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Abstract:  We introduce probabilistic inversion techniques as applied in a recent 
example of Campylobacter transmission. Such techniques are indicated when we wish 
to quantify a model whose parameters cannot be directly measured. In this a (partially 
specified) uncertainty distribution over measurable quantities predicted by the model 
can be "pulled-back" onto the parameter space of the model. If a probabilistic inversion 
is feasible, the solution is seldom unique and we require a method of selecting a 
preferred solution. If a problem is not feasible, we require a best fitting distribution.  
This study illustrates two such techniques, Iterative Proportional Fitting (IPF) (Kruithof 
1937) and PARmeter Fitting for Uncertain Models (PARFUM) (Cooke 1994). In 
addition, we illustrate how expert judgement on predicted observable quantities in 
combination with probabilistic inversion may be used for model validation and/or model 
criticism. 
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1. INTRODUCTION 
 
"Probabilistic inversion" denotes a family of techniques which have recently been 
introduced into the field of risk and environmental modelling. They enable 
quantification of non-measurable model parameters in terms of distributions over 
measurable quantities. This is particularly useful when expert judgement is used: experts 
are queried about outcomes of possible measurements, and their uncertainty 
distributions are pulled back onto the parameter space of a model which predicts the 
measured outcomes. Recent applications may be found in (Kraan and Cooke, 2000a,b), 
for a discussion see (Kraan 2002, Kurowicka and Cooke 2002). A complete 
mathematical discussion of the techniques employed here is found in (Du et al 2003).  
 
The ‘pull-back’ distribution on model parameters may be pushed through the model to 
re-predict the quantities assessed by the decision maker. This provides an opportunity 
for model validation and/or criticism.  If the re-predicted distributions agree with the 
original decision maker’s distributions, then the model provides a suitable vehicle for 
capturing the decision maker’s uncertainty. If these distributions do not agree, then the 
model is not suitable to represent the decision maker’s uncertainty. In this case the 
model must be re-evaluated and possibly revised. For more discussion and examples of 
this aspect see (Kraan and Cooke 2000b).  
 
This paper gives an informal introduction to probabilistic inversion techniques, 
illustrated with a recent application to campylobacter transmission. This is a relatively 
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simple environmental transport model and illustrates nicely how probabilistic inversion 
applied to structured expert judgment can play a constructive role in model evaluation. 
 
2. CAMPYLOBACTER TRANSMISSION 
 
Campylobacter contamination of chicken meat may be responsible for up to 40% of the 
annual 100,000 cases of Campylobacter-associated gastroenteritis in The Netherlands, 
and a similar proportion of an estimated 30 deaths. A recent effort to rank various 
control options for Campylobacter contamination of chicken carcasses has led to the 
development of a mathematical model of a typical chicken processing line (Nauta et al 
in preparation). This model has been quantified in an expert judgment study involving 
12 experts (van der Fels et al 2003). Key parameters in the model are transfer 
coefficients from the chickens’ skin and intestines to the processing environment, and 
from the environment back to the chickens’ skin. Experimental data on such transfer 
coefficients are not available, and experts are unable to quantify their uncertainty on the 
values of these coefficients. Hence, the model must be quantified by asking the experts 
about other quantities which, under specific circumstances, can be predicted by the 
model. These quantities typically involve aggregate phenomena with which experts are 
sufficiently familiar to render a judgment. The experts need not endorse, or even know 
the model.  Their uncertainty distributions are combined to form a “decision maker’s” 
distribution, as described in (van der Fels et al 2003).   
 
A schematic representation of a typical broiler chicken processing line is given in Fig. 1.  
 

 
 

Figure 1. Broiler Chicken Processing line 
 
For campylobacter transmission, the relevant phases are scalding, defeathering, 
evisceration, washing, and chilling. Two types of scalding processes are considered, 
namely low and intermediate temperature, as two types of chilling, namely air and spray 
chilling.   Each phase is modelled as a physical transport process. A typical phase in the 
processing line is illustrated in Fig. 2. 
 
Nenv represents the number of campylobacter in the physical environment of the chicken 
in a processing phase (expressed in cfu, colony forming units). Next is the number on the 
exterior of the chicken, and Cint is the concentration in the intestines, containing the 
feces. The transfer coefficients are explained in Fig. 2 below, and depend on the 
processing phase S. Mass balance equations are formulated which say, eg, that the cfu’s 
at the end of phase S on the exterior equals the number at the beginning, minus what is 
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transferred to the environment or inactivated/removed entirely, plus what moves onto 
the exterior during phase S: 
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In equilibrium we have Nenv,S(i) = Nenv,S(i-1), so that: 
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Figure 2.  A typical phase in the chicken processing model 
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For more detail, see (Nauta et al in preparation).  Ideally, we would like to have 
numerical values for the coefficients in Fig. 2. However, experimental data yielding 
these values are not available. Failing that, we would like to quantify the uncertainty in 
the transfer coefficients. Expert judgment could be applied for this purpose, if the 
experts had detailed knowledge of the interactions in each processing phase. 
Unfortunately, that is not the case. Experts are however able to quantify their 
uncertainty regarding the number of cfu’s on a broiler in the situations described below 
taken from the elicitation protocol:  
 

