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Abstract: In many fields of science, sophisticated mathematical models are devised
and implemented within large computer codes in order to simulate and predict complex
real-world phenomena. These models are known for being exposed to various sources of
uncertainty taking place at their building and validation steps, so that they are routinely
subject to reliability tests by means of uncertainty and/or sensitivity analysis. Since
such diagnostics typically require a large number of training code runs, for CPU-intensive
models an approach based around preliminary emulation of a code’s response, followed
by application of the aforementioned techniques to the emulator, can be more practical
and efficient. This paper extends results already established within a Bayesian set-up
for deterministic models (see e.g. [1]) to dynamic multi-response computer codes, for
which some of the outputs at one stage of a simulation become inputs to the subsequent
stage. Advantages and difficulties in the implementation are here discussed, and a test-
bed application to the Sheffield Dynamic Global Vegetation Model, developed within the
UK Centre for Terrestrial Carbon Dynamics, is also presented.
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analysis, uncertainty analysis

1. INTRODUCTION

A nowadays widespread practice in the scientific community is the utilisation of large
computer codes embedding sophisticated mathematical models descriptive of complex as-
pects of reality. The exploratory and predictive ability of any computer simulator is often
hampered by substantial model preparation and computational requirements. Whereas
computational burden is not remarkably cumbersome, nonetheless various uncertainties
can still significantly compromise the performance of a computer model. Among recog-
nised sources of uncertainty affecting the processes of model building and validation are
(see [1] for a thorough discussion on the subject): parameter uncertainty, originating
from unknown quantities tuning the code; model inadequacy, due to necessarily imper-
fect fit to the observed data; residual variability, related either to intrinsic randomness
or unrecognised features of the real-world phenomenon; parametric variability, arising
from quantities conveniently left unspecified; observation error, caused by inaccuracies
at the hard data recording stage; and code uncertainty, related to the complex nature
of the simulator.
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Several methodologies aimed at ascertaining the reliability and effectiveness of a given
computer model are available off-the-shelf from the classical statistical literature: an
exhaustive reference is provided by [2]. Unfortunately standard uncertainty/sensitivity
analysis tools often require a large number of training code runs, hence proving unsuitable
for validation of computationally expensive models. In order to circumvent this problem,
a strategy based around preliminary emulation of the code’s outcome (meta-modelling)
suggested by [3] has been widely adopted. This procedure would typically be followed by
application of the aforementioned techniques to the emulator, which in fact is treated like
a cheaper alias of the original code.

In this context interesting results were obtained via a Bayesian semi-parametric repre-
sentation of deterministic single-response codes, that is models returning the same scalar
output when repeatedly fed with the same input configuration. In previous works in the
field (refer e.g. to [4]) a Gaussian process prior for the code’s output was shown to be
a convenient, flexible and reasonable tool, especially for tackling the problems of model
calibration and rectification.

Sometimes special features of the phenomena of interest may translate into aspects
of the computer model that could complicate standard emulation. This is usually the
case with dynamic computer models, typically designed for time-evolving processes. In
particular, such codes have the distinctive feature that some of the inputs required at each
stage of a simulation are actually outputs from previous stages. This affects the structure
of the input space, in that variables required for the code’s operation can be classified as:
constants, which describe enduring characteristics of the examined events; time-varying,
related to aspects of the process’s evolution over time; and intermediate or final outputs,
which in turn may or may not be recycled by the model into subsequent simulations. In
this context meta-modelling of the code’s outputs needs to be suitably adjusted in order
to accommodate any relationship featured by variables evolving over time.

The paper discusses such adjustments and is organised as follows. In Section 2 a
generalisation of the emulator as developed in [4] to multi-response codes is detailed.
Section 3 is devoted to adapting the emulator to encompass dynamic computer models
as well. An application to a sub-module of an environmental model is outlined in Section
4, while Section 5 summarises concluding remarks.

2. MODELLING MULTI-RESPONSE COMPUTER MODELS

Consider a deterministic computer model which takes inputs x, typically lying in some
(possibly high-dimensional) input space X , and returns outputs y. The process of com-
puting vectors y from x can be formalised via a function f : X �−→ Rq, where the input
space is usually a subset of the Euclidean space Rp with typically p ≥ q. In light of the
usually high degree of complexity of the empirical processes being modelled via f (·), it
is normally unaffordable to explore the whole input space X just by repeatedly running
the computer program. As a consequence, although in principle deterministic the code
is in fact prone to at least code uncertainty (see Section 1). Hence f(·) is regarded as
a stochastic function on X , though still assumed to be reasonably smooth. Therefore,
within the Bayesian framework an appropriate prior process needs to be assigned to the
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random function f (·). In line with [4] we suppose that knowledge of the simulator can be
summarised by the semi-parametric Gaussian process representation

[
f(·) | B, Σ, R

] ∼ Nq

(
m(·), c(·, ·)Σ)

, (1)

where ∀ x1, x2 ∈ X

m(·) = BTh(·)
c(x1, x2) = exp

{−(x1 − x2)
TR(x1 − x2)

} .

