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Abstract: The National Research Council is charged with producing mathematical models 
of nutrient requirements of domestic animals.  In ruminants, protein supply is derived from 
two sources:  a fraction of the feed protein unaltered by ruminal fermentation, and microbial 
protein (MiN) synthesized by the ruminal micro-flora.  Measurements of MiN rely on 
surgically altered animals and inert markers.  The prediction of MiN is based on total 
digestible nutrients, a function of the uncertain composition of feedstuffs.  Both observed and 
predicted MiNs have errors from measurements, parameter estimates, and structural forms.  
The question is whether predicted MiN can replace measured values when estimating 
requirements.  The concordance correlation coefficient (ρc) has been suggested as an omnibus 
statistic to jointly assess precision and accuracy.  Application to a dataset of 256 measured 
and predicted values of MiN from 56 published studies shows that predictions and 
measurements are concordant (ρc = 0.476), have small scale shift (1.54) and location shift (-
0.02), and are accurate (0.913) but that they lack precision (0.522).  The deviance (0.573) is 
composed of a small bias (0.0003), a small scale shift (0.095), and a large imprecision 
(0.479).  Little gain in model precision can be expected until more precise methods of 
measurements are found. 
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1. INTRODUCTION 
Mathematical models are now frequently used to quantify complex biological systems [1, 

2].  The validation of such models is done by comparing model predictions to observed data.  
Various statistical methods have been suggested and used to assess a model’s validity: the 
Pearson correlation coefficient, the paired t-test, the least-square analysis of slope (=1) and 
intercept (=0), and the coefficient of variation or the intraclass correlation coefficient.  None 
of these can completely assess the desired reproducibility characteristics.  The Pearson 
correlation coefficient only measures precision of a linear relationship, not accuracy.  Both the 
paired t-test and least squares analysis can falsely reject (accept) the hypothesis of high 
agreement when the residual error is small (large).  The coefficient of variation and the 
intraclass correlation coefficient assume a dependent and an independent variable.  More 
importantly, they fail to recognize the duality (interchangeability) of predictions with 
observations.  Both are mathematical transforms of measurements.  Both have random errors 
from measurements and parameter estimates.  And both have structural errors due to the 
simplification of the complex real world.  The relevant question is not whether a model 
predicts observed data but whether the model and the observation method measure the same 

341

Sensitivity Analysis of Model Output  
Kenneth M. Hanson and François M. Hemez, eds. 
Los Alamos National Laboratory, 2005; http://library.lanl.gov/



thing, whether the methods agree and how good is the agreement.  This requires a joint 
assessment of precision and accuracy.   

The Committee on Animal Nutrition of the National Research Council (NRC, [3]) is 
charged with producing tables of nutrient requirements of various classes of animals.  
Nutrient requirements are expressed in the form of computerized mathematical models.  In a 
recent publication, the NRC [3] produced a new model for estimating the nutritional 
requirements of dairy cattle.  A key step in the calculation of protein and amino acid 
requirements is the estimation of the amount of bacterial protein synthesized in the rumen.  In 
ruminants, the net supply of protein and amino acids is derived from two separate fractions:  a 
variable portion of the feed protein not broken down by the ruminal micro-flora passes to the 
duodenum (small intestine) where it can be digested and absorbed by the animal.  The second 
portion consists of microbial protein synthesized by the ruminal micro-flora using carbon 
skeletons, ATP, ammonia, amino acids, and short peptides.  The quantification of the net 
supply from each process is very important to the optimal feeding of ruminant animals and for 
reducing their environment impact from N excretion [4].  The measurements of microbial and 
undegraded feed protein to the duodenum must rely on surgically altered animals and inert 
markers [5].  Thus, the measurements of microbial protein (MiN) and non-ammonia-non-
microbial protein flows (NANMN) to the duodenum are subject to substantial errors of 
measurements, plus structural errors (i.e., the non-digestible markers are not perfect markers) 
and possibly errors in parameter estimates.  The prediction of MiN is based on total digestible 
nutrient intake (TDN) which is a function of the (uncertain) chemical composition of the 
feedstuffs and their (uncertain) bio-availabilities.  Thus, both observed and predicted MiN and 
NANMN have errors from measurements, parameter estimates, and structural forms.  This 
situation, where predictions and observations are interchangeable is very frequent in biology.  
The question is whether we can use predictions of MiN and NANMN to replace measured 
values when estimating nutrient requirements. 

