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Abstract: Complex chemical mechanisms are increasingly used within mddstgibing a

range of important chemical processes. Within chemical modelsickpaameters describing
the rates of chemical steps and thermodynamics may be highlytaincenfluencing the

uncertainty in final model predictions. Traditionally, local sengitivanalysis is employed
within commercial modelling packages but may not be appropriate gatyhuncertain data
where models are nonlinear. This work compares linear sensitivethats with global

techniqgues such as Morris and Monte Carlo sampling for a kinetic nums$ekribing the

influence of fuel sulphur on the oxidation of nitrogen within flames. Thetkis forms an

important component of larger models describing pollution formation in cdrabudevices.

The analysis reveals the most important rate and thermo-kineaimeters contributing to the
uncertainty in NO predictions for both rich and lean flames. The l&vagreement between
local and global techniques is highlighted. The use of reduced modeteetatons using
fitting methods is also discussed as a way of improving theesftig of Monte Carlo based
methods. Speed ups of a factor of 15 are seen without significanttiorpdee predicted mean
output and standard deviation. For certain conditions, the mechanism ispaiilec of

observing previous experimental data, highlighting the need for strudawa@lopments of the
model such as including additional reaction steps for which data is not currentlplavaila

Keywords: kinetic mechanism, sensitivity analysis, reduced model, Monte Carlo, MOAT.
1. INTRODUCTION

The use of computational modelling as a design tool is increasitignwengineering
applications. One area of importance is that of combustion reactmnd&nvironmental
legislation means that engineers must develop combustion applicaitbne®w emissions of
pollutants such as nitrogen and sulphur oxides. Understanding the impaek todée elements
such as nitrogen and sulphur containing compounds on pollutant emissions isimnpac
requires the description of complex chemical mechanisms withinaimédustion chamber. In
many cases mechanism data, such as rate constants and therneaigba@rameters, are poorly
categorised. If confidence is to be placed in the design procesththemcertainty in output
predictions resulting from the use of such complex mechanisms shouildvésigated.
Local/linear sensitivity analysis techniques are commomly useydluate such mechanisms.
They have been developed in a generic way in the process enginesldngsing packages
such as CHEMKIN [1], which is used for a range of applicationsudic chemical
mechanism validation in simplified flow environments such as flowtoes, premixed and
diffusion flames. Linear methods are employed because they are ebiopalty efficient, but
are problematic where uncertainties in inputs are large and nmexe@elsghly non-linear. This
work therefore describes the development of methods for global unceréaiatysis for
application within modelling packages such as CHEMKIN.
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The paper will present a comparison of local and global uncertaigtiyoas for a test
case describing a 1 dimensional model of the influence of sulphur smecie emission of
NO (nitrogen oxide) from methane air flames. Experiments showthibanfluence of sulphur
within the flame can lead to both enhancement and reduction of NOi@miskpending on
whether the flame is fuel rich or fuel lean [2-4]. The chemmeathanism employed has been
developed using evaluated rate data where possible. Predictions frometianism are
evaluated for experimental data sets for a variety of flaandsuel nitrogen contents. Without
sulphur present in the fuel the mechanism has previously been shown hit exud
agreement with experimental profiles of key species. Howevem#ahanism does not capture
the quantitative influence of sulphur on NOx emissions that is demtmusirathe 1D flame
experiments[3]. Local sensitivity analysis has already resig¢d]eseveral important reactions
that require improved categorisation of the rate data to lower owdgance. The present work
presents a comparison between local and nonlocal linear methods, tHesgtebaing Morris
One at a Time (MOAT) method and random sampling Monte Carlo metisidg full and
reduced models, coupled with scatter plot and correlation analysis.

