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Abstract: First motivation of this work is to take into account model uncertainty in sensitivity
analysis. So, we present in a first part, with some cases, an outline of the methodology used
to treat uncertainty due to a mutation of the studied model. Development of this methodology
have highlighted an important problem, frequently encoutered in sensitivity analysis: how to
interpret sensitivity indices when model random inputs are non-independent? Also, we present
a method to solve this problem, which introduce multidimensional sensitivity indices. Practical
and theoretical applications will illustrate interest of this method.

1. INTRODUCTION

In many fields like reliability of mechanical structures, behavior of thermohydraulic systems,
or nuclear safety, mathematical models are used, for simulation, when experiments are too
expensive or even impracticable (nuclear accident), and for prediction.
In this context, sensitivity analysis is often used for model calibration or model validation, and
to find which variables mostly contribute to output variability. In this paper, we consider global
sensitivity analysis, like named in [3], based on the study of the variances of model variables.
Those methods consist in the computation of sensitivity indices, which apportion the sensitivity
of model output variance to model inputs. For a model���������
	���������������
first order sensitivity indices are defined by��� ��� ����� �"! � �$# �� ���%� �

(1)

and express the part of variance of model output
�

due to model input
� �

. Higher order indices
are also defined, to express effect of input interactions and total indices for total effect of one
input. An important property, which enables us to easily interpret sensitivity indices values,
is that the sum of all these indice is equal to 1, when inputs are independent (for more details
on this property, the reader is referred to [5]). Methods of estimation of those indices are in-
troduced by Cukier (FAST [1], [4]), Sobol [5], McKay [2], among others. We will use Sobol
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method for numerical experiments.
The purpose of our works is to take into account a particular characterization of model un-
certainty in sensitivity analysis. First of all, let us present this problem, often encountered in
practice: consider that a model, on which sensitivity analyse have been made, undergoes a
transformation, or, in other words, a mutation. In this case, is it possible to obtain information
about sensitivity analysis of the mutated model, without doing a new complete analysis, but by
using sensitivity results on the original model? In the first part, we will present an outline of
the methodology which we used to answer to this question. For some possible mutations, we
will mathematically relate sensitivity indices of original model with those of mutated model.
Following nature of the mutation, some assumptions are necessary, and which one is most of-
ten met, is independence of the model inputs. As this last assumption is sometimes difficult to
justify in practice, and as usual sensitivity indices (1) aren’t meaningful when inputs are non-
independent, we will present in a second part a new method of sensitivity analysis for those
models.

2. IMPACT OF MODEL UNCERTAINTY ON SENSITIVITY ANALYSIS

Assume that a sensitivity analysis have been made on a model & ' �(�)���*�+	�������������
, where

the , inputs variables
� �

are independent. Let us suppose that new informations about the
model, new measurements, or even changes in the modelled process, oblige us to consider a
new model &.-0/�1 , that is also a mutation of the original model & . Rather than to make an
exhaustive list of all possible mutations, let us present only some usefull mutations, for which
interesting results have been obtained.
Firstly, consider a model & ' �2�3�4	5�*�
	6��78�:9:���;95������������

, where
���"	��5����6�<�=�

are independent
random variables, and suppose that & undergoes a mutation, and is also transformed in a new
model &.-0/�1 where

�
	
is fixed to its mean > 	?� �@� �
	 #

. Thus, this new model is
� - ��A	5� > 	6�B7C�:9��*�89�����������:�

. Writing definition of sensitivity indices, we show that &D-E/�1 sensitivity
indices (

� - ) can be express from sensitivity indices (
�

) of & by:� - � �GF � ���H�� ��� - � for first and higher order sensitivity indices.

and by: � -I �2JLKM�NJOK � I � F � ���%�� �P� - � for all total sensitivity indices.

Of course, all indices relating to variable
�+	

disappear.
Let us consider now inverse case, which can be view as introduction of noise in the model,
and which consist to consider a deterministic parameter like a random variable. So the model& ' �)�Q�A	R� > �S7��:9:�*�
	��5����6�<�=�

is mutated in a model &T-E/�1�' � - ���A	��*����U�	6�S7��:9:�*�
	��5����6�<�=�
.