In this paper, we first review the model used by NRC [3] to predict MiN in dairy cattle 
and the proper statistical model linking predictions to observations.  Results from applying 
traditional methods of model validation are presented followed by the application of the 
concordance correlation coefficient (CCC) of Lin [6].   

2.    METHODOLOGY 

2.1  Prediction of microbial protein synthesis by the National Research Council 
In high producing ruminants, microbial protein synthesis is primarily determined by the 

availability of energy to the micro-organisms [7].  Although various expressions of available 
energy have been proposed and used to express the availability of feed energy for microbial 
growth, the total digestible nutrient (TDN) system is still favored in the U.S. due to the 
considerable literature reporting actual measurements in lactating and non-lactating animals.  
The measurement of TDN is a tedious process and requires urine and fecal collection in a 
digestibility study performed over several days (generally 5-7) with multiple animals.  The 
TDN of a feed can also be estimated from its proximate composition using the following 
system of equations [8]: 

TDN =  tdNFC  + tdCP + tdFat  + dNDF - 7,          (1) 

tdNFC = 0.98 x (100 – NDFn – CP – Fat – Ash) x PAF, 
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tdCP = EXP(-1.2 x (ADFIP / CP)) x CP, 

tdFat = (Fat – 1) x 2.25, 

dNDF = 0.75 x (NDFn – L) x [1 – (L/NDFn)0.67] , 

NDFn = NDF – NDFIP, 

 

where TDN is the estimated total digestible nutrients (%), tdNFC is true digestible non-fiber 
carbohydrates (%), tdCP is true digestible crude protein (%), tdFat is true digestible fat (%), 
dNDF is digestible neural detergent fiber (%), NDFn is NDF corrected for NDFIP (%), CP is 
the crude protein content (%), Fat is the fat content (%), Ash is the ash content (%), PAF is a 
processing adjustment factor, ADFIP is the acid detergent insoluble N x 6.25 (%), NDFIP is 
the neutral detergent insoluble N x 6.25 (%), L is the lignin content (%), and NDF is the 
neutral detergent content (%) of a given feedstuffs.  Although the proximate composition (CP, 
Fat, Ash, etc.) is determined analytically in a laboratory, this is not done without analytical 
errors, which typically range between 2 and 10% of the true mean depending on the assay and 
feedstuff involved.  Digestibility coefficients (e.g., 0.98, 0.75) are estimates subject to errors.  
Also, although the structure of the set of equations in (1) was derived mechanistically, it is 
nevertheless a simplification to the true, unknown, and far more complex system in nature.  
Thus, TDN values estimated using the system of equations in (1) are subject to measurement 
errors (feed composition), parameters in the equation are estimates (thus subject to errors), 
and the functional form itself is an approximation to the complex world. 

In NRC [3], estimated TDN values from the set of equations in (1) are used to estimate 
MiN according to the following equation: 

MiN  =  130 x TDN,           (2) 

where MiN is net microbial protein synthesis (expressed in g of N/d).  The coefficient 130 
was estimated using an independent set of experimental data where both TDN and MiN had 
been measured.  Clearly, it is an estimate also subject to error.  By combining Eqs. (1) and (2), 
the NRC calculates the predicted MiN resulting from a given diet.  This prediction is subject 
to measurement errors (feed composition), as well as errors in estimates of parameters 
(coefficients in Eqs. (1) and (2)), and errors in functional forms used. 

