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Abstract:

As part of the production of an integrated modelling system for lowland permeable
catchments, a stochastic framework is being developed to allow quantification of uncer-
tainty in the representation of catchment response and impacts of management scenarios,
and to investigate how capable various conceptual models are of adequately characterising
water flow, nitrate and phosphorous transport given a reasonably calibrated and, where
applicable, physically realistic parameter set. To address these considerations, a collection
of stochastic routines, including Markov chain Monte Carlo capabilities, have been inte-
grated with a semi-distributed nitrogen model. This Integrated Nitrogen in Catchments
model (INCA) simulates flow, nitrate and ammonium and tracks the temporal variations
in flow and nitrogen mass operating in both land and river phases. This paper discusses
some of the issues and initial results arising from the first application of Markov chain
Monte Carlo (MCMC) to scenarios utilising the INCA model. Performance is illustrated
with data from the Kennet catchment in southern England. The results demonstrate
the power of Markov chain Monte Carlo methods to quantitatively examine the inter-
relationship between model structure, parameter identifiability and data support, but also
the reliance of MCMC and other heuristic methodologies on objective function choices
and model robustness.
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1. INTRODUCTION

An integrated nitrogen model has been developed to investigate the fate and distribu-
tion of nitrogen in the aquatic and terrestrial environment. This Integrated Nitrogen in
CAtchments model (INCA) simulates flow, nitrate and ammonium over the catchment
scale, coupling land processes and in-river processes. Dilution, natural decay and bio-
chemical transformation processes are included in the model as well as interactions with
plant biomass. It is semi-distributed to account for spatial variations in land use, human
impacts, effluent discharges and varying deposition levels, and produces daily estimates of
the stream water flow and nitrate and ammonium concentrations, in addition to estimates
of annual, land-use specific, N fluxes. The original model was described in Whitehead et
al. (1998), while more recent additions to the model structure are contained in [1]. The
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model has been successfully applied to a range of catchments in the U.K. and Europe,
and is still being refined to extend its applicability to a variety of catchment management
needs. However, little work on parameter sensitivity and identifiability has been carried
out on it to date.

A detailed study of these issues should aid the successful calibration of further catch-
ment applications by highlighting the most significant parameters and allowing informed
decisions as to the areas in which experimental resources and measurements should be
allocated. For catchment management purposes, there is also a need to provide measures
of the uncertainty present due to measurement errors in the inputs, parametric uncer-
tainty, and issues related to model conceptualisation. To address these considerations,
methods for propagating uncertainty, analysing parameter sensitivity and model struc-
ture, and optimisation are placed within a subjective probability framework, along with a
collection of appropriate “objective functions” to specify criteria for successful calibration.
The more efficient methodologies utilise heuristic guidance to explore parametric spaces
and model output distributions through an automatic semi-random exploration of the pa-
rameter space. Included in these routines are Markov chain Monte Carlo methods (using
Metropolis Hastings formulae), used to sample parametric and uncertain quantities. The
framework permits both parametric and model structural uncertainty to be interrogated,
and allows effective calibration and confidence predictions through optimisation of model
inputs to fit observations or other criteria, with explicit consideration of effects of data
uncertainty.

MCMC methods possess the general virtue of simulation methods, with information
regarding parametric probability distributions easily collected along with optimal pa-
rameter sets. However, other sampling methods generally fail when the posterior involves
many variables or is otherwise intractable. Markov chain methods are capable of sampling
from posterior distributions of arbitrary complexity, through the Metropolis Hastings al-
gorithm, which provides simple conditions under which the chain will equilibrate to the
required distribution. Since such methods sit naturally within a subjective probability
framework, they are also capable of quantifying distortions produced on the outputs by
noise. Such a capability is indispensable for rigourous analysis of an environmental model
such as INCA, as the input is subject to extreme uncertainty.

