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Abstract: The quantification of the quality of a structural mechanical model remains a
major issue today, with the use of an increasing number of methods in order to validate
a model in comparison with an experimental reference. This paper presents a new theory
based on the concept of Lack of Knowledge combining convex uncertainty models with
probabilistic features by introducing for each substructure two bounds of the strain en-
ergy as stochastic variables. A general strategy of reduction of the lack of knowledge is
discussed and applied to academic as well as industrial cases.
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1. INTRODUCTION

Today, the problem of quantifying the quality of a structural mechanical model remains a
major issue. As far as the comparison with an experimental reference is concerned, many
approaches can be used to update a deterministic, dynamic model (stiffness, mass and
damping) based on free or forced vibration tests [1],[2]. After this process, there may be
some phenomena that still cannot be described properly: some uncertainties remain in the
material properties, or the model of some parts (e.g. joints) may be simplified. In order
to describe these uncertainties, the use of probabilistic methods has become increasingly
popular: generally, these methods consist in studying the effects of the uncertainties which
affect the input on the variability of the output. This can be done in various ways and
has led to major improvements: for example, meta-models have been built by spanning
the space of the most influential parameters and applying a specific technique to reduce
the computational effort drastically [3],[4].

In [5], we introduced the concept of Lack of Knowledge (LOK), which combines con-
vex uncertainty models [6],[7] with probabilistic features. The basic principle consists in
globalizing the uncertainties on a substructure by means of an internal variable, called
the basic Lack of Knowledge (basic LOK ), which is included within an interval whose
upper and lower bounds are stochastic variables. From these basic LOKs, one can derive,
for the whole structure, the effective Lack of Knowledge (effective LOK ) of a quantity of
interest α, which leads to a stochastically bounded interval which can be compared with
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experimental values derived from a family of similar real structures. In [8], this theory was
successfully applied to a simple problem, which proved its identification and prediction
capabilities. In this paper, we establish the first bases of a general strategy of reduction
of the lacks of knowledge and we present applications on academic as well as industrial
cases.

2. BASIC LOKS

2.1. Basic concept

Each similar structure can be divided into several substructures; by the way, joints can
also be treated as substructures. Only the errors concerning structural stiffnesses are con-
sidered, hence the use of substructural strain energies in the following definition; indeed,
we associate to any substructure E a lack of knowledge m located anywhere within an
interval whose the two bounds are two internal variables m+

E
and m−

E
defined by

(

1 − m−

E

)

eE ≤ eE ≤
(

1 + m+
E

)

eE, (1)

where e
E

and eE are the strain energies associated respectively with the deterministic,
theoretical model and with one of the real structures. m+

E
and m−

E
are the upper basic

LOK and the lower basic LOK respectively.

The basic LOKs m+
E

and m−

E
are sampled using a probabilistic law; the nature of this

law is chosen a priori and its characteristics are defined by two values m+
E

and m−

E
:

• for example, if the distribution chosen is uniform, these two values include all pos-
sible sampled values of m+

E
and m−

E
;

• in some particular cases of imperfect modelings (e.g. nonlinear joints represented
with linear models), characterized by a severe lack of information, one cannot deter-
mine precisely the distribution of lack of knowledge and it can only be stated that
m is somewhere within [−m−

E
; m+

E
].

In the absence of specific information, it is reasonable to choose the previous description.
We can also consider that a normal distribution is appropriate in cases in which the
sources of errors are material uncertainties.

2.2. Illustration

Let us consider the case of a lack of knowledge of the material properties: for a family
of similar real structures, we assume that the lack of knowledge m of a substructure E is
defined by a centered normal distribution whose Probability Density Function (PDF) is
written as follows:

m ∈ [−m−

E
; m+

E
] with PDF p(m) =

1
√

2πσ2
e−

m
2

2σ2 . (2)

The standard deviation σ can be associated to the values m+
E

and m−

E
by stating for

example that
∫ m

+

E

−m
−

E

p(m)dm = 0.99; the PDF is then set to zero below −m−

E
and beyond

m+
E
, and can be normalized again.
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The probability of having m within a given interval [−m−

E
; m+

E
] is

P (−m−

E
≤ m ≤ m+

E
) =

∫

m
+

E

−m
−

E

p(m)dm. (3)

Since the basic LOKs are defined on both sides of the theoretical model, this occurrence
can be described by two independent events:

• m ∈ [0; m+
E
], i.e. the event (m−

E
= 0,m+

E
) occurs with probability P +(m+

E
);

• m ∈ [−m−

E
; 0], i.e. the event (m−

E
,m+

E
= 0) occurs with probability P−(m−

E
).

