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Abstract: Mechanistic water quality simulation models are important tools for supporting
environmental management decisions. Possibly the most severe problem with the usage of
mechanistic models is that in most cases they cannot be fully identified from data due to
model overparameterization. The calibration of overparameterized models results in
covariances among model parameters, the neglect of which may lead to a significant
overestimation of model output uncertainty. We discuss principal component analysis (PCA)
of the posterior parameter error covariance matrix as a tool for the identification and proper
representation of parameter covariances. Our study deals with a water quality model
specifically designed to support the interpretation of algae biomass observations at one single
station (Weir Geesthacht) on the Elbe river in Germany.

Keywords: Local sensitivity analysis; Hessian matrix; Principal component analysis; Model
overparameterization

1. INTRODUCTION
The motivation for our modelling activity has been to test a hypothesis according to which

observed negative correlations between temperature and chlorophyll a concentrations in
summer at station Geesthacht on the Elbe River might indicate algae growth being limited by
lack of silica. For this specific purpose a relatively simple model has been designed and fitted
to observed chlorophyll a concentrations. However, even this simple model turns out not to be
identifiable from the data used. One obvious reason why some model parameters or parameter
combinations are poorly determined by the data, is that the observations have all been
collected at the same location and do therefore not resolve profiles along the river. A possibly
more important explanation, however, is that observations of one single state variable cannot
disentangle details of the mechanistic processes. Different parameterizations linking external
forcing (radiation, discharge, temperature) to model output (algal biomass concentrations) can
be similarly effective in reproducing the data.

Being not parsimonious in the light of the existing data (i.e. being overparameterized ) is a
property of most detailed mechanistic models. Our study is intended to illustrate an approach
for coping with this situation by explicitly accounting for parameter interaction structures that
result from model overparameterization. Specific combinations of parameters may be much
less uncertain than the individual parameters they are made up by. The opposite is also true:
Some parameters may be collectively more uncertain than any of the individual parameters.
PCA of the posterior parameter error covariance matrix allows to discriminate combinations
of model parameters that are effectively controlled by the data from those parameter
combinations that are irrelevant for model counterparts of observations. Often results from
PCA can be interpreted in terms of the basic mechanisms represented in the model. We
illustrate the method for the example from water quality modelling.
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Figure 1: Suggested explanation for negative correlations between water temperature and
chlorophyll a concentrations observed during certain summer periods at station Geesthacht.
Upper panels: Modelled temporal evolution of chlorophyll a and silica concentrations in
individual water packages assuming low and high temperature, respectively. Local time series
can be produced by storing the final points of all trajectories that arrive at Geesthacht. Bottom
panel: Observations at Weir Geesthacht. Temperature observations have been shifted by an
estimated response time of two days.

2. METHODOLOGY

2.1. The Model
Our model involves the representation of two different algae species, green algae and

diatoms, both of which are known to significantly contribute to the total amount of algal
biomass in the river Elbe. Only growth of diatoms, however, depends on the availability of
the nutrient silica. The general concept is to consider a series of individual water bodies
travelling downstream towards station Weir Geesthacht. Starting from unrealistically low
values, meaningful concentrations of algal biomass to be compared with observations evolve
only by the end of the water parcel’s journey after exponential growth over a limited period of
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travel time (cf. Figure 1). This travel time is parameterized empirically as a function of river
discharge.

At the beginning of its journey each water package is initialised by the same concentration
of silica. Diatoms are assumed to cease growing and to start decaying as soon as this initial
reservoir of silica has been used up (cf. upper right panel of Figure 1). The higher growth
rates are the earlier the diatom maximum occurs and the more pronounced it is. If growth
rates are large enough so that all available silica is assimilated already upstream of
Geesthacht, further increasing growth rates (i.e. more favourable growth conditions) imply
decreasing diatom populations at the end of the particle’s journey. Thus, assuming that diatom
growth rates increase with temperature this provides a plausible explanation for negative
correlations between water temperature and chlorophyll a concentrations at station
Geesthacht. The assumed relationship between Lagrangian trajectories of individual water
packages and local observations at station Geesthacht is outlined in Figure 1.

