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Abstract: This presentation aims to introduce global sensitivity analysis (SA), targeting 
an audience unfamiliar with the topic, and to give practical hints about the associated 
advantages and the effort needed. To this effect, we shall review some techniques for 
sensitivity analysis, including those that are not global, by applying them to a simple 
example. This will give the audience a chance to contrast each method’s result against the 
audience’s own expectation of what the sensitivity pattern for the simple model should 
be.  We shall also try to relate the discourse on the relative importance of model input 
factors to specific questions, such as “Which of the uncertain input factor(s) is so non-
influential that we can safely fix it/them?” or “If we could eliminate the uncertainty in 
one of the input factors, which factor should we choose to reduce the most the variance of 
the output?” In this way, the selection of the method for sensitivity analysis will be put in 
relation to the framing of the analysis and to the interpretation and presentation of the 
results. The choice of the output of interest will be discussed in relation to the purpose of 
the model based analysis. The main methods that we present in this lecture are all related 
with one another, and are the method of Morris for factors’ screening and the variance-
based measures. All are model-free, in the sense that their application does not rely on 
special assumptions on the behaviour of the model (such as linearity, monotonicity and 
additivity of the relationship between input factor and model output). Monte Carlo 
filtering will be also be discussed to demonstrate the usefulness of global sensitivity 
analysis in relation to estimation. 
 
Keywords: global sensitivity analysis, factor prioritisation, main effects, second-order 
interaction effects, nonlinear models 
 
 
INTRODUCTION 
 
The material in this presentation is taken from a primer on global sensitivity analysis 
entitled “Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models” by 
Andrea Saltelli, Stefano Tarantola, Francesca Campolongo and Marco Ratto. This will 
appear with John Wiley & Sons by early 2004, and we shall refer to it as to Saltelli et al., 
2004 in the following. The primer aims at guiding a non-expert user in the choice of the 
method to adopt for the user own problem. The methods recommended include the 
variance based measures, the method of Morris, and Monte Carlo filtering, e.g. some 
effective methods for global sensitivity analysis.  
 
Global sensitivity analysis is the study of how the uncertainty in the output of a model 
(numerical or otherwise) can be apportioned to different sources of uncertainty in the 
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model input”. Global could be an unnecessary specification here, were it not for the fact 
that most analysis met in the literature are local or one-factor-at-a-time. 
 
All models have use for sensitivity analysis. Applications worked by the Joint Research 
Centre group for Applied Statistics include: Atmospheric chemistry (Campolongo et al., 
1999a), transport emission modelling, fish population dynamics (Campolongo et al. 
1999b), composite indicators (Tarantola et al. 2002), portfolios, oil basins models 
(Saltelli, 2002), capital adequacy modelling (for Basle II), macroeconomic modelling, 
radioactive waste management (Saltelli and Tarantola, 2002). Applications from several 
practitioners can be found in Saltelli et al. Eds. 2000, a multi-author book. 
 
Prescriptions have been issued for sensitivity analysis of models when these used for 
policy analysis.  
In Europe, the European Commission recommends sensitivity analysis in the context of 
the extended impact assessment guidelines and handbook (2002). Similar 
recommendation in the United States EPA’s White Paper on model use acceptability 
(1999) 
 
The EC handbook for extended impact assessment, a working document by the European 
Commission, 2002, states:  “A good sensitivity analysis should conduct analyses over the 
full range of plausible values of key parameters and their interactions, to assess how 
impacts change in response to changes in key parameters”.  The EPA paper (1999) is less 
prescriptive, but insists on the need for uncertainty and sensitivity analysis. 
 
Even leaving prescriptions aside, one cannot ignore that models have not escaped the 
post-modern critique of the role of science in society. Specific critiques of simulation 
modelling and model validation have been frequent in recent years. One example: 
<<…most simulation models will be complex, with many parameters, state-variables and 
non linear relations. Under the best circumstances, such models have many degrees of 
freedom and, with judicious fiddling, can be made to produce virtually any desired 
behaviour, often with both plausible structure and parameter values.>>, Hornberger  and  
Spear 1981.  
 
