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Abstract: Results from complex computer models are often subject to both aleatory and 
epistemic uncertainty. The natural straightforward procedure to analyze these uncertainties by 
Monte Carlo simulation is a double-loop nested sampling: the epistemic parameters are 
sampled in the outer loop and the aleatory variables are sampled in the nested inner loop. For 
time-demanding codes, however, the computational effort of this procedure may be 
prohibitive. Therefore a method of an approximate sensitivity analysis (“sensitivity” in the 
sense of “uncertainty importance”) has been suggested which is based on a single-loop 
sampling procedure with epistemic parameters and aleatory variables being sampled 
“simultaneously” from their respective distributions. From the results of such sampling one 
can obtain approximate estimates of many of the commonly used sensitivity measures for the 
aleatory probability distributions of model outcomes of interest with respect to the underlying 
epistemic parameters. The reliability of these estimates depends on the relative contribution of 
epistemic uncertainties U to the overall joint epistemic & aleatory uncertainty in the outcome 
Y expressed by the quantity c2 = varE[Y|U]/varY. This quantity can be estimated in several 
ways depending on the feasibility of additional sampling and model computations. 

Keywords: sensitivity analysis, aleatory and epistemic uncertainty, uncertainty importance, 
conditional expectation. 

1. INTRODUCTION 
The effect of model input variables subject to aleatory uncertainty (“random behavior”) on 

the results of a complex model can be analyzed by Monte Carlo simulation. To this end the 
aleatory variables are sampled according to their random laws and the results of the 
corresponding model runs are summarized in form of empirical distributions which represent 
the aleatory uncertainty of the model outcomes. From these empirical distributions statistical 
estimates of the probabilities of the process states of interest and other useful probabilistic 
quantities like expectations etc. may be obtained.  

Often, however, the exact types of the random laws, their distributional parameters, the 
model formulations, the values of model parameters, the input data of the model application 
etc are not known precisely, i.e. they are subject to epistemic ("lack-of-knowledge") 
uncertainty. These uncertainties, denoted as epistemic input uncertainties, are quantified by 
probability distributions representing the respective subjective state of knowledge.  

The aim of epistemic sensitivity analysis (“uncertainty importance analysis”) in this case is to 
quantify the effect of the epistemic input uncertainties on the epistemic uncertainty of the 
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probabilistic quantities representing aleatory output uncertainty, e.g. probabilities, 
expectations etc.  

It is widely recognized and accepted that these two types of uncertainty must very 
carefully be distinguished and therefore it wouldn’t make sense to perform a “simultaneous” 
Monte Carlo simulation of both types of variables and a sensitivity analysis of a direct model 
outcome with respect to the variables of both types.  

It is intuitively clear and has often been pointed out by many authors, e.g. [1], that the 
natural method to appropriately account for both types of uncertainty by Monte Carlo 
simulation is a “double-loop” nested sampling procedure (also called “two-stage” or “two-
dimensional” sampling,). It consists of (1) an "outer loop" where the values of the epistemic 
parameters are sampled according to their epistemic marginal probability distributions and (2) 
a nested “inner loop” where the values of the aleatory variables are sampled according to their 
aleatory conditional probability distributions given the values of the epistemic variables 
chosen in the outer loop. Each “inner loop” provides an empirical conditional aleatory 
distribution of the process outcome of interest such that finally a sample of empirical 
distributions is obtained. This sample could be used for a standard epistemic sensitivity 
analysis for various (aleatory) probabilistic quantities.  

However, for complex and computationally expensive models, as used e.g. in probabilistic 
safety analysis of nuclear power plants, the computational effort for the double-loop 
procedure will be prohibitive. In such cases the consequence would be to do without an 
uncertainty and sensitivity analysis. 

Therefore, an approach of an approximate epistemic sensitivity analysis is suggested in 
the following sections. Instead of the nested double-loop sampling procedure the above-
mentioned simple single-loop sampling procedure is employed with both types of variables 
being sampled “simultaneously” according to their joint probability distribution. From the 
results of this sampling appropriate sensitivity measures can be computed. 

