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Abstract: The paper presents an application of GLUE (Generalised Likelihood Uncertainty 
Estimation) methodology to the problem of estimating the uncertainty of predictions produced 
by environmental models. The methodology is placed in a wider context of different 
approaches to inverse modelling and, in particular, a comparison is made with Bayesian 
estimation techniques based on explicit structural assumptions about model error. Using a 
simple example of a rainfall-flow model, different evaluation measures and their influence on 
the prediction uncertainty and confidence limits are demonstrated. 
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1. INTRODUCTION 
The Generalised Likelihood Uncertainty Estimation (GLUE) technique [1] was 

introduced partly to allow for the possible equifinality (non-uniqueness, ambiguity or non-
identifiability) of parameter sets during the estimation of model parameters in over-
parameterised models. The technique has been applied to a variety of environmental problems 
[2]. Its popularity results from the very few assumptions that it requires and the simplicity of 
the approach when used in practical applications. GLUE assumes that, in the case of large 
over-parameterised models, there is no inverse solution and, hence, that the estimation of a 
unique set of parameters, which optimise goodness-of fit-criteria given the observations, is 
not possible. The technique is based on the estimation of the weights or probabilities 
associated with different parameter sets, based on the use of a subjective likelihood measure 
to derive a posterior probability function, which is subsequently used to derive the predictive 
probability of the output variables. In [3] a statistically motivated, more formal equivalent of 
GLUE was developed. The idea was to explicitly derive the likelihood function based on the 
error between the observed outputs and those simulated by the model. This formal approach is 
equivalent to Bayesian statistical estimation: it requires assumptions about the statistical 
structure of the errors. GLUE is usually applied by directly likelihood weighting the outputs 
of multiple model realisations (either deterministic or stochastic, defined by sets of parameter 
values within one or more model structures) to form a predictive distribution of a variable of 
interest. Prediction uncertainties are then related to variation in model outputs, without 
necessarily adding an additional explicit error component. There is thus an interesting 
question as to whether an appropriate choice of likelihood measure can result in similar 
results from the two approaches.  

There are a number of possible measures of model performance that can be used in this 
kind of analysis. The only formal requirements for use in a GLUE analysis are that the 
likelihood measure should increase monotonously with increasing performance and be zero 
for models considered as unacceptable or non-behavioural. Application-oriented measures are 
easily used in this framework. Measures based on formal statistical assumptions, when 
applied to all model realisations (rather than simply in the region of an “optimal” model) 
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should give results similar to a Bayesian approach when used within a GLUE framework [3], 
but the assumptions made (additive Gaussian errors in the simplest cases) are not always 
easily justified in the case of nonlinear environmental models with poorly known boundary 
conditions (see the discussion in [4]). In this paper, we shall explore the influence of the 
choice of observation based likelihood weights on the predictive uncertainty of the model.  

2. RELATION BETWEEN GLUE AND STATISTICAL APPROACHES: 
DISCUSSION OF LIKELIHOOD MEASURES 

There is a question as to how far GLUE can be consistent with formal statistical 
approaches since it weights the predictions of different feasible models without necessarily 
using an explicit error model, albeit that the likelihood weights are determined from a 
calculation that depends in some way on the model errors. In a Bayesian framework, the 
inverse problem is usually posed in the context of the observation equation:  
 0 0( ,..., , ,..., , , , )t t t ty g u u tξ ξ ζ θ=  (1) 

or assuming an additive error model: 

