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1 An alternative to second-order Monte Carlo

Monte Carlo based approaches are used to calculate the risk of extinction for threatened
species. In the risk assessment the exact values of the statistical moments of the input
distributions need to be known. At best, the mean and variance for the growth rate of
the population might be known plus or minus ten percent of the estimated value. The
normal course of action is to perform a second-order Monte Carlo analysis. In such an
analysis, a second statistical distribution is sampled for the moments of the first distribu-
tion. Second-order Monte Carlo adds an additional factor of computation time and makes
more assumptions about the distribution of moments; when data is sparse, like in the case
of endangered species, these additional probabilistic assumptions might not be supported.

An alternative to second-order Monte Carlo analysis is presented in this paper. Instead
of sampling from a second statistical distribution, the uncertainty around the moments will
be bound, and then propagated through a numerical simulation of population dynamics
using interval analysis. With interval analysis no additional assumptions except that the
moments are bounded need to be made. It will be shown that there are two ways to write
the equation for population growth. The correct equation to use will depend on what is
meant by an interval. If one believes that an interval represents a bounded set of possible
values then Equation 8 should be used, but if one believes that an interval represents
uncertainty of not knowing a fixed value then Equation 9 should be used. The choice is
not without consequences: the bounds on the quasi-extinction decline risk will be tighter
with Equation 9.
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2 Population models

The basic model for growth of an animal population is the exponential growth function,
written here in its continuous form

f(t) = N0 exp (rt) , (1)

where N0 is the initial population size, t is time, and r is the per capita rate of growth.
This function arises from a solution to the simple differential equation

dN

dt
= rN, (2)

where N is the population size.
Discrete deterministic population models are normally written in the form

Nt+1 = RNt, (3)

where R is a per unit time multiplier, Nt is the population at time t. For predicting NT ,
such that, T ∈ {0, 1, 2, . . .}, one has

Nt+T = RT Nt. (4)

An important relationship exists between R and r, the finite rate of increase and the per
capita rate of growth, that is,

R = exp (r) . (5)

From this point the notation used to write a discrete function of population growth
will change. We will now consider the population abundance at time T to be a function
of the size of the population at time 0, the time horizon T (the length of the simulation),
and the per-capita growth rate r. The equation of population growth rewritten in terms
of the new notation is

f(N0, r, T ) = N0 exp (rT ) = NT . (6)

3 Adding stochasticity

For real biological populations, that is, those that are observed in nature, the per-capita
rate of population growth is not fixed through time but varies. Equation 6 can be rewritten
to take into account varying rates of r

f(N0, {r1, . . . , rT }, T ) = N0 exp

(
T∑

i=1

ri

)
= NT , (7)

where ri is a random variate from G, a statistical distribution. It is assumed here that G
is a normal distribution with a mean r̄ and with a standard deviation of σr; ri = g(r̄, σr)
is a random variate from the normal distribution G(r̄, σr) [Lewontin and Cohen, 1969].

To simulate the potential dynamics to the populations, we make K runs or realizations
of the model.
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4 Adding measurement uncertainty

To propagate epistemic uncertainty, that is, uncertainty which can reduced through effort,
interval analysis [Moore, 1966] will be used. An interval X is defined as a closed set on the
real line, such that, x ∈ X ⊆ R where X ≤ x ≤ X, and X and X are the infinimum and
supremum, respectively of X. The set of all intervals on the real line is denoted IR. Given
intervals X and Y addition is defined as

X + Y = [X + Y ,X + Y ] = {x + y : x ∈ X, y ∈ Y}

There are interval definitions for a wide range of basic mathematical operators, such as,
{−,×, /,2 }, and for functions, such as, {exp, log, sin, cos}. To propagate epistemic errors
through a simulation of population dynamics two additional operators need to be defined:

X×Y = [min(XY ,XY ,XY ,XY ),max(XY ,XY ,XY ,XY )] = {xy : x ∈ X, y ∈ Y}

exp (X) = [exp (X) , exp
(
X
)
] = {exp (x) : x ∈ X}.

By outwardly rounding the endpoints of an interval operation the interval is guaranteed
to contain the true value. For the simulation of population dynamics the Intlab toolbox
[Rump, 1999b, Rump, 1999a] for Matlab is used.

The algebra on intervals differs from the algebra on real numbers. For example,

C× (A + B) ⊆ C×A + C×B

this is known as the subdistributive law [Moore, 1979]. In the non-strict inequality, equality
will hold when A,B > 0. Of more importance is Moore’s single use theorem which states
that if each variable in a mathematical expression occurs only once then the resulting
bounds from applying interval operators will be optimal [Hansen, 1997]. The effect of
repeated variables is that, in some cases, the bounds on the evaluated expression will be
conservatively suboptimal or too wide [Kreinovich et al., 2002]. In the continuous and
discrete models of exponential growth, Equations 1 & 5, each variable appears only once,
therefore interval arithmetic can be naively applied.