2. FUNDAMENTALS  
Being subject to both epistemic and aleatory uncertainties, any scalar process variable or 

model outcome Y may be represented as   
      Y = h(U,V)  
with   
  U  =  set of all epistemic uncertainties (uncertain parameters),  
  V  =  set of all aleatory uncertainties (random variables),  
  h  =  the computational model considered as a deterministic function of both  
   aleatory and epistemic uncertainties U and V.   

When holding the epistemic variables U fixed at a value u , i.e. U=u, the resulting 
outcome Y is a function of the aleatory uncertainties V, solely. Its probability distribution, i.e. 
the conditional distribution F(y|U=u) of Y given U=u, quantifies the corresponding 
(conditional) aleatory uncertainty in Y. Its expectation   
      E[Y|U=u]  
taken over all aleatory variables V conditionally on U=u may be considered as a scalar 
quantity representing this conditional aleatory uncertainty of the outcome Y. 
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Using expectation to represent conditional aleatory uncertainty must not be considered 
very restrictive since many of the standard distributional parameters characterizing aleatory 
uncertainty can be viewed as expectations of appropriately chosen outcome functions Y’. E.g. 
the value FY(y) of a distribution function of a random variable Y at any given point y may be 
represented as expectation of the indicator variable Y’= I{Y ≤ y}, i.e. Y’=1 if Y≤y and Y’=0 
otherwise, from which follows that EY’=FY(y).  

In the following the standard concise notation   
       E[Y|U] 
will be used to denote the above conditional expectation E[Y|U=u] considered as function of 
the epistemic uncertainties U, i.e. as a quantity subject to epistemic uncertainty from U alone. 

The principal aim of an approximate epistemic sensitivity analysis of results from models 
subject to both epistemic and aleatory uncertainties will therefore be to determine appropriate 
sensitivity indices of the conditional expectation E[Y|U] with respect to the components 
U1,…,Un of U avoiding the time-consuming double-loop Monte Carlo sampling. 

The following fact is the basis of the proposed method: 

Many of the standard sensitivity measures of E[Y|U] with respect to U1,…Un are uniformly 
proportional to the corresponding sensitivity measures of Y=h(U,V) with respect to U1,…Un . 
The proportionality constant c is, in most cases, given by 

      c  =  
varY

|EYvar U .  

I.e. if SMi denotes the (population) sensitivity measure of E[Y|U] with respect to epistemic 
parameter Ui, and SM’i denotes the corresponding sensitivity measure of Y= h(U,V) with 
respect to the same parameter, then  

     SM’i = c · SMi   

for all i=1,…,n. This holds for many types of sensitivity measures with the same constant c. 

Consequently, this property implies that the sensitivity indices for   
    (a) the conditional expectation E[Y|U] and for   
    (b) the direct outcome Y=h(U,V)  
provide the same uncertainty importance ranking with respect to parameters U1,…Un.  

This result holds for the sensitivity measures 
- Correlation Coefficient (CC) 
- Standardized Regression Coefficient (SRC) 
- Correlation Ratio CR (=“main effect” sensitivity index)  
and with slight modifications also for 
- Partial Correlation Coefficient (PCC) 
- “total effect” sensitivity index ST 
- “linearized”(or R2-) Version of the “total effect” sensitivity index STL. 

The proof of this fact becomes very simple if the concept of conditional expectation 
E[Y|U] is employed. It is worthwhile mentioning that the notion of conditional expectation is 
very useful also in the context of sensitivity analysis. Many results from the standard 
sensitivity analysis which look rather complex and difficult can very effectively be 
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represented, very clearly interpreted and very easily proved with the aid of the concept of 
conditional expectation.  

The following basic properties of conditional expectation are useful in this context. They 
can be found in many textbooks and can also very easily be proved:  

(1) E(E[Y|U]) = EY  
(2) var(E[Y|U]) = varY - E(var[Y|U])  
(3) E(E2[Y|U]) = E(Y·E[Y|U])  
(4) E(E[Y|U]|Ui) = E[Y|Ui]  
(5) E[E[Y|U]·Ui] = E[E[Y|Ui]·Ui] = E[Y·Ui]  
(6) cov(E[Y|U],Ui)=cov(Y,Ui)  
(7) the linear regression of E[Y|U] with respect to U and the linear regression of Y with 

respect to U are identical, i.e. RC(E[Y|U],Ui) = RC(Y,Ui) with RC(…) being the 
corresponding regression coefficients.  