For each of the two species an individual balance equation describes changes of algal
biomass concentration, Calg, with time, t, as a function of temperature dependent rates of algal
growth, µ, respiration, ρ, and loss, σ :
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The focus of the sensitivity and uncertainty study reported below is on six model
parameters x1, …, x6 that enter parameterizations of the algae growth rate, µ. Two parameters
are the optimum growth rates  µ0

max  for green algae and diatoms, respectively, that occur
when algae growth is not limited by lack of light or nutrients. Next we consider for each algae
species the parameter klight that specifies the light intensity, at which the algae growth rate
reaches 71% of its maximum possible value. The light limitation factor Flight in Eq. (1) results
from vertically averaging over the efficient water depth, D, which is another model input
parameter that has been selected for our study:
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Here I denotes the radiation intensity at the water surface and λ the total light attenuation
coefficient due to the presence of mineral compounds and algal self shading.

The last parameter we chose is the fraction of silica, fSi, in the cells of diatoms that
governs the consumption rate of silica (with concentration CSi) by the diatoms with
concentration Calg,d and growth rate µd:

dalg,dSi
Si Cf
td

Cd
µ−= (3)

The concentration of silica determines the size of the Michaelis-Menten type growth
limitation factor, FSi, in Eq. (1) with a half saturation constant KS (relevant only for diatoms):

SiS
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Si CK

CF
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= (4)
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All model parameters have been tuned manually to obtain reasonable simulations of
chlorophyll a and silica concentrations. The resulting reference parameter values are shown in
Table 1 together with rough estimates of prior parameter uncertainties.

To run the model external forcing represented by water temperature, discharge and
radiation must be specified as a function of time. Hourly temperature observations are part of
the data set from Weir Geesthacht. Daily observations of discharge at station Neu-Darchau
(Elbe-km 536) are available from ARGE ELBE (http://www.arge-elbe.de). Hourly mean
values of global radiation were provided by the GKSS Research Centre Geesthacht which is
located few kilometres upstream of the weir.

Table 1: Reference parameter values and assumed uncertainties; Optimised values for 2000

A comparison of observations and corresponding model results is presented in Figure 2.
Considering the very simple model approach with water temperature, discharge and solar
radiation being the only time dependent model inputs (no time dependent initial values or
sources/sinks) the model reproduces a reasonable amount of observed variability. Note that
also the observed very low levels of silica during summer are reflected by the model
calculations.

For the sensitivity and uncertainty study reported below we assume that only chlorophyll
a data were available for model calibration. Silica data are considered as an independent
option for checking the appropriateness of the model mechanism.

2.2. Sensitivity and Uncertainty Analysis
Let xr denote the vector being made up by those model input parameters, xi, which are to

be adjusted by fitting the model to data. If mr denotes the vector of model outputs, mt, at times
t, a quadratic loss function, Jobs, may be used to assess the differences between model output
and observations, dt, scaled by an assumed observational error, σobs. In the case of model
overparameterization the minimum of the loss function will be not well-defined due to small
curvatures in certain directions. To make the optimisation problem well-posed we
complement the loss function by a second component that penalizes all deviations of the
actual parameter vector xr from the reference vector, 0xr , which is specified in Table 1:
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Name Ref. Value Range StD Value 2000 Unit
x1 k light, g 20 [10-30] 5.77 17.7 W/m2

x2 k light, d 14 [10-18] 2.31 14 W/m2

x3 µ 0
max, g 1.65 [1.3-2.0] 2.02 10-1 1.63 1/d

x4 µ 0
max, d 1.6 [1.2-2.0] 2.31 10-1 1.62 1/d

x5 f Si 0.2 [0.1-0.3] 5.77 10-2 0.2 mgSi /mgC
x6 D 2.35 [1.2-3.5] 6.64 10-1 2.08 m
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Figure 2: Observations (black) and corresponding model predictions for chlorophyll a (upper
panels) and silica (lower panels) at station Geesthacht for two different years.