Also, from within the modelling community reminders of the problem were frequent: 
Konikov and Bredehoeft, 1992, proclaims: "Groundwater models cannot be validated". 
This cry of alarm was taken up by Oreskes et al. 1994, in an article on Science entitled 
"Verification, Validation and Confirmation of numerical models in the earth sciences", 
both works focusing on the impossibility of model validation. Two established 
laboratory, IIASA and RIVM, had considerable trouble with the perceived quality of their 
models, see Mac Lane 1989, and van der Sluijs 2002 respectively. The post-modern 
French thinker Jean Baudrillard (1990) presents 'simulation models' as unverifiable 
artefact which, used in the context of mass communication, produce a fictitious hyper 
realities that annihilate truth. Science for the post modern age is discussed in Funtowicz 
and Ravetz 1990, 1993, 1999, mostly in relation to Science for policy use, a settings 
which Gibbons (1994) calls “mode 2” scientific production. 
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Faced with these critiques, the modelling community may consider that a quality check as 
that which is provided by a careful sensitivity analysis is worth its effort.    
 
Before we discuss the methods for sensitivity analysis, we would like to say a few words 
about the output Y of interest. In our experience, the target of interest should not be the 
model output per se, but the question that the model has been called to answer. To make 
an example, if a model predicts contaminant distribution over space and time, it is the 
total area where a given threshold is exceeded at a given time which would play as output 
of interest, or the total health effects per time unit. 
 
One should seek from the analyses conclusions of relevance to the question put to the 
model, as opposed to relevant to the model, e.g.   
 
• Uncertainty in emission inventories [in transport] are driven by variability in driving 

habits more than from uncertainty in engine emission data.  
• In transport with chemical reaction problems, uncertainty in the chemistry dominates 

over uncertainty in the inventories.  
• Engineered barrier count less than geological barriers in radioactive waste migration. 
 
This remark on the output of interest clearly applies to model use, not to model building, 
where the analyst might have interest in studying a variety of intermediate outputs.    
 
FIRST EXAMPLE: THE OBVIOUS TEST CASE 
 
We move now to a self-evident problem, to understand the methods as applied to it. This 
is a simple linear form: 

∑ =
Ω=

r

i iiZY
1

 

Y is the output of interest (a scalar), iΩ  are fixed coefficients, Zi are uncertain input 
factors distributed as 

( ) r,...,i,z,,zN~Z iZii i
210 ==σ .  

 
Y will also be normally distributed with parameters: 
 

∑ =
σΩ=σ

r

i ZiY i1
22  

∑ =
Ω=

r

i ii zy
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To make our point we stipulate as additional assumptions:  

rZZZ .... σ<<σ<σ
21

 

r.... Ω>>Ω>Ω 21  
According to most of the existing literature, SA should be done by taking derivatives, 

such as:  
i

d
Z Z

YS
i ∂

∂
= , which would give for our model of Y: i

i

d
i Z

YS Ω=
∂
∂

= .  
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Hence the factors’ ordering by importance would be   rZ...ZZ >>> 21 , based on our 
previous assumption that r.... Ω>>Ω>Ω 21 , and this in spite of the fact that 

rZZZ .... σ<<σ<σ
21

. This would seem to suggest that if our purpose is to rank input 
factors in terms to their contribution to the variability of the output, then simple 

derivatives such as 
i

d
Z Z

YS
i ∂

∂
= are not the best instrument to use.  

A better measure could a normalised derivative of the type: 
iY

Z
Z Z

YS i

i ∂
∂

σ
σ

=σ , which, 

applied to our model, gives 
Y

Z
iZ

i

i
S

σ
σ

Ω=σ  

 

Comparing this with our previous expression ∑ =
σΩ=σ

r

i ZiY i1
22 , we obtain 

( ) 1
2

1
=∑ =

σr

j Zi
S . 

 
This is a nice result: the terms add to 1, and each of them gives the fractional contribution 
of the factor to the variance of the output. Unfortunately this only works for linear 
models.  
 
 
If we want to tackle nonlinear models as well, we have to abandon derivatives and move 
into “exploration” of the input factors space, e.g. via Monte Carlo. 
 
