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Abstract: In stormwater quality modeling, estimating the confidence level in conceptual 
model parameters is necessary but difficult. The applicability and the effectiveness of a 
method for model calibration and model uncertainty analysis in the case of a four parameters 
lumped urban runoff quality model are illustrated in this paper. This method consists of a 
combination of the Metropolis algorithm for parameters’ uncertainties and correlation 
assessment and a Variance-based method for global sensitivity analysis. The use of the 
Metropolis algorithm to estimate the posterior distribution of parameters through a likelihood 
measure allows the replicated Latin Hypercube Sampling method to compute the parameters’ 
importance measures. Calibration results illustrate the usefulness of the Metropolis algorithm 
in the assessment of parameters’ uncertainties and their interaction structure. The sensitivity 
analysis demonstrates the insignificance of some parameters in terms of driving the model to 
have a good conformity with the data. This method provides a realistic evaluation of the 
conceptual description of the processes used in models and a progress in our capability to 
assess parameters’ uncertainties. 
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1. INTRODUCTION 
Since the seventies, an important number of research programs (National Urban Runoff 

Program, in the USA (1978-1983), French Campaign (1980-1982), Experimental Urban 
Catchment “le Marais” (1994-2000), …) have shown that the urban stormwater is a 
significant source of pollution for the receiving systems. This pollution results mostly from 
the erosion caused by the runoff of particulate pollutants accumulated on the urban surfaces 
and in sewers during the dry weather period (Figure 1). Moreover, in old urban centers 
combined† sewer systems are found, whereby, during wet weather periods, mixed rain and 
wastewaters may reach the receiving system through combined sewer overflows. 

Within the European Union, control of this pollution was concretized in government 
policy and Community legislation. Concerning the urban drainage, the European Directive 
n°91/271 of May 1991 on wastewater treatment forces the communities to take into account 
the pollution discharged into receiving waters during storm events. 

                                                 
* Corresponding author. Tel.:+33(0)1 64 15 36 30; Fax:+33(0)1 64 15 37 64 

† Combined sewer system is used in old cities to drain both the urban stormwater and the wastewater 
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Figure 1 Sources of urban water pollution 

Mathematical and computational modeling seems to be a necessary decision-making tool 
for the management of urban stormwater pollution. Currently, existing models are based on a 
combination of complex models including conceptual but empirical formulations that describe 
the processes of generation and transport of pollutants during rainfall. The parameters 
governing these functions do not have a physical interpretation and therefore, cannot be 
measured directly in the field. Instead, these parameters must be indirectly estimated using a 
calibration procedure whereby the model’s parameters are adjusted until the system’s and the 
model’s outputs show an acceptable level of conformity. 

However, the difficulty, expensiveness and uncertainty level of the in situ measurement of 
urban stormwater pollution generate data that rarely allow a satisfactory calibration and 
validation of these models [1]. Furthermore, classical optimization methods that are still used 
up to date for calibration don’t allow neither an estimation of the significance of the obtained 
optimal parameter set, nor a realistic quantification of models’ uncertainty. Thus, the existing 
urban stormwater quality models are rarely used for practical application. 

In this paper, we present the results of testing the applicability and the effectiveness of a 
method for model calibration/validation/sensitivity analysis in urban runoff quality modeling. 
This method based on the Monte Carlo Markov Chain sampling techniques “MCMC” consists 
of a combination of a Metropolis algorithm for statistical inference and a Variance-based 
method for the Global Sensitivity Analysis. This test will be done using data resulting from a 
survey conducted on the «Marais» catchment in the center of Paris – France [2]. 

This paper is organized as follows: In section 2, we discuss the difficulties encountered in 
urban runoff quality modeling. In section 3, we present a general overview of the uncertainty 
and sensitivity analysis methods. In section 4, we describe the MCMC-GSA method by 
introducing the Metropolis algorithm, the replicated Latin Hypercube sampling method and 
their use in the model’s calibration and sensitivity analysis. In section 5, we examine the 
applicability of this method in the case of urban runoff quality modeling. Finally, in section 6, 
we summarize the methodology and discuss the results. 

2. URBAN RUNOFF QUALITY MODELING 
It is obvious that modeling represents a necessary tool for understanding the behavior of 

the urban drainage system and a predictive tool in decision making. For this purpose, models 
have been developed to simulate the urban water cycle for both quantitative and water quality 
aspects. Concerning quantitative stormwater management, researchers developed runoff and 
water flow models that are widely used by managers. However, concerning storm water 
quality management, researchers built complex models whose structure corresponds to the 
course of pollution. These models simulate the pollutants’ accumulation on the urban 
catchments, their erosion by runoff, the erosion of sediments in the sewers, and finally the 
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transport of pollutants through sewers to the outlet. However, despite that many models have 
been proposed since 1971 (first version of SWMM by US-EPA), several difficulties are 
facing attempts of stormwater quality modeling. 