2. MECHANISM STRUCTURE AND CONDITIONS FOR EVALUATION

The mechanism under investigation consists of an updated version ofettie rhethane/NOXx
mechanism [5-7]. The SOx extension (156 reversible reactions and 2dsypebased on the
mechanism of Glarborg et 8] and Alzueta et al. [9] and has been augmented by the inclusion
of additional reactions of sulphur containing species appropriate foethane oxidation
environment, and reactions describing sulphur-nitrogen interactions that gnaveusly
appeared in the literature or widely available databases. Thetaintyestudy here focuses on
reactions of sulphur containing species and heats of formation of sulpiyooands. It is
undertaken for selected experimental conditions from [3] where ladaced fluorescence
studies were performed for a variety of low pressure methameglaoped with various levels

of HCN and S@ Comparisons were made of relative NO concentrations for sedepaht
levels and flame stoichiometries fron= 0.7 to¢ = 1.6 (Table 2 of [3]). Whilst showing
similar qualitative trends, previous mechanisms have tended to ovestphedielative increase

in NO on the addition of S{or rich flames when compared to the experiment, and to under
predict the reduction in NO for lean flames.

3. SENSITIVITY/UNCERTAINTY METHODS EMPLOYED
3.1 Uncertainties in Input Data

Well categorised kinetic rate parametersuch as those from evaluations [10], are often quoted
with an accuracy expressed&lsgk. HereAlog k = D andD is defined by logk = C4D. This

is equivalent to the rate parameteibeing uncertain by a factdrwhereD = logf. For
temperature dependant reactions this respresents the uncertair2g98lat §(299). A
temperature dependant form for second order reactions is given by:

£(T) = f(298) expis (1—1) (1)
R\T 298

where AE is the quoted error in the activation energy. The uncertainty efklagy usually

assumed to be normally symmettnless the parameter is stated as an upper or lower limit.

One can then define a probability density function (pdf) for the ratarder according to a

distribution type. For less well categorised reactions a pdf cabpeotletermined and a

minimum and maximum possible value are chosen, with an equal probabihiy value of the



rate constant existing across the range. Local sensitivityi@eats are problematic in these
cases since a most likely value cannot be reliably determinede¢owif ranges of possible
inputs are chosen, a full Monte Carlo analysis allows the usertéondee if the model can
“observe” target output values by comparison with experiments, allothiegevaluation of
possible structural uncertainties in the model such as missingckpretesses. Where target
outputs are observable then the use of correlation factors or glokaiganethods, allows the
determination of the most important input factors leading to output uncertainties.

3.2 Linear Sensitivities.

In this study non-local linear sensitivities calculated usingthé force methodre compared
against previous local linear sensitivity studies from [3]. The afsine brute force method
involves performing a base model run with outputuging the nominal values of the input
parameters, and extra model runs where each uncertain input parameter j is chayga
small factordj. The final output (y) from each run is determined and the sensitivity coefficient

given by: 5, :%_The sensitivity at any temporal or spatial point is determinet wi

computational effort of order (the number of uncertain inputs).
3.3 The Morris One at a Time (MOAT) Method.

Although they allow the study of non-linear interactions between péeesnglobal methods
can be computationally expensive since thousands of model runs may bedequne
example of a potentially more efficient screening method isQhe at a Time analysis
developed by Morris [11]. The method determines an importance ranking reongtars in
terms of their mean effect on output variance as well as deiagrthose parameters with
linear additive effects and non-linear interactions [12]. In the M@#ethod the inputsjare
assumed to have values in the set {Op-1), 2/(p-1),...,1} where in practice these values are
re-scaled to values from within their uncertainty ranges. A pgeation factorA is defined as a
multiple of 1/(p-1). A control simulation is then performed based onahdom selection of
parameters from the set {O,@/1),...,1-A}. A single parameter is then randomly selected and
modified by a factor\, and a second simulation performed. This is repeated until each factor
has been chosen once, corresponding+td runs. This procedure is repeatedimes until
stable output statistics are obtained. The average output is computedwve and the cost of
the method scales witiin+1).

The elementary effect of the jth component»obn the output iywhere x has been
changed by a factat is given by:

d; (x) e e 2

ij
The mean effect acrossuns is given byd, === and the variance:
r
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In this study, ten runs were sufficient to produce stable outputs arldeaof@=4 was chosen.
Parameters with the highest mean effect have a signifiogrddt on overall output variance
and require improved categorisation to lower output uncertainty. If tihenca between runs is
low then the effect is said to be linear or additive. Paramefiénsa high variance exhibit non-
linear or interactive effects, which is important since it iathe parameters with sensitivities
that may change if other parameter ranges are changed through improved ctitegorisa

