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ABSTRACT

A parametric sensitivity analysis is carried out on a radiological impact software describ-
ing the radionuclides transfer to the man following a chronic gas release of a nuclear
installation. An effective dose received by age group can thus be calculated according to
the duration of the release. Due to the large number of input parameters (more than fifty
for each output variable) a methodology is proposed. The generation of one thousand
Monte-Carlo simulations allows to calculate correlation coefficients between input param-
eters and output variables, which give a first overview of important factors. Least-squares
multiple regression is used to construct response surfaces in polynomial form for each
output variable. Then using these polynomials, we calculate the global sensitivity indices
of Sobol by the Monte-Carlo method. We show the application of this method to one site
of study and to one reference group, for two radionuclides: iodine 129 and uranium 238.
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1. INTRODUCTION

The present study presents the global sensitivity analysis of a radiological impact software
called GASCON. GASCON (developed by CEA/DAM/DASE) is dedicated to chronolog-
ical atmospheric releases and dosimetric impact which is used for CEA facilities safety
assesment. This software evaluates the doses received by a population (called reference
group) exposed to the cloud of radionuclides and via the food chains. It takes into ac-
count the interactions which exist between the man, the plant and the animal, the different
ways of transfer (wind, rain, . . . ), the distance between emission and observation, the time
passed between emission and calculation, . . .

Various stages in the analysis of a process (software, measurement, experiment, . . . )
introduce potential errors, in particular in the construction of the various models: real
phenomenon with the physical model, physical model with the mathematical model, and
mathematical model with the numerical model. The principal sources of uncertainties
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are in the approximation made by the modeling of the physical phenomenon, the ap-
proximations made on the parameterization of the model, the input data and the input
parameters. The uncertainty analysis is used to evaluate the confidence interval or the
probability distribution of the result. The global sensitivity analysis is used to quantify
the influence of the input parameters uncertainties on the output variables uncertainties.
Recent studies have applied different uncertainty analysis and sensitivity analysis methods
to environmental models (Helton [6], Campolongo and Saltelli [2], Hedin [5]).

The results provided by GASCON are in the form of annual effective doses (Sv/yr)
received by a reference group, divided into three age compartments: adult, child and baby.
We also distinguish three operating cycles of the release installation: one year, ten years,
fifty years. In our study the reference group is a village near the release installation, and
we consider two radionuclides 129I and 238U. There is thus eighteen output variables.

The main ways of exposure taken into account in GASCON are:

� external exposures: radioactive cloud and soil deposits;

� internal exposures: inhalation, ingestion of plants contaminated by direct way
(foliar transfer by contact with the radioactive cloud) and indirect way (soil
deposit then root transfer), ingestion of contaminated animal productions.

Some input data are specific of the studied radionuclide or of the studied site (meteoro-
logical conditions, soils nature, feed rations, . . . ). We have deduced from the literature
the variation ranges of parameters considered for the sensitivity analysis, which are:

� dose factors for external irradiation, effective ingestion, effective inhalation;

� transfer factors to animal productions (milk, meat of cow, ewe, goat, pig . . . );

� factors of soil-plant transfer (vegetables, cereals, fodder, . . . );

� translocation factors (fruits, vegetables, cereals, . . . );

� sorption coefficients Kd (sands, silts, clays and organic matter);

� dry deposit rate for each radionuclide;

� local feed rations of the reference group for the various age compartments
(vegetables, fruits, cereals, milk, meat, egg, . . . ), and animal feed rations
(grass, hay, corn) related to the products eaten by the reference group.

The following section presents the four stages of our methodology: uncertainty anal-
ysis via Monte-Carlo calculations, fast sensitivity analysis with correlation coefficients
between input and output variables, construction of response surfaces requiring negligi-
ble computation times, calculations of Sobol sensitivity indices. In the third section this
methodology is applied to the GASCON software using specific nuclear installation and
reference group. We discuss the result of this approach and conclude in the last section.

2. METHODOLOGY

2.1. Uncertainty analysis

The general objective of our uncertainty analysis is to evaluate uncertainty on a computa-
tion result Y taking into account uncertainties on the input parameters Xi (i = 1, . . . , Np).
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It is necessary for each input parameter to evaluate a probability density function (by ex-
pert opinion or by a data statistical analysis). The results of the uncertainty analysis is
conditioned with the choices of these probability densities. To propagate uncertainties, we
use the pure Monte-Carlo strategy: random generation of N samples of input parameters,
then software calculation for each sample.