Using these properties the above result can easily be proved. Here, e.g., the proofs for the 
correlation coefficient CC and the correlation ratio CR (“main effect” sensitivity index): 

CC(E[Y|U],Ui) = 
i

i

varU]|var E[Y
)U],|cov(E[Y

⋅U
U

 = 
i

i

varU]|var E[Y
)Ucov(Y,
⋅U

 = 

    = 
i

i

varUvarY
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]|var E[Y
Yvar

U
= 
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]U|]|varE[E[Y i

U
U

 = 
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]U|varE[Y i

U
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varY
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U
 = 

      = CR2(Y,Ui) · 1/c2 . 

The proofs for the other sensitivity measures are similar. 

3. SAMPLING METHOD FOR AN APPROXIMATE SENSITIVITY ANALYSIS 
Owing to the preceding result it seems natural and reasonable to replace the above-

mentioned but often impracticable double-loop sample-based sensitivity analysis for the 
conditional expectation E[Y|U] by the corresponding sensitivity analysis for the direct 
outcome Y=h(U,V) with respect to the components U1,…Un of U, alone. The Monte Carlo 
sampling procedure appropriate for such sensitivity analysis for the direct outcome Y, 
however, is a simple single-loop sampling with the epistemic parameters U and the aleatory 
variables V being sampled “simultaneously” according to their joint probability distribution 
f(u,v). This joint probability distribution is given by the product of the marginal distribution 
f(u) of U and the conditional distribution f(v|U=u)  of V given U=u, i.e. by the expression 

           f(u,v) = f(v|U=u)·f(u) .  

In most applications the marginal distribution f(u) of the epistemic parameters U will be 
given directly, while the conditional distribution f(v|U=u) of the aleatory variables V may 
also be given in terms of intermediate results from the computational model. 
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Thus, the “simultaneous” sampling procedure with sample size N generates N joint 
epistemic & aleatory sample values 

      (u1,v1),.…..,(uN,vN) 

from which, eventually, the corresponding sample values  
            y1,….…,yN 
of the direct outcome Y=h(U,V) are calculated via the computer code.  

From all these sample values the above mentioned standard sensitivity measures with 
respect to the parameters U1,…Un for the outcome Y=h(U,V) can be computed. Since the 
proportionality constant c=√(varE[Y|U]/varY) is usually not known one cannot directly derive 
the sensitivity indices for E[Y|U] from the sensitivity indices for Y. However, according to 
the preceding section, the sample based parameter importance ranking obtained for Y may 
approximately be used as the importance ranking for the conditional expectation E[Y|U] 
asked for. Methods for approximating/estimating the proportionality constant c will be 
presented in section 5. 

It is also clear that Simple Random Sampling (SRS) as well Latin Hypercube Sampling 
(LHS) or any other sampling method appropriate for the selected type of sensitivity measure 
may be used for such sample-based approximate sensitivity analysis.  

4. ACCURACY CONSIDERATIONS  
The accuracy of the approximate sensitivity analysis for the outcome Y depends on the 

(usually) unknown value of the (squared) proportionality constant   

     c2 = 
var Y

]|var E[Y U    

which relates the sensitivity measures for E[Y|U] to the sensitivity measures for Y. 

Clearly, 0 ≤ c2 ≤ 1 since varE[Y|U] ≤ varY due to the above property (2) of the 
conditional expectation. From the proportionality SMi=1/c·SMi’ (i=1,…,n) it follows that the 
values of the sensitivity measures SMi’ for Y are uniformly lower than the corresponding 
sensitivity measures SMi for E[Y|U]. If this constant c2 is small, the sample-based 
approximate sensitivity analysis for Y may produce small or even statistically not significant 
values of the sensitivity measure for a parameter although the sensitivity of E[Y|U] with 
respect to this parameter one is actually interested in may be high. Nevertheless, c2 is 
unknown and therefore it is important to analyze it more closely.  

By definition, c2 is easily identified as squared multiple correlation ratio (or “main effect” 
sensitivity index) [2],[3] of Y with respect to the whole parameter vector U. It can therefore 
be interpreted in several ways, e.g.  