First of all, the physical, chemical and biological phenomena occurring simultaneously at 
each stage of the processes of generation and transport of pollution in the system make the 
system very complex. Moreover, space scales vary greatly considering the heterogeneity of 
the system’s characteristics (topography, watersheds, pipes, sediments size), and time scales 
vary from several days corresponding to the dry weather period, to few minutes during the 
wet weather period. Therefore, the only possible modeling approach is the conceptual one. 

Second, despite the efforts that have been done to understand the sources and the 
mechanisms governing the processes involved, the dynamics of accumulation, erosion and 
transport of pollutants are not well known especially in what concerns the sources and 
processes of pollution generation in sewers. Currently, modelers tend to divide the urban 
catchment to a number of sub-catchments of few tens of hectares connected by a sewer 
network. Runoff models, which are initially developed for surfaces, are used to conceptually 
describe the accumulation and erosion processes on sub-catchments for which little 
knowledge is currently available. Erosion and transport models of in-sewers solids’ are 
derived from alluvial hydrodynamics, which poorly describe the real behavior of a sewer 
system during a rain event. So, great discrepancies exist between the current state of 
knowledge concerning phenomena and the models used. 

Third, field surveys for collecting data necessary for the development of models are 
difficult and expensive. In consequence, input data (topography, sediment sewer deposits, rain 
intensity, etc…) and quality measurement data (pollutants concentrations) are rare and 
characterized by great uncertainties (in the range of 30%) [1]. They rarely allow a satisfactory 
calibration of the model’s parameters. 

Finally, while considerable attention has been given to develop global calibration 
procedures that estimate a best set of parameter values, noting that this is not an easy task 
especially that most of the models are non-linear [3, 4], much less attention has been given to 
both the assessment of the significance of the obtained optimal set of parameters, and the 
realistic quantification of models’ uncertainty. Thus the estimated parameters from these 
models are generally error-prone leading to considerable uncertainty in the calibrated model. 

Improving these models and their usefulness requires modelers to use a more robust 
methodology for calibration and validation of models. Such methodology should be able to 
provide both an assessment of the uncertainties in the model’s parameter values and an 
evaluation of the confidence level of the model’s predictions. Uncertainty and sensitivity 
analysis are therefore indispensable for any modeling improvement attempt in this field. 

3. UNCERTAINTY AND SENSITIVITY 
In the last decade, great attention has been given to the Bayesian inference for model 

calibration and uncertainty assessment particularly in the case of complex hydrological 
models [5, 6]. Nevertheless, its application in environmental modeling is very rare. 

Bayesian approach, expresses uncertainties in the model’s parameters θ in terms of 
probability. Parameter uncertainty is quantified first by introducing a prior probability 
distribution P(θ) ,which represents the knowledge about θ before collecting any new data, and 
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second, by updating this prior probability on θ to account for the new data collected (D). This 
updating is performed using Bayes’ theorem, which can be expressed as: 

( ) ( ) ( )
( ) ( )∫ ⋅⋅⏐

⋅⏐
=⏐

θθθ
θθθ

dPDP
PDPDP  (1)

Where P(θ⏐D) is the posterior distribution of θ; ( ) ( )∫ ⋅⋅⏐ θθθ dPDP  is a normalizing 
constant required so that ( )∫ =⋅ 1θθ dDP , and P(D⏐θ) is the conditional probability for the 
measured data given the parameters. P(D⏐θ) is often referred to as the likelihood function. 

Unlike traditional statistical theories based on first order approximations and multi-normal 
distributions that may fail especially when dealing with nonlinear complex models [5], Monte 
Carlo Markov Chain “MCMC” technique have become increasingly popular as a general 
method that provides a solution to the difficult problem of sampling from a high dimensional 
posterior distribution [7]. The idea behind MCMC for Bayesian inference is to generate 
enough samples from a random walk which adapts to the true posterior distribution P(θ⏐D). 
A variety of appropriate Markov chains can be constructed, but all of them are special cases 
of the Metropolis algorithm [8]. A study conducted by Kuczera and Parent (1998) 
demonstrated the capability of the Metropolis algorithm to produce reliable inferences for the 
parameter’s uncertainty assessment in the case of hydrological models. 

