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1. INTRODUCTION

When a computer model is to be used to guide a decision, it is important for the decision-
maker to acknowledge and investigate the uncertainty in the model. Typically, there will
be uncertainty surrounding the true values of the input parameters in the model that
should be used for the decision problem in question, and this then induces uncertainty
in the output of the model. If the decision-maker considers their probability distribution
for each unknown input in the model, they can then derive their probability distribution
for the model output. The combination of their output distribution and an appropriate
utility/loss function can then guide their decision.

In some cases, it may be possible to learn more about some or all of the uncertain
input parameters before a final decision is made. In this case, it is then desirable to assess
the importance of each uncertain input parameter in the model. Quantifying parameter
importance is known as global or probabilistic sensitivity analysis. A measure of parame-
ter importance that has been advocated previously is the variance-based measure (see 1).
Variance-based measures consider the contribution of each uncertain input parameter to
the variance of the model output. However, uncertainty about the model output as char-
acterised by its variance is not necessarily equivalent to uncertainty about the optimum
decision. Consequently, using variance-based measures to establish parameter importance
in decision problems can in some cases produce misleading results, even as far as ranking
the parameters in the wrong order of importance.

An alternative measure of parameter importance can be derived within the framework
of utility theory. The idea is to determine whether different values of a particular input
parameter lead to different optimum decisions, and if so, how much the expected util-
ity/loss under alternative optimum decisions varies. Specifically, the expected utilty of
learning the true numerical value of an uncertain input parameter before the decision is
made can be calculated. This quantity is known as the partial expected value of perfect
information (partial EVPI), and precisely quantifies the importance of an uncertain input
variable. When the specific purpose of the model is to guide a decision within a clearly
defined utility/loss structure, we advocate the partial EVPI as the single correct measure
of an uncertain parameter’s importance.
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In most practical situations, the decision-maker will not be able to learn the true
value of an uncertain input parameter precisely, even if they desire to do so. The more
likely possibility is that they may have the option of collecting more data to reduce their
uncertainty about the unknown parameter. The expected value of perfect information
framework can be extended to consider the expected value of collecting this data before
making the decision; this is known as the expected value of sample information (EVSI).
EVSI measures can then be used for deriving optimal sample sizes.

Both partial EVPIs and EVSIs can be computed using Monte Carlo methods. Unfor-
tunately, to obtain these measures accurately, very large numbers of model evaluations
are needed, potentially millions. For computationally expensive computer models, evalu-
ating these measures may then require prohibitively lengthy computing times. However,
in many cases it will be possible to exploit a feature of the computer model to dramati-
cally speed up the computation; the function mapping inputs to output is often a smooth
function. If the model is run at a particular set of input values and the output is observed,
we will then also have information about the likely output at neighbouring sets of input
parameter values.

When the time needed for a single run of the model is non-trivial, it can be highly ad-
vantageous to construct an emulator, a statistical approximation to the original computer
model based on a fairly small number of different runs of that model. The emulator can
then be used to give a fast approximation to the computer model regardless of the com-
plexity of the model. An emulator is a regression model, and any regression technique can
be employed. Our preferred option is the Gaussian process model. The Gaussian process
emulator is a non-parametric approach that with the exception of continuity, makes no
other assumptions about the functional form of the computer model. Gaussian processes
have been used successfully before for efficient computation in other areas of sensitivity
and uncertainty analysis. It will be demonstrated that the Gaussian process approach is
of the order of 1000 times more efficient than Monte Carlo methods in terms of numbers
of model runs, for computing partial EVPIs and EVSIs.

An application is given in the field of health economics. Economic models are used
to estimate the cost-effectiveness of new treatments under consideration. A decision-
maker will use the output of the model to help decide whether or not to approve the
new treatment. There is always uncertainty regarding the values of the input parameters
needed for the model; for example, it will not be known exactly how effective the treatment
is, or what financial resources the patients on the treatment will use. There will be
particular interest in conducting a probabilistic sensitivity analysis when using the model.
It will often be possible to obtain more data regarding some of the model parameters,
and hence reduce input uncertainty. Additionally, a certain class of models, known as
patient simulation models, require an extensive simulation to produce the output for a
single choice of input parameters. These models can be very computationally expensive,
requiring in some cases in excess of an hour per run. In this scenario, emulator methods
are essential for computation of EVPIs and EVSIs.
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2. THE EXPECTED VALUE OF PERFECT INFORMATION

We now give a decision-theoretic measure of importance of an uncertain input variable.
This measure is based on a standard result from decision theory (see for example 2), and
was advocated by (3) and (4).

Suppose a decision-maker has to chose one decision d from a set of possible decisions
D. The decision-maker has a computer model to aid their decision, denoted by y = f(x),
where y is the model output and x are the model inputs. In the decision problem at hand,
we suppose that there are ‘true’, uncertain values of the inputs that should be used in
the model, and these uncertain values are denoted by X with distribution G. We then
suppose that the utility of a decision d will be some function of the true output of the
model, f(X), and is denoted by U{d, f(X)}.