- as an indicator of the accuracy of the approximation of Y=h(U,V) by E[Y|U] as a 
function of U alone,  

- as an indicator of the relative contribution of the epistemic uncertainties from U to the 
overall “joint” uncertainty in Y=h(U,V) from U and V, 

- as the extent to which the overall “joint” uncertainty in Y coming from U and V is 
dominated by the epistemic uncertainty coming from U alone. 

Consequently, the more “dominant” the epistemic uncertainties the higher the c2 value, 
and, consequently, the higher the dependability of the proposed approximate sensitivity 
analysis.  
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In practical applications it may sometimes be immediately clear which type of uncertainty 
is dominant such that the reliability of the approximate sensitivity results may also be judged 
immediately. Nevertheless, an approximation of c2 is needed on the basis of the reduced 
sampling effort without employing the impracticable double-loop approach.  

5. APPROXIMATING THE PROPORTIONALITY CONSTANT c2 
Three alternative procedures are proposed to approximate res. to estimate the (squared) 

proportionality constant c2=
var Y

]|var E[Y U . Below the three procedures are ordered according 

to the amount of the additional computational effort necessary to determine the corresponding 
approximated res. estimated value of c2.  

(1) Procedure No.1 to approximate c2 is based solely on the underlying sample values from 
the “joint” sampling of U and V, i.e. without additional model computations. It is given by 

    2ĉ  = 
)),((Y,R

)(Y,R
2

2

VU
U  , 

with  
R2(Y,(U,V)) = multiple sample correlation coefficient of outcome Y with respect to the joint  
   sample of (U,V). 
R2(Y,U))    = multiple sample correlation coefficient of outcome Y with respect to the 
   sample of U alone. 
Both multiple correlation coefficients can easily be computed from the available sample 
values  (u1,v1),…..,(uN,vN) and y1,…,yN  according to the well-known formulae: 

     R2(Y,U)  =  ρt
Y,U RU

-1
  ρY,U  

         R2(Y,(U,V))  =  ρt
Y,(U,V) RU,V

-1
  ρY,(U,V)  

with 
ρY,U       = vector of empirical correlation coefficients between Y and the components of U  

ρY,(U,V) = vector of empirical correlation coefficients between Y and the components of U,V  

RU
-1       = inverse of the empirical correlation matrix RU between the components of U 

RU,V
-1 

  = inverse of the empirical correlation matrix RU,V between the components of U,V.  

All these quantities are computed from the underlying sample values (u1,v1),…..,(uN,vN) and 
y1,….,yN  generated by the single-loop joint sampling of U,V and the corresponding model 
computations of Y. The sample size N must exceed the joint number of variables in U,V. 

The motivation behind this method is simply to approximate the conditional expectation 
(= regression of the 1st kind) by the linear regression (= regression of the 2nd kind). 

 
(2) Procedure No.2 of approximating c2 is based on two samples: (a) the underlying sample 
values y1,…,yN from the same “joint” sampling of U and V and (b) sample values from an 
additional (single-loop) sampling of aleatory variables V alone with the values of epistemic 
parameters U held fixed at their nominal values u0 . It is defined by  
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is the variance from the underlying sample values y1,…,yN, and 

     s2(Y|U=u0) = 2
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1

−∑
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is the variance from the other sample values y’1,…,y’N’ generated by sampling the aleatory 
variables V alone while the epistemic parameters U are held fixed at their nominal values u0. 
In many applications this additional sample may already be available as the “nominal result” 
computed before starting uncertainty and sensitivity analysis.  

The motivation behind this method is to approximate the term Evar[Y|U] appearing in the 
expression varE[Y|U] = varY - Evar[Y|U] for the numerator of c2 by the term var[Y|U=u0]. 

 
(3) Procedure No. 3: While the first two methods should rather be considered as numerical 
approximations to the constant c2=varE[Y|U]/varY, the third method may be viewed as an 
estimate of c2 in the full statistical sense. It is based on the following basic and easy to prove 
property of conditional expectation:  

If V and V’ are identically distributed and conditionally independent given U, i.e. the 
joint conditional distribution of V and V’ given U is the product if the two marginal 
conditional distributions, formally: f(v,v’|U=u) = f(v|U=u)·f(v’|U=u) and if Y = h(U,V) and 
Y’ = h(U,V’), then the (squared) proportionality constant c2 can be expressed by: 

    c2 = 
var Y

]|var E[Y U  = 
 varY'varY

)Y'(Y,cov  = ρ(Y,Y’) , 

i.e. c2 is the correlation coefficient between the variables Y und Y’.  