   
We generate a sample 
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and run our computer program estimating the corresponding model output 
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A natural thing to do at this point is to regress the y’ s on the zi’s to obtain a regression 
model  

)i(
i

r

i Z
)i( zbby

i∑ =
+=

10 , where asymptotically r,...,i,b̂,b̂ iZ i
2100 =Ω≅≅ . Most 

regression packages will already provide the regression in terms of standardised 
regression coefficients YZiYZZZ //b̂ˆ

iiii
σσΩ≅σσ=β . Comparing YZiZ /ˆ

ii
σσΩ≅β  with 
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it is easy to conclude that for linear models σ=β
ii ZZ S . 

 

In summary, ( ) ( ) 1
2

1

2

1
=β=∑∑ ==
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j Z
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j Z ii
S , but only for linear models. Yet the regression 

coefficients are better than the derivatives in several respects.  
 

Although for nonlinear models ( ) 1
2

1
≤β∑ =

r

j Z i
, at least we now know how much linear 

the model is. This is given by the model coefficient of determination 
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We now know that we can decompose a fraction 2
yR of the model variance using the 

iZβ . 

Furthermore the coefficients  
iZβ    offer a measure of sensitivity that is multi-

dimensionally averaged, unlike the σ
iZS . For linear model this does not matter but it does, 

and a lot, for nonlinear ones. The drawback is when 12 <<yR ; typically  2
yR     can be zero 

or near it for non-monotonic models.   
 
In summary, we like the idea of decomposing the variance of the model output according 
to source (the input factors), but would like to do this for all models, independently from 
their degree of linearity or monotonicity. We would like a model-free approach. 
 
In order to get there, we take a somehow twisted path and start asking ourselves the 
question: If I could determine the value of an uncertain factor, e.g. one of our iZ     and 
thus fix it, how much would the 
variance of the output decrease? E.g. imagine the true value is *

iz  and hence we fix  iZ  to 

it obtaining   a “reduced” conditional variance: ( )*
ii zZYV = . There are two problems 

with this quantity being a good measure of sensitivity. First I do not know where to fix 
the factor, and secondly for nonlinear model one could have ( ) )Y(VzZYV *

ii ≥= . 
 
This difficulty can be overcome by averaging this measure over the distribution of the 
uncertain factors obtaining ( )( )iZYVE , or ( )( )iZ ZYVE

ii −Z  where we have made explicit 
the variables over which mean and variance operators are applied. This measure has the 
property that ( )( ) )Y(VZYVE i ≤  always, and in particular  

( )( ) ( )( ) )Y(VZYEVZYVE ii =+ , where the term ( )( )iZYVE  is called a residual, and the 

term ( )( )iZYEV  is known as the first order effect of iZ  onY . A nice property of the main 
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effect is that it is large when a factor is influential. Furthermore it is easy to verify that for 

linear models 
( )( ) 2

ii Z
i

Z )Y(V
ZYEV

S β== .  

We have made a real progress, as while ( ) 1
2

1
=β∑ =

r

j Zi
 only holds for linear models, 

( ) 1
1

=∑ =

r

j Zi
S  holds for a much larger class of models: that of the additive models. For 

non-additive models, ( ) 1
1

≤∑ =

r

j Zi
S , which is also a way to define non-additive models. 

Yet the measure  
iZS  is very useful for all models, as it provides a rigorous answer to a 

precise sensitivity analysis setting: setting FP, for factors prioritisation. Let us then make 
a digression here, and describe this setting.  
 
FACTORS’ PRIORITISATION (FP) SETTING 
 
Imagine that I must bet on a factor that, once “discovered” in its true value and fixed, 
would reduce the most V(Y). Of course I do not know where the true values are for the 
factors, hence I cannot compare the ( )*

ii zZYV =  for the various factors. Hence the best 

choice I can make is, by definition, to choose the factor with the highest ( )( )iZYEV  or , 

which is the same, the highest 
( )( )

)Y(V
ZYEV

S i
Zi
= , whether the model is additive or not 

(Saltelli and Tarantola, 2002).    
 
To complete all this, we must say something about non-additive model treatment, so let 
us complicate our model ∑ =

Ω=
r

i iiZY
1

 by allowing both the iΩ  and Zi to be uncertain, 

i.e. ( ) r,...,i,z,,zN~Z iZii i
210 ==σ  as before and ( ) r,...,i,ci  ,,N~ iii i

21==ωσωΩ ω , 
where c is a constant greater than zero (note: if the mean of the iΩ  were also null as that 
of the iZ , then the model would be fully non-additive, as we shall see in a moment).  
 