The diagonal prior parameter covariance matrix, Vprior, is introduced to remove differing
physical dimensions of the six parameters by proper scaling. For the present study we decided
to measure changes of parameter values in terms of multiples of their estimated prior
uncertainty (cf. Table 1). The scalar α enables one to adjust the overall sizes of the data and
the penalty term relative to each other. Note that the size of the data term and therefore the
appropriate choice of α must be a function of the number of observations. In the following we
choose α =100 for N=78 data points comprising about one observation every third day
between March and October 2000.

The relevance of parameter covariances for a moderately non-linear model’s fit to data
can be analysed by examining the curvature of the loss function at its minimum. Figure 3
illustrates the general idea. Directions of high curvature allow for only weak parameter
variations without getting into conflict with the data, whereas in directions with low curvature
parameters can be changed significantly without much affecting the value of the loss function.
A complete description of the loss function’s local curvature is provided by the Hessian
matrix containing all second derivatives of the loss function. Principal component analysis
(PCA) of the Hessian matrix allows to discriminate those directions in the 6-dimensional
parameter space that can be calibrated by the available data from other directions, along
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which effects of parameter changes tend to compensate each other. For a linear model the
inverse Hessian can be identified as being the posterior parameter error covariance matrix [3].

Figure 3: Loss function for variations of only two parameters; eigenvectors of the Hessian
matrix defining directions of minimum and maximum curvature, respectively.

For the analysis reported below it is convenient to incorporate both the diagonal prior
covariance matrix Vprior and the amplitude factor α into a coordinate transformation to non-
dimensional parameters x ′r :
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For a linear model the loss function is quadratic. For a non-linear model the loss function
should still be nearly quadratic in the vicinity of its minimum so that the following formula
provides a good approximation of the Hessian and the inverse of the posterior parameter
covariance matrix, postV′ , [3]:
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A programming environment for the solution of control problems (Integrated Modelling
and Analysis System (IMAS, [1]) including an automatic differentiation tool for computer
programs has been used for an analytic calculation of  the Jacobian matrix xm rr

∂∂  and for a
gradient based minimization (Quasi-Newton algorithm) of the loss function. The inclusion of
prior knowledge into Eq. (7) renders the inversion of the Hessian matrix possible. The relative
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strength of background knowledge has been chosen sufficiently small to make the background
term negligible for modes being well controlled by the data.

Figure 4: Eigenvalues of the posterior parameter covariance matrix analysed for year 2000.

3. RESULTS
The model has been fitted to data from the year 2000. The optimized parameter values

listed in Table 1 do not deviate far from the reference values that were obtained as by careful
manual model calibration. Figure 4 depicts the eigenvalues of the analysed posterior
parameter error covariance matrix, which represent variances along directions in the
parameter space being defined by the associated eigenvectors. According to Eq. (7) all
eigenvalues of postV′ must be smaller than one as a consequence of the particular way of
scaling. It turns out that only the first two eigenvalues are small enough to conclude that prior
uncertainties have been overwritten by observational evidence. Three eigenvalues remain
virtually unaffected by the data and stay close to the prior value one. One eigenvalue is
influenced by both data and prior knowledge. Thus, PCA of the posterior parameter
covariance matrix suggests that only two degrees of freedom in the six-dimensional parameter
space are clearly relevant for a successful reproduction of chlorophyll a observations. It
should be kept in mind, however, that these results are influenced by the way, in which
parameters have been scaled. Scaling introduces some subjectivity but is a necessary
prerequisite for PCA, which needs homogeneous physical dimensions [2].

A crucial question is whether or not the two parameter combinations, which are well
controlled by the data, can be interpreted in terms of mechanistic processes represented in the
model. Principal components are artificially defined variables and therefore do not necessarily
have a physical interpretation. The two upper panels in Figure 5 depict the eigenvectors that
correspond with the two smallest eigenvalues in Figure 4. To provide a better understanding
of the mechanism of parameter calibration the bottom panel of Figure 5 presents an analysis
of model prediction errors caused by uncertainties in the space of principal components. If the
model is assumed to be linear, uncertainties of model parameters can be propagated
independently and their effects on model output can be superimposed to each other.

