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Abstract:  Sampling-based methods for uncertainty and sensitivity analysis are reviewed.  
The following topics are considered:  (i) Definition of probability distributions to 
characterize epistemic uncertainty in analysis inputs, (ii) Generation of samples from 
uncertain analysis inputs, (iii) Propagation of sampled inputs through an analysis, (iv) 
Presentation of uncertainty analysis results, and (v) Determination of sensitivity analysis 
results. 
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1.  INTRODUCTION 
Sampling-based (i.e., Monte Carlo) approaches to uncertainty and sensitivity analysis are 
both effective and widely used [1-4].  Analyses of this type involve the generation and 
exploration of a mapping from uncertain analysis inputs to uncertain analysis results.  
The underlying idea is that analysis results y(x) = [y1(x), y2(x), �, ynY(x)] are functions 
of uncertain analysis inputs x = [x1, x2, �, xnX].  In turn, uncertainty in x results in a 
corresponding uncertainty in y(x).  This leads to two questions:  (i) What is the 
uncertainty in y(x) given the uncertainty in x?, and (ii) How important are the individual 
elements of x with respect to the uncertainty in y(x)?  The goal of uncertainty analysis is 
to answer the first question, and the goal of sensitivity analysis is to answer the second 
questions.  In practice, the implementation of an uncertainty analysis and the 
implementation of a sensitivity analysis are very closely connected on both a conceptual 
and a computational level. 

The following sections summarize the five basic components that underlie the 
implementation of a sampling-based uncertainty and sensitivity analysis:  (i) Definition 
of distributions D1, D2, �, DnX that characterize the uncertainty in the components x1, x2, 
�, xnX of x (Sect. 2), (ii) Generation of a sample x1, x2, �, xnS fro the x�s in consistency 
with the distributions D1, D2, �, DnX (Sect. 3), (iii) Propagation of the sample through 
the analysis to produce a mapping [xi, y(xi)], i = 1, 2, �, nS, from analysis inputs to 
analysis results (Sect. 4), (iv) Presentation of uncertainty analysis results (i.e., 
approximations to the distributions of the elements of y constructed from the 
corresponding elements of y(xi), i = 1, 2, �, nS) (Sect. 5), and (v) Determination of 
sensitivity analysis results (i.e., exploration of the mapping [xi, y(xi)], i = 1, 2, �, nS) 
(Sect. 6).  Space limitations in this presentation preclude the presentation of detailed 
examples of the indicated analysis components; however, examples can be found in the 
published descriptions of an uncertainty and sensitivity analysis carried out for the Waste 
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Isolation Pilot Plant (e.g., [5-7]).  The presentation then ends with a concluding summary 
(Sect. 7). 

Only probabilistic characterizations of uncertainty are considered in this presentation.  
Alternative uncertainty representations (e.g., evidence theory, possibility theory, fuzzy set 
theory, interval analysis) are an active area of research [8, 9] but are outside the intended 
scope of this presentation. 

2.  CHARACTERIZATION UNCERTAINTY 
Definition of the distributions D1, D2, �, DnX that characterize the uncertainty in the 
components x1, x2, �, xnX of x is the most important part of a sampling-based uncertainty 
and sensitivity analysis as these distributions determine both the uncertainty in y and the 
sensitivity of y to the elements of x.  The distributions D1, D2, �, DnX are typically 
defined through an expert review process [10-13], and their development can constitute a 
major analysis cost.  A possible analysis strategy is to perform an initial exploratory 
analysis with rather crude definitions for D1, D2, �, DnX and use sensitivity analysis to 
identify the most important analysis inputs; then, resources can be concentrated on 
characterizing the uncertainty in these inputs and a second presentation or decision-aiding 
analysis can be carried out with these improved uncertainty characterizations. 

The scope of an expert review process can vary widely depending on the purpose of 
the analysis, the size of the analysis, and the resources available to carry out the analysis.  
At one extreme is a relatively small study in which a single analyst both develops the 
uncertainty characterizations (e.g., on the basis of personal knowledge or a cursory 
literature review).  At the other extreme, is a large analysis on which important societal 
decisions will be based and for which uncertainty characterizations are carried out for a 
large number of variables by teams of outside experts who support the analysts actually 
performing the analysis. 