Measurements of MiN are not without errors.  Various experimental methods have been 
suggested in the scientific literature.  All have limitations [7].  The prevailing method 
involves the marking of feeds and fluids with three indigestible markers each associating 
more predominantly with one of the three major digesta fractions (large particles, small 
particles, and fluid).  Animals must be surgically altered with a large rumen cannula for the 
infusion or dosage of marker, and a duodenal cannula for sampling digesta leaving the 
stomach.  Multiple samples are taken over time and the concentration of the three markers is 
then determined in a laboratory for each sample.  Assuming first order, steady-state kinetics, 
forestomach digestibility of feed components can be calculated as well as flow of MiN [9] 
based on a marker of microbial protein (e.g., purines).  It is clear that measured MiN are 
subject to considerable errors resulting from true measurement errors (concentrations of 
indigestible markers, concentration of microbial marker) as well as errors in parameter 
estimates, and error in the functional form (first-order, steady-state kinetics). 
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In this context, observations and predictions play a symmetric role because they are both 
functional transforms of other variables.  This situation is actually quite frequent when 
modeling biological systems.  The symmetric role of observations and predictions, however, 
has been largely ignored when models are being validated 

2.2 Statistical Model 
The following model, which naturally models comparison studies when both observations 

and predictions are subject to multiple errors, is commonly known as errors-in-variables 
regression [10, 11]: 

      Xi  =   ξi  +  δi ,  

 Yi  =  ηi  +  εi ,  i  =  1, …, n,          (3)  

 ηi  =  α   +  βξi,  

where Xi is the prediction from the mathematical model and Yi is the observed value of the ith 
observation, ξi and ηi are the unobserved mean parameters (“true values”) of Xi and Yi 
respectively, δi and εi are the errors on the predicted and observed values (generally assumed 
to be independent, bivariate Gaussian), α is the overall bias of the prediction model, and β is 
the linear scale difference between the predicted and the observed values.  The variance of the 
two errors, σ2

δ and σ2
ε, are the precision parameters for the predictions and observations, 

respectively.  With known or estimable σ2
δ and σ2

ε (or more accurately, an unbiased estimate 
of  λ = σ2

δ / σ2
ε ), the maximum likelihood estimate  of β is [11]: 

 β  =  SYY - λ SXX +  ((SYY - λ SXX)2 + 4 λ S2
XY)½.     (4) 

                                              2 SXY   

An estimate of σ2
ε  can be calculated from experimental data.  Because of the nonlinearity of 

the system of equations in (1), an analytical estimate of σ2
δ does not exist.  Numerical 

methods could possibly be used but would require knowledge about the variances and 
covariances of all random variables in the equation.  This information is currently not 
available. 

2.3  Concordance correlation coefficient 

Lin [6] proposed a statistic termed the concordance correlation coefficient (CCC) to 
evaluate the agreement (reproducibility) between two readings.  In short, the degree of 
concordance between pairs of sample (Yi1, Yi2), i = 1, 2, …, n, can be characterized by the 
expected value of the squared difference, i.e., 

E(Y1 - Y2)2  =  (µ1 - µ2)2 + (σ1 - σ2)2 + 2(1 - ρ) σ1σ2,        (5) 

where ρ is the Pearson correlation coefficient.  This expectation also represents the expected 
squared perpendicular deviation from the 45o line, multiplied by 2.  Standardizing both sides, 
we get: 

E(Y1 - Y2)2  =  (µ1 - µ2)2 + (σ1 - σ2)2 + (1 - ρ) ,     (6) 

    2 σ1σ2       2 σ1σ2        2 σ1σ2  

which has a sample equivalent: 

344



 

E(Y1 - Y2)2  =    (Y1 - Y2)2   +      (s1 - s2)2    +  (1 - r).    (7) 

 (n-1) 2 s1s2        (n-1) 2 s1s2        (n-1) 2 s1s2  

In (7), a form that has been called deviance analysis, the total deviance, represented by the 
left-hand side is partitioned into three right-hand side components: bias (first term), scale 
difference (second term), and imprecision (third term).  The deviance is equal to zero when all 
(non-negative) terms on the right-hand side are exactly zero, i.e., when the two means are 
equal, the two variances are equal, and the correlation is equal to 1. 