 0 0( ,..., , ,..., , , )t t ty g u u t tξ ξ θ ζ= +  (2) 

where denotes the observed model output; is model input, ty tu θ denotes vector of model 
parameters and the errors on the inputs, tξ , and the measurement error tζ are not known, 
and, in the general case, may be non-Gaussian (and might indeed be required to compensate 
for model structural error). The Bayesian approach allows detailed studies to be targeted at the 
most informative areas and variables (e.g. [5]). It also allows parameter and error estimates to 
be updated as more observations become available: for example, in the case of Gaussian 
normal assumptions (see e.g. [6]), the Bayesian estimator of the state variables in a linear, 
stochastic, dynamic system is the famous Kalman Filter (KF: [7]); while the Bayesian 
estimator of the constant or stochastic, time variable parameters in a linear-in-the-parameters 
regression model is the classic recursive least squares estimation algorithm. Environmental 
models are not normally that simple, and it might be difficult to formulate an appropriate error 
model. In that case there might be advantage in the use of a nonparametric representation of 
the errors ([8], [9], [10]). 

Measures of goodness of fit applied in order to compare different nonparametric 
probability density functions (or log likelihood ratios) include: 
 (i) Mean Square Error (MSE),  

2 2ˆ ˆ ˆ[ ( ) ( )] { ( )} [ [ ( )] ( )]MSE E f x f x Var f x E f x f x= − = − − ,  (3) 

which combines both variance and bias of the estimates;  
(ii) averaged Predictive Squared Error (PSE), related to MSE: 

 2 2ˆ[ ( ) ( )]PSE E f x f x MSEε σ= + − = + ;  (4) 

where 2σ denotes the prediction error variance; and 
(iii) Mean Integrated Square Error (MISE): 

 . (5) 2
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MISE E f x f x
=

= −∑
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Instead of norm used in the above definitions, we can use 2L L∞ norm: 
ˆsup | ( ) ( ) |f x f x

x
− ; L1 norm: ∑  or even L

1

ˆ| ( ) ( ) |
N

i i
i

f x f x
=

− p norm: . The influence 

of these different norms on the estimates of probability density function is discussed in [9]. 
1
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[8] discusses the use of a Generalised Gaussian distribution in inverse modelling. It is 
defined as the normalised probability density f(x) with fixed Lp norm estimator of dispersion: 

 (discrete case), which has the minimum information content 

(widest spreading) and has the form: 
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  (6) 

where  denotes Gamma function and (.)Γ 0x is the centre of f(x) in the  norm sense. pL
For p=2 2 ( )f x is the Gaussian function with mean 0x  and standard deviation 2σ . The 

Generalised Gaussian distribution covers a range of distributions from the symmetric 
exponential to a box-car distribution for p = ∞ . In the case of general exponential distribution 
family, the log-likelihood based on (2) is equal to the sum of the functions of errors 0x x− and 
depending on the error structure (in this case the parameter p), we shall get the criteria related 
to L1, L2 or Lp norm. 
 In [3], it is assumed that, for a general, nonlinear model, the distribution of errors is 
Gaussian with unknown mean and variance and the log-likelihood function has a sum of 
squared errors form, equivalent to the Nonlinear Least Squares approach. In this particular 
case, the equivalence of the measure of fit between the model output and observations and 
assumed error structure follows from the equivalence between likelihood and least square 
approaches for the mean of the distribution of independent errors ([11], [10]). Following this 
approach, the predictive distribution of output variables , modelled by Eq.2, conditioned on 
the calibration data z is given by (discrete case): 

ty

 
  (7) ( | ) ( | , ) ( , |t tP y y P y y f

θ φ

θ φ θ φ< = <∑∑z z)

where ( , | )f θ φ z  is a posterior likelihood function for the parameters: 
2 2

1
( , | ) exp( ( ( ) ) / 2 )

T

t t
t

f z gθ φ θ
=

− − −∑z ∼ µ σ ;  (8) 

( , )φ µ σ=  denotes a vector of statistical model parameters and ( | , )tP y y θ φ< is a standard 
normal distribution function N(0,1). 