Here h : X �−→ Rm is a vector of arbitrary regression functions h(x), common to every
component fi(·), i = 1 . . . , q of f(·), B = [β1 · · ·βq] ∈ Rm,q is a matrix of regression

coefficients, Σ = [σij ] ∈ Rq,q a dispersion matrix with generic entry σij = Cov
[
fi(·), fj(·)

]
and R = diag{ri} ∈ R+

q,q a diagonal positive-definite roughness matrix. Gaussian pro-
cesses constitute the natural counterpart of the Normal model usually invoked for finite-
dimensional estimands, and enjoy the same flexibility and tractability when utilised for
addressing problems related to functional inference. Separability of the covariance struc-
ture between the code inputs and its outputs is here assumed for simplicity. It is also
worthwhile mentioning that diagonality of R, here imposed for parsimony, implies that the
correlation structure between any pair f(x1) and f(x2) is insensitive to any interaction
among inputs.

Running the computer code on a pre-selected design set {s1, . . . , sn} ⊂ X yields
simulations organised in the data matrix D =

[
fi(sr)

] ∈ Rn,q. The design set can be
selected in accord to some space-filling experimental design criterion: see for instance
[5, 6, 7] and annotated bibliography. Due to the learning mechanism intrinsic to the
Bayesian paradigm, as more model runs become available the posterior distribution of
f (·) becomes more concentrated near the input configurations, which in turn are exactly
interpolated.

In light of the assumptions listed above, the joint distribution of the code responses
D conditional on nuisance parameters B, Σ, R is the matrix-Normal distribution

[D | B, Σ, R] ∼ Nn,q

(
HB, Σ ⊗ A

)
,

where HT =
[
h(s1) · · ·h(sn)

] ∈ Rm,n, A = [c(sr, sl)] ∈ Rn,n and ⊗ denotes the Kronecker
product. Letting now tT(·) =

[
c(·, s1) · · · c(·, sn)

] ∈ Rn, standard Normal theory and some
matrix calculus manipulations lead to the following conditional posterior distribution for
the computer simulator:

[
f(·) | B, Σ, R, D

] ∼ Nq

(
m�(·), c�(·, ·)Σ)

, (2)

where

m�(·) = BT
[
h(·) − HTA−1t(·)] + DTA−1t(·)

c�(z1, z2) = c(z1, z2) − tT(z1)A
−1t(z2)

.

A possible way to obtain the posterior process of f (·) conditional on the roughness
matrix R alone is by integration of (2) with respect to the posterior distribution of the
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nuisance parameters B, Σ. Since any substantial information about such parameters will
hardly ever be elicited from the code developers, a prior choice found to be both reasonable
and manageable is the Jeffreys non-informative independence distribution πJ(B, Σ | R) ∝
|Σ|− q+1

2 . Standard Bayesian calculations from (2) and πJ(·) yield

[f(·) | Σ, R, D] ∼ Nq

(
m��(·), c��(·, ·)Σ)

, (3)

where

m��(·) = DTA−1t(·) + B̂T
GLS

[
h(·) − HTA−1t(·)] (4a)

c��(x1, x2) = c�(x1, x2)

+
[
h(x1) − HTA−1t(x1)

]T(
HTA−1H

)−1[
h(x2) − HTA−1t(x2)

]
(4b)

and B̂GLS =
(
HTA−1H

)−1
HTA−1D is the GLS estimator of B. Provided that n ≥ m + q

so that all ensuing posteriors are proper, the conditional posterior Student’s T process

[f (·) | R, D] ∼ Tq

(
m��(·), c��(·, ·)Σ̂GLS; n − m

)
(5)

is finally obtained, in which Σ̂GLS = (n − m)−1(D − HB̂GLS)
TA−1(D − HB̂GLS) denotes

the GLS estimator of Σ.

Direct utilisation of (5) and of precursory results for drawing inferences about the
simulator f (·) must still be preceded by estimation of the unknown roughness matrix R.
A full Bayesian treatment of the roughness parameters, notoriously difficult to estimate
(see in particular [8, 9] for insights), is here rejected on the grounds of computational
tractability. Nonetheless a plug-in approach based upon the posterior mode of (r1, . . . , rp)
arising from a diffuse, albeit proper, prior was found to yield satisfactory results. Once this
task is accomplished expressions (4a)-(4b) furnish respectively a cheap code interpolator
and, when combined with Σ̂GLS, a measure of its accuracy. Furthermore, integration of
the posterior T process (5) relative to appropriately selected distributions over (possibly
portions of) the input space X constitutes the basis of customary uncertainty analysis
techniques. For a complete review of such methodologies, and their adaptations and
implications within a Bayesian set-up, see [2, 4, 10].

