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Abstract: One general goal of sensitivity or uncertainty analysis is the determination
of which inputs most influence model outputs of interest. Simple methodologies based
on randomly sampled input values are attractive because they require few assumptions
about the nature of the model. However, when the number of inputs is large and the
computational effort required per model evaluation is significant, techniques based on
more complex assumptions, analysis techniques, and/or sampling plans are needed. This
talk will review some approaches that have been proposed for input screening, with an
emphasis on the balance between assumptions and economy, including a brief description
of recent work in economical sampling plans.
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1. INTRODUCTION

Especially in the early stages of work with a computer model, it is important to determine
which inputs are important and which are not. The precise definition of “important” is
not always the same (and in some cases is never carefully addressed) but is generally
related to how much or what kind of influence each input has on outputs of interest.
For very simple computer models, such questions may be addressed directly through
analysis of the underlying equations. But more complex models require an empirical
approach, or computer experiment designed to allow determination of the importance of
inputs through analysis of numerical output values. The approaches we shall discuss are
described as entirely empirical (i.e. “black box”), even though it is understood that in
many applications these can be tailored to take advantage of specific knowledge about a
model.

In order to be specific, let y = m(x), x ∈ ∆, represent what we mean by a “computer
model”, a deterministic function mapping a vector x of k input arguments from a defined
domain ∆ to a scalar-valued output y. In most real problems y would also be vector-
valued, but we shall not address complications that this may created here. A particular
input xi may be deemed important if (1.) ∂y/∂xi is large in at least some regions of ∆, (2.)
y is relatively complex (in some sense) as a function of xi, or (3.) y varies substantially
as the value of xi changes. These three concepts of “importance” are relatively vague,
certainly related, and certainly not exclusive, but one or more of them have been found
to be useful in a large variety of problems.

Two characteristics of this problem that make identifying important inputs practically
difficult are (1.) the dimension of x (typically not small), and (2.) the effort required
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to evaluate m (typically not trivial). The difficulty is easy to understand; if k is large,
the number of “points” needed to “fill” it sufficiently to allow characterization of y as a
function of x, without extensive knowlege or assumptions about the nature of m, will also
be large. But computer experiments requiring a large number of model executions will
be prohibitive if each execution is expensive.

Methodologies for the input screening problem have been proposed by several authors,
and vary in the assumptions required, the sense in which importance is measured, and the
number of model executions required for satisfactory performance. The four approaches
reviewed in this paper are representatives of a large collection of ideas introduced as
uncertainty analysis or sensitivity analysis. Our intent here is to point out the spectrum
of compromises they offer between required assumptions and required evaluations.

2. ASSUMPTIONS, INPUT IMPORTANCE, AND MODEL RUNS

2.1. Linear Approximation

A time-honored and often useful assumption about a function of interest is that it is at
least approximately linear in its arguments. This is such a strong assumption that it
effectively boils the entire question of the behavior of m down to a single slope parameter
for each input. There can be little question as to the definition of importance of any
input in this case. The linearity assumption implies that ∂y/∂xi takes the same value
everywhere in ∆, which in turn fully defines any sense of how variable y is with respect
to xi. Complexity is not an issue here unless it is also defined so as to increase with the
derivative.

Local sensitivity analysis often amounts, in practice, to definition of ∆ to be small
enough so that an assumption of approximate linearity is plausible. Downing et al. [3] are
among the may authors who have described how first-difference approximations to partial
derivatives can be derived from simple one-factor-at-a-time computer experiments. More
recent practitioners of this approach sometimes use orthogonal 2-level fractional factorial
designs of Resolution III or IV as the basis of such studies. Minimal designs supporting
this kind of analysis generally contain from approximately k to 2k model runs, where k
is the number of inputs.

Approaches requiring even fewer model evaluations may be developed if even stronger
assumptions can be made. If it is reasonable to assume that most inputs have little or no
effect on the output (“effect sparsity” in some literature) and/or the signs of each deriva-
tive can be assumed to be known, then group screening plans offer sequential strategies
to identify important inputs using substantially fewer than k model evaluations. See
the forthcoming book edited by Dean and Lewis [2] for a description of many of these
strategies.

While this general approach is often useful and usually simple, one disadvantage is
that there is little basis upon which to base an objective analysis of uncertainty. Since
there is no formal basis for the statistical interpretation of residuals, quantities such as
the t-statistics associated with each slope have only very limited heuristic value.
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2.2. Input-Output Correlations

If approximate linearity is not a justifiable assumption, it still may be acceptable in some
cases to assume that the slope of y with respect to xi’s, averaged over ∆, is an acceptable
measure of input importance. This is probably most reasonable when an argument can be
made that y is monotonic in the arguments of interest, and that the degree of nonlinearity
in its behavior is limited. In these cases, an index such as

∫
(y(x) − ȳ)(xi − E(xi))f(x)dx, ȳ =

∫
y(x)f(x)dx

may be reasonable, where y(x) = m(x) and f is a probability density function.

Such integrals are easily estimated using a relatively modest Monte Carlo sampling
of inputs, although most guidelines would suggest the need for more function evaluations
than can be used when the strict linear approximation is used. The virtues of using Latin
Hypercube sampling rather than unconstrained random sampling of inputs have been
argued by McKay et al. [5] and Stine [13]. Iman and Conover [4] take this approach to
evaluating the importance of inputs after transforming the output data to ranks.