The GLUE methodology is closer in philosophical terms to a nonparametric approach. 
The critical difference is that posterior distributions for predicted variables are estimated 
directly from the outputs of a set of multiple acceptable or behavioural models, rather than 
from a model and an additive residual model. In [2] various likelihood measures are presented 
and applied to different environmental problems. These include measures similar in nature to 
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(6) (but also fuzzy measures and binary measures that can be used to exclude some models as 
non-behavioural). Romanowicz and Beven [3] have also shown how a formal error model 
may be used within the GLUE framework by evaluating likelihood weights over both model 
and error model parameters. GLUE allows that the likelihood surface may be very complex in 
form because of complex parameter interactions. It is the set of parameters that produces a 
behavioural model for a given input sequence, and there may be no well-defined posterior 
distribution for individual model parameters. 

In the example that follows, we concentrate on two issues: (i) definition of a likelihood 
measure for use within GLUE with a well-defined scaling parameter based on the dispersion 
of the errors to control the width of prediction limits; (ii) the influence of the choice of 
different likelihood measures on the model predictive uncertainty. 

3. THE MODELLING PROBLEM: APPLICATION OF RAINFALL-FLOW MODEL 
TO THE CAN VILA CATCHMENT, N. E. SPAIN  

To illustrate the proposed methodology, we consider a rainfall-flow model for a set of 
rainfall-flow data. The study catchment area of Can Vila is situated in Spain, in the Valcebre 
catchment of the South-East Pyrenees ([12], [13]). The catchment is 0.56 km2 in area and is 
partly covered by Pinus Sylvestris. Rainfall and flow measurements at 20 min. time steps 
were made available for winter 1995/96 and summer 1997 events. We shall use only winter 
observations in this study with hourly time step. 

The data were modelled using two forms of the mechanistic rainfall-runoff model 
TOPMODEL ([14]). The SIMULINK version of TOPMODEL, described in [15], bases its 
calculations of the spatial patterns of hydrological response on the pattern of a topographic 
index for the catchment derived from a Digital Terrain Model (DTM). The time series data 
used by the model are the rainfall, runoff and evaporation averaged over the catchment. The 
model has a modular structure. The saturated zone model is assumed to be non-linear with the 
outflow Qb(t) calculated as an exponential function of a catchment average soil moisture 
deficit S3 as:  

 
dS
dt

Q t Q tb v
3 = −( ) ( )  

 Q t Q S t mb ( ) exp( ( ) / )= −0 3   (9) 

where Q0=SK0 e-λ   is the flow when S3(t)=0. and  denotes the recharge to the 
saturated zone. SK0 is a soil transmissivity parameter, m is a parameter controlling the rate of 
decline in transmissivity with increasing soil moisture deficit and λ is the mean value of the 
topographic index distribution in the catchment (see [16]). Other parameters control the 
maximum storage available in the root zone (LRZ) and the rate of recharge to the saturated 
zone (KS). 

( )vQ t

In the first step the MC sensitivity analysis was performed using the full version of 
TOPMODEL and January 1996 rainfall-flow data. Following an initial sensitivity analysis the 
parameter ranges were chosen to ensure that the range of the simulations covers the 
observations. 10000 simulations were then performed varying the four TOPMODEL 
parameters according to prior distributions shown in Table 1.  
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Table 1. Parameter distributions applied in MC analysis of TOPMODEL 
 distributio

n 
Min value Max 

value 
mean std 

SKO uniform 10 500 251 141 

m uniform 0.003 0.03 0.017 0.0075 

LRZ Log-
uniform 

1.e-4 0.01 0.0147 0.023 

KS Log-
uniform 

1.e-15 0.01 0.0003 0.0012 

 

4. ESTIMATION OF DISCHARGE PREDICTION LIMITS  
Two methods were then applied to estimate prediction limits: (i) a formal likelihood 

function based on an assumed error model, and (ii) a non-formal GLUE approach with the 
likelihood weights proposed by Eq. 12-13. 