3. DYNAMIC META-MODELS

3.1. From Static to Dynamic Emulation

Dynamic computer models come into play when it is desired to reproduce and examine
the evolutionary nature of a time-varying process. As mentioned in Section 1, in order to
reproduce dynamic patterns computer models customarily utilise outputs from each stage
of a simulation as inputs to subsequent stages. This is in essence achieved by computing
the state vector yt relative to a time step t = 1, . . . from inputs comprising both constant
tuning values x and outputs yt−1 from the previous time period t − 1∗. Taking into

∗For many physical processes to impose a Markovian dependence of dynamic outputs over
time, although not correct, may still produce an acceptable representation.
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Figure 1. Single-step meta-modelling

account other time-evolving exogenous code drivers {zt}, the model’s functioning can be
then represented via the recursive relation

yt = f(x, zt, yt−1)

= f
[
x, zt, f (x, zt−1, yt−2)

]
= · · ·

.

If the time span of interest is delimited by endpoints t = 0 and t = T , then in principle
emulation of f (·) can be attained over such interval just in a single-run fashion (see
Figure 1): under this perspective the simulator is imagined to take a set of input values,
comprising initial system descriptors y0, and to return a collection of outputs inclusive of
yT . The main appeal of such procedure clearly lies in enabling straightforward application
of standard statistical analysis tools already existing for static codes. An important
disadvantage however is that in this set-up the input space X comprises constants x, the
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Figure 2. Recursive meta-modelling
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initial state vector y0 and all drivers {zt}. On the other hand the output generated by
f (·) consists of the whole collection of runs {yt}. Therefore applications of this strategy is
severely hindered by typically unwieldy dimensions for both the model input and output
spaces. Additional relevant flaws undermining single-step emulation can be also recognised
in the need to rebuild the posterior process (5) from scratch whenever the temporal window
of interest changes and in deferment of any occasional model rectification exercise until
the end of the simulation.

An approach which intuitively retains the code’s evolutionary pattern is alternatively
depicted in Figure 2. Here the proposed idea is to run a single-step emulator in a recursive
fashion, until coverage of the time span (0, T ) is attained: given the state vector yt

acquired at any time t = 0, . . . , (T − 1), subsequent emulation of yt+1 is then computed
only on the basis of yt and of current drivers zt+1. As a consequence input and output
spaces become more tractable and interactive data assimilation is now feasible. Main
drawbacks of the method in this case are: need to extend theoretical results from static
to dynamic codes; tighter accuracy requirements at each time step for ensuring adequate
overall meta-modelling; and gradual fading of computational advantages over direct Monte
Carlo simulation for increasing values of T .

3.2. Dynamic Emulation Theory

Assume for simplicity that no exogenous drivers are required for running f(·). In addition,
suppose with no loss of generality that the variables which the code rolls forward over
time are the last q ≤ p input entries; that is, for any t and any suitable x ∈ R

p−q, yt ∈ R
q

we have yt+1 = f (x, yt).

An issue that should promptly be highlighted is that under assumption (1) a recursive
emulator of nonlinear codes can at best be approximately Gaussian: if yt = f (x̄) for
some x̄ ∈ X , then for any x such that (x, yt) ∈ X the statement

[
f(x, Y t) | Σ, R

] ∼ Nq(·, ·)
will not strictly hold†. Keeping an assumption of approximate Normality for modelled
outputs on practical grounds obviously entails careful assessment of its plausibility at each
stage of the whole emulation process. Subject to this condition it then becomes feasible to
explore the first and second order properties of the posterior distribution of f (yt), given
previous-step outputs yt−1 and nuisance parameters Σ, R. In fact, recalling results (4)
approximate expressions have been derived in closed form for

E
[
f (x, Y t) | Σ, R, D

]
= E

[
m��(x, Y t) | Σ, R, D

]
(6a)

Cov
[
f(x1, Y t1),f (x2, Y t2) | Σ, R, D

]
= Cov

[
m��(x1, Y t1), m

��(x2, Y t2) | Σ, R, D
]

+ E

{
c��

[
(x1, Y t1), (x2, Y t2)

] | Σ, R, D
}

Σ (6b)

by applying the law of iterated expectations and relying upon properties of multi-Normal
distributions. After integrating out the unknown parameters in Σ and R, expressions (6)

†An intuitive counterexample is provided by the case f : R �−→ R
+, f(x) = x2.
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in turn play an analogous role to their “static” counterparts (4) when attempting usual
uncertainty or sensitivity analyses of f (·) in a dynamic fashion. As regards the (q q+1

2
)-

dimensional problem of marginalising Σ, in light of the dual origin of the Student’s Tq

distribution (see for instance [11], pg. 23) this was found to be efficiently dealt with by
means of a simple univariate integration.