The CCC is defined as follows: 

 ρc =  1 – {E(Y1-Y2)2 / E[(Y1-Y2) | Y1, Y2 are uncorrelated]},   (8) 

 ρc =  2 σ12 / [σ2
1 + σ2

2 + (µ1 - µ2)2],       (9) 

 ρc =  ρ12 χ12,          (10) 

where µ1 = E(Y1), µ2 = E(Y2), σ2
1 = Var(Y1), σ2

2 = Var(Y2), and σ12 = Cov(Y1, Y2) = σ1 σ2 
ρ12.  The CCC is a product of two components: precision (ρ12) and accuracy (χ12), where χ12 = 
2 σ1 σ2 / [σ2

1 + σ2
2 + (µ1 - µ2)2]  =  [(ν12 + 1/ν12 + u2

12) / 2]-1, with ν12 = σ1 / σ2 representing 
scale shift, and u12 = (µ1 - µ2) / (σ1 σ2)1/2 representing location shift relative to the scale.  The 
CCC is an omnibus statistic used to test simultaneously and jointly for accuracy and precision.   

2.4  Dataset  
The data used are described at length in the NRC publication [3].  In short, feed 

composition and measured MiN were gathered from 56 published, peer-reviewed studies of 
which 27 involved growing cattle and 29, lactating dairy cows.  In total, the dataset comprised 
256 records of observed MiN (oMiN, g/d) and predicted MiN (pMiN, g/d). 

3.    RESULTS 

3.1 Pearson correlation  
The Pearson correlation, which measures the degree of linear association (relationship) 

between two random variables has been used for comparing mathematical model predictions 
to observed values.  In our application, this correlation is equal to: rpMiN, oMiN = 0.52, P < 
0.0001.  This statistic shows that oMiN and pMiN have a significant association.  The Pearson 
correlation, however, is invariant to location and scale.  Agreement is a much more stringent 
concept than correlation because both the scale of the measurements and the slopes are 
important.  Also, observations are not random samples from a population (i.e., the sample of 
observed and predicted values was not drawn at random from the population of all cows in the 
world).  Thus, the Pearson correlation coefficient fails to determine whether pMiN and oMiN 
are equivalent. 

 3.2 Paired t-test 
Applying the paired t-test on the data (mean oMiN = 244.91, mean pMiN = 246.36, SEdiff 

=  4.16, t255 = -0.35, P = 0.73), we conclude that there is no significant difference between the 
mean oMiN and the mean pMiN.  This test provides information only for the overall bias 
(location shift).  Because of its structure, the t-test can falsely reject the null hypothesis of 
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high agreement when the residual error is small.  That is, the larger the precision, the more 
likely you are to conclude that the two methods are not equivalent. 

3.3 Least-squares analysis 
The linear regression of oMiN on pMiN is presented in Figure 1.  The model: 

 oMiN  =  B0  +  B1 pMiN  +  e       (11) 

is theoretically incorrect because both oMiN and pMiN have errors.  Under least-squares 
analysis, the null hypothesis is that the two methods are concordant.  Thus, small datasets will 
generally lack power resulting in the conclusion that the two methods are concordant.  
Likewise, large datasets will result in rejecting the null hypotheses for the intercept (B0 = 0) 
and the slope (B1 = 1) when differences are relatively trivial.  This is what occurs with the 
dataset at hand where the two null hypotheses are rejected.  A casual inspection of the 
regression line in Figure 1 reveals the trivial difference between the regression line and the 
line of unity when the spread of the data points from either line is considered.   
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Figure 1.  Linear regression of observed microbial flow to the duodenum (oMiN) on predicted 
microbial N flow (pMiN) using the National Research Council model. 
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This is quite clear when the differences between oMiN and pMiN are plotted against pMiN as 
in Figure 2.  This plot, however, raises the legitimate question as to which variable should be 
used on the X-axis? 
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Figure 2.  Plot of residuals vs. predicted microbial N flow to the duodenum (pMiN) ) using the 
National Research Council model to calculate predicted microbial N flow (pMiN). 