Consequently, one can estimate the proportionality constant c2 by the sample correlation 
coefficient r(y,y’) from the two-dimensional sample (y1,y1’),…..,(yN,yN’) from the bivariate 
distribution of (Y,Y’). The corresponding well-known formula is 

   2ĉ  = r(y,y’) = 

∑ ∑

∑

= =

=

′−′⋅−

′−′⋅−

N

1i

N

1i

2
i

2
i

i

N

1i
i

 )yy()y(y
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where  
y1,…,yN are the sample values of Y from the underlying “joint” sample of U and V, i.e. 
yi=h(ui,vi), ), i=1,…,N and  

y1’,…,yN’ are the sample values of Y’ from the “joint” sample of U and V’ generated by 
independently sampling the aleatory variables V’ alone, according to the conditional 
distribution with the epistemic parameters U held fixed at the same values as in the 1st sample, 
i.e. yi’=h(ui,vi’), i=1,…,N. 
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The additional computational effort for this statistical estimate of c2 is therefore N 
additional model computations (= 2nd single-loop sample of size N).  

Obviously, these two single-loop samples may also be viewed as a realization of the 
above-mentioned nested double-loop sampling with the “inner” loop sample size being 2. 

Remark 1:  
The above statistical estimate 2ĉ  may also be considered as an extension of the familiar 
procedure [4] to estimate the so-called “main effect” and “total effect” sensitivity indices SM 
and ST in the case of not independent variables. Changing the notation and replacing U by X2 
and V by X1 the “total effect” sensitivity index ST1 for Y with respect to X1 may be defined as  

    ST1 = 
varY

]| var[YE 2X
 = 

varY
]|var E[YvarY 2X−

. 

It can be interpreted as “the relative amount of variance of Y that is expected to remain if the 
values of all variables except variables X1 will become known”. Analogously, the “main 
effect” sensitivity index SM1 for Y with respect to X2 may be defined as  

    SM2 = 
varY

]|[Y var E 2X
   

and interpreted as “the relative amount of variance of Y that is expected to be removed if the 
values of all variables X2 will become known”. This representation holds for independent as 
well as for dependent variables X1 and X2 and is equivalent to the representation given in [4] 
in the case of independent variables (e.g. ST1 := sum of all terms containing X1 of the “Sobol 
decomposition” of Y=h(X1,X2) into a sum of uncorrelated terms of increasing dimensionality 
[2], [4]). It is immediately seen that  
      ST1 = 1 - c2   
     SM2 =  c2   
with X1,X2 playing the role of V,U in the above representation of c2. It can also be easily seen 
that for independent variables the estimate presented in this paper and the estimate presented 
in [4] are nearly equivalent. Consequently, in the procedure [4] to compute the “main effect” 
and the “total effect” sensitivity indices it is not necessary to assume the input variables be 
independent. This procedure can be used for dependent variables, as well, provided the two 
samples of X1 are generated conditionally independently given X2 .  

Remark 2:  
According to the above procedure a 2nd sample is generated to estimate (together with the 1st 
sample) the constant c2 while to estimate the sensitivity indices only the 1st sample is needed. 
It appears, and is intuitively clear, too, that using the mean sample values yi* = (yi+yi’)/2, 
i=1,…,N from both samples an improvement of the accuracy of the sensitivity results can be 
achieved compared to the results obtained with the values yi , i=1,…,N, from a single sample. 
As before, since E[Y*|U]=E[Y|U] and varY*=(varY+varE[Y|U])/2, it can easily be shown 
that a similar proportional relationship holds between the sensitivity measures SMi of E[Y|U] 
and the corresponding sensitivity measures SM*i  of Y*=(Y+Y’)/2 with respect to parameter 
Ui , i.e. 
       SM*i = c* · SMi   

with the new proportionality constant c*2 given by  
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   c*2 =  
*var Y

]|var E[Y* U  = 
]| var E[Y var Y

]| var E[Y2
U

U
+

 = 
c²1

c² 2
+

   >  c2  

As stated above, since c*2 > c2, the uncertainty importance ranking (sensitivity results) based 
on the yi* values will provide a more reliable approximation to the importance ranking for 
E[Y|U] than the importance ranking based on the yi values from a single sample. 