Because of our lack of knowledge, we choose the uniform law for the distribution of all
input parameters. Moreover, it requires only the bounds of the parameter variation ranges.
However for the majority of the GASCON parameters, an order of magnitude separates
the minimal and nominal values (min ∼ nominal/10) and the nominal and maximal
values (max ∼ nominal × 10). Thus, if we choose the uniform function on [min; max],
the majority of the simulated values will be included in the interval [nominal; max]. To
counter this problem, each simulation proceeds in the following way:

� we simulate a uniform random variable u on [0; 1];

� if u ≤ 0.5: the simulation value is 2u(nominal−min)+min ∈ [min; nominal];

� if u > 0.5: the value is (2u − 1)(max−nominal) + nominal ∈ ]nominal; max].

From the Monte-Carlo simulations, we obtain for each output variable the elementary
statistical parameters (average, minimum, maximum , standard deviation, variation co-
efficient, skewness and Kurtosis coefficients) and the probability distribution. From the
distributions, we can observe the spreading out of the output variables, the confidence
intervals, the multiplicity of modes, . . . Statistical comparison tests can also be made. In
our study, we analyze nine output variables for each radionuclide, and we deduce by the
Kolmogorov-Smirnov test (Saporta [11]) which variables are statistically similar.

2.2. Sensitivity analysis with correlation coefficients

The global sensitivity analysis is used to quantify the contribution of each input parameter
to the response variability. The linear correlation coefficient ρ (or Pearson coefficient)
between two random variables X and Y is the simplest sensitivity index. If ρ is close to
+1 or −1, the assumption of linearity between X and Y is valid. If Y is an output variable
and if there are several input variables Xj (j = 1, . . . , Np), the correlation coefficients
between Y and each Xj have not quantitative sense, but can reveal the linear character
of some dominant variables (Saporta [11]).

If the behavior of Y compared to each parameter is overall linear, it is possible to obtain
quantitative measurements of their influence from the standard regression coefficients
(linear regression connecting Y to the Xj). To obtain a measurement of the linearity
of the relation between Y and Xj, we use the partial coefficients of correlation pj. In
opposition to the standard regression coefficients, the partial correlation coefficients allow
to eliminate the influence from the other variables (Saltelli et al. [9]). If the relation
between X and Y is not linear, the correlation coefficients of the ranks (or Spearman
coefficients) can be used. By replacing the values of parameters X1, . . . , XN and of
output variable Y 1, . . . , Y N by their rank, the assumption of linearity is thus replaced
by the assumption of a monotonous relation.

The regression or correlation coefficients are related to linear or monotonous assump-
tions. Moreover, they study only the relations between the output variable and an input
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parameter independently of the other parameters. However, many problems are neither
linear nor monotonous, and reveal physical dependences between parameters. Global sen-
sitivity analyses more adapted to these conditions are available, but they are definitely
more expensive in computing times (Saltelli et al. [9]). In order to test them on GASCON,
it is necessary to simplify this software and to replace it by a response surface.

2.3. The response surface method

The response surface method (Box and Draper [1], Kleijnen [8]) is used to build a function
which simulates the behavior of a physical or chemical phenomenon in the field of variation
of the influential parameters, starting from a certain number of experiments. In our study,
an experiment is a calculation by the GASCON software. Building a response surface (RS)
aims to obtain a mathematical model representative of the studied software, having good
capacities of prediction, and whose computing time to evaluate an output variable is
negligible. Such a RS will be thus effective for the uncertainty and sensitivity analyses,
requiring several thousands of simulations.

To build a RS, it is necessary to have the software H which models the studied phe-
nomenon, a sample D of N points (x(i), z(i)), where x(i) is a vector of the Np random
input parameters and z(i) = H[x(i)] (i = 1 . . . N) is the software response, and a family
F of functions f(x, c), where c is a vector of parameters (parametric regression) or indices
(nonparametric regression) which makes possible the identification of the various elements
of F . There are multiple RS families (Hastie et al. [4]): polynomials, interpolating ra-
dial functions, splines, generalized linear models, partial least squares, neural networks,
support vector machines, . . . In this work, we use only polynomials, because they have
a simple physical interpretation and the majority of the GASCON equations are linear
formulas compared to each variable.