Given the breadth of analysis possibilities, it is beyond the scope of this presentation 
to provide an exhaustive review of how the distributions D1, D2, �, DnX might be 
developed.  However, as general guidance, it is best to avoid trying to define these 
distributions by specifying the defining parameters (e.g., mean and standard deviation) 
for a particular distribution.  Rather, distributions can be defined by specifying selected 
quantiles (e.g., 0.0, 0.1, 0.25, �, 0.9, 1.0), which should keep the individual supplying 
the information in closer contact with the original sources of information or insight than 
is the case when a particular named distribution is specified.   Distributions from multiple 
experts can be aggregated by averaging. 

3.  GENERATION OF SAMPLE 
Several sampling strategies are available, including random sampling, importance 
sampling, and Latin hypercube sampling [14, 15].  Latin hypercube sampling is very 
popular for use with computationally demanding models because its efficient 
stratification properties allow for the extraction of a large amount of uncertainty and 
sensitivity information with a relatively small sample size. 

222



Latin hypercube sampling operates in the following manner to generate a sample of 
size nS from the distributions D1, D2, �, DnX associated with the elements of x = [x1, x2, 
�, xnX].  The range of each xj is exhaustively divided into nS disjoint intervals of equal 
probability and one value xij is randomly selected from each interval.  The nS values for 
x1 are randomly paired without replacement with the nS value for x2 to produce nS pairs.  
These pairs are then randomly combined without replacement with the nS values for x3 to 
produce nS triples.  This process is continued until a set of nS nX-triples xi = [xi1, xi2, �, 
xi,nX], i = 1, 2, �, nS, is obtained, with this set constituting the Latin hypercube sample.  
In addition, effective correlation control procedures are available for use with Latin 
hypercube sampling [16, 17].  The popularity of Latin hypercube sampling recently led to 
the original article being designated a Technometrics classic in experimental design [18]. 

Latin hypercube sampling is a good choice for a sampling procedure when 
computationally demanding models are being studied.  When the model is not 
computationally demanding, many model evaluations can be performed and random 
sampling works as well as Latin hypercube sampling. 

4.  PROPAGATION OF SAMPLE THROUGH THE ANALYSIS 

Propagation of the sample through the analysis to produce the mapping [xi, y(xi))], i = 1, 
2, �, nS, from analysis inputs to analysis results is often the most computationally 
demanding part of a sampling-based uncertainty and sensitivity analysis.  The details of 
this propagation are analysis specific and can range from very simple for analyses that 
involve a single model to very complicated for large analyses that involve complex 
systems of linked models [7, 19]. 

When a single model is under consideration, this part of the analysis can involve little 
more than putting a DO loop around the model that (i) supplies the sampled input to the 
model, (ii) runs the model, and (iii) stores model results for later analysis.  When more 
complex analyses with multiple models are involved, considerable sophistication may be 
required in this part of the analysis.  Implementation of such analyses can involve (i) 
development of simplified models to approximate more complex models, (ii) clustering 
of results at model interfaces, (ii) reuse of model results through interpolation or linearity 
properties, and (iv) complex procedures for the storage and retrieval of analysis results. 