In both approaches, following [3], we used a multiplicative error model to account for the 
usual tendency of rainfall-model errors to increase with increasing magnitude of the 
prediction. Thus:  

, ,log( ) log( ) log( ( ))t t obs t sim tQ Qζ δ θ= = −  (10) 

where denotes the observation of flow at time t and Q,obs tQ , ( )sim t θ denotes the simulated flow 
for a given model run, depending on parameter set θ. 

We then applied the error model (2) with the assumption for the vector error 
( , )t Nζ µ Σ∼ ; where µ denotes the unknown mean of the errors and 2IσΣ =  is the 

covariance matrix. The observation sets for the conditioning of the estimates were chosen in 
such way that the correlation between the observations could be neglected. Eq. 7 can be used 
to estimate the predictive uncertainty of the model both for the calibration and the validation 
stages, under the assumption that the distribution of errors remains the same during the 
validation stage. Fig. 1 presents the predictions together with 95% confidence limits for the 
calibration (upper panel) and validation (lower panel) periods.  
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Figure 1. Flow predictions together with 95% confidence limits for Can Villa catchment; 
upper panel: calibration stage – December 1995, lower panel: validation event January 

1996; dashed lines denote the 95% confidence limits, dots represent the observations; formal 
approach. Note change in discharge scale. 

In the GLUE approach the prediction equation takes the form: 

ˆ ˆ( | ) { ( | ) |t i
i

P y y f y yθ< = <∑z z )}t  (11) 

We look for the weights ( | )if θ z , which will account for both prediction and 
parameter/structure related errors. By analogy with (7-8) we assume the form: 

2 2
, ,

1
( | ) exp( (log( ( ) log( )) / )

T

i t sim i t
t

f Q Q obsθ θ σ
=

= − −∑z  (12) 

In the formal approach, with an explicit error model, 2σ  is the variance of the prediction error 
based on the observations. The optimal value of this variance may be derived from the 
likelihood function (8).  

In the non-formal GLUE approach, however, we can treat 2σ as an additional scaling 
parameter reflecting our lack of knowledge of the true information content of the residuals tζ  
in constraining the uncertainty in the model predictions. One possible form for this scaling is 
to take the sum of the variances of the simulated flows over all the behavioural models and all 
time steps as an estimate, such that: 

2
,

1
var(log( ( ))

T

t sim
t

Qσ θ
=

= ∑  (13) 
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This will increase the dispersion of the resulting posterior likelihoods (relative to the formal 
case) to account for the predictive model uncertainty without making additional assumptions 
about the model error structure. This scaling could also be made time-dependent, since the 
cumulated variance of simulated flows at each time step can be calculated over some 
specified process memory, in a way similar to allowing a variable kernel in kernel density 
estimation ([9]) but without making any assumptions about the form of the likelihood surface. 

The resulting predictions together with 95% confidence bands for the calibration period 
are shown in Figure 2.  

 
Figure 2. Flow predictions together with 95% confidence limits for Can Villa catchment; 

December 1995, dashed lines denote the 95% confidence limits, dots represent the 
observations; non-formal GLUE approach. 

Comparison with the Fig. 1 shows that, in this case, the simplified GLUE method gives 
smaller over-prediction and better represents the observations. Results for a further evaluation 
period, using the same set of behavioural models and likelihood weights determined for the 
calibration period, are shown in Fig. 5, upper panel. In this case the GLUE method also gives 
very good results. 

5. INFLUENCE OF THE CHOICE OF OBSERVATION SETS ON THE MODEL 
PREDICTIVE UNCERTAINTY: COMPARISON OF DIFFERENT GOODNESS OF 
FIT CRITERIA 

The availability and quality of observations is often a major constraint on the 
identifiability of environmental models. In addition, different prediction problems might 
require different types of model evaluation. In the case of rainfall-flow models, there is 
usually sufficient amount of observations available but input errors and model structural 
errors can give rise to complex error structures for any model run, including 
heteroscedasticity, nonstationarity and correlation. We can attempt to model these 
complexities (as in [3]) but experience suggests that less formal methods can still provide 
useful prediction bounds. In what follows we shall compare the uncertainty predictions 
obtained when different (reduced) observation sets are chosen for the conditioning of the 
predictions and different norms are used to evaluate the likelihood weights. We shall use the 
non-formal GLUE approach in this comparison with L2 norm in (12) replaced by L1 norm and 
also we shall compare the use of observations from the whole time period with conditioning 
only on time steps with peak discharge observations (global MISE and local MSE goodness 
of fit criterion) used for the conditioning (as these criteria may use different norms). 

