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Abstract: It is often assumed that once a model has been calibrated to measurements
then it will have some level of predictive capability, although this may be limited. If the
model does not have predictive capability then the assumption is that the model needs
to be improved in some way.

Using an example from the petroleum industry, we show that cases can exit where
calibrated models have no predictive capability. This occurs even when there is no mod-
elling error present. It is also shown that the introduction of a small modelling error can
make it impossible to obtain any models with useful predictive capability.

We have been unable to find ways of identifying which calibrated models will have
some predictive capacity and those which will not.
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1. INTRODUCTION

In many studies involving numeric models of complex real world situations, for example
petroleum reservoirs and climate modelling, it is implicitly assumed that if the model has
been carefully calibrated to reproduce previously observed behaviour, then the model will
have some predictive capacity. It is recognised that predictability may only be achievable
for a finite period of time, and that any prediction will be uncertain to some extent.

Two types of error are considered in most calibration exercises: measurement error
and model error. Measurement errors are fixed at the time the measurement was made,
they generally have well defined statistics and can be handled appropriately. Model errors
are due to approximations, such as a loss of spatial, or temporal, resolution, and the non-
inclusion of all of the relevant physics. The assumption that is normally made is that if the
model errors are sufficiently unimportant, so that when the model has been calibrated to
measurement data, then we have some level of acceptable predictability. If the model does
not have predictability, then the model errors are assumed to be too large and we need
to use a “better” model. Where “better” probably means improved resolution, spatial or
temporal, and/or the inclusion of more physics.

In this paper we present the results of a study, for a petroleum reservoir, where a well
calibrated model has no predictive value. Even though the calibration and truth models
had identical physics and identical spatial and temporal resolution. A second study shows
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that where there are slight differences in the physics between the calibration and truth
models, then the problems encountered are even worse.

In the next section the experimental set-up is described, this is followed by the results
for cases with/without modelling errors. Finally we draw some conclusions from our
observations.

2. EXPERIMENTAL SET-UP

In this section we describe our three parameter reservoir model and our methodology for
calibrating the model against the available measurements.

2.1. Model Description

Our model is a cross-section of a simple layered reservoir, with a single vertical fault mid-
way between an injector producer pair, as shown in figure 1. The model that we calibrate
has three parameters: the vertical displacement (throw) of the fault; the permeability
of the poor quality sand; and the permeability of the good quality sand. The geological
layers are assumed to be homogeneous (ie they have constant physical properties). The
“truth” case, which is used to generate the measurements for the calibration, is a variant
of the calibration model, but with fixed parameter values. In the case of no model error,
then the “truth” case is a member of the set of all possible calibration models. The size
and type of model error is chosen by how a specific calibration model is perturbed to
obtain the truth case. In the work presented in this paper, the model error is obtained
by introducing small variations into the spatial properties of the geological layers. The
permeability and porosity in each grid block are randomly perturbed. The maximum
variations that are allowed is ±1% of the unperturbed mean values. These perturbations
are much lower than would be expected for a real world rock that had been classified as
homogeneous. A more extensive description of the model can be found a paper that deals
with estimating model errors[4].

2.2. Calibration Methodology

Our procedure to produce a calibrated model is as follows:

1. Choose “truth” values for the three model parameters;

2. Select the level of measurement and model error to be used;

3. From the truth case produce the measurements required for the calibration process
(three years of monthly data);

4. Calibrate the model against the measurements;

5. Predict the behaviour for years 4-10.
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Figure 1. Reservoir model showing the fault throw and the geological, and simulation, layers.

We have considered the truth case: h = 10.4, kp = 1.31 and kg = 131.7 with and
without model error. No measurement error was added, but we assumed Gaussian noise
with a 1% standard deviation when calculating the likelihood that a proposed calibration
matches the truth.

In order to quantify the degree of the model calibration against measurements, we
define first an objective function for the calibration period, ∆m, as follows

4m =
1

36

36∑
j=1

3∑
k=1

|sim(j, k) − obj(j, k)|

2σjk

(1)

where sim(j, k) is the simulated response for production series k of the model at time j,
obj(j, k) is the corresponding true value and σjk, an estimation of what would be the
associated measurement error. We consider three production series: Oil Production Rate,
Water Production Rate (or Water Cut) and Water Injection Rate.

Likewise, the objective function for the prediction period, ∆f , is

4f =
1

7

43∑
j=37

3∑
k=1

|sim(j, k) − obj(j, k)|

2σjk

(2)

The ranges that the model parameters were allowed to take are: h ∈ (0, 60), kg ∈

(100, 200) and kp ∈ (0, 50).