This posterior distribution represents the uncertainty in the model’s parameters and can be 
propagated through a Monte Carlo method to assess the uncertainty in the model’s output 
attributable to the parameters’ uncertainties. However, as the obvious objective of calibration 
is to reduce the uncertainty in the model’s output, it seems necessary to conduct global 
sensitivity analysis to determine on one hand, which parameters contribute the most to the 
output variation and require reducing their variances to minimize the variance in the model’s 
output; and on the other hand, which parameters are insignificant and can be discarded from 
the model. Thus, using this method we can determine the type of research that is required to 
reduce the output’s uncertainty by reducing the variance in some of the model’s parameters. 

There are many different ways to perform a sensitivity analysis, the method that will be 
used in this paper is called a “Variance based” method where the uncertainty in the model’s 
output Y is measured by its variance V(Y) and thus can be partitioned to the sum of a top 
marginal variance and a bottom marginal variance as follows: 

)]([)]([)( UYVEUYEVYV +=  (2)
Where U is a subset of one or more elements θi. V[E(Y|U)] is the variance of the 

conditional expectation of Y given U and it will be equal to zero if Y is completely 
independent of U, E[V(Y|U)] is the expectation of the conditional variance of Y given U and it 
will be equal to zero if Y depends only on U [9]. In this context, the main effect, or first order 
sensitivity index SU, representing the sensitivity of Y to the parameter U is defined 
as )()]([ YVUYEVSU = . The total effect, or total sensitivity index STU is defined 

as )()]([ ~ YVYVES UTi θ=  where θ~U indicates all the factors but U. 

Many estimation procedures of SU and STU are available in case of independent 
parameters. However, when the parameters are correlated, a replicated Latin Hypercube 
sampling method [9] for the estimation of the importance measure of parameters can be used. 
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4. MODEL ASSESSMENT METHOD 
In this paper, a combination of two complementary and model – independent techniques is 

used to quantitatively assess the uncertainties associated with the model’s parameters as well 
as the output of the model itself. 

4.1. Metropolis algorithm 
Although the Metropolis algorithm is not the most efficient Markov Chain sampler, it is 

chosen in this study because of the simplicity of its implementation, and its generality. It only 
requires knowledge about the likelihood function to update simultaneously the parameters set 
for each iteration. Supposing that residuals between model and observation are N(0, σ2), the 
likelihood function can be written in the multiplicative form: 

( )
( )

( )( )
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Where (Y1,…,Yn) is the vector of the measured response Y, (X1,…, Xn) is a vector of input 
data, θ = (θ1,…, θp) is the vector of p unknown parameters, and f( ) is the model’s output. σ is 
considered, as well as θ, as a set of parameters to be estimated during calibration. 

At each iteration, candidate values of parameters are drawn from a multi-normal transition 
probability distribution for which the variance could be tuned up in a way to increase the 
speed of convergence. However, updating periodically (automatically) the variance during the 
simulation, as proposed by Kuczera [5] is subject to difficulties: how can one be sure that the 
samples used to update the variance contain information of a good quality that can help to 
ensure the convergence of the chain to the limit distribution? We suggest fixing a prior value 
of the variance according to the information about the parameters during all the simulation. 

An interesting feature of the Metropolis algorithm is that the interaction among the 
model’s parameters is reflected in the likelihood function, so there will be no need to 
incorporate correlation in the prior distributions of parameters. In order to avoid favoring any 
initial value, the use of a uniform prior distribution over the range of parameters may seem 
reasonable [6]. 

4.2. Replicated Latin Hypercube sampling 
The Replicated Latin Hypercube Sampling method r-LHS has been employed in this study 

to assess the importance measure of the parameters. This method use r replicate Latin 
hypercube samples of size k to produce m = r × k parameter vectors θ in total. The same k 
values of each component U of θ will appear in each replicate but the matching within each 
one will be done independently. For this application the k values of each parameter U are 
sampled from its posterior distribution inferred with the Metropolis algorithm. The Iman & 
Conover rank correlation method [10] has been considered for the r-LHS in order to induce 
parameters’ correlation in the sample. After making the computer runs using the m replicated 
samples, the importance of U is assessed by computing the ratio SU: 
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yij represents the output value that corresponds to the ith value Ui, in the jth replicate. In 
this paper, we are interested in the sensitivity analysis for the likelihood measure in order to 
identify the parameters that are mainly driving the model to have a good conformity with the 
data. Ratto [11] showed that sensitivity analysis for the likelihood gives useful information for 
model calibration especially when great interaction exists between parameters. 