Our set of uncertain input factors is now )Z,...Z,Z,,...,( rr 2121 ΩΩΩ≡X . We start 
crunching number estimating the sensitivity measures and we obtain the following 
results:     
All  

i
SΩ        are zero. 

All    
iZS      are > zero. 

 
i

SΩ  is zero because the distribution of iZ  is centred in zero, and hence for any fixed 

value *
iω    of iΩ  

 
( ) 0=ω=Ω *

iiYE , and a fortiori ( )( ) 0=ΩiYEV . 
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Given that  ( ) 1
1

≤∑ =

r

j Zi
S  where is the remaining variance?   To find it out we must 

compute sensitivity indices on more than one factor. If we do that, we find that  
( )( )

ji ZZ
Y

ji SS
V

Z,ZYEV
+= , while, instead: 

( )( )
ii Z

Y

ii SS
V

Z,YEV
+>

Ω
Ω . The difference 

( )( )
iiii Z

Y

ii
Z SS

V
Z,YEV

S −−
Ω

= ΩΩ  is the second order (or two-way) effect of the two 

factors. We have discovered that our model is additive with respect to 
ji ZZ SS , , and non-

additive with respect to 
ii ZSS ,Ω .   

 
 
Adding all the non-zero first order terms and all the non-zero second order terms gives 
back 1, i.e. 100% of the variance of Y is accounted for.  
I.e. 1

1
=+∑ = Ω

r

i ZZ iii
SS   

 
For our model, all other terms of whatever order (1,2,3…2r) is zero. In general, if k is the 
total number of independent factors, then  ∑∑∑∑∑∑

> >>

=+++
i ij jl

k...ijl
i ij

ij
i

i S....SSS 112  

(Sobol’, 1993). 
 
It is quite rare that in practical applications one computes all terms in the development 
above. The number of terms grows exponentially with k.  
 
We are customarily happy with computing all the iS  plus a full set of synthetic terms 
called TiS  which give for each factor Xi, the effect of all terms including that factor.   
 
 
What are the total effect terms TiS  and why do we need them? Let us compute one of 
them, by starting with the measure  

( )( ) ( )( )
Y

rrii

Y V
Z,...Z,Z,...,...,YEV

V

YEV
i 211121 ΩΩΩΩΩ
= +−Ω−

X
. We have taken factor iΩ as an 

example. Analogy with previous formulae should suggest that, by definition, this is the 

[first order] effect of all-but- iΩ . Hence  
( )( )

Y
T V

YEV
S i

i

Ω−
Ω −≡

X
1  will be the effect of all 

terms [any order] that include  iΩ  ; for our model this is simply
iiii ZT SSS ΩΩΩ += , 

provided we remember that the
i

SΩ are zero as well, so that
iii ZT SS ΩΩ = . Note that because 

of an algebraic relation already mentioned  
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( )( ) ( )( )
YY V

YVE

V

YEV
ii Ω−Ω− =−

XX
1 ., so that the right hand expression is often used for the 

TiS .  
 
There is a considerable symmetry between the iS  and TiS . Both indices can be computed 
in a single  
shot at the cost  of about N(k+2) simulations,  where N is between 100 and 1000, to give 
an idea. In Saltelli, 2002, we use an extension of the method of Sobol’, 1993. Both 
indices can also be computed using the Fourier based FAST method, as extended in 
Saltelli et al., 1999.  
 
Furthermore iS  is ideal for factor prioritisation setting, already described, while TiS  is 
ideal for the “factors fixing” setting (of which more in a moment). 
 
A nice property of  TiS  is that if one is desperate for less expensive simulations, a rough 
estimate of these can be obtained via the method of Morris, at less than 1/10 of the cost, 
see Morris 1991. (We prefer to compute a “modulus” version of the test statistics, as 
described in Chapter 4, Campolongo et al., in Saltelli et al. Eds., 2000). 
 
Finally one last useful property of variance based methods is their application “by 
groups”, e.g.  