In this case, sensitivity indices of &V-E/�1 , are given by those of & multiplied by � �P�W�
and

divided by � �X�A	5�*����U�	6���Y7 � ���H�
. For the new variable, only first order indice are non zero, and

is given by � �X�B	R�*����U�	6���� ���A	5�*����U�	N�6�Z7 � �P�%� 
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For the same mutation carried out on the model & ' �[�\�]	R� > � F ��9��*�
	�������������
, sensitivity

indices of &T-E/�1 can be obtain multiplying indices of & by� �P�%�� ��� - � F�^ �@� �A	R�����RU�	N� #�B	R� > � _ 9 
Now, if we consider the new variable

�H��U�	
as dependent from the others variables, we are again

confronted with the problem of sensitivity analysis for model with dependent inputs previously
evoked. Also, we don’t know to deduce sensitivity indices of the mutated model from the
knowledge of the & model.
Let us finally present an other type of mutation. Assume that two analysis have been made
on two models & 	 ' �`	8�a�B	R�*�
	�������������

and & 9 ' �b9
�a�:9=�*����U�	������������UdcS�
, and also that

sensitivity indices
� 	

for & 	
and

� 9
for & 9

have been computed. We suppose that inputs
variables of the two models are different and independent. Let us create a new model &e-E/�1f'� - �g�Z	`7h�i9

. Sensitivity indices of &T-0/�1 are obtained by multiplying

those of & 	
by

� ���`	6�� ���`	6�Z7 � �P�i9j� and those of & 9
by

� �P�i9j�� �P�Z	N�Z7 � �P�i9�� 
All sensitivity indices, relative to interaction between & 	

variables and & 9
ones are equal to

zero. If we suppose that there are dependences between variables of the two models, we are
afresh confronted with the same problem of sensitivity analysis for dependant or correlated
inputs.
To conclude, if an original model, on which sensitivity analysis have been made, is transformed,
it’s possible to deduce sensitivity indices of the mutated model, without starting again heavy
calculation of Monte Carlo, in a given number of cases. Those cases are principally deletion
of variables or introduction of new independent variables. On the other hand, introduction of
dependent variables, or even of existing variables poses the problem of sensitivity analysis with
dependent inputs, for which we propose a new method.

3. SENSITIVITY ANALYSIS FOR MODEL WITH DEPENDENT OR CORRELATED
INPUTS

Highlighted in previous section, the problem of sensitivity analysis for model with dependent
inputs is a real one, because naturally frequently met in practice.
This problem concern the interpretation of sensitivity indices values. When inputs are indepen-
dent, I.M.Sobol demonstrates that the sum of all sensitivity indices is equal to 1. Effectively,
in Sobol’s decomposition of model function, all term are mutually orthogonal if inputs are in-
dependent, and so we can obtain a variance decomposition of model output. Dividing this
decomposition by output variance, we obtain exactly that the sum of all order indices is equal to
1. If we don’t assume that the inputs are independent, the terms of model function decomposi-
tion are not orthogonal, and so it appears a new term in the variance decomposition. That’s this
term which implies that the sum of all order sensitivity indices is not equal to 1. We can give
the following interpretation to this : when we study sensitivity of one input, which is correlated
with another one, we study too sensitivity of this last. Effectively, variabilities of two correlated
variables are link, and so when we quantify sensitivity to one of this two variables, we quantify
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too a part of sensitivity to the other variable. And so, in sensitivity indices of the two variables,
the same information is taken into account several times, and sum of all indices is thus greatest
than 1.
Natural idea is also coming: to define multidimensional sensitivity indices for groups of corre-
lated variables.

3.1. Multidimensional sensitivity analysis

Consider the model ���������
	���������������
wherek$l 	�mjnononom l �BpZq krl 	sRtSu5vw`x mjnononom l �sRtjuRvwby m l � U�	�mjnononom l � Udz xs tSu vwby|{ x m l � Udz x U�	 mjnononom l � Udz6}s tSu vw~y�{ } mjnononom l � Udz6��� x U�	 mjnononom l �s tju vw y�{ � p
�*�
	��������� � �<�����L	:�5����6� � �

are independent inputs, and
�*� � U�	��������� � Ud���

are � groups of intra-
dependent or intra-correlated inputs (

� �
are independent of

���
, for all

J<�M�6���;� � ).
We wrote monodimensional non independent variables

�*�+	�������������
like multidimensional in-

dependent variables
����	:�������� � Ud�P�

.
Thus, we define first order sensitivity indices� ��� � ����� �"! ��� # �� �P�%� � ���e�oJB�S�i7 � #
To connect this to monodimensional variables, if

�e���oJB������S� #
, we have well define the same

indice: � ����� �P�@���+! ��� # �� ���W� �\� ����� �C! �<� # �� �P�%� (2)

and if
�8�e����7�JB������S�i7 � # , for example

�%�g�i7��
:� ��� �Z� � Udz x U�	���������� � Udz�}�� � � ����� �"! � � Udz x U�	��������� � Udz6} # �� ���%� (3)

Now, like in classical analysis, we can also define higher order indices and total sensitivity
indices. Second order indices are given by� �6zL� � ���@���C! ���A����z # Ke�@���C! ��� # Ke�@���C! ��z # �� ���%� �
and so on for higher order indices. And finally, total order indices are defined by :� IS� �3� zS d� � z¡�
where ¢ �

represent all subsets of £ J¡������S�b7 �¥¤ which include
�
.