5. CASE STUDY 
In this paper, we apply the method on the case of urban runoff modeling firstly on the 

scale of a sub-catchment as used in practice and secondly on the scale of a street surface. 

5.1. Site description 
Two different watershed scales have been used in this study: the first one WS1 is a 42 ha 

urban catchment (91% imperviousness) drained by a combined sewer system and the second 
one WS2 is a 160 m2 street surface. The used rain event database covers a continuous period 
of 16 months (1996-1997) with 151 rain events. Suspended solid SS pollutographs* were 
measured for 40 rain events at the outlet of the combined sewer, and for 11 rain events at a 
street gully collecting discharge from the street. These data were acquired on the experimental 
catchment “le Marais” in the centre of Paris [2]. 

5.2. Model description 
The model used in this study to simulate the Suspended Solids pollutograph is a very 

classical one. It describes the particulate pollutants’ erosion during the storm event and their 
accumulation on the watershed during the preceding dry weather period. This model was at 
first proposed to be used on street surface scales. However, it is currently used in all available 
urban stormwater pollution software at the scale of urban subcatchment where both sewers 
and urban surfaces are described as one entity. 

Equation 5 and Equation 6 represent the two accumulation models tested in this paper. 
Equation 5 calculates the accumulation of pollutants assumed to follow an asymptotic 
behavior that depends on two parameters: an accumulation rate Daccu (kg/ha/day) and a dry 
erosion rate Dero (day-1) [12]. 

( ) ( )tMaDeroSimpDaccu
dt

tdMa
⋅−⋅=  (5)

))(()(
lim tMaSimpMKaccu

dt
tdMa

−⋅⋅=  (6)

Where Ma(t) (kg) is the available pollutants’ mass at time t and Simp (ha) is the impervious 
area. Equation 6 represents a mathematical reformulation of the previous model and was 
chosen in regard to the obtained results. This model depends on two parameters: an 
accumulation coefficient Kaccu and a maximum accumulated mass Mlim. It supposes that the 
accumulation is proportional to the mass still to be accumulated before reaching the maximum 
Mlim, which is equivalent to the Daccu/Dero. 

Equation 7 represents the evolution of the available pollutant mass during storm weather 
period. It is supposed that the eroded mass is proportional to the available mass and to the 
                                                 

* Suspended Solid pollutograph represents the profile of SS C(t) concentration during time t 
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rainfall intensity. The erosion model depends on two parameters: the erosion coefficient Wero 
and a coefficient w [13]. 

( ) ( )
( )

dt
tdMa

tq
tC ⋅=

1  and ( ) ( ) ( )tMatIWero
dt

tdMa w ⋅⋅−=  (7)

Where C(t) (mg/l) is the SS concentration produced by erosion, q(t) is the discharge 
(m3/s) at the outlet of the watershed at time t, and I(t) is the rainfall intensity (mm/hr). 

5.3. Results 
12,000 iterations were performed with the Metropolis algorithm, and the first 2,000 

samples generated were removed allowing the Chain to “forget” the initial parameter set. 
Results showed that the Chain converged successfully to the same posterior probability 
distribution of the parameters regardless of the initial parameter set used. However, the speed 
of convergence has been found to be sensitive to the variance of the transition distribution. In 
the present case we chose a value of the standard deviation equal to 1/15 of the prior value of 
parameter to ensure the convergence. 

5.3.1. Marais catchment scale 
Figure 2 represents the confidence intervals of the model’s output obtained by applying 

Monte Carlo to the model with the estimated posterior distribution of parameters. In the 
present case, the range of the possible responses is very large. The value of the estimated 
variance of errors (σ = 130mg/l), which is quite large compared to the variance of the data 
(σdata = 150 mg/l), indicates that the variation in the measured pollutographs are considered as 
randomness in regard to the predictive capacity of this calibrated model. Obviously, the 
proposed model seems to be unable to reproduce accurately the measured pollutographs, and 
the Metropolis results indicate clearly that it is not due to calibration problems. 
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Figure 2 5-95% prediction intervals of the SS concentration at the Marais catchment scale 

This is not surprising regarding the experimental results showed by Gromaire [2] where 
the deposits in combined sewer systems contribute to 60% of pollution. The complexity of 
sediments’ deposition, erosion and transport processes in sewers make the sub-catchment 
scale by far outside the domain of validity of the conceptual model used. Thus, it seems 
important to apply the MCMC method for the calibration of this model on a space scale 
having an acceptable range of conformity to the model’s domain of validity. 