The performance of the modelling framework is illustrated with data from the Ken-
net catchment in southern England. To understand the characteristics of both overall
uncertainty and particular parametric sensitivities in INCA, the effect of changes in the
parameters and inputs are examined using the Markov chain sampling described above.
Response surfaces, in this case distributions of input parameters against single-valued
measures of performance (derived from the output parameters and optimality criteria),
are examined, and the biases caused by differing optima considered. The influence of such
biases on subsequent decisions regarding parameter sensitivities and “optimal” parame-
ter sets is examined. The efficiencies of differing Metropolis proposal functions applied
to sample both the “minima” and entirety of a given response surface are also being
investigated.

The results demonstrate the power of Markov chain Monte Carlo methods to quanti-
tatively examine the inter-relationship between model structure, parameter identifiability
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and data support, and also provide an efficient means of addressing the problem of cal-
ibration given large parameter sets and the presence of measurement error and other
uncertainties. In the context of model development, however, the need for alternate,
non-heuristically guided methodologies to be included in such stochastic tools is also
demonstrated.

2. THE STOCHASTIC FRAMEWORK

Any model describing nutrient transport within a catchment, the result of complicated
environmental processes with dependencies on both space and time, is necessarily a sim-
plified representation of the phenomena being studied. This imposes a limit upon one’s
confidence in its responses or outputs, regardless of the accuracy of any input information.
The input itself is subject to many sources of uncertainty, including measurement errors,
absence of information, temporal and spatial variability, and incomplete understanding
of underlying driving forces and mechanisms. Adequate spatial representation is particu-
larly difficult, due to the intrinsic variability present within the environment, such as the
continuous variation in soil properties and nitrogen inputs over space, and the difficulty
of characterising properties in the subsurface.

To give a measure of confidence in scenario predictions, a reliable catchment modelling
tool should provide measures of the uncertainty present due to measurement errors in the
inputs, parametric uncertainty, and issues related to model conceptualisation, and be able
to translate these measures into prediction confidence limits for management purposes [2].
Where models are still in development, stochastic analysis can also aid in identifying the
components of model structures that are most significant in the simulation of nutrient
dynamics in river systems, aspects that appear redundant, and the inter-relationship
between model structure, parameter identifiability and data support. This allows informed
decisions as to the areas in which experimental resources and measurements should be
allocated. The relative importance of differing measurands over space is also important.

To address all these concerns within one framework, methods suitable for prediction
uncertainty, model sensitivity to parameters and data error and calibration must be as-
sociated with appropriate catchment scale models. For successful calibration, collections
of appropriate “objective functions” to specify optimal criteria, data processing capabili-
ties for handling and analysing errors and guidelines for choosing calibration criteria and
parameter distributions given specific modelling tasks must also be included.

3. UNCERTAINTY AND SENSITIVITY METHODOLOGIES

To address prediction uncertainty and model sensitivity, three possible Monte Carlo
methodologies have been implemented: basic Monte-Carlo simulation, Latin hypercube
sampling and Markov-chain Monte-Carlo techniques (Metropolis and Metropolis Hast-
ings). The classic Monte Carlo method samples the input parameter space using the exact
probability distribution assigned to it, which, given an exact mathematical description of
the model, must converge eventually to the precise output distribution. The simulation’s
main impediment is its high computational cost, with the run numbers necessary for a
successful analysis of a model’s outputs typically running into the thousands [2]. A degree
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of computational efficiency can be accomplished through the use of efficient input sam-
pling methods, which may include heuristic search procedures (purposeful or partially
informed searches using heuristic functions for guidance), or less informed approaches
where segments of the probability distributions are split or stratified, and systematically
explored. The latter approach is contained within the framework through inclusion of the
Latin Hypercube method [3].

To formally include subjective probability to be used within the framework, Markov
chain Monte Carlo methods (using Metropolis Hastings formulae) are used to sample
parametric and uncertain quantities. These methods sample from the input, or posterior,
distribution, and sit naturally within a subjective probability (Bayesian) framework. A
Markov chain is a series of random variables {X(0), X(1), X(2), . . . , X(N)} for which the
conditional probability of a transition from any state X(i) to any other state X(j) depends
only on the current state, and not on any previous states. The construction of a Markov
chain requires two basic ingredients, namely an initial distribution (a first approximation
to the probability of being in each the states X(i)) and a transition matrix [4]. This
transition matrix is a matrix of probabilities, defining all the associated probabilities
(transition probabilities) of the chain moving from state X(i) to state X(j), i, j ∈ (1, N).