Line of carcasses 
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At the beginning of a new slaughtering day a thinned-flock is slaughtered in a “typical 
large broiler chicken slaughterhouse”. Suppose each chicken of this flock to be infected 
with Campylobacter, both externally and internally. We suppose every chicken to be 
externally infected with 105 campylobacters per carcass and internally with 108 
campylobacters per gram of caecal content at the beginning of each slaughtering stage 
(a hypothetical situation). So at the beginning of scalding, plucking etc., each chicken 
has this (identical) external and internal contamination rate. 
 
Question A1: 
All chickens of the particular flock are passing successively each slaughtering stage. 
How many campylobacters (per carcass) will be found after each of the mentioned 
stages of the slaughtering process, each time on the first chicken of the flock? 
 
Experts respond to these questions, for each phase, by stating the 5, 50 and 95% 
quantiles of their uncertainty distributions. If distributions on the transfer coefficients in 
Fig. 2 are given, then a distribution, per processing phase, for the elicited variables can 
be computed from the mass balance equations by a Monte Carlo simulation. Thus, the 
elicited quantities may be expressed as (the processing phase S is suppressed in the 
notation): 
 
A1 = 10^5 × (1-aext,) × (1-ca)+10^8 × (1-aint) × wint × (1-ca); 
A2 = A1+b × (aext × 10^5 + (aint) × wint  × 10^8)/(b + cenv - b × cenv); 
B1 = 10^4 × (1 - aexr - ca + aexr  × ca); 
B2= B1 + b × aexr  × 10^4/(b + ce - b*ce); 
C= (1 – b - ce + b × ce)^99 * b × (aext * 10^5 + (aint) × wint  × 10^8)/(b + cenv - b × cenv); 
Wint  =  Wint.                            (1)
   
       
The variables A1, A2,… wint are the variables assessed by the experts.   Question A2 is 
similar to A1, but concerns the last chicken in the flock. Questions B1 and B2 are 
similar to A1 and A2, but refer to a flock in which the birds are externally contaminated, 
but not colonized (internally). Question C asks for the infection on the 100th broiler of 
an uninfected flock which is processed after an internally and externally infected flock. 
Wint was queried directly. It is included here to indicate that its distribution must 
conform to the decision maker’s quantile assessments. For the first 3 processing phases, 
we have 6 equations; for later phases the intestines are removed and the variable Wint is 
not defined.  In total we have 39 such equations, counting the alternative processes for 
scalding and chilling1. The number of equations is equal to the number of transfer 
coefficients for the whole line.  
  
Assuming distributions for coefficients on the right hand sides in (1) are known, we 
could sample from these distributions and build up distributions for the quantities on the 
left hand side. These quantities are assessed by the experts.  We would like these 
distributions to comply with the quantiles given by the decision maker. The probabilistic 
inversion problem may now be expressed as follows: find a joint distribution over the 

                                                           
1 The decision maker considered variable C for washing degenerate, i.e. zero with probability 1. 
Removing this would give 38 equations. 
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transfer coefficients, such that the quantiles of the quantities on left hand sides of the 
above equations agree with the decision maker’s quantiles.  If more than one such joint 
distribution exists, pick the least informative of these. If no such joint distribution exists, 
pick a “best fitting” distribution. 
   
3. PROBABILISTIC INVERSION 
 
Let X and Y be n- and m-dimensional random vectors, respectively, and let G be a 
function from ℜn to ℜm. We call x ∈ ℜn an inverse of   y ∈ ℜm

   under G if  G(x) = y. 
Similarly we call X a probabilistic inverse of Y under G if G(X) ~ Y, where “~” means 
“has the same distribution as”.   If {Y | Y ∈ C} is the set of random vectors satisfying 
constraints C, then we say that X is an element of the probabilistic inverse of {Y | Y ∈ 
C} under G if G(X)∈ C.  Equivalently, and more conveniently, if the distribution of Y is 
partially specified, then we say that X is a probabilistic inverse of Y under G if G(X) 
satisfies the partial specification of Y.  In the current context, the transfer coefficients in 
Fig. 2 play the role of X, and the left hand sides of equations (1) play the role of Y. That 
is: 
 
Y = (A1,1,… Wint,1,…  A1,2.…..Wint,5);  ( 39 components in total) . 
 
The joint distribution of these variables is partially specified by the decision maker, 
namely by given 5, 50 and 95% quantiles. The right hand sides of (1) constitute the 
function G.   
 