1=++ ZΩ,ZΩ SSS , where r,..., ΩΩΩ= 21Ω . The computational cost of this is just 3N. Or 

I can regroup as 1
1

=∑
=

r

i
i

SA , where )Z,(A iii Ω= . The computational cost of this is kN. 

Note that in this latter expression all higher order terms are zero because there are 
interactions only within  )Z,(A iii Ω= . 
 
Although in the first regrouping we save a lot in terms of model execution, and in the 
second we don’t, there might be reasons other than economy to regroup factors. I might 
want to groups factors in different submodels. In this way, if I can fix all factors in the 
submodels may be I can skip the submodel altogether. I might want to separate 
controllable factors from uncontrollable ones, and so on.  
 
A SECOND EXAMPLE: WHAT CAN SENSITIVITY OFFER FOR PARAMETER 
ESTIMATION 
 
Let us now move to an estimation/calibration problem for a computational model with six 
parameters. We do not know how the model is done – imagine it is a computer code. The 
output of interest Y is a measure of likelihood is obtained after comparing the model 
prediction Y’ with data, e.g.  
 
Y=exp(-[sum of squared residuals of the predicted Y’ versus the data]). 
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How can we characterise the good parameter set for calibration? A scatter plots of log-
likelihood (e.g. of the sum of scores) vs. parameters is not very informative (Figure 1). 
Even “filtering”, e.g. taking the best outcomes, those with the highest log-likelihood, 
leaves us in the dark (Figure 2). Plotting the factors value for the input (Figure 3) as well 
as for the input corresponding to the best values (Figure 4) is likewise noninformative. 
Note that if we computed on the filtered input factors (Figure 4) the pairwise correlation 
coefficients we would obtain zeros. Also Principal Component Analysis would not be 
informative as applied to the filtered input sample, as there are no correlations among the 
filtered factors. Computing the first order sensitivity indices for the log-likelihood and the 
second order ones (Figure 5), a story starts to emerge; there are non-zero second order 
effects, but only within the closed groups involving factors (1,2,3) and (4,5,6). 
Computing the third order effect (Figure 6) again only those pertaining to (1,2,3) and 
(4,5,6) are non-zero. Regrouping and adding the terms up gives an interesting result:        
 

50

50

456564645654456

123231312321123

.SSSSSSSS

.SSSSSSSS
c

c

=++++++=

=++++++=
 

 
where we have used the supescript c symbol to denote the effects closed within the 
indices. The variance of the problem is characterised by two groups of three factors. 
Higher term orders are zero.  
 
This leads the investigator to conclude that what could be reasonably estimated are two 
unknown  functions of two parameter sub-sets. We can now reveal that the unknown 
function, our computer program, was the sum of two speres. 
  

( ) ( ) 2

2

2
2
6

2
5

2
41

2

1
2
3

2
2

2
1

61

A/RXXXA/RXXX

)X,...,X(f

−++−−++−=

=
 

 
Were the investigator to identify this structure, by trial and error, he/she would conclude 
that all that estimation can provide are the two radiuses. 
 
This concludes our illustration of sensitivity analysis as applied to a diagnostic setting, 
and we would now like to come back to our discussion of the settings for sensitivity 
analysis.   
 
 
MORE ON THE SETTINGS FOR SENSITIVITY ANALYSIS 
 
We have already mentioned that the sensitivity measure of the first order, 

( )( )
Y

i
i V

XYEV
S ≡ is the ideal measure for factor prioritisation. It is also easy to see that the 

total effect measure 
( )( )

Y

i
Ti V

YVE
S −≡

X
 is appropriate for a setting that we could call 
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“Factors Fixing”: Can I fix a factor [or a subset of input factors] at any given value over 
their range of uncertainty without reducing significantly the output variance? If factor iX  
is totally non-influential, then all the variance is due to i−X , and fixing this vector results 
in ( ) 0=

−i
YV X . It is easy to see that the reverse is also true so that necessary and 

sufficient condition for iX  to be totally non-influential is 0≡TiS . 
 
Other settings that we have found useful are the following.   
 
Factors mapping: Which factor is mostly responsible for producing realisations of Y in 
the region of interest? This can be treated with Monte Carlo Filtering and related tools  
(described elsewhere at this workshop). 
 