Markov chain Monte-Carlo methods draw samples from a Markov chain rather than
from the probability distribution f(x). When constructed carefully, these can be very
efficient approximators. Most Markov chain schemes in use today, such as the popular
Gills sampler, are a variant of the Metropolis Hastings approach. For details, see Gilks et
al. (1996). The Markov chain is constructed such that its equilibrium distribution is that
of the posterior distribution of interest. In this context, such a distribution might be that
of the INCA parameters conditional on measured “output” observations and optimality
constraints, or the uncertainty present in a prediction given uncertainty in measurands
and model structure.

Each state is visited the required number of times to satisfy the conditional distribu-
tion of the parameters given the data. This is achieved through satisfying appropriate
conditions of reversibility (detailed balance) and ergodicity (Hastings 1970). By giving
the microscopic dynamics of the Markov chain (that is, an algorithm that determines
X(i + 1) given X(i)), the transition matrix and consequently the (unnormalised) input
distribution is implicitly fixed. Markov chain methods are capable of sampling from pos-
terior distributions of arbitrary complexity, through the Metropolis Hastings algorithm,
which provides simple conditions under which the chain will equilibrate to the required
distribution [5]. They have been successfully applied in hydrological modelling by Kuczera
and Parent [6].

The draws from the Markov chain are accomplished through variants of the pleasingly
simple Metropolis Hastings formulae, involving proposals of candidate values through a
proposal function and rejection/acceptance steps. This proposal function is constructed
such that it implicitly defines the required conditional distributions, along with satisfying
the necessary Markov chain conditions. At any time, it describes the current knowledge
regarding parameter distributions, given initial knowledge and information from prior
runs. By equating the posterior with Bayes’ rule, it also allows potential for converging
upon the “true” input distributions through incorporation of learnt information [7].

332



Bayes’ rule is derived from basic axioms of probability. In the context of this work,
it is best viewed in terms of updating belief in a hypothesis H given new evidence D.
A posterior belief P (H|D), giving the probability of hypothesis H after considering the
effect of new data is calculated by multiplying the prior belief P (H) by the likelihood
P (D|H) that D will occur if H is true. There is no fundamental distinction between
observable quantities and parametric inputs to a model; both can be considered to be
random quantities. The theorem can be written as follows,

p(H|D) =
p(H)p(D|H)

p(D)
. (1)

A first quantification of P (H) is provided before any data is gathered; this is the prior
probability of H. In the context of calibrating a physically based model, the “hypotheses”
are the parameter value probability distributions adopted before a simulation commences.
These are generally determined subjectively in terms of prior beliefs or knowledge, such
as what are realistic ranges of the parameters from previous knowledge of their properties
and of the specific scenario situation. Physical constraints, such as non-negativity of
concentrations, are also generally included.

In the case of continuous problems, the hypotheses become one continuous parametric
distribution. To avoid confusion with the discrete case, this will be denoted by θ, and the
outcomes (data) by y. These could be scalars or vectors. Prior beliefs are specified as a
probability density function p(θ), while the outcomes conditional on the hypotheses are
the conditional density p(y|θ), often referred to as the likelihood function [2]. This prior
and conditional density fully specify the joint density p(θ, y) over all hypotheses and data,

p(θ, y) = p(θ)p(y|θ) (2)

The marginal distribution p(y) of y can be calculated from this joint distribution by
integrating over θ,

p(y) =
∫

θ
p(θ, y)dθ =

∫

θ
p(θ)p(y|θ)dθ. (3)

The posterior probability distribution is therefore given by

p(θ, y) =
p(y|θ)p(θ)∫

θ p(y|θ)p(θ)dθ
. (4)

This is the continuous form of Bayes’ Theorem. The denominator, or marginal prob-
ability, is easily calculated by recognising that it can, given all other quantities, be con-
sidered as a normalising constant.