If the function G could be inverted analytically, then it would be a simple matter to 
compute X as G-1(Y). Of course this is generally not possible, and we must devise other 
ways to find  X.  A number of approaches could be considered. A thorough discussion of 
this problem is found in (Du et al, 2003), and a shorter discussion in (Kurowicka and 
Cooke, 2002).  By far most satisfactory to date are techniques based on sample re-
weighting, and these have been applied to the chicken line model. We first choose an 
initial distribution for the transfer coefficients (X) such that, when we sample it a large 
number of times and compute Y via (1), some samples fall within each interquantile 
interval for each variable in Y, and all samples are physically possible.  The choice of 
initial distribution is not further constrained, but it should cover the range of realistic 
values.  We take N samples from X and compute N samples for Y, yielding N samples 
for (X,Y). When drawn from the initial distribution, each of the N samples has 
probability 1/N.  We now wish to re-weight these N samples such that, if we re-sample 
this distribution, drawing each sample (with replacement) with probability given by its 
weight, then the quantile constraints on Y are satisfied in the re-sampled distribution.  
 
We describe two strategies for finding the weights, namely Iterative Proportional Fitting 
(IPF) and PARameter Fitting for Uncertain Models (PARFUM). These involve 
iteratively re-adjusting an initial set of weights so as to satisfy the constraints. For 
convenience, we describe this for one processing phase with 6 elicitation variables (Y is 
restricted to 6 components).  
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Since each sample contains a value for (A1, A2, B1, B2, C, Wint), and  each component 
falls in one of 4 interquantile intervals, we may represent this sample as a 6-vector of 
components, each component taking values in {1, 2, 3, 4}.  There are 46 = 4096 possible 
vectors of this type, and we may think of each such vector as an interquantile cell 
containing a number of samples. Not all cells will be physically possible. It is easy to 
see from (1) that A1 ≤ A2, and B1 ≤ B2.  Thus, if the 50% quantile for A1 is above the 5%  
quantile for A2, then it is impossible that A1 could be above its median while A2 is 
below its 5% quantile. Fortunately it is not necessary to figure out which combinations 
of interquantile intervals are feasible; sampling X and computing Y via (1) does that 
automatically. It is well to realize, however, that a large number of mathematically 
possible interquantile cells may actually be unfeasible under the function G. In a typical 
example for a processing phase, we would draw 65,000 samples and find that 150 – 300 
of the 4096 interquantile cells were occupied. The weight assigned to each interquantile 
cell is simply the total weight of the samples falling in that cell.  In our iterative 
algorithms, two samples falling in the same cell will be treated in the same way; 
therefore we can restrict our problem to that of finding weights for the non-empty 
interquantile cells. When these weights are found, we just distribute the cell weight 
uniformly over the samples in the cell to get the sample weights. 
 
Rather than describe the IPF and PARFUM algorithms formally, it is appropriate here 
simply to illustrate them on a simple example and report the relevant mathematical 
facts. Details can be retrieved from the cited literature. For purposes of illustration, we 
consider only 2 elicitation variables, each with 4 interquantile intervals corresponding to 
the 5, 50 and 95% quantiles. The interquantile cells can be represented as a 4 × 4 matrix; 
where, for example,  a sample is said to fall in cell (3,2) if it is between the 50 and 95% 
quantiles for variable 1 and between the 5 and 50% quantiles for variable 2. 
 
We start with an initial distribution over X and generate an initial distribution over the 
interquantile cells, which we represent in Table 2. Note that 6 cells are empty. The 
marginals are shown in boldface. 
 

 
0.1966 0.0006 0 0 0.1972
0.0407 0.1642 0.005 0 0.2099

0 0.0094 0.1196 0.0155 0.1445
0 0 0.0008 0.4476 0.4484

0.2373 0.1742 0.1254 0.4631  
 

Table 2.  Initial distribution over interquantile cells. 
 
The problem is now to adjust the non-empty cells in table 2 such that the margins equal 
0.05, 0.45, 0.45, 0.05; which are the probabilities associated with the decision maker’s 
interquantile intervals. 
 
The IPF algorithm was introduced by (Kruithof 1937) and rediscovered by (Deming and 
Stefan 1942). Its convergence properties were studied by many, including (Fienberg, 
1970, Csiszar, 1975). Simply stated, we first multiply each row by constant, so that the 
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column sums agree with the target. For the first row this constant is target / row sum 
=0.05 / (0.1966+0.0006). Then we multiply each column by the constant (target / 
column sum) to make the column sums agree with the target, then again the rows are 
multiplied by a constant, etc. Figure 4 illustrates the procedure. The target margins are 
shown by the starting distribution.  
 
