indices versus time for these two parameters and compare the 
asymptotic values estimated with standard SA tools (Sobol’ method), taking 1,000,000 runs, 
with the SDP estimation having total costs of 1024 and 8192. The samples for SDP model 
analysis were generated using LP-tau quasi-random sequences. We can see that already with 
only 1024 runs, which is a very small sample size for this kind of model, the absolute errors 
of the SDP estimates with respect  to the asymptotic values is of the order of 0.01-0.02 in the 
sensitivity scale range of [0, 1]. With 1024 runs there is a critical point for W, where the drop 
of the sensitivity index at t=200,000 yr is shifted to the next time point t=300,000 yr. 
Increasing the total cost to 8192, results converge to the asymptotic values. 
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Figure 1. First order sensitivity index vs, time for parameter v(1) (X4). 
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Figure 2. First order sensitivity index vs. time for parameter W (X12). 

Comparing total costs, with the Sobol’ technique we would need about 40,000 model runs 
to reach an accuracy comparable to the cheaper SDP model estimation of 1,024 model runs, 
i.e. the SDP modelling approach reduces the computational time by a factor 40 in this case. 
Conversely, 1024 runs for the Sobol’ estimates are too few, with absolute errors that can reach 
0.7-0.8, i.e. totally unreliable estimates. 

In addition to sensitivity estimates, the SDP modelling approach also allows us to estimate 
the first terms in the high dimensional model representation decomposition. The plots of such 
functions for v(1) and W at the time t=100,000 are shown in Figure 3. The added value of the 
SDP modelling approach is evident by looking at the clear representation of the first order 
input-output mapping between v(1) and W and the output Y (the radiological dose). It is 
interesting to note in Figure 3 that the pattern estimated with 1024 runs for )( 4Xf  slightly 
passes the zero axis for high values of 4X , while this is corrected increasing the number of 
runs to 8192. To better appreciate the ‘pattern recognition’ performed by the SDP estimation, 
in Figure 4 we also compare the scatter plots to the SDP estimates of )( 4Xf  and )( 12Xf  
(solid lines), for 8196 runs. 
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Figure 3. First order terms of the HDMR of the Level E model for v(1) (=X4) and W (=X12) at 
t=100,000 yr. Solid lines are for the total cost of 8192 runs; dotted lines for the total cost of 
1024 runs. 
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Figure 4. Scatter plots of Y and estimated first order terms of (2) for the Level E model for 
v(1) (=X4) and W (=X12) at t=100,000 yr (8192 runs). 

4. CONCLUSIONS 
The use of SDP models is a powerful tool for a fast and accurate estimate of the first order 

terms of the HDMR and of the main effects sensitivity indices of computational models. All 
the estimates are performed with a unique sample, which can be any standard Monte Carlo 
sample. However, if efficient quasi-random number generators are used, such as the LP-tau 
sequence, the efficiency of the method is further enhanced, with a significantly faster 
convergence. We have tested the method with different models, always with extremely rapid 
convergence rates: 1,000 runs are in most cases sufficient for good estimates with models 
having up to 10-15 input factors. The dependence of the computational cost of the method to 
the number of input factors is very small: this is an extremely important improvement with 
respect to classical estimation methods. The convergence becomes slower in cases where the 
model is non-monotonic and the input factors share similar and relatively small levels of 
importance, i.e. they do not follow a Pareto law. 
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