As an example, Fig. 3 shows the results of conditioning on the two highest peak values 
only in terms of the resulting cumulative density functions (cdfs) for the parameters integrated 
over all the behavioural parameter sets for likelihood weights based on an L1 norm (dashed 
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lines). These are compared with the cdfs obtained using likelihood weights based on L2 norm 
and the same type of conditioning (dotted lines) and the likelihoods with scaling (12) 
conditioned on the whole range of observations (solid lines).  

 
Figure 3. Comparison of the cdfs for the parameters obtained using two criteria for the 

observation based weights; continuous lines correspond to the weights (12) conditioned on 
the whole dataset (MISE L2 criterion); dashed lines show cdfs for the 2 peak values of flow, 

norm L1; dotted lines show cdfs for the 2 peak values, L2 norm. 

The results from Fig. 3 show significant differences of posterior distributions of parameters 
when different observation sets and likelihood weights are used. However, the results were 
less sensitive to the use of different norms (L1, or L2). The resulting prediction limits shown in 
Fig. 4 are also affected by the choice of the observation sets, with confidence limits for the 
conditioning on the 2 peak observations of flow better following the peak values but over 
predicting low flows. 

 
Figure 4. Comparison of confidence levels obtained using two criteria for the calibration 

period, December, 1995; the thick dashed lines correspond to 95% confidence limits obtained 
from MISE L2 criterion (5); thin dashed lines show 95% confidence limits for 2 peak values of 

flow, L2 norm, and dots denote the observed flow. 
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Figure 5. Validation stage: predicted flow (median) (--) and 95% confidence limits (:); big 
dots denote the observations; upper panel: weights derived from the sum of square errors; 

lower panel: weights derived from two peak values; January 1996. Note change in discharge 
scale from Fig. 1 

Fig. 5 shows the application of the derived sampling scheme and likelihood weights to a new 
validation period in January 1996. Comparison of these results with the predictions for the 
same validation period obtained using formal approach (Fig. 1, lower panel) shows that the 
non-formal approach provides reasonably good predictions for high flows and is much better 
for low flows, where the formal approach overestimated the observed values.  

6. CONCLUSIONS 
Due to the stochastic nature of the variables influencing the deterministic model of the 

physical process at study, the predictions of the model output should also be considered to be 
stochastic. We may have some information about the probability distribution of different 
model variables, but usually environmental models are highly nonlinear and poorly defined, 
so it may be difficult, or even impossible to obtain the solution of the related inverse problem.  
This paper is meant as the bridge between formal and non-formal approaches to estimation of 
hydrological models. We presented a short discussion of statistical methods and their 
applicability to nonlinear, multidimensional and uncertain processes and pointed out that may 
be some justification for using a less formal approach such as GLUE. 

Our results indicated that use of different criteria for evaluation of likelihood weights 
influences the shape of the resulting posterior distributions of the parameters but does not 
influence so much the uncertainty bands for the predictions. This is consistent with past 
experience reported, for example, in [2] and [17]. In order to obtain the control over the 
uncertainty limits we should use a suitable scaling parameter for the likelihood weights as 
well as a suitable choice of the observations for the conditioning of the probabilities for a 
particular application.  

In future work we shall show the influence of the choice of time variable observation 
window on the uncertainty of model predictions and the way in which the results from 
different model structures can be integrated within the GLUE framework. 
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