3.4 Sampling Based Methods and Monte Carlo Analysis.

The standard method of Monte Carlo analysis is to perform a tangder of model runs
where in each run a sample of input parametes: [Xk1,Xk2, .-, Xknx, K = 1,2,...,1,

of size pis randomly selected from the possible valuexfisom the chosen distributions [12].
For a uniform distribution each sample region is assigned equal pigbahd therefore the
sample points are chosen randomly from any region. The corresponding gutiputeach
sample are determined by rerunning the moddimes. Examination of the mapping from
inputs to outputs can then be performed via a variety of methods incluchtigrsplots,
correlation analysis, regression analysis etc. The computatiostakaf order fiwhere g must
be large enough for the mean output and the output variance to converge.

4. OVERALL METHODOLOGY

Simulation of the low pressure flames described in [3] has beeorped using PREMIX [1]

at a pressure of 40 Torr for fuel to air rattbs1.6 and®=0.7. 0.3% and 0.5% of S@as been
added to the lean and rich flames respectively in line with therements [3]. The output ¥\

is the NO mole fraction in the burnt gas region. Reactions havetteaded as reversible with
reverse rates calculated from the appropriate equilibrium constdr@ssensitivity to the heats
of formation therefore forms an important part of the study. Each MPREun is
computationally fairly expensive since a larger number of coupledinearlequations must be
solved in order to determine the concentration profiles of over 75 spedhes flame. The use
of a fitted model within the Monte Carlo analysis will therefalgo be discussed as a method
of reducing the computational expense resulting from large numbers of PREMDatsomst|

The following methods will be presented for comparison:

For uncertainties in rate parameters of sulphur containing reactions:

1. linear sensitivities using the brute force method and a relative change of 10%,

2. MOAT analysis,

3. Monte Carlo analysis using up to 2000 model runs based on full and fitted models.
For uncertainties in heats of formation for the sulphur containing compounds:

4. Monte Carlo analysis using up to 2000 model runs.

Uncertainty ranges for kinetic rate parameters were asbigiseng f factors with 95%
confidence limits where data evaluations existed. For paramd&riged from a single
experimental or modelling study a factor of 2 was used. Wheredggiteed from a single
RRKM calculation, or was estimated, a factor of 10 was assuméeréithe temperature
dependence was estimated, an uncertainty factoABnof 2 was assumed. Of the 155
parameters 18% derived from evaluated rate data, 18% from a low nofmieasurements,
7% from measurements with no evaluation, 8% from a single RRKM stndy49% were
estimated. For this reason, only input ranges were determined and soT Ipelfanalysis will
not therefore allow pdfs of the outputs to be determined, but rathesatewevaluation of the
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current mechanism in order to inform its future development. Thermodyragata and their
uncertainties were obtained from the databases of Burcat [13] &Td[M]. Coefficients for a
large number of the sulphur compounds originated from modelling technigyesMtére a
single model value was used an uncertainty of +100 (kK3nwehs assumed. Because almost
half the thermodynamic data was of this type uniform distributions were used.

5. RESULTS AND DISCUSSION
5.1 Linear Sensitivity Coefficients.

®=1.6: The importance ranking from the non-local linear sensitivity studyhirrich flame is
presented in Table 1. The highest ranked reaction is SO+NH=NO+3greement with the
local sensitivity study in [3]. The second highest ranked reaction fh@rlocal study was
SO,+H=SO+O0H, which is represented here by its reverse rate ftbjaamked 5th. The second
highest ranked reaction from this study is SH+NH=Ng+khich was also highlighted by the
local sensitivity study and has an estimated rate giving scopenpwovement. The reaction
H,S+M=H+SH+M, ranked third here, was not identified using local seitgitoefficients.
SO+Q=S0O,+0 was highlighted by the previous study and again has a negativeviégns
when using non-local methods. There is therefore some broad agreema@rbine local and
non-local linear sensitivity methods as well as notable differences in ranking.

Table 1- Comparison of importance ranking of sulphur containing reactions in the rich flame (
1.6) from the linear brute force (Ibf) and MOAT analyses.