196



0102030405060

0

20

40

60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

h
kp

ex
p(

−
D

m
/0

.1
5)

0102030405060

0

5

10

15

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

h
kp

ex
p(

−
D

f/0
.1

5)

Figure 2. Calibrations of the model (with no modelling error) to a) history period, b) prediction
period.

2.3. Genetic Algorithm

Our chosen search method is a Steady-state Real-parameter Genetic Algorithm. This is
used because we need to search for multiple good optima within a parameter space that
seems to contain very many local optima. It is a development of a previously published
study [1] and has been developed to solve the type of problem described in this paper.

In brief the details are: a steady-state population of 50 individuals is used, parents
are selected randomly (without reference to their fitness), crossover is performed using
vSBX[1, 3], and culling is carried out using a form of tournament selection involving 10
individuals, a total of 7000 individuals are generated.

3. RESULTS

In this section we present the results of two studies: the first is with no modelling error
present; the second has a low level of modelling error.

3.1. Calibration with No Modelling Error

Figure 2a shows the result of calibrating the model against the data for the first 36 months.
The truth model has exactly the same physics and structure as the calibration models,
and the truth model is a member of the set of possible calibration models.

The very large spike, with h ≈ 10, corresponds to the truth case. We can also see
notable local optima with 0 < h < 8, 30 < h < 38 and 40 < h < 45. The global optimum
has a small basin of attraction around it and has proved difficult to identify in previous
work[2], the easiest optimum to find has been the one with 30 < h < 38. The rather
noisy structure of the objective surface is largely an artifact of the of the way that kg is
sampled. Any point with an acceptable objective value is plotted no matter what value
of kg was used. This means that it is possible for two points to have identical values for
h and kp but different values of the objective function. Hence a vertical line would be
plotted. Figure 3 shows a contour plot, centred on h = 5.0 and kp = 1.65, of the objective
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Figure 3. Surface plot for ∆m, where kg has been optimised so as to minimise ∆m, h ∈ (3.5, 6.5)
and kp ∈ (1.40, 1.90)

function ∆m. The figure was generated by conducting a grid search on a fine grid. At
each point on the grid, kg was optimised, this results in a much smoother representation
of the objective.

Figure 2b shows the result of calibrating the model to the prediction period. The only
substantial point found corresponds to the truth model. All of the other local optima
that can be seen in figure 2a are unable to match the observations during the prediction
period. We conclude that for this model you can only obtain a good prediction from the
truth case, and that good matches from the history matching phase have no predictive
value.

3.2. Calibration with Modelling Error

The result of matching the calibration model to data generated by a truth case that
includes modelling errors is shown in figure 4a. Superficially the figure is similar to
figure 2a. The important difference is that the global optima now occurs for h ≈ 32. This
is within the largest basin of attraction and is usually found by most search algorithms.
The optima associated with the “true” parameter values is of much lower quality.

If we now look at the calibration to the prediction period, figure 4b, we see that the
global optimum for the history matching period has no predictive value. None of the
models that have some predictive value correspond to the truth case (the spike at h ≈ 10
has the wrong values for kp and kg). The objective values obtained are low compared to
those in figure 2b.

4. CONCLUSIONS

In this paper we have examined, for a particular case, our ability to calibrate a model and
then to make accurate predictions. This has been carried out for cases with and without
modelling errors, but no measurement error.

From these studies we make the following observations:
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Figure 4. Calibrations of the model (with modelling error) to a) history period, b) prediction
period.

• The basin of attraction a round a global optimum may be sufficiently small that
search algorithms may not find them. The basins of attraction associated with other
local optima may be much larger and hence easier to find.

• When there is no modelling error present, some of the non-global optima may be of
quite good quality. However only the global optimum is able to make an accurate
prediction.

• When small amounts of modelling error are present, then the global optimum is no
longer associated with the truth. The local optimum that has parameter values of
the truth case is not of significant quality and could easily be disregarded.

• None of the models tested in the presence of modelling errors have valuable predic-
tive power. In particular the global optima from the history matching period was
unable to provide an accurate prediction.

In summary: in the absence of model errors, and with very low measurement errors,
it is possible to obtain calibrated models that do not have any predictive capability; such
models may be significantly easier to identify than the correct model; we are unable
to differentiate between calibrated models with or without predictive capabilities; the
introduction of even small model errors may make it impossible to obtain a calibrated
model with predictive value.

In this analysis there is nothing that seems to be unique to this model. In particular
there is the issue of data availability, adding more measurements does not appear to offer
a guaranty of avoiding this dilemma. If the observations made with this model are not
unique to the model, and we have no reason to believe that the model is unique, then this
presents a potentially serious obstacle to the use of models of this type for prediction.

Our concern is that if we cannot successfully calibrate and make predictions with a
model as simple as this, where does this leave us when are models are more complex, have
substantive modelling errors, and we have poor quality measurement data.
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