It’s very important to note that if all input variables are independent, those sensitivity indices are
clearly the same than (1). And so, multidimensional sensitivity indices can well be interpreted
like a generalization of usual sensitivity indices (1).
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3.2. Numerical estimation

Like in classical analysis (Sobol), Monte-Carlo estimations are possible.
We estimate mean and variance of

�
by :¦�:§�� J¨ ©� zjª�	 ����« z 	 �5����6« z� Ud� � ¦¬�)K ¦�:§ 9 7 J¨ ©� zjª�	 � 9 �*« z 	 �������« z� Ud� ���

and first order indice by
¦� ��� ®¯Y�®¯ with :¦¬°��� J¨ ©� zjª�	 ���*« z 	 �������« z�j±~	 ��« z� ��« z�6U�	 �������« z� Ud� �6���*« z 	 �������« z��±~	 ��« z� ��« z��U�	 �������« z� Ud� ��K ¦� 9§ �

where
�*« z 	 �������« z� Ud� �NzSª�	�� © and

��« z 	 �������« z� Ud� �Nzjª�	�� © are two independent sets of
¨

(multidimen-
sional) inputs simulations. Equivalent estimations for higher order and total indices exist.

3.3. Application in nuclear field - epithermal indice

Study presented here is a sensitivity analysis of a model, which compute an epithermal indice for
a given nuclear reactor. The epithermal indice is defined by the value of the neutron epithermal
flow divided by the neutron thermal flow. This indice is useful in studies of nuclear reactor
vessel dosimetry.
This model is made of 4 inputs, of which two are correlated:

resonance integral of Co59 ' �C	³²�´���µB�Y��µ]¶� 9 �
factor Fcd ' �;9�²�´��*·$¸B¹d�NJB|ºrJ=»¡¼B»A���Sºr�ºYJ�½4µ¡ºA¾]J 9 �

activity of the dosimeter Co59 ”nu” ' �@¿�²�´��*½d�µ¡ºBÀ F J=º¡Á5��JBJ�½AµBµ¡ÀA� 9 �
activity of the dosimeter Co59 under Cadmium ' ��ÂÃ²�´����Y�¾B�B� F J=º¡Á5�jÄrJ�¾ÅÀBÄB¼ 9 �

with correlation coefficient ÆAÇ`È¥Ç`É �3ºY�¼A¾]�
one output

� ' epithermal indice, and one function which links inputs and output:�)�Ê�ËYÌ �89��ÍJB|ºBºB¼B¼¡½BÀÎKÏºr|ºA�YJBJ�½BÀrJ=ÄÅ�
	�7G»Y�¼A¾Å¼BºB¼Bºr�J=º ±]Ð � 9	 7gJB|»BÀrJ�»B¼B¼r�J=º ±]Ñ �ÒÂR��NJOK Ê�ËYÌ �89 Ç`ÉÇ`È �R�NK�ºr|ºBºA¾BµB¾ÅºAµBµ�7GÀY¶µ¡À¡»BÀA¾Y�J=º ±]Ñ �;¿j� 
Like explicited previously, as two inputs are correlated, it’s useless to compute usual sensitivity
indices, because results will not be meaningful. We thus carried out a multidimensionnal sen-
sitivity analysis. Numerical experiments have been made repeating all indices computations 20
times, with

¨Ó���¡º¡ºBºBº
Monte-Carlo iterations. Mean of these 20 estimations, represented on

figure 1, are the following:� 	ÕÔ�ºY�¼A¾ � 9�Ô�ºr|ºB» �Z� ¿�� Â6� Ô�ºr|ºAµ� 	P9�Ô � 	 � ¿�� Â6��Ô � 9 � ¿�� Â6��Ô � 	P9 � ¿�� Â6��Ô�º
where

�Ö� ¿�� Â6�
are the first order sensitivity indices of the multidimensional variable £ �@¿����ÒÂ ¤ .

Multidimensional analysis allows us to conclude that this model is sensitive essentially to input
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Figure 1. Sensitivity indices of epithermal indice model�
	
(resonance integral of Co59), and that others variables are less significant. But in this

application, the interest of our method is not very well exhibit. Effectively, as
�?	

and
�;9

are
independent from the other variables, we can apply classical sensitivity analysis and find the
same value for

� 	
and

� 9
. And also, as the sum of this two indices are equal to

ºr|»¡½
, we can

deduce that the other variables and all the interaction with them, have only small importance.
We will present a theoretical application, which emphasizes more multidimensional sensitivity
analysis.