Of course, one has P +(∞) + P−(∞) = 1. In this special case of a centered distribution,
one even has P+(∞) = P−(∞) = 1

2
. This situation is depicted in Figure 1. This case

illustrates how the basic LOKs should be sampled: depending on the value of m obtained,
one gets two distinct types of intervals: [0; m+

E
] and [−m−

E
; 0].

2.3. Definition of an Interval Probability

Since the use of two distinct probabilities P + and P− is rather impractical, we developed
in [9] some mathematical tools in order to circumvent this difficulty.

Let us consider a family of intervals [−m−

E
; m+

E
] 3 m with m+

E
+ m−

E
= L. An in-

terval [−m−

E
; m+

E
] is called a standard interval I(L) if, for a given interval length L, the

probability of m being in I(L) is the greatest of all such intervals of length L, i.e.

I(L) = arg max
[−m

−

E
;m+

E
]

m
+

E
+m

−

E
=L

P+(m+
E
) + P−(m−

E
). (4)

From this definition, we can introduce the concept of interval probability P (L) by stating
that for a given length L, P (L) is the probability of having m in I(L), i.e.

P (L) = P (m ∈ I(L)) = max
[−m

−

E
;m+

E
]

m
+

E
+m

−

E
=L

P+(m+
E
) + P−(m−

E
). (5)

One interpretation of these definitions is that if one wants to determine an interval such
that m has a given probability P of being inside, one has to select the standard interval
I(L) whose probability interval P (L) is equal to P , and one can show that this interval
is the smallest interval [−m−

E
; m+

E
] such that P+(m+

E
) + P−(m−

E
) = P , i.e.

I(L) = arg min
[−m

−

E
;m+

E
]

P+(m+

E
)+P−(m−

E
)=P

m+
E

+ m−

E
. (6)

One can also prove that the bounds of I(L) verify the equality: p(m+
E
) = p(m−

E
). These

remarks are summarized in Figure 2 in the case of a non-centered normal law.
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Figure 1. Example of a centered normal law:
(top) PDF of m; (bottom) P− and P+.
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Figure 2. Illustration of the concepts of stan-
dard interval and interval probability.
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3. THE USE OF LOK

3.1. Principle

Let us consider a certain quantity of interest α.

• for every sample of (m−

E
,m+

E
)E∈Ω, one can calculate two bounds α− and α+ of the

quantity of interest αmod relative to the model, as will be shown in Section 3.2. If
one knows the stochastic laws for the basic LOKs, one can obtain the probabilistic
distribution of these bounds α− and α+ by means of an interval probability Pα(L)
such that P (αmod ∈ Iα(L)) = Pα(L)∀L. Remembering the previous interpretation
of an interval probability, one can get for a given probability value P the associated
standard interval Iα(L) such that P (αmod ∈ Iα(L)) = P . We will refer to the two
bounds of this interval as the effective Lack of Knowledge (effective LOK ), and
denote them αlow and αupp.

• based on the similar real structures, one can derive in the same way two bounds
αlow

exp
and αupp

exp
which include P% of the experimental values αexp.

The experimental data and the values obtained from the LOK model are then com-
pared as in Figure 3. In order for the model to be conservative, the basic LOKs should
be such that

P (αexp ∈ Iα(L)) ≥ Pα(L)∀L. (7)

This means that one should have αlow ≤ αlow

exp
≤ αupp

exp
≤ αupp for any given probability

value P . Note that this last interpretation is a generalization of the 99%-bounds described
in [5] and [8].