5.  PRESENTATION OF UNCERTAINTY ANALYSIS RESULTS 
Presentation of uncertainty analysis results is generally straight forward and involves 
little more than displaying the results associated with the already calculated mapping [xi, 
y(xi)], i = 1, 2, �, nS.  Presentation possibilities include means and standard deviations, 
density functions, cumulative distribution function (CDFs), complementary cumulative 
distribution functions (CCDFs), and box plots [2, 15].  Presentation formats such as 
CDFs, CCDFs and box plots are usually preferable to means and standard deviations 
because of the large amount of uncertainty information that is lost in the calculation of 
means and standard deviations. 
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6.  DETERMINATION OF SENSITIVITY ANALYSIS RESULTS 
Determination of sensitivity analysis results is usually more demanding that the 
presentation of uncertainty analysis results due to the need to actually explore the 
mapping [xi, y(xi)], i = 1, 2, �, nS, to assess the effects of individual components of x on 
the components of y.  A number of approaches to sensitivity analysis that can be used in 
conjunction with a sampling-based uncertainty analysis are listed and briefly summarized 
below.  In this summary, (i) xj is an element of x = [x1, x2, �, xnX], (ii) yk is an element of 
y(x) = [y1(x), y2(x), �, ynY(x)], (iii) xi = [xi1, xi2, �, xi,nX], i = 1, 2, �, nS, is a random or 
Latin hypercube sample from the possible values for x generated in consistency with the 
joint distribution assigned to the xj, (iv) yi = y(xi) for i = 1, 2, �, nS, and (v) xij and yik 
are arbitrary elements of xi and yi, respectively. 

Scatterplots.  Plots of points [xij, yik] for i = 1, 2, �, nS can reveal nonlinear or other 
unexpected relationships.  Natural starting point in complex analysis that can help 
development of sensitivity analysis strategy using one or more additional techniques.  
Additional information:  Sect. 6.6.1, [20]. 

Cobweb Plots.  Plots of points [xi, yik] = [xi1, xi2, �, xi,nX, yik] for i = 1, 2, �, nS.  
Provides two-dimensional representation for a nX + 1 dimensional quantity.  
Generalization of a scatterplot.  Provides more information in a single plot frame than a 
scatterplot but is harder to read.  Additional information:  Sect. 11.7, [21] 

Correlation.  Provides measure of the strength of the linear relationship between xj 
and yk.  Equal to standardized regression coefficient in linear regression relating yk to xj; 
also equal in absolute value to the square root of the R2 value associated with the 
indicated regression.  Often referred to as Pearson correlation coefficient.  Additional 
information:  Sect. 6.6.4, [20]. 

Regression Analysis.  Provides algebraic representation of relationships between yk 
and one or more xj�s.  Usually performed in stepwise fashion with initial inclusion of 
most important xj, then two most important xj�s, and so on until no more xj�s that 
significantly affect yk can be identified.  Variable importance indicated by order of 
selection in stepwise process, changes in R2 values as additional variables are added to 
the regression model, and standardized regression coefficients for the xj�s in the final 
regression model. Additional information:  Sects. 6.6.2, 6.6.3, 6.6.5, [20]. 

Partial Correlation.  Provides measure of the strength of the linear relationship 
between yk and xj after the linear effects of all other elements of x have been removed.  
Additional information:  Sect. 6.6.4, [20]. 

Rank Transformations.  Replaces values for yk and xj with their corresponding 
ranks. Smallest valued assigned a rank of 1; next largest value assigned a rank of 2; tied 
values are assigned their average rank; and so on up to the largest value, which is 
assigned a rank of nS.  Converts a nonlinear but monotonic relationship between yk and xj 
to a linear relationship.  Produces rank (i.e., Spearman) correlations, rank regressions, 
standardized rank regression coefficients and partial rank correlation coefficients.  
Additional information:  Sect. 6.6.6, [20]; [22]. 

Nonparametric Regression.  Seeks more general models than those obtained by 
least squares regression.  Attempts to find models that are local in the approximation to 
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the relationship between yk and multiple xj�s.  Better at capturing complex nonlinear 
relationships than traditional regression or rank regression.  Can be applied in stepwise 
manner.  Sequential changes in R2 values with addition of successive variables to the 
model provides indication of variable importance.  Very promising. Additional 
information:  [23-25]. 

Tests for Patterns Based on Gridding.  Grids can be placed on the scatterplot for yk 
and xj and then various statistical tests can be performed to determine if the distribution 
of points across the grid cells appears to be nonrandom.  Appearance of a nonrandom 
pattern indicates that xj has an effect on yk.  Possibilities include (i) tests for common 
means, common medians, and common distributions for values of yk based on 
partitioning the range of xj and (ii) tests for no influence based on partitioning the ranges 
of xj and yk.  Additional information:  Sects. 6.6.8, 6.6.9, [20]; [26]. 