It turns out that the two leading principal components that jointly explain about 89% of
model output variance affect model predictions (i.e. are identifiable from the data) in distinct
time intervals. This can be explained considering the different signs that diatom related
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loading coefficients of the two eigenvectors have. According to both eigenvectors a strong
(positive) impact on predicted chlorophyll a  concentrations can be achieved by an
intensification of the maximum growth rate of green algae, x3, together with a reduction of
their demand of light, x1. However, according to the first eigenvector, which dominates model
output uncertainty during periods when silica is lacking (cf. Figure 2), values of the
corresponding parameters for diatoms, x4 and x2, are changed in the opposite directions. This
reduces the overall diatom growth rate but nevertheless results in an increase of the final
diatom biomass concentration (cf. upper right panel in Figure 1). If silica concentrations are
sufficiently high, calibration of the second instead of the first eigenmode becomes crucial,
which treats both algae species symmetrically.

Figure 5: Cumulative plot of the relative contributions of the six principal components
(amplitudes of the eigenvectors of the posterior parameter error covariance matrix) to model
output variability. About 80% of model output variance can be attributed to the first two
principal components.

The results of the local uncertainty analysis could be used for the implementation of a
more systematic model calibration procedure. It suffices to calibrate the two or three leading
principal components and to assign arbitrary values to the others. To illustrate the idea we
performed a Monte Carlo experiment with 10,000 simulations. For each model run values of
the six selected model parameters were drawn independently. Then those parameter
combinations, which gave rise to the most successful model simulations (i.e. lowest values of
the loss function), were projected onto the eigenvectors of the local parameter error
covariance matrix. These projections, being standardized to have zero mean and unit standard
deviation, are depicted in Figure 6. Projections onto the first three vectors are connected by
solid lines. Projections onto the first two eigenvectors show small variability while anomalies
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of the other projections may have large values even for the very best simulations. This proves
that the choice of these amplitudes  has little impact on the model’s fit to data.

Figure 6: Monte Carlo generated parameter vectors giving rise to successful simulations are
projected onto the six eigenvectors of the local parameter covariance matrix at the loss
function’s minimum. All projections are scaled by their respective standard deviations.
Projections onto the first three eigenvectors are connected by solid lines.

4. DISCUSSION
Posterior parameter correlations reflect the fact that in the process of model calibration

changing the values of different parameters had similar effects on model counterparts of the
data. Taking into account such parameter interaction structures strongly mitigates
uncertainties in model predictions [6]. PCA of the posterior parameter error covariance matrix
gives a clear picture of how many degrees of freedom are really controlled by data. It helps to
identify the nature of a model’s overparameterization and its dependence on the kind of data
being available for model calibration. The artificial new input parameters (principal
components) do not necessarily have a physical meaning. In the present example, however,
two parameter patterns being controlled by data could be related to the discrimination
between different algae species in the model.

Vajda and Turányi [5] applied PCA for optimally reducing the mechanism of chemical
reactions based, however, on a response function which measures model output variability but
makes no reference to observed data. Using a small number of sensitive principal components
as new independent model input parameters, thereby implicitly taking into account model
parameter interactions, could much facilitate the adaptation of a model to new applications.

When a model is linear, uncertainties of model parameters can be propagated
independently and their effects on model output can be superimposed. If a model is
significantly non-linear, there are obvious limitations for a local sensitivity analysis, and a
more general global method may be needed. As long as the local method is applicable,
however, one can take advantage of  the very basic definition of sensitivity in terms of the
slope of model output at a given point in the parameter space [4]. Signs of model output
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sensitivities are available rather than their pure sensitivity strengths, which facilitates an
interpretation in mechanistic terms.

In the present application it turned out that the relevance of eigenmodes changed when the
modelled concentration of silica dropped to zero. Accordingly any parameter change, which
affects the modelled lengths of periods with lack of silica, will have an impact on the posterior
parameter covariance matrix. This indicates the limitations of linear uncertainty analysis
applied to the present example. Depending on a model concept with or without the inclusion
of silica, model parameters must be calibrated differently, possibly giving rise to chlorophyll
a simulations of similar quality. To consult observations of silica is the only way to resolve
this ambiguity with regard to model formulation.
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