React. Reaction Ibf MOAT | Pearson Source of Data
No. Rank Rank Coeff.
1 SO+NH=NO+SH 1 1 0.79 Single meas.
2 SH+NH =NS+H 2 5 0.12 Estimated
3 H,S+M=H+SH+M 3 7 -0.08 Unevaluated measurements.
4 SO+Q=S0O+0 4 14 -0.03 Evaluated
5 SO+0OH=SG+H 5 4 0.2 Single meas.
6 S+OH=SH+O 6 15 -0.07 Estimated
7 HSO+H=SH+OH 7 33 -0.03 Estimated
8 S+H=H+SH 8 10 -0.06 Unevaluated measurements.
9 SO+N=NO+S 9 2 0.56 Estimated
10 HS+M=H,+S+M 10 55 0.01 Unevaluated measuremernts.
11 HSOH=SH+OH 69 3 0.04 Estimated
12 SH+H=H2+S 11 6 0.06 Unevaluated measurements.
13 SH+NO=SN+OH 13 8 0.01 Estimated
14 SN+O=SO+N 39 9 0.05 Estimated

®=0.7: In the lean case a 10% increase in the selected rate pamamvatenot sufficient to

cause any detectable change in the NO mole fraction. An facldr ioicrease was required to
produce a detectable difference, making it impossible to determimepertance ranking using
a linear method. The analysis indicates that for lean conditiondl@heoncentration is highly

insensitive to the forward rate parameters of the sulphur reactions around theirl vaings

5.2 MOAT Analysis

®=1.6: Figure 1a shows the variance of the factor effects plotted agaenmean effects from
the MOAT analysis for the rich flame. Parameters with a $aynificance in terms of output
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variance appear at the bottom left of the plot. Those in the bogbisegment have a high
linear effect on model output and those in the upper portion show strong ram-ine
interactive effects. The reaction SO+NH=NO+SH appears abdtm right of the figure
showing a strong linear effect on the output in agreement with ittear|l methods.
SO+N=NO+S also shows a strong linear effect and ranks secohe IM®AT analysis as
shown in Table 1, although lower in the linear analyses. HSOH = Bh8ws a strong mean
effect and a high variance, indicating that the sensitivity toréiastion strongly depends on the
values of the other parameters. Not surprisingly this reactiomotagentified as important by
the linear methods. Its high ranking by the MOAT analysis is steeidgnce of the importance
of using global uncertainty techniques.
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Figure 1. Morris One at a Time Analysis for (ap(= 1.6) and (b)® = 0.7)

Table 2 4mportance ranking of sulphur reactions in lean flafe=(0.7) from MOAT analysis.

React. No. Reaction MOAT Rank Source of Data
9 SO+N=NO+S 1 Estimated
11 HSOH=SH+OH 2 Estimated
15 HOSO+H=S@+H, 3 Estimated
16 SH+HS,=H,S+HS 4 Single low temp. meas.
17 StH+M=HS,+M 5 Estimated
1 SO+NH=NO+SH 6 Single meas.
18 SO2+0OH=S03+H 7 Estimated
19 SO+M=S+0+M 8 Unevaluated measurements.

®=0.7: Figure 1b and Table 2 represent the output from the MOAT analydisefdean flame.
The overall mean effect of the rate parameters on the NOfragten in the burnt gas region
iIs much lower than for the rich flame. SO+N=NO+S shows the Higivesall mean effect and
since this has an estimated rate there is some scope for irmenalvien predictions by its better
categorisation. There are some differences between the reaetiiesl highly by the MOAT
analysis and by the linear studies in this and previous work [3]. on@® reactions 11, 16,
and 17 had no impact in the linear study despite being modified by upatdoa 6f 10. This
indicates interaction effects between rate parameters isctiteme. The dominant uncertainty
in the conversion from SQo SQ identified by the MOAT analysis is via OH rather than the
pressure dependant reaction in the linear study. The low mean d@ffaittreactions for this
flame again highlights the low sensitivity of NO to the sulphur chemistry fordeaditions.
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5.3 Monte Carlo analysis.

The output values resulting from the randomly sampled input distributtoribiéd rich flame

are presented in Fig. 2 as scatter plots for high ranking readtmmsthe MOAT analysis.