Tests for Patterns Based on Distance Measures.  Considers relationships within the 
scatterplot for yk and xj such as the distribution of distances between nearest neighbors.  
Provides way to identify nonrandom relationships between yk and xj.  Avoids problem of 
defining appropriate gridding associated grid-based methods.  Additional information:  
[27-30]. 

Trees.  Searches for relationships between yk and multiple xj�s by successively 
subdividing the sample elements xi on the basis of observed effects of individual xj�s on 
yk.  Additional information:  [31]. 

Two-Dimensional Kolmogorov-Smirnov Test.  Provides way to test for nonrandom 
patterns in the scatterplot for yk and xj that does not require the imposition of a grid.  
Additional information:  [32-34]. 

Squared Differences of Ranks.  Seeks to identify presence of nonlinear relationship 
between yk and xj.  Based on squared differences of consecutive ranks of yk when the 
values of yk have been ordered by the corresponding values of xj.  Additional information:  
[35]. 

Top-Down Concordance with Replicated Samples.  Uses top-down coefficient of 
concordance and replicated (i.e., independently generated) samples.  Sensitivity analysis 
with some appropriate technique performed for each sample.  Top-down coefficient used 
to identify important variables by seeking variables with similar rankings across all 
replicates.  Additional information:  [36]. 

Variance Decomposition.  The variance decomposition proposed by Sobol� and 
others is formally defined by high-dimensional integrals involving the xj and yk(x).  
Provides decomposition of variance V(yk) of yk in terms of the contributions Vj of 
individual xj�s to V(yk) and also the contributions of various interactions between the xj to 
V(yk).  In practice, indicated decomposition is obtained with sampling based methods.  
Two samples from x of size nS are required to estimate all Vj; nX + 2 samples of size nS 
are required to estimate all Vj and also the contributions of each of the xj�s and its 
interactions with other elements of x to V(yk).  Conceptually very appealing but can be 
computationally demanding as more samples and probably larger samples required than 
with other sampling-based approaches to sensitivity analysis.  Additional information:  
[37, 38] 
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7.  SUMMARY 
Sampling-based uncertainty and sensitivity analysis is widely used, and as a result, is a 
fairly mature area of study. However, there still remain a number of important challenges 
and areas for additional study.  For example, there is a need for sensitivity analysis 
procedures that are more effective at revealing nonlinear relations than those currently in 
use.  Among the approaches to sensitivity analysis listed in Sect. 6, nonparametric 
regression [23-25], the two-dimensional Kolmogorov-Smirnov test [32-34], tests for 
nonmonotone relations [35], tests for nonrandom patterns [26-30], and complete variance 
decomposition [37, 38] have not been as widely used as some of the other approaches and 
merit additional investigation and use.  As another example, sampling-based procedures 
for uncertainty and sensitivity analysis usually use probability as the model, or 
representation, for uncertainty.  However, when limited information is available with 
which to characterize uncertainty, probabilistic characterizations can give the appearance 
of more knowledge than is really present.  Alternative representations for uncertainty 
such as evidence theory and possibility theory merit consideration for their potential to 
represent uncertainty in situations where little information is available [8, 9].  Finally, a 
significant challenge is the education of potential users of uncertainty and sensitivity 
analysis about (i) the importance of such analyses and their role in both large and small 
analyses, (ii) the need for appropriate separation of aleatory and epistemic uncertainty in 
the conceptual and computational implementation of analyses of complex systems [39-
43], (ii) the need for a clear conceptual view of what an analysis is intended to represent 
and a computational design that is consistent with that view [44], (iv) the role that 
uncertainty and sensitivity analysis plays in model and analysis verification, and (v) the 
importance of avoiding deliberately conservative assumptions if meaningful uncertainty 
and sensitivity analysis results are to be obtained. 
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