The decision maker then chooses the decision d to maximise their expected utility
EX[U{d, f(X)}]. We can now define the expected utility of the optimum decision to be
U∗, where

U∗ = max
d

EX{U{d, f(X)}}. (1)

Now suppose that the decision maker decides that they will learn the value of X before
making their decision. Once they have learnt X, their utility is then

max
d

U{d, f(X)}, (2)

and so their expected utility of learning X (i.e., before they find out what X actually is)
is

EX{max
d

U{d, f(X)}}. (3)

The expected value of perfect information (EVPI) is then defined as the expected gain in
utility:

EX{max
d

U{d, f(X)}} −max
d

EX{U{d, f(X)}}. (4)

Now denote one of the uncertain input variables to be Xi. The same argument can be
applied to derive the expected value of learning Xi before making the decision. Given Xi,
we are still uncertain about the remaining input variables, X−i, and so we would choose
the decision to maximise EX−i|Xi

{U{d, f(X)}}. The expected utility of learning Xi is
then

EXi

[
max

d
EX−i|Xi

{U{d, f(X)}}
]
, (5)

and so the expected gain in utility, the partial EVPI of Xi is

EXi

[
max

d
EX−i|Xi

{U{d, f(X)}}
]
−max

d
EX{U{d, f(X)}}. (6)

Here, we advocate the partial EVPI of Xi as a measure of importance of that variable in
the model.
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2.1. Computation

Partial EVPIs can be computed by Monte Carlo methods, but this can be computationally
intensive and in some cases infeasible when a single run of the model takes a non-trivial
amount of computing time. When the model is computationally expensive, a common
approach is to use an emulator, a fast statistical approximation to the computer model
based on regression (see 5; 6). This can be considerably more efficient than Monte Carlo
when the output of the computer model is a smooth function of inputs. Full computational
details for partial EVPI estimates using (Gaussian process) emulators are given in (7)

3. EXAMPLE: HEALTH ECONOMIC MODELLING AND THE GERD
MODEL

One application area in which partial EVPIs are currently used is health economics.
In health economics, the interest is in allocating health care resources as effectively as
possible. The decision problem is to choose which out of set of competing treatments for
an illness is the most cost-effective. Cost-effectiveness of a treatment is described with
a single (financial) measure known as the net benefit of the treatment, and net benefits
are often predicted using computer models. (This is because clinical trials typically only
record information on clinical effectiveness). The models invariably require specification
of parameters that are uncertain, and so there is interest in investigating the consequences
of this input uncertainty. The utility of choosing a particular treatment is then given by
the net-benefit of the treatment, and so it is possible to measure the importance of each
input using partial EVPIs.

We give the example used in (7) that also illustrate the efficiency of the emulator
approach in the computation of partial EVPIs. The model compares treatment strategies
for gastroesophageal reflux disease. In this example, we suppose that a decision has to be
made regarding the adoption of one of three treatment strategies:

1. Acute treatment with proton pump inhibitors (PPIs) for 8 weeks, then continuous
maintenance treatment with PPIs at the same dose.

2. Acute treatment with PPIs for 8 weeks, then continuous maintenance treatment
with hydrogen receptor antagonists (H2RAs).

3. Acute treatment with proton pump inhibitors PPIs for 8 weeks, then continuous
maintenance treatment with PPIs at the a lower dose.

The model was presented in (8). In the scenario that we are considering, there are
twenty-three uncertain inputs, relating to quantities such as probabilities of healing and
recurrence of the symptoms with each treatment, and resources used by patients such
as number of visits to a general practitioner. Distributions for all the uncertain inputs
are described in (9). The output of the model can be converted into a utility for each
treatment.

Using 600 runs of the model, we estimate the partial EVPI of each patient. The GERD
model is computationally cheap, so we can determine the true partial EVPIs based on
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massive Monte Carlo samples (several hundred million in this case). Although there is
some inaccuracy in the estimates, we have identified all the influential inputs in the model,
to within what we believe would be an acceptable order of magnitude. For comparison,
we also estimate the partial EVPIs using a combination of Simpson’s rule and Monte
Carlo as described in section 2.

We give the actual values of the estimates and true values of the partial EVPIs for
the six most important variables in table 1.

uncertain input parameter true partial Gaussian process Simpson/MC estimate
EVPI estimate estimates

hazard for healing 1.286 1.194 3.465
on PPIs

no. of symptom 2.271 2.500 4.229
weeks after surgery

Recurrence probability on PPIs 4.905 4.579 5.507
(6-12) months

Recurrence probability on H2RAs 21.221 20.908 23.417
(0-6) months

Recurrence probability on H2RAs 2.652 2.666 2.958
(6-12) months

Recurrence probability on 3.473 3.378 3.846
low dose PPIs (6-12) months

Table 1. True values, Gaussian process estimates and Simpson/Monte Carlo estimates of the
partial EVPIs of the six most influential input variables. The Gaussian process estimates are
based on 600 model runs, and the Simpon/Monte Carlo estimates are based on 410200 model
runs.

These partial EVPIs can then be interpreted as (financial) values of learning the value
of the corresponding parameter before choosing which treatment to use for the patient
population. The figure represents dollars per patient, and so needs to be multiplied by
the size of the patient population to give a final value.
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