3.2. Effective LOKs

The comparison between the results of the model and reality is made using quantities
which are standard in the field of modal analysis: in this paper, we use free-vibration
tests; therefore, our quantities of interest α are eigenfrequencies and eigenmodes. The
previously defined pair of quantities αlow and αupp is called the effective LOK and the
corresponding values for eigenfrequencies and eigenmodes are reviewed below.

3.2.1. Effective LOK of an Eigenfrequency

If the modes φ
i
are mass-normalized, a first-order approximation (φi ' φ

i
) gives

ω2
i
− ω2

i
= φT

i
Kφi − φ

T

i
Kφ

i
' φ

T

i
(K − K)φ

i
= 2

∑

E∈Ω

(

eE(φ
i
) − e

E
(φ

i
)
)

. (8)

From relationship (1), one has for a given sample (m−

E
,m+

E
)E∈Ω

ω2−
i

≤ ω2
i
≤ ω2+

i
(9)
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with

ω2−
i

= ω2
i
− 2

∑

E∈Ω

m−

E
e

E
(φ

i
), (10)

ω2+
i

= ω2
i
+ 2

∑

E∈Ω

m+
E
e

E
(φ

i
) (11)

Thus, for a given probability value P , one can derive the two bounds ω2 low

i
and ω2 upp

i
of

the associated standard interval Iω2
i

(L), i.e. the effective LOK of an eigenfrequency.

3.2.2. Effective LOK of an Eigendisplacement

For small values of the basic LOKs, we can approximate the variation of an eigendisplace-
ment (defined as the value at a Degree of Freedom of an eigenmode) by writing

φki − φ
ki
' UT ∆Kφ

i
=

∑

E∈Ω

UT
(

KE − KE

)

φ
i

(12)

where U is a given vector. Using UT KEφ
i
= 1

2
eE(U + φ

i
)− 1

2
eE(U − φ

i
) and relationship

(1), one gets for a given sample (m−

E
,m+

E
)E∈Ω

φ−

ki
≤ φki ≤ φ+

ki
(13)

with

φ−

ki
= φ

ki
−

1

2

∑

E∈Ω

{

m−

E
e

E
(U + φ

i
) + m+

E
e

E
(U − φ

i
)
}

, (14)

φ+
ki

= φ
ki

+
1

2

∑

E∈Ω

{

m+
E
e

E
(U + φ

i
) + m−

E
e

E
(U − φ

i
)
}

(15)

Thus, for a given probability P , one can derive the two bounds φlow

ki
and φupp

ki
of the

associated standard interval Iφki
(L), i.e. the effective LOK of an eigendisplacement.

4. DETERMINATION OF THE BASIC LOKS

The purpose of determining the basic LOKs is to find the values of m+
E

and m−

E
which

are the most representative of the dispersion. The process we introduce here is based on
the idea that the more abundant the experimental data, the better we can reduce the
LOK-level within the structure. Therefore, the first step of the process consists in setting
initial, overestimated values of the basic LOKs for all the substructures; this can be done
by applying one’s a priori knowledge or experience of the structure being studied. Indeed,
it is not vital to use accurate estimates; the most important point is to use overestimated
values (m+0

E
, m− 0

E
)E∈Ω of the basic LOKs for each substructure.

The reduction process consists in using relevant experimental data to reduce the LOK-
level individually for each substructure. Let us consider a given substructure E∗. One
has to find smaller values of m+

E∗ and m−

E∗ , which, in terms of interval probabilities, yields
the following relationship:

P 0
E∗(L) ≤ PE∗(L) ∀L. (16)
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This reduction should be carried out with the constraint created by the experimental
information selected:

αlow ≤ αlow

exp
≤ αupp

exp
≤ αupp. (17)

In fact, as one is interested in the minimization of the lack of knowledge of Substructure
E∗, one intends to take into account the worst happening case concerning all the other
substructures. We can write formally for each given sample (m−

E
,m+

E
)E∈Ω:

αworst + = α + SE∗∆α+
E∗ +

∑

E 6=E∗

∆αworst +
E

(18)