3.4. Theoretical application

Consider the model �2�Q×B�
	��89�7GØS�8¿S�8Â�7hÙ��8Ð��8Ú=�
where

� � ²Û´��Pºr��J��
, for

�O�ÜJ
to

Ä
, and where

��¿
and

�ÒÂ
are correlated ( ÆAÇ`È � Ç�É � Æ 	

), like�8Ð
and

�8Ú
( ÆBÇZÝ � Ç`Þ � Æ 9

). Sensitivity indices are the following:� 	P9ß� × 9× 9 7GØ 9 �ÍJ�7 Æ 	�� 9 7GÙ 9 �NJ�7 Æ 9�� 9� � ¿�� Â6�Ó� Ø 9 �NJ�7 Æ 	6� 9× 9 7GØ 9 �ÍJ�7 Æ 	�� 9 7GÙ 9 �NJ�7 Æ 9�� 9� � Ð�� ÚN�Ó� Ù 9 �NJ�7 Æ 9�� 9× 9 7GØ 9 �ÍJ�7 Æ 	�� 9 7GÙ 9 �NJ�7 Æ 9�� 9
and all the other indices are equal to 0. We constate that the value of the numerator of the
interaction sensitivity indice

� 	P9
is a function of the coefficient

×
. The values of numerators of

the non zero sensitivity indices
� � ¿�� Â6�

and
� � Ð�� ÚN�

are function of the model coefficients
Ø

and
Ù
,

but too of the correlation coefficient Æ 	
or Æ 9

. To illustrate this, let us present some numerical
values of those indices, for different values of the coefficients of the model (

×
,

Ø
and

Ù
) and the

correlation coefficients.

situation a b c Æ 	 Æ 9 � 	P9 �Z� ¿�� Â6� �Z� Ð�� ÚN�
(i) 1 1 1 0.8 0.8 0.2336 0.3832 0.3832
(ii) 3 1 1 0.8 0.8 0.7329 0.1336 0.1336
(iii) 1 1 3 0.8 0.8 0.0575 0.0943 0.8483
(iv) 1 1 1 0.8 0.3 0.2881 0.4397 0.2922
(v) 1 1 3 0.8 0.3 0.0803 0.1317 0.7880
(vi) 1 1 3 0.3 0.8 0.0593 0.0647 0.8760
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First of all, let us underline that as
�C	

and
�;9

are independent variables, indices
� 	

,
� 9

, and
� 	P9

are usual sensitivity indices, and can also be computed without our multidimensional method.
In the situation (ii), as

�"	
and

�89
are independent variables, usual sensitivity indices allows us

to conclude that variance of
�

is essentially (
µÅÀAà

) due to interaction between
�á	

and
�89

. But in
the others situations, when

�C	
and

�;9
are less important, we need multidimensional sensitivity

indices to apportions effect to the two couple
�*�@¿��6�8Â��

and
�*�8Ð����8Ú��

. These multidimensionnal
indices allow us to know that couple

���@¿5���ÒÂ��
and

���;Ð5���8Ú��
have the same importance in the

situation (i), and that
�*�;Ð����8Ú��

is the most important in situation (iii). Effectively, in situation (i)
couples

�*�8¿����ÒÂ��
and

���;Ð=�6�;Új�
are symmetric in the model, and so they have same importance.

In (iii) a coefficient equal to 3 is multiplying the product
�@ÐS�8Ú

, that’s why the couple
����Ð��6�;Új�

is most important than
����¿5���ÒÂ��

.
Situations (iv), (v) and (vi) illustrate that indices

�E� ¿�� Â6�
and

�Ö� Ð�� ÚN�
are function to the correlation

(
� 	P9

is too function to the correlation, but it’s due to its denominator, which is the variance of�
). As couples

�*�;¿��6�8Â��
and

�*�8Ð����8Ú��
are in the model in a product form:

��¿��ÒÂ
and

�8ÐS�8Ú
,

greater is the correlation, greater is the importance of the couple, and so greater is the value of
the sensitivity indices. In (iv) the correlation of

���@¿����ÒÂ��
is greater than correlation of

�*��Ð��6�;Új�
,

and so
�Z� ¿�� Â6�

is greater than
�Ö� Ð�� ÚN�

. In situations (v) and (vi), we can see the same behaviour.

4. CONCLUSION AND FUTURE WORK

We have presented in this paper two works : the first concern integration of a view point of
model uncertainty in sensitivity analysis, which we interpret like a model mutation. We drew
up an outline of the employed methodology, which consists in a listing of possible mutations,
for each one which we examine the impact on the computing of sensitivity indices. Second work
introduces a new method which allows to compute useful and comprehensible sensitivity indices
for a model with non-independent inputs. Practical and theoretical illustrations of interest of this
method have been presented.
Further applications and developments are envisaged, in particular when there are many model
inputs.
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