4. CALIBRATION METHODOLOGIES

The Monte Carlo routines above are suitable for both sensitivity and uncertainty analysis,
as they preserve distributional information, and yield information on the total parameter
and output spaces. However, in calibration, one is usually interested in locating only a
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limited part of the above distributions: generally the global optimum (given appropriate
parameter constraints), or, where data error, model structure error, or multiple objectives
prevent a single optimum being achievable or meaningful, sets of acceptable local or
Pareto-optimal parameters. While full explorations combined with additional information
can produce information on “optimal” regions of this space, they are rarely an efficient
means of doing so. Therefore, extra routines suitable for calibration have been included in
the framework. These are: the Levenburg Marquadt method [8] and the SCEA (Shuffled
Complex Evolution Algorithm) [9], neither of which will be considered further in this
paper, and finally the addition of simulated annealing to the Markov chain Monte Carlo
scheme.

Simulated annealing is a heuristic search procedure based on the metaphor of how
annealing works [7]. It aims to reach a global minimum through a procedure that incor-
porates a decreasing random component to avoid trapping at a local minimum, by allowing
a non-improving move to a neighbour with a probability that decreases over time. Since
the random component is decreasing, the magnitude of any non-improving change also be-
comes smaller with time. The rate of this decrease is determined by the cooling schedule,
often an exponential decay (in keeping with the thermodynamic metaphor).

To calibrate a model effectively, the “objective” of the calibration must be specified.
An objective may be singular, or include several independent criteria that may need to be
traded off against each other. They are very application, as well as model, specific, but
generally include measures of fit applied to the model output against observed data, and
often criteria aimed at minimising risks or costs (economic, environmental, etc). If a model
is manually calibrated, the objective may be stated qualitatively: fits may be obtained
by eye and intuition then play a part in choosing appropriate calibrated parameter sets.
For automated calibration, an ‘objective function” or functions giving a mathematical
definition of how good a solution is must be formally specified.

Multiple objectives can arise from multiple types of output, emphasising different
aspects of model performance, and also from time or space series of one quantity. The
latter is generally compacted into one measure through application of a norm (such as
least squares). However, different measures of fit will favour different aspects of a series
[10]. For example, fits to the variation of stream flow over time may favour the overall
water balance, overall shape, or weight the calibration to good agreement of low flow or
peak flows. The chosen measure of fit may vary according to the modelling task; flood
management may require good estimates of peak flows and overall shape, whereas low
flows may be of more important for agricultural management.

One approach is to aggregate the multiple objectives into one single objective function,
and optimise to the single-valued best fit. The result is then strongly dependent on the
aggregation, or weighting of the objectives. An increasingly common alternative is to
employ the concept of Pareto optimality [11]. A set of parameters is said to be Pareto
optimal if an improvement in any one criteria will lead to another criteria being degraded;
no criteria dominates. This concept does not give a single solution, but rather a set of
solutions called the Pareto optimal set. Parameter sets corresponding to these solutions
are called non-dominated, and give a visual trade-off between competing objectives. The
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user can then choose a solution according to his or her preference. However, in a guided
calibration, or to explore posterior distributions conditional upon data, optimality must
still be reduced to one measure, perhaps through a normalised weighting of the objectives.
One popular means of achieving this is through calculating the coefficient of determination
R2 (widely known in the hydrological literature as the Nash-Sutcliffe efficiency criterion),
given by

R2 = 1−
∑n

i=1(xi − yi)
2

∑n
i=1(xi − x)2

, (5)

where yi is the simulated value, xi is measured value, x is the mean of the measured values
and n is the number of samples. This is the measure used in the forthcoming application,
although a variety of approaches are being explored and added to the toolbox capabilities.