αworst− = α + SE∗∆α−

E∗ +
∑

E 6=E∗

∆αworst−

E
. (19)

This worst-case analysis is completed by the introduction of a coefficient quantifying
whether the experimental information is more or less representative of the behavior of the
structure; this value SE∗ ∈]0; 1] is called test severity coefficient for Substructure E∗ and
is maximal when the test fits perfectly the global mechanics of the structure. Then we
can associate to these bounds αworst + and αworst− an interval probability Pαworst(L) and
derive the two bounds αworst upp and αworst low of the associated standard interval Iαworst(L)
for a given probability P .So the following constraints are introduced:

αworst low ≤ αlow

exp
≤ αupp

exp
≤ αworst upp. (20)

So as a summary, the problem consists in finding

max PE∗(L, m) ∀L (21)

with the previous constraints, and for several given values of L.

5. APPLICATION TO A SIMPLE PROBLEM

5.1. Definition of the Structure

5.1.1. Deterministic Theoretical Model

The structure being considered is a plane truss similar to that studied in [8]; it consists
of six bars connected by spherical joints, as shown in Figure 4. We assume that the bars
are solicited only in traction-compression and that the connections between the ground
and the structure at Nodes 1 and 2 are perfectly rigid links. The material properties of
the associated theoretical model are given in Table 1.

5.1.2. Experimental Data

A family of such actual trusses is simulated and their eigenfrequencies and eigenmodes
constitute the data which is then used in the reduction process described in Section 4: the
‘experimental’ data are simulated by using the theoretical model and introducing some
stochastic distributions in the stiffness characteristics of the substructures; these changes
are summarized in Table 1. Note that material “X” is considered to be imperfectly known;
hence the uniform law chosen for the simulation. For each of these ‘real’ structures,
we are able to calculate eigenfrequencies and eigenmodes and, thus, derive experimental
distributions of the eigenfrequencies or eigendisplacements associated to the real structures
(see for example the distribution of ω2

exp
for Mode 6 in Figure 5).
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Figure 4. Plane truss example
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Figure 5. Experimental distribution of
ω2

exp for Mode 6

Table 1. Properties of the deterministic plane truss and of the simulated structures, with Bars
1-3, 3-5, 4-5 and 2-4 constituting Group g1, bar 2-3 as Group g2 and bar 3-4 as Group 3.

Gp Material Young’s modulus Density Law Mean/Range Simulated stiffnesses

g1 aluminium Eg1 = 72GPa 2700kg/m3 normal 0%/5% ∈ [0.95Kg1; 1.05Kg1]

g2 steel Eg2 = 210GPa 7800kg/m3 normal −5%/10% ∈ [0.85Kg2; 1.05Kg2]

g3 “X” Eg3 = 10GPa 1500kg/m3 uniform 5%/15% ∈ [0.90Kg3; 1.20Kg3]

5.2. Reduction of the Basic LOKs of the Structure Being Considered

The reduction process is carried out by assuming a priori an initial LOK-level of 50%
for each substructure, which guarantees overestimated starting values. We also assume
a normal LOK-distribution for the aluminum and steel bars and select a uniform LOK-
distribution for the “X” bar. From the measured distributions of eigenfrequencies, we
decide to keep in mind the values ω2 upp

i exp
and ω2 low

i exp
that include 99% of the experimental

eigenfrequencies; this means that we do not care any more about the distribution of these
experimental eigenfrequencies within the two 99%-values. If we wanted a more precise
description, we could also take the 50%-values in order to have an estimation of the
standard deviation of the experimental values.

Next, it is important to select the most relevant experimental tests to carry out the
successive processes. An effective method consists in using the fact that the sensitivities
of the effective LOKs to the basic LOKs are directly related to the modal strain energy of
the theoretical, deterministic model (see Section 3.2 for more details). The most relevant
modal tests for reducing the basic LOK of Substructure E∗ are those in which the modal
strain energy is contained mainly within Substructure E∗. As we are interested with
experimental eigenfrequencies, the modal strain energies e

E
(φ

i
) are considered for Modes

1 to 6 and are listed in Table 2 where the largest substructural energies are emphasized.