Pearson correlation functions [12] can also be used to determinerehgtistof the linear
response of the output to the input parameters (see Table 1). Admghatton implies a

strong linear response of NO concentrations to an increase in tthgpaeameter. These
correlation coefficients do not take into account interactive effects.
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Figure 2. Scatter plot showing Monte Carlo simulation of changes in finakhiizentration resulting
from changes in reaction rate constant (a) SO+NH=NO+SH, (b) HSOH = OH+SH.

The Pearson coefficient of SO+NH=NO+SHris= 0.79 (Fig. 2a) showing a strong linear
response in line with both the linear sensitivity and MOAT methodse statter about the
mean effect in Fig. 2a is due to the influence of other paranmtdtse output. This reaction is
ranked highest by all the methods of analysis and is clearly iamgofor the rich flame.
SO+N=NO+S also shows strong linear behaviour as demonstrated I0y56, in agreement
with the MOAT analysis. As expected, the Monte Carlo analysipled with linear regression
techniques agrees well with the MOAT analysis for reactioith wtrong linear effects.
Interestingly this reaction is fairly low down the importanagkiiag using both linear methods.
Because it is estimated however, this parameter has a higlegtaindnput range and therefore
its overall contribution to the output uncertainty is high, even thougleritsita/ity may not be.
HSOH=SH+OH is ranked third by the MOAT analysis. It has aremély low ranking using
the linear method and as Fig. 2b shows there is a large amourdttef s¢ the Monte Carlo
results. Its correlation coefficient is very low £ 0.04). This stems from the fact that the
sensitivity of NO mole fraction to this reaction rate parametanges sign in different regions
of the input parameter space. In order to highlight the importanagbfren-linear responses
either the MOAT method or higher order correlation techniques combiitedente Carlo
based methods must be used. The ranking of reactions SO+QH#$%0d SH+NH =NS+kl
as derived from the correlation coefficients and the MOAT arsafyra similar due to their high
mean effects on the output but low variances. Scatter plots andPeaetficients are not
presented for the lean flame since insufficient changes in N@ framition occur. Each method
therefore highlights the lack of sensitivity to the sulphur cheynistithe lean flame leaving
limited scope for model improvement via better characterisation of the curest ra

5.4 Agreement with experiment.

The experimental study in [3] showed a 16% increase in the NOfraoten in the burnt gas
region of the rich flame on the addition of 0.5%,S@ith an experimental uncertainty of
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+12%. In order to overlap with the experimental predictions the NO frasdgon in the burnt

gas region must be < 9.545 x“1(The scatter plots show that in order to achieve this, several of
the parameters must be chosen from the extremes of their imgetsraA view could be taken
that the likelihood of these parameters being at their extreinesves low. This leads to the
possibility of structural problems within the model, such as misegagtion sets or rate
parameters that are significantly more uncertain than has bsemed. For the lean flame, the
model does not observe the concentration determined in the experiminémycombination

of the forward rate parameters for the sulphur reactions used here.

5.5 Influence of Heats of Formation.
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Figure 3. Scatter plot showing Monte Carlo simulation of changes in finakchitzentration resulting
from changes to heats of formation of a) NS, b) SO.

Uncertainties in the heats of formation of sulphur containing spewgsaffect the reaction
kinetics as the rates of the reverse reactions are deterthiedyh the equilibrium constant.
Figure 3 shows scatter plots from a Monte Carlo analysis of tantiges in heats of formation
for the two most significant parameters for the rich flame. Hiience of the heat of
formation for NS AiH29¢(NS)) is extremely non-linear with a strong response at védwesr
than the quoted value, which flattens off at higher values. The output N© fraction will
therefore be dominated b:H,0e(NS)) only if the quoted value is too high. At higher values
other compounds start to have an effect as shown by the scattdop®@. The large amount
of scatter stems from the dominant influence of NS in its loagge. However, as the effect of
NS saturates, a negative linear responséktygs for SO can be seen. The influence of
(AtH29¢(SO)) is therefore highly dependant on the value choseAdasg(NS)).