In general, we use the technique of least squares to obtain the best representing f0

in the family F . We minimize the function
∑N

i=1{z(i) − f [x(i), c]}2 in relation to the
parameters c, to obtain c0 and the RS f0(x) = f(x, c0). The RS quality of approximation
is given from a statistical analysis on a construction basis, whereas the quality of prediction
is deduced from a prediction basis. A simple method to qualify a RS is to compare on the
two bases some indicators obtained from the RS with those obtained directly with software
H. In our study, we initially compare their average, standard deviation, minimum and
maximum. In addition, a regression analysis allows to determine the share of variability
of the output variable explained by the model. Other possibilities to validate RS are the
cross-validation or bootstrap techniques (Hastie et al. [4]). For simplicity, we just present
two statistics which give global measurements of correlation between two data sets A and
B: the Pearson correlation coefficient ρ and the coefficient of determination R2 which
writes

R2(A,B) = 1 −
∑N

i=1(Ai − Bi)
2

∑N
i=1(A − Ai)2

, (1)

where A is the average of A. The coefficient R2 represents the fraction of the variation
compared to the average explained by the smoothed model, i.e. the percentage of output
variables explained by the response surface. In our case, A is the software response
Ai = z(i) = H[x(i)] and B is the model (RS) response Bi = f [x(i), c0].
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These criteria are global and it is possible that the data adjusted are not homogeneous.
It is the case when the studied variable covers a broad range of variations with multiple
orders of magnitude. In this case, the contributions of the low values to the R2 mea-
surement are negligible. To cure this problem, the study of residual statistics gives some
indications of the regression accuracy. The residuals ε have to be centered with a standard
deviation σε small compared to the GASCON standard deviation σA. We also examine
the average and the standard deviation of the relative residuals εi/Bi = (Ai − Bi)/Bi.

2.4. Global sensitivity analysis

We consider methods of variance analysis which aim at determining the weight of the
variance of the response Y = f(X) resulting from a variable or a group of variables
(McKay [7], Saltelli et al. [9]). Their objective is to calculate the global sensitivity index
Sti defined as the sum of all the sensitivity indices implying parameter Xi. The Sobol
method allows a relatively simple evaluation of the terms Si, Sij, . . . (Saltelli et al. [9]).

In practice, we can evaluate Sobol indices by a Monte-Carlo method, which require
a very significant number of simulations, typically Ns = 10000 to estimate an index of a
parameter (Si, Sij, . . . or Sti). This justifies the use of response surfaces to minimize the
computing times. Although the calculation of Sobol index with FAST method is definitely
less expensive, we use the Monte-Carlo method because we obtain a realistic confidence in-
terval on the Sobol index by repeating the index calculation. This information is essential
if we want to rigorously classify the influence of the various input variables. In our study,
we carry out Nic = 200 calculations of each Sobol index. Moreover, the Monte-Carlo
method calculates all the Sobol indices (Si, Sij, . . . or Sti), which bring information on
the interactions between the input parameters. In our study, we just calculate Si and Sti
to measure the influence that the variable Xi has while acting alone. The Monte-Carlo
method calculates these two indices using the same Ns simulations (Saltelli [10]), whereas
FAST calculates them starting from two different sets of simulations.

For the model Y = f(X) where X is a vector of Np parameters, we need Nic × Ns ×
(Np + 2) evaluations of f to calculate the first order indices Si and total indices Sti
for all the parameters Xi, and to allocate a confidence interval to them. In our study,
Ns = 10000 and Nic = 200. The value of Np depends on the model of response surface
which is adjusted. For GASCON, we try to take into account no more than ten parameters
in each response surface. For Np = 10, there will be 2.4 × 107 calculations of f .