Variance cutting: Reducing the variance of the output of a prescribed amount fixing the 
smallest number of factors. This setting can be dealt with using a combination of the iS  
and TiS  measures (Saltelli and Tarantola, 2002).  
 
Why do we need settings? One way in which a sensitivity analysis can go wrong is 
because its purpose is left unspecified or vague (e.g. “find the most important factors”). 
One throws different statistical tests and measures to the problem and obtains different 
factors rankings. What can then be concluded? Models can be audited and settings for 
sensitivity analysis can be audited as well. For this reason we believe that importance 
must be defined beforehand.  
 
A FEW MORE COMMENTS ON PRACTICES 
 
What else can go wrong in a sensitivity analysis? Two instances come to mind:  
 
There are too many outputs of interest, as we discussed at the beginning. What is the 
question asked from the model? Is the model relevant to the question? The optimality of a 
model must be weighted with respect to the task, according to a current mode of thinking. 
According to Beck et al. 1997, a model is “relevant” when its input factors actually cause 
variation in the model response that is the object of the analysis. Model “non-relevance” 
could flag a bad model, or a model used out of context (e.g. a gun to kill a fly). Excess 
complexity could also be used to silence or to fend off criticism from stakeholders, e.g. in 
environmental assessment studies. 
 
Patchy or piecewise sensitivity (performed by sub-model, or one possible model at a 
time, or one factor at a time): Not only conflicts with the requirement of focus just 
mentioned, but leads to a dangerously incomplete exploration of the uncertainties; 
interactions are overlooked. All uncertainties should be explored simultaneously. Also 
the procedure of fixing non-influential factors should be conducted in this way, as fixing 
factors based on their first order effect can be dangerous as discussed above. The iΩ  of 
our initial example all have first order equal zero.  
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A posteriori sensitivity: Once an analysis has been produced, its revision via sensitivity 
analysis by a third party is not something most modellers will willingly submit to. 
Sensitivity analysis should be used in the process of model development, prior and within 
model use in analysis. 
 
One should never forget that an unpleasant (or pleasant, depending from the viewpoint) 
feature of sensitivity analysis is that it might falsify the analysis altogether, e.g. by 
showing that the model cannot answer the question given the uncertainties, or that the 
model is irrelevant, or that the variation in the output of interest (e.g. a contamination 
level in an estuary) is insensitive to the available policy options given the uncertainties. A 
nice example that shows how SA can falsify a model as applied to a policy issue is 
described in Chapter 20, Tarantola et al., of Saltelli et al., Eds. 2000.  
  
 
CONCLUSIONS   
 
We can itemise our main conclusions as follows. There is an increased need, scope and 
prescription for quantitative uncertainty and sensitivity analyses. Methods are mature for 
use, e.g. in terms of literature, software, computational cost, tested practice, ease of 
communication.  
 
In spite of this one observes a “slow start” of quantitative methods in practical analyses 
 
Variance based measure are concise, easy to understand and to communicate, reduce to 
the elementary test (the standardised regression coefficients 2

ii
β ) for linear model, relate 

to the popular method of Morris. 
 
We also like and use methods in the MC filtering family. 
 
Whatever the method one uses, we think it important that the framing of the analysis be 
defensible and meaningful to its users. 
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Figure 1. Log-likelihood for the six input factors.  
 

Figure 2. Same as Figure 1, for values of log-likelihood > -200. 
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Figure 3. Pair-wise scatter plots of input factors. 

 
Figure 4. Same as the previous figure, for values of log-likelihood > -200. 
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Figure 5. First- and second-order sensitivity indices for the log-likelihood. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Third-order sensitivity indices for the log-likelihood. 
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NOTES 
 
The Joint Research Centre distributes freely the software SIMLAB for uncertainty and 
sensitivity analysis. More information from stefano.tarantola@jrc.it. Marco Ratto 
(marco.ratto @jrc.it) has developed a set of scripts in Matlab to run global sensitivity 
analysis in diagnostic settings (e.g. with filtering plus variance based methods, see our 
two-sphere example). This is also available.  
 
A forum to discuss sensitivity analysis issues is 
available at http://sensitivity-analysis.jrc.cec.eu.int/.  
It includes a FAQ section, introduction to the main 
methods and a bibliography.  
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