5. APPLICATION

To test performance of the integrated model stochastic framework, Markov chain Monte
Carlo methods were applied to a model application utilising data from the Kennet catch-
ment in southern England. This is a groundwater-dominated catchment draining an area
of 1164 km2, with a chalk aquifer supplying approximately 95% of its water. As it has
been a focus of a variety of water quality and ecological concerns, there is a relatively
large amount of data available to compare model response against.

An initial goal was to provide the INCA model with an automated calibration routine
in place of the manual calibration procedure used previously, with the aim of enhancing the
reliability of calibrated parameters due to a more exhaustive exploration of the parameter
space and shortening implementation time. A second purpose was to highlight the most
significant parameters for such a calibration, and to identify areas in which model structure
could be strengthened. Thirdly, the reliance of results on differing calibration criteria is
being investigated.

A one-year simulation period was chosen, from 1st January 1998 to 31st December
1998. Daily precipitation and air temperature were provided, and hydrologically effective
rainfall along with soil moisture deficits obtained from MORECS (the U. K. Met Office
Rainfall and Evaporation Calculation System). This extracts the relevant quantities from
atmospheric data using a Penman-Monteith type routine. Geospatial and other relevant
information (e.g. farming practices, proportional land use, base flow indexes, dry depo-
sition data) were obtained from national databases and other sources where available. A
hand-calibrated parameter set provided other parameters needed by the model, and was
also used as the starting state for the Markov chain Monte Carlo simulations.

To address the first two purposes of the performance test, twenty-six parameters were
varied within ranges constrained by existing calibration guidelines and literature values.
These parameters are shown in Table 1.

Two scenarios were considered: the first treated the 26 parameters as spatially homo-
geneous in both land and river phases, and the second allowed for heterogeneity. This
heterogeneous scenario had 6 unique land types, and divided the river Kennet into 25
“reaches”, or contiguous lengths. Each reach is then associated with a subcatchment, and
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Table 1. Calibration/Sensitivity Parameters examined in Markov Chain Monte Carlo Kennet
simulations, January-December 1998.
Name Units Distribution Minimum Maximum
initial soil flow m3s−1 land use 0.0 1.0
initial groundwater flow m3s−1 land use 0.0 0.1
initial soilwater nitrate mg.l−1 land use 0.0 10.0
initial groundwater nitrate mg.l−1 land use 0.0 8.0
initial soilwater ammonium mg.l−1 land use 0.0 2.0
initial groundwater ammonium mg.l−1 land use 0.0 1.0
initial soil drainage volume m3 land use 105 2 ×107

initial ground drainage volume m3 land use 106 108

initial in-stream flow rate m3s−1 top reach 0.0 2.0
initial in-stream nitrate mg.l−1 top reach 0.0 10.0
initial in-stream ammonium mg.l−1 top reach 0.0 2.0
denitrification rate m.day−1 land use 0.01 19.0
nitrogen fixation kg.ha−1day−1 land use 0.0 0.0001
plant nitrate uptake m.day−1 land use 0.0 162.0
nitrification rate m.day−1 land use 1.0 54.0
mineralisation kg.ha−1day−1 land use 1.0 292.0
immobilisation rate m.day−1 land use 0.0 1.0
ammonium addition rate kg.ha−1day−1 land use 0.0 100.0
plant ammonium uptake m.day−1 land use 0.0 162.0
Reactive zone residence time days land use 0.5 5.0
Groundwater residence time days land use 10.0 200.0
Maximum soil water retention† m land use 0.0 1.0
velocity flow a parameter (Qa) - by reach 0.001 0.2
velocity flow b parameter Qb - by reach 0.3 0.99
Denitrification rate day−1 by reach 0.04 0.09
Nitrification rate day−1 by reach 0.1 5.0

this association allows for the coupling of in-river and land processes (for more details,
see [12]). This discretisation in space resulted in 215 unique parameters. The objectives
for calibration were taken to be least squares fits to in-river flow, nitrate, and ammo-
nium concentrations, with the Nash-Sutcliffe criterion providing a means to weight these
appropriately for heuristic guidance.