The connection between k and the number of runs needed for effective Monte Carlo
estimation of the integrals is not so clear as it is when a Linear Approximation is used.
If more than a few inputs are important, accidental correlations between selected input
values can be substantial unless the number of runs is not small compared to k. These
problems may be moderated by using quasi-random sequences, e.g. [8], or algorithms
such as Owen’s [9] that control the degree of correlation between inputs.

2.3. Stochastic Continuity

Over the last 15 years or so, a number of papers have appeared in the statistics litera-
ture suggesting that the design and analysis of computer experiments might be based on
regarding (1.) m as a realization of a spatial (i.e. ∆) stochastic process (frequentist), or
(2.) the generalized uncertainty about m being expressed by such a process (Bayesian).
See, e.g. Sacks et al. [10] and Currin et al. [1] for overviews of this approach. The
most important practical issue in such approaches is the statement of a spatial covariance
function, governing the “complexity” that may be expected in the behavior of the output
as each input is varied. One popular functional form is:

Cov[y(x), y(x′)] = σ2e−
∑

i
θi(xi−x′

i
)2 .

Given data from a computer experiment, likelihood or Bayes procedures may be used
to estimate parameters such at the θi, and these used as importance indices. The sense
of importance in this example function is, again, one of scale; the value of θi essentially
defines distance in the xi direction over which a given degree of activity would be expected
in y.

Welch et al. [14] described an algorithm, for which the overall structure is much like
that of stepwise regression, for identifying the inputs for which estimates of θi are largest,
i.e. that are most important in this sense. In demonstrating the method, they evaluated
two example functions each in k = 20 inputs using a Latin Hypercube sample of 50
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runs. The methodology worked well in these exercises, but relatively few of the 20 inputs
were actually important in each case; it might be reasonably expected that more runs
would be needed if more of the inputs were active. The authors suggest that, following
the identification of large correlation parameters, a sensible follow-up analysis would be
examination of the fitted surface (mean of the conditional or posterior stochastic process)
to examine the shape of m as a function of each apparently important input. However,
reliable estimation of the response surface is likely to require more runs than reliable
estimation of the covariance parameters.

One somewhat philosophical sticking point with (this version of) the Stochastic Con-
tinuity approach is that the indices of importance are parameters that do not directly

describe properties of the function of interest! In the frequentist formulation of the prob-
lem, θi is a property of the (physically non-existant) process of which m is supposed to be
a single realization. In the Bayesian model, θi is part of the characterization of a gener-
alized uncertainty (or lack of understanding) of what the model might do under specified
circumstances. With sufficient data (and I am not aware of a careful analysis of what this
may mean in this application), this distinction may be less important practically than it
is philosophically.

2.4. Conditional Variance

The approaches described to this point are predicated on assumptions of linearity, mono-
tonicity, and continuity, respectively, in the model function. Even an assumption of
continuity, however, is not always be warranted, and even when it is strictly warranted,
the degree of complexity of y as a function of some xi may make any attempt to explicitly
model m difficult or impossible for practical purposes. In such cases it may be more
natural or meaningful to define importance in purely statistical terms, e.g. the degree
to which y may be expected to vary as xi varies according to some (possibly arbitrary)
probability distribution, completely disregarding any attempt to match a specific change
in y to a specific change in xi.

Sobol’ [12], Saltelli et al. [11], and McKay [6] are among those who have proposed
input sampling plans that support estimates of conditional moments of the distribution
of y, where that distribution is propagated to the output from a specified distribution on
the input vector. In particular, where each component of x is statistically independent of
the others, these authors address estimation of

Vi[E(i)[y(x)]] or “first-order variance”
E(i)[Vi[y(x)]] or “total variance”

Here the subscript i means expectation or variance with respect to the marginal distri-
bution of xi, and subscript (i) implies the joint distribution of all inputs except xi. No
functional assumptions about m are involved here, but the nonparametric nature of this
approach carries a practical requirement for a large number of model evaluations. Morris
et al. [7] have recently identified other sampling plans based on Balanced Incomplete
Block Designs that have some advantages for this type of analysis.

While this analysis has substantial appeal for the especially assumption-averse mod-
eler, it also carries a philosophical difficulty (although not as fundamental as the one I
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described above for Stochastic Continuity methods). Here the objection is one of analysis
efficiency. The indices of importance are estimated based entirely on the computed values
of y, along with information about which runs share common randomly drawn values for
each input. But the specific values of xi are not used at all in the analysis; while they
intuitively must carry some information of value in most practical situations, avoiding all

assumptions about the y-to-x connection makes it difficult to apply this information.

3. COMPARISONS, CONCLUSIONS

The four general approaches outlined in Section 2 differ in (1.) the strength of assumptions
that must be made about the model, (2.) the number of model evaluations that are
required for practical purposes, and (3.) the sense in which importance is assessed for each
input. Relatively strong assumptions leave relatively few degrees of freedom in defining
importance, but require relatively few model evaluations for assessment. Relatively weak
assumptions allow more subtle definitions of importance (or negatively, do not support
the simplest interpretations), but require relatively many model evaluations.

Approach Assumptions Required Runs Importance
Linear Approximation most least derivative

Input-Output Correlations ↑ ↓ averaged slope
Stochastic Continuity ↑ ↓ complexity
Conditional Variance least most variability

Variations on each of the approaches described here, and other fundamentally differ-
ent approaches, have been proposed in the literature on computational science, applied
mathematics, and statistics – the methods mentioned here are only an example of what
has been found to be useful in many applications contexts. Future research might benefit
from a broader inspection of how these methods differ, and how they might beneficially
be combined to create new “points” along the assumption-data-interpretation spectrum.
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