3. RESULTS

The GASCON software is applied to a French nuclear research center. The gas release is
fixed at a symbolic value of 1 Bq/year which does not represent a realistic release. This also
induces non realistic effective dose rates. We perform one thousand independent Monte-
Carlo simulations of the GASCON software (30 seconds per simulation). In Figure 1,
the distributions of the 18 output variables are represented. For a given radionuclide, the
output variable distributions seem very similar. We carry out statistical tests between the
coherent output variables (same radionuclide, same age compartment or same operating
cycle) by the Kolmogorov-Smirnov test which evaluates if there are or not statistically
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significant differences between the two distributions on the degree of confidence 95%. For
129I, there is no difference at 95% between all the distribution couples, except between
(adult, operating cycle of 50 years)/(baby, operating cycle of 1 year) and (adult, operating
cycle of 50 years)/(baby, operating cycle of 10 years). For 238U, all distribution couples
have differences at 95%, except for (adult, 1)/(adult, 10), (child, 1)/(child, 10), (baby,
1)/(baby, 10). In summary, the variables at ten years have approximately the same
distributions than the variables at one year, and for 129I the variables ”child” have the
same distributions than the variables ”adult”. Thus for 129I and 238U, it is sufficient to
study four output variables: (adult, 1), (adult, 50), (baby, 1), (adult, 50).

Table 1 shows the largest Pearson and Spearman correlation coefficients between input
and output variables. All the output variables reveal five important input parameters:
the dose factor of effective ingestion ingeff, the human feed ration of goat’s milk ra gmilk,
the goat feed ration of grass ra grass, the dry deposit rate dep, and the transfer factor to
the goat’s milk gmilk. For 238U, some additional parameters appear: the goat feed ration
of cereals ra cer and the transfer factor of the vegetables fruits vegfr.

ρ ρS ingeff gmilk ra gmilk ra grass dep ra cer vegfr

Ad I 1 33 55 09 16 31 46 28 41 21 38
Ad I 50 33 56 09 16 31 45 28 41 21 39
Bb I 1 32 54 09 16 31 47 28 42 21 37
Bb I 50 32 54 09 16 31 47 28 42 21 38
Ad U 1 28 55 20 24 21 29 18 26 15 20 08 11
Ad U 50 36 62 17 19 18 21 15 20 20 29 10 19
Bb U 1 25 53 21 33 21 37 18 33 15 26 08 10
Bb U 50 27 59 20 29 21 32 18 28 16 21 08 08

Table 1. Correlation coefficients (in %) of Pearson ρ and Spearman ρS between the output and
input variables (selected if ρ and ρS are higher than 8%). The notation Ad I 1 means (adult,
129I, one year of release).

At present, for each output variable, we want adjust a response surface by a polynomial
model obtained by multiple regression. By selecting and combining the parameters found
in Table 1, the best results are obtained when the regressions are made according to
certain food chains, which are linear combinations of the various terms contributing in
each chain. For example, the food chain of the goat’s milk is

α1 ∗ ingeff ∗ gmilk ∗ ra gmilk ∗ ra grass ∗ dep + α2 ∗ ingeff ∗ gmilk ∗ ra gmilk ∗
ra grass ∗ dep2 + α3 ∗ ingeff ∗ gmilk ∗ ra gmilk ∗ ra hay ∗ dep + α4 ∗ ingeff ∗ gmilk ∗
ra gmilk ∗ ra hay ∗ dep2, where αi (i = 1, . . . , 4) are regression coefficients.

For all the output variables in 129I and for the variables (238U, baby, 1) and (238U,
baby, 50), the response surfaces are polynomials based on the food chains of the goat’s
milk and the ewe’s milk (the same than the goat’s milk by replacing the goat by the ewe).
For the variables (238U, adult, 1) and (238U, adult, 50), response surfaces include also the
effective inhalation term α1 ∗ inheff . For (238U, adult, 50), we add the food chain of the
pig’s meat and the food chain of the vegetable fruits by indirect transfer:

α1 ∗ ingeff ∗ vegfr ∗ ra vegfr ∗ dep + α2 ∗ ingeff ∗ vegfr ∗ ra vegfr ∗ dep2.
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Figure 1. Output variable distributions (Sv/year).
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The statistical validity of the RS is studied on a basis of construction (of size 2/3 of
the data base) and on a basis of prediction (of size 1/3 of the complete data base). For
129I, the statistics of the R2 and ρ are excellent: they are equal to 99% for all the variables
and on the two bases. The responses in 129I of the GASCON software are almost entirely
explained by the terms of the food chain of the goat’s milk. For 238U, the statistics R2

and ρ are also satisfactory (all higher than 92%). It is necessary to integrate in the model
the food chains of the goat’s milk, the ewe’s milk, the effective inhalation, and the pig’s
meat. In addition, at fifty years, the food chains of vegetables by indirect transfer seem
essential. It is noticed that the dry deposit rate dep operates linearly and quadratically
in the food chains. This is due to the fact that the relations in GASCON utilize dep like
a power of another factor.
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Figure 2. For the adult, 129I and one year of release, comparisons between response surface
and GASCON calculations for the two bases (construction and prediction). Unities have to be
multiplied by 10−14 Sv/year.

It thus seems that the RS are valid but the relative statistics balance our judgement:
the relative standard deviations σε/σA are worth roughly 10% for 129I and 20% for 238U.
This lets suppose that the adjustments are not good everywhere. The calculation of the
averages and standard deviations of the relative residuals confirms this judgement. For
129I, the representativeness of GASCON by the RS is on average of −30%. For 238U, the
representativeness of GASCON by the RS is on average of −15%. The Figure 2 (left)
makes it possible to locate the problem thanks to a comparison on the Ad I 1 variable
between GASCON and RS in logarithmic scale. It is noted that the high values (> 10−14

Sv/yr) are well adjusted, whereas the low values are completely over-estimated by the
RS. To cure this, we propose to separate the construction and prediction bases in two
parts each one (one with values higher than 10−14 Sv/yr and the other with values lower
than 10−14 Sv/yr). We choose the same factors of regression for the calculation of the
RS. The adjustments are presented in Figure 2 (right). The two RS correctly explain the
data in each field of variation with the same factors of regression. This is confirmed by
the averages and standard deviation of the relative residuals on the basis of construction
which are equal to −13.7% and 22.2% for the raised values, and −4.6% and 22.2% for the
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low values, instead of −28.6% and 36.2% on all the variation domain. This problem of
regression on a field of several orders of magnitude can be solved in a more satisfactory
maneer by using the technique of weighted least squares. In the minimization of the
functional, we allocate larger weights to low values. This makes it possible to have a
homogeneous response surface on all the field of variation.

Now, the GASCON software can be replaced by the RS (polynomial model) which
can be used to calculate Sobol indices by extensive Monte-Carlo computations. Figure
3 gives for each output variable the Sobol indices of the most influential variables, with
their error bars. Having repeated 200 times the Sobol calculations, the average values are
good estimates of the true Sobol indices. We conclude that for 129I, the most influential
parameters are the dose factor of effective ingestion and the feed ration of the goat’s milk.
For 238U, the most influential parameters are the dose factor of effective ingestion, the
transfer factor of the goat’s milk and the feed ration of the goat’s milk.
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Figure 3. Sobol indices for each parameter. Uncertainty bar represents the minimum, average
and maximum indices obtained with 200 Sobol calculations.

By carrying out calculations of the Sobol indices on the RS obtained by distinguishing
high values (> 10−14 Sv/yr) and low values (< 10−14 Sv/yr), we find exactly the same
results in the field of high values. In the field of low values, the classification is similar
except that the dry deposit rate is placed in first position at equality with effective inges-
tion. It is thus considered that our results are valid in the field of the high values and are
approximately correct in the field of the low values.

268



4. CONCLUSION

The four steps of our methodology (Monte-Carlo simulation, correlation coefficients anal-
ysis, response surfaces, Sobol indices) have allowed to quantify the influence of input
parameters on the GASCON software response (annual effective dose received by the
man), for a specific nuclear installation, a specific population, and for two radionuclides
(129I and 238U). During the correlation coefficient analysis, the calculations of standard
regression coefficients would allow to have more information on important input param-
eters. During the response surface construction, other statistical validation methods like
cross-validation or bootstrap technique could also be useful (Hastie et al. [4]). In this
work, the response surfaces found are in simple polynomial form explicit for the physicist
understanding. For the approximation of software simulating more complex phenomena,
more elaborated and not explicit response surfaces, like neural networks (Devictor and
Martinez [3]), can be used.
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