5.6 Computational Requirements and Stabilisation of Output Statistics.

Theoretical estimations of the number of Monte Carlo runs requirethéoanalysis of 155
uncertain parameters would be extremely high. In reality, 2000 rensufficient for output
statistics to settle. Because of the large number of uncerfaihparameters attempts could be
made to reduce the computational costs by focussing the Monte Cadisisaioa a smaller
number of parameters, for example those highest ranked from the MiDAIlysis. For
comparison purposes therefore, a second Monte Carlo run has been perfarrtes rich
flame, where only the top 15 reactions from the MOAT analysis rarglomly within their
input uncertainty ranges. All other parameters are fixed atribaiinal values. The final means
for the full and 15 parameter runs compare well at 1.298=hal 1.283x18respectively, as do
the final standard deviations of 1.321%1@nd 1.320x18. This shows that the top 15
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parameters identified by the MOAT analysis account for almibshe variance in the final
output. However, the 15 parameter run does not settle statistingliaster than the full run,
meaning that large computational savings have not been made, simegaa arder of full
model simulations have been required. This indicates that the numbmmples used in the
Monte Carlo analysis depends not on the total number of uncertain paignieit on the
number of important parameters that significantly affect the ostatistics. In many cases, the
number of samples required may not rise dramatically with the nuofbencertain input
parameters, since only a few parameters may dominate the output uncertainty.
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Figure 4 Comparison of output from Monte Carlo simulations using full and reducedsn@tey line
- full PREMIX runs, black line — runs using fitted polynomial.

Further attempts may be made in order to reduce the computationaf tdes Monte Carlo
runs. In this work a second order polynomial equation has been fitted &saspithe input
output relationships from a small number of randomly sampled PREMIX wsing a Gram-
Schmidt orthonormalisation procedure [17]. Again 15 input parameters #disedutas
determined by the MOAT analysis and 120 samples are used fort.thehd polynomial
coefficients are determined by minimizing the root mean squawce éms) of the fitted
function with respect to the target output data derived from thenfadlel. Terms not reducing
the rms error are discarded. The final polynomial is factoriséug udorner equations to
minimize the number of arithmetic expressions required in thedimallation. Figure 4 shows
that both the mean output and the output variance behave in a very siayilaith increasing
sample size for the full PREMIX simulations and those using thapaiial model. After 2000
simulations both give extremely similar results, despite tdecexd model being formulated
using only 120 full simulations. The final output means from the full addaed models are
1.283x10° and 1.286x18 respectively, and the final standard deviations 1.320xaied
1.337x10", showing that the polynomial model gives similar results for >fifegi lower
computational costs. In contrast, if only 120 full model runs had been usethéhnal mean
and standard deviations would not have settled down and would have been I32320t10
1.217x10" and therefore do not represent the final values as well as using 2@@mpiall
model runs. A further point is that the polynomial model directly Heveacond order
interactions between parameters.

6. FINAL DISCUSSION AND CONCLUSIONS

The analysis shows that useful information can be obtained from Beeaitivities, although
both the linear sensitivities and the regression analysisofadentify important reactions with
strong non-linear interactions. Using combined global methodologies howeghlights a
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range of reaction rates and thermo-kinetic parameters leadiagtpat uncertainties in NO
predictions providing useful information for further kinetic studies. Faethod agrees that the
sensitivity of NO mole fraction to sulphur containing reactionsushrhigher in the rich flame
than the lean flame, which is extremely insensitive to the peeamtested here. Possible
mechanistic problems relevant to the lean flame must thereforgldngified. Since the
mechanism utilised in the study contained all reactions preseme iitgrature with measured,
modelled or estimated rates, significant further improvements imepjve new elementary
reactions being postulated with a further requirement for the categorisatioir chtbelata.

The MOAT analysis performed in this study successfully idedtifieose reactions
making the major contribution to the overall output uncertainty as detdnby Monte Carlo
techniques. Once this group of 15 parameters had been identified demasistrated that the
computional expense of using Monte Carlo analysis could be significaailiced by fitting a
polynomial model describing the relationship between the 15 importannhei@s and the
chosen model output. 120 random sampling runs proved sufficient for the fityakathen
capable of predicting the mean output and standard deviation across unanyith a high
degree of accuracy when compared to analysis using full model innse.tBe computation of
polynomials is so fast, the use of the reduced model gave speed upatef than a factor of
15. This approach of combining a global screening method with random saraphhgis
using a fitted model could therefore have potential benefits foruthieef application of global
uncertainty methods where individual model runs are computationally time consuming.
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