The first implementation of the tool was only partially successful, as the model was not
robust over the entire parametric space. Such problems are common in a first application
of a full sensitivity analysis to a model, as an automated routine is likely to discover (by
brute force) subtle instabilities in a model formulation, and also extract any parameter
constraints that have not been explicitly specified. This interfered with the ability of the
heuristically guided Markov chain Monte Carlo and calibration methodologies to explore
model input and output distributions.

When tested on sub-sets of parameters where the model was robust, Markov chain
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Monte Carlo analysis results were encouraging, and the annealing approach to calibration
substantially reduced run-time needed to locate optima. The hand calibrated and auto-
mated river flow optima were almost identical; for this particular only two parameters
were significant. However, in most reaches the automated calibration improved upon the
nitrate concentration optima by a factor of 3 to 6 (using a least squares objective func-
tion). An example, showing data, hand and automated calibrations is shown in Figure
1. Ammonium is disregarded for comparison purposes, as the hand-calibration did not
seek to optimise this. Figure 2 shows plots of the most sensitive parameter against the

0 50 100 150 200 250 300 350
4.5

5

5.5

6

6.5

7

7.5

8

8.5

9
Nitrate in reach 10

Day of year

N
itr

at
e 

(m
g.

N
.l−

1 )

Data
hand calibration
automated calibration

Figure 1. “Hand” versus automated calibration for nitrate in reach 10.

least squares nitrate objective function, for several reaches along the river. Figure 3 shows
the combined posterior distribution of two parameters; groundwater drainage volume and
initial groundwater nitrate concentration, conditioned on a data fit measure derived from
least squares fits to measured in-river nitrate concentrations and flows. Equal importance
was given to each reach, and the Nash-Sutcliffe efficiency measure used for normalisation
purposes. A flat prior was used with a simple random walk Metropolis proposal function,
and the chain was visited two million times. Quantitative convergence diagnostics have
not yet been included, partly due to the debates surrounding the issue [?]. However, a
preliminary diagnostic, dividing the chain into four sub-intervals, showed almost identical
distributions. This, along with the long length of the chain, provides a strong argument
for acceptance.

The influence of differing data fit measures on the above posterior distribution has also
been examined. However, the presence of small instabilities in model responses for all the
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Figure 2. Response of in-river nitrate objective function against initial groundwater nitrate
values over space.

posteriors somewhat obscured the biases caused by differing optima. This is continuing
to be addressed as the model is refined.

6. CONCLUSIONS

A framework for stochastic analysis of catchment scale modelling scenarios, utilising
Markov chain Monte Carlo along with other methodologies, has been developed and in-
tegrated with an existing nitrogen in catchments model (INCA).

It has become evident that, while MCMC provides an efficient means of investigating
various conditional distributions and model responses, its relevance as an aid to developing
models is limited unless it is complemented with cruder, set search methods and tools to
identify structural problems and problematic parameter sets. This is a consequence of
its reliance, in this context, on heuristic searches, which demand a certain degree of
smoothness within the explored response surfaces.

The framework presented here is being extended to include a range of multi-variate
analysis tools to investigate and isolate non-viable parameter combinations and structural
issues. It is our view that this will be a useful, and arguably necessary, aid to any
environmental model that has not already undergone substantial automated testing in its
current form.

Implementation of the Markov chains produced successful results in parameter re-
gions with stable model response, and has demonstrated the ability of the Metropolis
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Figure 3. Posterior distribution of initial groundwater nitrate and drainage volume, conditional
upon normalised least squares in-river flow and nitrate levels.

Hastings scheme to efficiently recover conditional distributions given appropriate data.
To further test its efficiency against other methodologies, and parameterise its heuristics
appropriately, model robustness is being tested and improved, and further information on
parameter interactions investigated.

Further work is seeking to extend the robustness of the INCA model under automated
calibration, through model component changes and further constraints upon parameters,
and investigations into how conditional distributions are affected by aspects of model
response and the optimality criteria imposed upon an analysis are ongoing. Proposal
functions constructed with the aim of allowing sampling to be efficiently weighted towards
subsets of the distribution are also being examined.
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