A statistical distribution can have uncertain moments, for example, bounds on the mean
or standard deviation (c.f. [Ferson, 2002]). To propagate epistemic uncertainty through a
Monte Carlo simulation interval analysis is used.

Equation 7 can be written in two intervalized forms

h(N0, r̄, σr, T ) = N0 exp

(
T∑

i=1

gi(r̄, σr)

)
= NT (8)

j(N0, r̄, σr, T ) = N0 exp

(
T r̄ + σr

T∑
i=1

gi(0, 1)

)
= NT (9)
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If all the parameters for Equations 8 & 9 are degenerate intervals then the two functions
are equivalent given the same set of random deviates. A degenerate interval is defined as
X = [x, x], where x = x. If N0 ∈ IR is the only non-degenerate parameter the expressions
are still equivalent because N0 appears only once in each of the expressions. When r̄ ∈
IR or σr ∈ IR then the expressions do not give equivalent results, and it follows from
subdistibutivity of interval arithmetic j(N0, r̄, σr, T ) ⊆ h(N0, r̄, σr, T ).

In Equation 8 the dependency between the statistical moments for the individual vari-
ates in the sum g1(r̄, σr) + g2(r̄, σr) + . . . + gT (r̄, σr) is not accounted for. The dependency
occurs in that the r̄ and σr occur repeatedly in the expression as statistical moments for
g. Due to the ability to factor out the mean and variance from a normal variate the sum
of variates can be algebraically rearranged to take into account that r̄ ∈ r̄ and σr ∈ σr are
fixed values:

r̄ + σrg1(0, 1) + r̄ + σrg2(0, 1) + . . . + r̄ + σrgT (0, 1) = T r̄ + σr

T∑
i=1

gi(0, 1).

The question then becomes which of the formulations, Equations 8 or 9, is correct.
The answer to this question depends on one’s philosophical view of what an interval is. If
the belief is that there exists a single fixed value bounded by an infinimum and supremum
which bounds the uncertainty about ones estimate of the fixed value, then Equation 9 gives
the optimal answer. However, if one thinks of an interval as representing a closed bounded
set then there is no reason to believe that the r̄ is fixed at each point in time. Allowing r̄
or σr not to be fixed leads to widening bounds on NT .

5 Quasi-extinction risk

The study of population viability is focused on quantifying the risk of a population falling
below a critical period over a fixed time period. Rather then focusing entirely on total ex-
tinction, N = 0, the concept of quasi-extinction risk has been developed [Ginzburg et al., 1982].
Quasi-extinction risk is the probability that a population will fall below a given thresh-
old during the simulation. Because intervals were used to propagate uncertainty through
the simulation upper and lower bounds on the quasi-extinction risk curve must also be
generated.

For Monte Carlo simulations of population dynamics the quasi-extinction decline curve
is generated from the minimum of each k series of abundance.

Nmink
= min (N1,k, N2,k . . . , NT,k) . (10)

Note that the initial abundance N0,k is not included in the calculation of the minimum
[Akçakaya et al., 1999]. For a sorted list of abundances Nmin1 ≤ Nmin2 ≤ . . . ≤ NminK ,
where K is the total number of simulations, a cumulative probability pk = k 1

K is associated
with each Nmink

.
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For interval data the minimum is defined as

min (X1,X2, . . . ,Xn) =
[
min(X1, X2, . . . , Xn),min(X1, X2, . . . , Xn)

]
(11)

Nmink
= min (N1,k,N2,k . . . ,NT,k) . (12)

To generate the quasi-extinction decline risk curve — the cumulative distribution function
of minimum abundances — for interval data the infinimum and supremum are sorted
separately

Nmin1
≤ Nmin2

≤ . . . ≤ NminK

Nmin1 ≤ Nmin2 ≤ . . . ≤ NminK .

A probability mass pk = k 1
K is associated with each sorted Nmink

and Nmink
. To conser-

vatively bound the quasi-extinction decline curve a step function is used. The bounds on
the infinimum of the CDF are

CDF(x) =


if Nmin1

≤ x < Nmin2
then 1/K

if Nmin2
≤ x < Nmin3

then 2/K
...
if NminK−1

≤ x < NminK
then 1

(13)

and the bounds on the supremum are

CDF(x) =


if Nmin1 < x ≤ Nmin2 then 1/K

if Nmin2 < x ≤ Nmin3 then 2/K
...
if NminK−1 < x ≤ NminK then 1

. (14)
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