Table 2. Modal strain energies for Modes 1 to 6.
e
E
(φi) i=1 i=2 i=3 i=4 i=5 i=6

E=g1 3.3.105 1.3.106 7.6.106 3.8.106 2.5.107 6.0.107

E=g2 1.4.105 6.7.104 9.9.103 1.0.107 2.0.106 1.7.105

E=g3 2.5.105 1.7.106 6.1.105 4.7.105 6.9.104 1.9.105

The reduction is achieved by selecting as relevant experimental tests ω2 upp

i exp
ans ω2 low

i exp

derived from Modes 6, 4 and 2 for Groups 1, 2 and 3 respectively, and by considering
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that these data are representative of the global behavior of the structure (test severity
coefficients equal to one). The results come out as

m+
g1 = 0.032 m+

g2 = 0.034 m+
g3 = 0.205

m−

g1 = 0.034 m−

g2 = 0.092 m−

g3 = 0.101.

In this very special case, with a first-order assumption, these results are to be compared
directly with the stiffness distributions introduced into the deterministic model to simulate
the experimental data: [(1 − 0.05)Kg1; (1 + 0.05)Kg1], [(1 − 0.15)Kg2; (1 + 0.05)Kg2] and
[(1 − 0.10)Kg3; (1 + 0.20)Kg3]. We can conclude that the agreement is rather good. The
choice of the relevant experimental data is crucial; if one tried to reduce the LOKs of any
group using Mode 1, the minimization process would not lead to any reduction because
the influence of the other two groups is not small enough.

5.3. Capacity of Prediction

With the values just obtained, we are able to calculate the effective LOKs for the three
other modes (1, 3 and 5) in order to evaluate the results of the reduction process. The
basic LOKs are sampled with the values determined and the probabilistic laws chosen;
the corresponding calculated 99%-values are listed and compared with the experimental
99%-values in Table 3 below. The constraints are successfully respected for Modes 1, 3
and 5, which shows the consistency of the results obtained with Modes 2, 4 and 6.

Table 3. Comparison of eigenfrequencies and eigendisplacements (99%-values) for Modes 1, 3, 5.

i ω2 low
i

ω2 low
i exp

ω
i
2 ω

2 upp

i exp
ω

2 upp

i
φlow

ki
φlow

ki exp
φki φ

upp

ki exp
φ

upp

ki

1 1.36.106 1.35.106 1.43.106 1.53.106 1.54.106 0.85 0.88 0.95 0.99 1.01
3 1.58.107 1.58.107 1.64.107 1.71.107 1.70.107 −1.00 −0.98 −0.95 −0.91 −0.90
5 5.28.107 5.29.107 5.51.107 5.68.107 5.69.107 −0.74 −0.72 −0.68 −0.62 −0.62

6. STUDY OF A STRUCTURE WITH A MODELLING ERROR

6.1. Presentation of the Structure

6.1.1. Deterministic Theoretical Model

In this example, we want to study the ability of our theory to describe a modelling error
in the theoretical model. The studied structure is a beam clamped at one end; we are
interested with its bending vibrations. The theoretical model consists of 100 standard
Bernoulli-Euler elements based on a cubic interpolation of displacements.

6.1.2. Experimental Data

The experimental structure is simulated by inserting a joint in the middle of the beam:
the two corresponding ends of the two half beams are linked by two linear springs:
one concerning the vertical translation (k = 7.107N/m) and a rotational one (K =
1000N.m/rad), as in Figure 6. We then compute the eigenfrequencies and eigenmodes of
this structure.
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kK
Group g2
 (2 elements)

Group g1
(49 elements)

Group g3
(49 elements)

Theoretical Model Experimental Simulation

Figure 6. Theoretical model and experimental simulation of the clamped beam.

6.2. Calculation of the Basic LOKs

Before determining the Lacks of Knowledge, the model is updated with the first 15 modes
of the experimental structure according [2]. This method leads to the correction of the
stiffnesses of the two elements at both sides of the joint (with a factor of 0.41). After
updating, we still have a global residual error of 4%, and no further improvement can be
made, which means that the model cannot represent the experimental data in a better
way.

