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Abstract: In a risk management of derivative securities, sensitivities are important measures 
of market risk to analyze the impact of a misspecification of some stochastic model on the 
expected payoff function. We investigate in this paper an application of Malliavin calculus, 
which enables the computation of sensitivity derivatives, known as Greeks in finance, without 
resort to a direct differentiation of the complex payoff functions. 
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1. INTRODUCTION 
We consider a stochastic model or, equivalently, a stochastic differential equation in a 

well-defined framework of Black-Scholes set-up, which is described by 

τττ στ WdSdrSSS tt
t ∫∫ ++= 000 ,                                                                                        (1) 

where S is the price of underlying asset with 0S  denoting the present (initial) value, r denotes 
the riskless interest rate, σ  the volatility, and TttW ≤≤0)(  is a standard Brownian motion (also 
known as Wiener process). Note that, in the case of European-type options, we have a closed 
solution to (1) as follows: 

)exp(0 TT WTSS σµ += ,                                                                                                (2) 

where 2/2σµ −= r  for a fixed expiration or maturity time, T. 

We are, in European options, interested in studying how to evaluate the sensitivity with 
respect to model parameters, e.g., present price 0S , volatility σ , etc., of the expected payoff 

)]([ T
rT SeE Φ− ,                                                                                                                 (3) 

for an exponentially discounted value of the payoff function )( TSΦ , where E[�] denotes the 
expectation operator. The sensitivity of more sophisticated payoff functions including path-
dependent Asian-type options like  

])1([ 0∫Φ− T
t

rT dtS
T

eE ,                                                                                                        (4) 

may be treated in a similar manner along the lines that will be investigated in the present 
study. In the Asian option whose payoff functional is defined by (4), we may note that the 
payoff depends on the average of the asset value in a given period of time. 

In finance, this is the so-called model risk problem. Commonly referred to as Greeks, 
sensitivities in financial market are typically defined as the partial derivatives of the expected 
payoff function with respect to underlying model parameters. In general, finite difference 
approximations are heavily used to simulate Greeks by means of Monte Carlo procedures. 
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However, it is known that the finite difference approximation soon becomes inefficient 
particularly when payoff functions are complex and discontinuous. This is often the case 
when we deal with exotic options such as American, lookback, and digital options, etc. 

To overcome this difficulty, Broadie and Glasserman [1] proposed a method to put the 
differential of the payoff function inside the expectation operator required to evaluate the 
sensitivity. But this idea (i.e., likelihood ratio method) is applicable only when the density of 
the random variable involved is explicitly known. Recently, Fournie et al. [2] suggested the 
use of Malliavin calculus, by means of integration by parts, to shift the differential operator 
from the expected payoff to the underlying diffusion (e.g., Gaussian) kernel, introducing a 
weighting function. 

The real advantage of using Malliavin calculus is that it is applicable when we deal with 
random variable whose density is not explicitly known as the case of Asian options. Another  
examples which are similar to the present study and explored by the first author (e.g., Refs. 
[3,7]) but that are not covered in this paper are models involving a step function and non-
smooth objective functions.  In these studies, the stochastic sensitivity analysis technique 
based on the Novikov's identity is used instead of Malliavin calculus. 

In this paper, we present a brief introduction of Malliavin calculus, and describe a 
constructive approach for a stochastic sensitivity analysis for computing Greeks in financial 
engineering. The present approach enables the simulation of Greeks without resort to direct 
differentiation of the complex or discontinuous payoff functions.  

The remainder of the paper is organized as follows. In Section 2, we briefly review the 
essence of Malliavin calculus and present integration by parts formula. In Section 3, we 
describe a constructive approach. Subsection 3.1 presents some explicit formulae for the case 
of European option. In Subsection 3.2, we investigate the case of Asian option. In Section 4, 
we present simulation results obtained for the Asian call option. We conclude in Section 5. 

2. MALLIAVIN CALCULUS 
Following the standard notations that can be found in [6], we present the most concise 

introduction of Malliavin calculus necessary to our computation. 

Let R be the space of random variables of the form ),,,(
21 nttt WWWfF L= , where f is 

smooth and tW  denotes the Brownian motion as before.  For a smooth random variable RF ∈ , 
we can define its derivative FDDF t= , where the differential operator D is closable. Since D 
operates on random variables by differentiating functions in the form of partial derivatives, it 
shares the familiar chain rule property, FDFfFDFfFfD ttt )(')())(( =⋅∇= , and other 
general properties like linearity, etc. 