A straightforward generalization to K conditionally independent samples, i.e.   
     Y* = 1/K ∑Y(k)   
provides an improvement with the proportionality constant  

   c*= 
]| var E[Y1)-(K  var Y

]|K var E[Y
U

U
+

 = 
1)c²(K1

c²K 
−+

. 

This, obviously, is equivalent to the above-mentioned nested double-loop sampling with the 
“inner” loop sample size being K. 

6. SIMPLE ANALYTICAL EXAMPLE (LINEAR NORMAL CASE) 
To illustrate some of the preceding results a simple (artificial) numerical example is 

presented where all quantities of interest can be determined analytically and compared with 
the results from the sampling procedures presented above. In this example a simple linear 
independent normal case is considered, i.e.  

    Y = h(U,V) = ∑∑
==

+
m

1j
jj

n

1i
ii VbUa  

where all epistemic parameters U=(U1,….,Un) and all aleatory variables V=(V1,….,Vm) are 
independent and have the standard Normal distribution N(0,1). The coefficients ai , bj are 
assumed to be known. Then it can easily be shown that  
- varY = ∑ai

2 +∑bj
2 ,  

- E[Y|U] = ∑aiUi ,   
- varE[Y|U] = ∑ai

2 , 

- c2 = 
var Y

]|var E[Y U = 
∑ ∑

∑
+ 2

j
2

i

2
i

ba

a
 ,  

- SMi’= SM(Y,Ui) = 
∑∑ + 2

j
2

i

i

ba

a
, (i=1,…,n) ,  

- SMi = SM(E[Y|U], Ui) = 
∑ 2

i

i

a

a
 ,    ( i=1,…,n) ,  

where SM denotes any type of sensitivity measure, since, due to linearity and independence 
all standard sensitivity measures of Y or of E[Y|U] with respect to Ui are equal.  

Here it can directly be seen: the higher the contribution of the epistemic uncertainties from U 
to the overall joint uncertainty in Y, expressed by the constant c2, the more precise the 
proposed approximation of the sensitivity measures for E[Y|U] by the sensitivity measures for 
Y.  

For numerical calculations it was assumed that n=m=5, a=b=(1,2,3,4,5). Consequently 
varY=110, varE[Y|U]=55, c2 = 1/2. 

79



 

The following table summarizes the results obtained analytically and with the sampling 
methods described above. It shows the values of the sensitivity measures (Standardized 
Regression Coefficient, SRC) for E[Y|U] with respect to all five parameters U1,….,U5 
obtained in four different ways:  

(1) analytically,  
(2) from double-loop simple random sampling with sample size 100x100  
(3) from single-loop simple random sampling with sample size 500  
(4) from single-loop simple random sampling with sample size 200.  

 
           Standardized Regression Coefficients (SRC) for E[Y|U] 

Index of  (1)    (2) two-loop (3) one-loop (4)one-loop
Parameter analytic ss=100x100 ss=500  ss=200  

   1  0.1348  0.1369  0.140  0.071 
   2  0.2696  0.2946  0.259  0.265 
   3  0.4044  0.4262  0.387  0.397 
   4  0.5392  0.5340  0.584  0.629 
   5  0.6740  0.7225  0.703  0.658 
 
The three alternative methods for approximating/estimating the proportionality constant c 
provide the results: 

                                  The proportionality constant c 
sample size method 1 method 2 method 3 exact value 
  500  0.7027  0.7032  0.7003  0.7071 =√0.5
  200  0.7437  0.6895  0.6920  0.7071 =√0.5
 
Conclusion: The results of this simple example look promising and suggest that in real 
situations with complex and computationally expensive models where the double-loop 
sampling is prohibitive, the approximate sensitivity analysis presented in this paper may 
provide reasonable results. It may therefore be preferred to the alternative of not performing 
any sensitivity analysis.  
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