The determination of the Lacks of Knowledge is achieved on three different groups:
Group g2 corresponds to the two elements at both sides of the joint, Group g1 and Group
g3 to the other elements located before and after the joint respectively, as indicated in
Figure 6. We use the eigenfrequencies of Modes 4, 8 and 12, by considering them as
extreme values describing the distribution coming from the reality; moreover, the test
severity coefficients are set to one. With an initial LOK-level of 50% and a normal law
assumption for each group, we obtain the following results:

m+
g1 = 0.003 m+

g2 = 0 m+
g3 = 0

m−

g1 = 0 m−

g2 = 0.040 m−

g3 = 0,

which means that the actual structure is perfectly described by the theoretical model,
excepted in the neighborhood of the joint where we find a lack of knowledge of 4%.
This example shows that the theory of the Lacks of Knowledge is useful to indicate the
areas where the model is not good enough to represent the global behavior of the whole
structure, and gives an estimate of its accuracy.

7. STUDY OF A REAL CASE

7.1. Description of the Structure

We will now present the application of the method to an actual, industrial structure:
the Sylda5 satellite support developed by the EADS company is capable of carrying two
individual satellites and is represented in Figure 7. Vibration tests were performed by
IABG for DASA/DORNIER under contract with CNES: the test setup consisted of 5
exciters and 260 sensors. The model proposed by EADS represents both the support
itself and a payload simulating the presence of a satellite; it consists of 38 substructures
with various materials, including orthotropic sandwiches, aluminum and steel. The first
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tests have shown that it was essential to take the ground into account in the model; this
was done using 3 rotational springs, one translation spring and a rigid-body-movement
constraint for all the bottom nodes. In the end, the model consists of 27648 DOFs and
9728 elements.

We consider as experimental data the extreme values of the eigenfrequencies and
eigenmodes measured from a series of tests, without caring about their distribution.

7.2. Determination of the Basic LOKs

First, the model is updated with the first 12 modes using the method described in [2]. At
this point, we want to describe the remaining lacks of knowledge. In order to do that, we
divide the whole structure into 4 main groups of substructures, depicted in Figure 8:

• Group g1 is associated with the payload substructure;

• Group g2 represents the junction between the payload substructure and the Sylda
support itself;

• Group g3 is the Sylda support;

• Group g4 is associated with the ground model.

Figure 7. The Sylda5 satellite support.

Payload

Junction

SYLDA 5

Ground

Figure 8. Model associated to Sylda5.

The objective is to carry out the reduction of the most influential lacks of knowledge.
An initial value of 50% is assumed for each pair (m+ 0

E
, m− 0

E
), where E ∈ {g1, g2, g3, g4}.

In the first 8 modes, only Group 1 and Group 3 have significant modal strain energy levels
and, thus, they are for the moment the only ones involved in the reduction process. We
consider as experimental data the extreme values of the eigenfrequencies measured from
a series of tests, without caring about their distribution.
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With such values from Modes 7 and 8 on the one hand, and from Modes 4 and 5 on
the other hand, we reduce the basic LOKs of Group 1 and Group 3 respectively to

m+
g1 = 0.154 m+

g3 = 0.001

m−

g1 = 0.009 m−

g3 = 0.012,

by using test severity coefficients equal to one. As a conclusion, we can stress that these
results corroborate the quality of the updated Sylda support model (Group 3) and give
an estimation of the accuracy of the model used to describe the payload (Group 1).

8. CONCLUSION

We showed in this paper some applications of the theory of the Lacks of Knowledge
which combines convex uncertainty models with probabilistic features. The method is
able to quantify local uncertainties by using quantities of interest defined on the whole
structure and it can also be useful to the estimation of modelling accuracy. The reduction
process that we introduced in this paper consider experimental data as information usable
to reduce the overestimated basic LOKs assumed for each substructure. This approach
should lead the way to the development of a general method for reducing the lacks of
knowledge for predetermined families of parameters by designating what tests should be
performed or which substructure models should be improved.
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