We denote by D* the Skorohod integral, defined as the adjoint operator of D.  If u belongs 
to Dom(D*), then D*(u) is characterized by the following integration by parts formula: 

])([)](*[ 0 dtuFDEuFDE t
T

t∫= .                                                                                        (5) 

It is important to note that (5) gives a duality relationship to link operators D and D*.  The 
adjoint operator D* behaves like a stochastic integral. In fact, if tu  is an adapted process, then 
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the Skorohod integral coincides with the classical Ito integral: i.e., ∫= T
tt dWuuD 0)(* .  If tu  is 

non-adapted or generic, one has 

dtuFDuFDFuD t
T

t∫−= 0 )()(*)(* .                                                                    (6) 

The property (6) follows directly from the duality relation (5) and the product rule of the 
operator D. A heuristic derivation of (6) is demonstrated here. Let us assume that F and G are 
any two smooth random variables, and tu  a generic process, then by product rule of D one has 

)](*[])([

])([])([])([)](*[
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which implies that 

( )])()(*[)](*[ 0 dtuFDuFDGEFuGDE t
T

t∫−=  

for any random variables G. Therefore, (6) must hold almost everywhere. 

In the present study, we frequently use the following formal relationship to remove the 
derivative from a (smooth) random function f as follows: 

])([])('[])([ XYHXfEYXfEYXfE ==∇ ,                                                                    (7) 

where X, Y, and XYH  are random variables. It is noted that (7) can be deduced from the 
integration by parts formula (5), and we have an explicit expression for XYH  as 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∫
= T

t
XY XdtD

YDH
0

* .                                                                                                   (8) 

If higher order derivatives are involved then one has to repeat the procedure (7) iteratively. It 
may be noted that XYH  is not unique and other expressions than (8) can be also possible. For 
more details, the readers are referred to Koda et al. [4] and Montero and Kohatsu-Higa [5]. 

3. CONSTRUCTIVE APPROACH 
In this section, utilizing the technical framework of Malliavin calculus introduced in 

Section 2, a constructive approach is presented to compute Greeks of European and Asian 
options, respectively.  

3.1. European Option 
In the case of European option whose payoff function is defined by (3), the essence of the 

present method is that the gradient of the expected (discounted) payoff, )]([ T
rT SeE Φ∇ − , is 

evaluated by putting the gradient inside the expectation, i.e., )]([ T
rT SeE Φ∇− , which involves 

computations of )(')( TT SS Φ=Φ∇  and TS∇ . Further, applying Malliavin calculus techniques, 
the gradient is rewritten as ])([ HSeE T

rTΦ−  for some random variable H. It should be noted, 
however, that there is no uniqueness in this representation since we can add to H any random 
variables that are orthogonal to TS . In general, H involves Ito or Skorohod integrals. 
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3.1.1. Delta 
Now we compute Delta, ∆ , the first-order partial differential sensitivity coefficient of the 

expected outcome of the option, i.e., (3), with respect to the initial asset value 0S : 
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Then, with TSYX ==  in (7), we perform the integration by parts applying (8) to give 
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which removes the derivative of Φ  from the expectation as desired. 

Since the integral term in the denominator that appears in (9) can be computed as 

T
T

Tt TSdtSD σ=∫0 , we can evaluate the stochastic integral involved in (9) as 

T
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with the help of  (6) applied to u=1 (a constant process which is adapted and Ito integral 
yields TWD =)1(* ). Then the final expression for ∆  reads 

])([
0

TT

rT

WSE
TS

e
Φ=∆

−

σ
.                                                                                               (10) 

We may note that when we deal with European options, the present result (10) coincides with 
the result that is obtained by the explicit computation of the closed formula for the probability 
density function of TS . 