5.3.2. Street Surface scale 
Figure 3 presents the posterior probability distribution obtained for the parameters Daccu, 

Dero, Wero, w and for the standard deviation of errors σ with the Metropolis algorithm. 
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Figure 3 Posterior distribution of the 4 parameters estimated at the street catchment using Eq. 5 

The analysis of the posterior distributions of the parameters shows large uncertainties 
related to the dry weather model parameters Daccu and Dero (Figure 4). We also found a 
linear correlation between these two parameters (correlation = 0.7). This correlation is due to 
the mathematical formulation of the accumulation model (Eq. 5). As a consequence, the 
accumulation model could be better calibrated if mathematically reformulated. 

 
Figure 4 Scatter plot of the Likelihood measure vs. the parameters at the street catchment using Eq. 5 

However, despite that the results obtained for the reformulated model (using Eq. 6) show 
a better identification of the maximum mass accumulated Mlim as shown in Figure 5, 
calibration results indicate a large uncertainty related to the parameter Kaccu representing 
(like the parameter Dero) the speed of the accumulation process during dry weather. 

 
Figure 5 Scatter plot of the Likelihood measure vs. the parameters at the street catchment using Eq. 6 

50 replicates of the 200 LH samples are used to estimate the importance measures of the 
parameters for the likelihood of the model’s output for the two used models (Figure 6). 
Results show that the maximum accumulated mass Mlim represents an important parameter 
that has a significant impact on the likelihood measure of the model. However, the Kaccu 
parameter has an insignificant effect on the model’s output. This conclusion is also provided 
using the scatter plot of the likelihood measure vs. the parameters as shown in Figure 4 & 5. 

One can conclude that the estimation of the initial accumulated stock available before the 
rain event is very essential for the good performance of the model. However, the sensitivity 
analysis results indicate clearly that using the length of the dry weather period as an 
explicative parameter for the accumulation process, described by an asymptotic behavior, is 
not sufficient to explain the variability of the available mass just before the rain event. 
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Nevertheless, calibration results indicate a clear correlation between the maximum mass 
Mlim and the erosion parameter Wero (Figure 7.a.). Such correlation is not surprising 
regarding the mathematical structure of the erosion model (Eq. 7), which represents a 
multiplicative form of Ma(t) and Wero. 
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Figure 7 a. Correlations between Mlim and Wero. b. 5-95% prediction intervals of the pollutants 
concentration simulated by model 

Figure 7.b. presents the confidence interval of the model’s output C(t). It shows large 
uncertainties in the model’s predictions. This is not surprising regarding the fact that an 
important part of this uncertainty is attributable to the value of the variance of errors (σ = 
47mg/l) which is quite large compared to the variance of the data (σdata = 62mg/l). In other 
words, the predictive power of the calibrated model is low. 

6. CONCLUSION 
In this paper, we tested the applicability and effectiveness of a method used for model 

calibration/validation/sensitivity analysis in urban runoff quality modeling. This method, 
based on the MCMC sampling technique, consists of a combination of the Metropolis 
algorithm and a Variance based method. Metropolis algorithm provides an estimation of the 
posterior distributions describing parameters’ uncertainties, as well as, their interaction 
structure. On the basis of the parameters’ distributions, the Monte Carlo method determines 
the conceptual model’s confidence intervals reflecting its prediction capacity. Using the 
posterior distribution, the performance of the replicated LHS method in regard to the 
likelihood measure leads to the quantitative identification of the main parameters that drive 
the model to have best fit to data. 
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Calibration results demonstrate that the tested conceptual model seems unable to represent 
the complexity of the system at the scale of urban sub-catchments. However, the application 
of the method to calibrate the model on a street surface scale shows that the mathematical 
concept of the accumulation model, using two parameters Daccu and Dero, contains linear 
interaction between its parameters, and implies much more uncertainty in their calibration. 
Furthermore, despite that a reformulation of this model using two parameters (Mlim and 
Kaccu) allows a better identification of the parameter Mlim, sensitivity analysis results show 
that the parameter Kaccu provides negligible contribution to the likelihood variation, or in 
other words, have no significant effect on the behavior of the model. This hypothesis casts 
doubts on the utility of using an asymptotic behavior, which depends only on the length of the 
dry weather period to describe the accumulation process. Such a conclusion needs to be 
validated on other sites to test its generality. 

However, this method delivers much information, which would have been unreachable 
with classical calibration methods, and which are very useful for modeling attempts. 
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