4. THE SHEFFIELD DYNAMIC GLOBAL VEGETATION MODEL: A
TEST-BED

The Centre for Terrestrial Carbon Dynamics (CTCD) is a consortium of British academic
and governmental institutions, established for the purpose of progressing scientific under-
standing of the role played by terrestrial ecosystems in the carbon cycle, with particular
emphasis on forest ecosystems. The ultimate goals of the project are: to gauge carbon
fluxes and their uncertainties at different space/time resolutions; to devise methodological,
data and instrument advances for reducing these uncertainties; to deliver relevant findings
in accessible formats to the scientific community and ultimately to policy makers. These
tasks are pursued with the support of a variety of environmental models designed for sim-
ulating carbon patterns over different geographical and climatic scenarios. Unfortunately,
such models suffer from coarse reproduction of some underlying physical processes and
loose connections to driving data.

Bayesian statistical methods are being employed within the Centre for the assessment
of relevant model (and data) developments required for reducing the uncertainty around
them. In this setting, statistical challenges other than pure uncertainty and sensitivity
analysis which presently require special care are: prediction, i.e. estimation of (possibly
functionals of) model outputs at unavailable input configurations; screening, that is iden-
tification of which code inputs exert most significant influence on the outputs; and code
verification, or detection of bugs in the actual implementation of the program.

Among the simulators devised and deployed within CTCD a central role is played by
the Sheffield Dynamic Global Vegetation Model, daily version (henceforth SDGVMd).
SDGVMd is aimed at illustrating possible responses of ecosystem processes to atmo-
spheric CO2 concentration and climate changes by modelling interactions at a regional to
global scale between ecosystem carbon, water fluxes and vegetation. Inputs to SDGVMd
comprise broad soil, vegetation and climate descriptors; outputs of the model include
various measures of a site’s carbon budget and miscellaneous environmental quantities.
Additional challenges specifically offered by SDGVMd comprise a high-dimensional input
space and the existence of embedded sub-modules operating at different time scales. A
complete description of SDGVMd and the modules it incorporates can be found in [12].

For the purpose of illustrating the broad range of possibilities offered by Gaussian
process-based meta-modelling, the soil module of SDGVMd (CENTURY : for details refer
to [13]) was extracted and subject to emulation. In essence CENTURY manages the soil
carbon (C ) calculations within SDGVMd by recursively solving a set of independent
PDEs, each being indexed by temperature, relative humidity and precipitation drivers
and describing the monthly evolution of 8 different C pools. It should be stressed that
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Figure 3. Simulated (—�—) vs. emulated (· · ·� · · · ) C pools within 95% credible bounds
(−−−).

in fact CENTURY is not a CPU-intensive model; nonetheless this feature conveniently
enables straightforward evaluation of its emulator’s performance.

Having thus recognised as an appropriate representation of CENTURY a function
f : R11 �−→ R8, an interpolation exercise over a time period of 12 months was subsequently
carried out. The input space was covered via a maximin Latin hypercube design of size
n = 200; thereafter roughness parameters were estimated by the joint posterior mode
based on vague i.i.d. Log-Logistic priors on (r1, . . . , rp). The prior mean was chosen to be
linear, i.e. h(x) = (1, x1, . . . , xp), again for convenience. Figure 3 compares CENTURY’s
exact simulations for each C pool with their corresponding approximate posterior values
from (6a), embedded within approximate 95% credible bounds.

A few comments are in order. It should be noticed how in most cases estimated
interpolators appear to satisfactorily capture the underlying original outputs, apart from
perhaps a couple of C pools (Surface microbe and Slow) where some drift can be observed
to emerge over time. Additional effort should be placed into achieving somewhat narrower
credible bounds for the interpolators, but provisional results look overall encouraging.

5. CONCLUSIONS

The paper focuses on two main goals. First, it deals with extensions to multi-response
computer simulators of theoretical results already established for Bayesian meta-modelling
of single-response codes. Second, it attempts to adapt the general methodology to en-
compass dynamic computer models within the same formal framework. Single-step and
recursive emulation schemes were introduced and contrasted; preference towards the lat-
ter methodology was based on computational manageability. The proposed statistical
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machinery was then tested on the soil compartmental model embedded within SDGVMd:
although the implemented exercise was limited to pure code interpolation, the analysis’s
outcome confirmed that interesting insights can be gained from applying the principle of
Bayesian Gaussian process-based emulation to more sophisticated settings.
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