3.1.2. Vega 
Next Greek Vega, V, is the index that measures sensitivity of the expected payoff (3) with 

respect to the volatility σ , which can be computed as 
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where we have used the solution (2) to evaluate σ∂∂ /TS . Then, utilizing (7) and (8) again 
with TSX =  and )( TWSY TT σ−= , we apply the integration by parts to give 
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So, we evaluate the stochastic integral as 
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With the help of  (6) applied to u=1 (adapted process) and TWF = , we have 
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If we bring together the partial results obtained above, we derive the final expression 
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3.1.3. Gamma 
The last Greek Gamma, Γ , involves a second-order derivative, 
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Utilizing (7) and (8) with TSX =  and 2
TSY = , we obtain after a first integration by parts 
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With the help of  (6) applied to Tu σ/1=  (constant adapted process) and TSF = , we have 
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Then, repeated application of (7) and (8) with TSX =  and )1/( −= TWSY TT σ , the second 
integration by parts yields 
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With the help of (6) as before, we can evaluate the stochastic integral as 
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If we combine the results obtained above, the final expression becomes 

          
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−−Φ=Γ
−

σσσ
1)(

2

2
0

T
T

T

rT

W
T

WSE
TS

e .                                                                        (12) 

Comparing (12) with (11), we find the following relationship between V and Γ : 

 2
0TS

V
σ

=Γ .                                                                                                                   (13) 
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Since we have closed solutions for all the Greeks, we can easily check the correctness of the 
above results. 

3.2. Asian Option 
In the case of Asian option whose payoff functional is defined by (4), the essence of the 

present approach is again that the gradient of the expected (discounted) payoff is rewritten as 

])1([])1([ 00 ∫Φ=∫Φ∇ −− T
t

rTT
t
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EedtS
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eE , for some random variable H. Different from 

the European options, however, we do not have a known closed formula in this case. 

3.2.1. Delta 
Delta in this case is given by 
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There are various ways of performing the integration by parts; e.g., the readers are referred to 
[2]. In the present approach, utilizing (7) and (8) with TdtSYX T

t /0∫== , we may apply the 
integration by parts to give 
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With the help of  (6) applied to σ/1=u  (constant adapted process) and ∫∫= T
t

T
t dttSdtSF 00 / , 

we may obtain 
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where  

    
∫

∫>=< T
t

T
t

dtS
dttS

T
0

0    and   
∫

∫>=< T
t

T
t

dtS
dtSt

T
0

0
2

2  

are the first two moments of the probability density defined by ∫= T
tt dtSStp 0/)( . 

3.2.2. Vega 
Vega in this case becomes 
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As before, with the help of  (7) and (8) applied to TdtSX
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we have 
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which, with the help of (6), yields the following expression: 
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Using the relation (13), it is straightforward to compute Gamma as (15) divided by 2
0TSσ . 

4. MONTE CARLO SIMULATION OF ASIAN OPTION 
In order to evaluate the results obtained in Section 3, we present in this section the results 

of Monte Carlo simulation for computing Delta and Vega in the case of Asian Call option 
whose payoff functional is defined by (4).  

4.1. Delta 
In Fig. 1, we present the simulation result of ∆  given by (14) with parameters r=0.1, 

25.0=σ , T=0.2 (in years), and 1000 == KS  (in arbitrary cash units) where K denotes the 
strike price. We have divided the entire interval of integration into 252 pieces, representing 
the approximate number of trading days in a year. 

Fig. 1 shows how the outcome of the simulation progressively attains its own value. We 
compare the convergence behavior of the present simulation with the results obtained by 
Broadie and Glasserman [1] where all the parameters take the same values we have used, and 
which may provide most extensive and detailed results currently available. The result 
indicates a fairy good convergence to the steady-state value that is attained at 10,000th 
iteration stage in [1]. The standard deviation of the simulation in this case was 0.005. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Estimated Delta of Asian Call Option; S0=K=100, T=0.2, r=0.1, σ=0.25 
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4.2. Vega 
We present in Fig. 2 the result of V given by (15), where all the parameters take the same 

values we used in the simulation of ∆  in Subsection 4.1. Again, we compare the result with 
the one that is obtained at 10,000th iteration stage in [1]. The result indicates that some 
noticeable bias may remain in the present Monte Carlo simulation, and further study may be 
necessary to analyze and reduce the bias involved. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Estimated Vega of Asian Call Option; S0=K=100, T=0.2, r=0.1, σ=0.25 

5. CONCLUSION 
We have presented a stochastic sensitivity analysis method, in particular, a constructive 

approach for computing Greeks in finance using Malliavin calculus. The present approach is 
useful when the random variables are smooth in the sense of stochastic derivatives. It may be 
necessary to further investigate and improve Monte Carlo procedures to reduce the bias 
involved in the simulation of Vega in Asian-type options and other sophisticated options. 
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