Recall that both oMiN and pMiN are measurement with errors.  In Figure 2, pMiN was 
chosen on the X-axis because this is the correct variable to use in residual plots when the 
independent variable is assumed to be errorless, as in the linear regression paradigm [12].  
Because of the duality of oMiN and pMiN, one could have chosen oMiN for the X-axis, 
resulting in a different conclusion regarding the presence or absence of bias (Figure 3).   

Recognizing this problem, Altman and Bland [13] suggested using the mean of oMiN and 
pMiN for the X-axis (Figure 4).  In fact, this is the correct axis if, and only if the precisions of 
both methods are equal (i.e., when σ2

δ = σ2
ε, or simply that λ = 1).  In the data at hand, 

however, the precision of pMiN is unknown.  Thus the correct residual plot lies somewhere 
between the two extremes presented in Figures 2 and 3.  Unless a satisfactory estimator for 
σ2

δ can be identified, residual plots will invariably lead to the paradox depicted in Figures 2, 
3, and 4, where one cannot decide whether a linear bias is present or not. 
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Figure 3.  Plot of residuals vs. observed microbial N flow to the duodenum (pMiN) using the National 
Research Council model to calculate predicted microbial N flow (pMiN). 

 

3.3 Deviance analysis 

Application of equation (7) using the following estimates: s1 = 50.16, s2 = 77.23, s12 = 
2020.2, mean (Y1) = 246.4, mean (Y2) = 244.9, and r = 0.522 (where the subscript 1 refers to 
pMiN and the subscript 2, to oMiN) results in the following: 

        0.5733   =     0.0003  +               0.0945      +     0.4785             (12)   
 Deviance  =      Bias    +     Scale difference  +  Imprecision 

The deviance is composed of a very small bias (0.0003; or 0.05% of the deviance), a small 
scale shift (0.0.95; or 16.5% of the deviance), and a large imprecision (0.479; or 83.5% of the 
deviance).  Thus, it is clear that most of the deviance is the result of imprecision.  The 
expression of deviance in (7) is in the form of the mean of squared deviations standardized by 
the product of standard deviations.  The unit for deviance does not correspond to the unit of 
the physical variables being measured or predicted.  Thus, although the method is useful, 
biologists struggle with the physical interpretation of the analysis.  However, biologists are 
very familiar with the Pearson correlation coefficient, so that the expression of deviance re-
scaled with a lower bound of -1 and an upper bound of 1 is certainly appealing.  In essence, 
this is what is accomplished by the CCC. 
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Figure 4.  Plot of residuals vs. the mean of observed microbial N flow to the duodenum (pMiN) and 
predicted microbial N flow (PMiN) using the National Research Council model. 

 

3.3 Concordance correlation coefficient 

Application of equation (10) to our dataset results in ρc = 0.476.  Using the inverse 
hyperbolic tangent transformation (or Z-transformation) suggested by Lin [6], and under the 
assumption of asymptotic normality, one concludes that predictions and measurements are 
concordant (P = 0.22).  The accuracy statistic (χ12) is equal to 0.913, whereas the precision 
statistic (ρ12) is equal to 0.522.  Recalling that ρc = 0.476 = 0.913 x 0.522, it becomes evident 
that precision and not accuracy is the issue.  The CCC is equal to 1 when there is no location 
differential, no scale differential, and perfect correlation between the two variables.  It is an 
omnibus statistic that tests jointly precision and accuracy.  In our application, measurements 
are too imprecise to allow the development of a model with acceptable prediction error.  Thus, 
gains in the prediction of MiN can only be achieved with the development of superior 
methods of measurements, with much greater precision than the methods currently in use. 

4.    CONCLUSIONS 
The validation of quantitative biological models is not a simple problem.  Methods must 

account for the multiplicity of errors in both the observed and the predicted values.  That is, 
methods must recognize the symmetric role of observations and predictions because both are 
algebraic transforms of other variables.  The CCC shows potential in this regard. 
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