Csiszar (1975) showed that this algorithm converges if and only if there is a distribution 
with exactly the same zero’s as the initial distribution which satisfies the target margins. 
In that case IPF converges to the distribution which has minimum information relative 
to the starting distribution, in the set of distributions with the target margins. This 
distribution may have zeros in cells where the starting distribution is non-zero. The 
result holds for arbitrary finite dimensions, and arbitrary finite numbers of cells per 
dimension. The target marginal distributions need not be the same on each dimension. It 
is evident that the criterion for convergence becomes more difficult to satisfy as the 
number of zero’s increases. When the criterion is not met the probabilistic inversion 
problem is infeasible and IPF does not converge. In otherwords, there is no distribution 
over the non-zero cells in the starting matrix which has the target margins.  In the case 
of two dimensions, it is known that IPF oscillates between 2 distributions, in case of non 
convergence (Csiszar and Tusnady 1983). Nothing is known about the behavior of  IPF 
in higher dimensions when the condition for convergence is not satisfied. 
 
The PARFUM algorithm (Cooke 1994, Du et al 2003) differs from IPF in the following 
way. Instead of first fitting the row sums, then the column sums, then again the row 
sums, etc; PARFUM successively averages the row and column sum fits. It is 
schematized in Fig. 4.  
 
Unlike IPF, PARFUM  always converges. If the problem is feasible, then it converges to 
a distribution P which minimizes the following functional: 
 
F(P) = I(Prow fit | P) + I(Pcolumn fit | P); 
 
relative to the starting distribution. Here, I(Q | P) denotes the relative information of Q 
with respect to P.  If P is a solution, that is, if P’s row- and column fits agree with the 
target, then Prow fit = P =  Pcolumn fit , so that F(P) = 0. Most importantly, if the problem is 
feasible, then PARFUM converges to a P with F(P) = 0, that is, it converges to a 
solution (see Du et al. 2003). If the problem is feasible then IPF is generally preferred. If 
infeasible, then IPF tends to distribute the lack of fit quite unevenly and tends to 
concentrate weight on a small number of samples. In such cases PARFUM often gives 
better results. Of course, if IPF does not cycle, we have no way of knowing on a finite 
number of iterations whether it is converging. Appeal to common sense is appropriate. 
These algorithms have several advantages relative to other methods. First, they are 
‘dumb’ in the sense that they do not require intelligent steering.  Second they avoid 
computationally expensive matrix manipulations, but simply loop repeatedly through 
the interquantile cells.  Finally, since rows and columns are altered one at a time, the 
whole sample need not be stored in memory, and there is effectively no limit on the size 
of problems which can be tackled. There are disadvantages as well. Most significantly,  
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Figure 3. Iterative proportional fitting 
 
 

 
Figure 4. The PARFUM algorithm 
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it is impossible in practice to know if IPF is converging without verifying the condition 
for convergence, and this is just as hard as finding the solution. PARFUM has a distinct 
advantage in this regard.  In case of infeasibility, neither algorithm yields information 
on how the original sample might be extended to yield better solutions.  
 
 
 
4. RESULTS 
 
The results with the model described above yielded a very poor fit between the re-
predicted and decision maker distributions for some variables.  Table 3 shows the results 
for defeathering. Especially bad fits are circled. 
 
 

  DEFEATHERING 
elicitation Quantile PARFUM IPF 
variable 5% 0.053 0.014 

A1 50% 0.424 0.175 
 95% 0.871 0.719 
 5% 0.030 0.033 

A2 50% 0.256 0.151 
 95% 0.543 0.654 
    

 
Table 3. Re-predicted results of probabilistic inversion defeathering, showing the 
proportion of samples falling below the corresponding quantile. 
   
Inspection of the experts’ rationales revealed that the experts distinguished two transfer 
mechanisms from the exterior to the environment. Campylobactor in the pores of the 
skin would be difficult to remove, but on the feathers or skin surface they would come 
off more easily. It therefore makes a difference whether the birds have been 
contaminated during transport only (giving rise to only contamination of the exterior) or 
at the farm (resulting in intestinal colonization and contamination on the exterior. These 
two different situations had been the starting point of questions A and B. The processing 
model was therefore altered to include this second transport pathway. The coefficient 
aext is replaced by two coefficients, axa and axb. The equations for the elicited quantities 
now become: 
 
A1 = 10^5 × (1-axa,) × (1-ca)+10^8 × (1-aint) × wint × (1-ca); 
A2 = A1+b × (axa × 10^5 + (aint) × wint  × 10^8)/(b + cenv - b × cenv); 
B1 = 10^4 × (1-axb-ca+axb × ca); 
B2= B1 + b × ax b × 10^4/(b + ce – b × ce); 
C= (1 – b - ce + b × ce)^99 × b × (axa × 10^5 + (aint) × wint  × 10^8)/(b + cenv - b × cenv); 
Wint  =  Wint.          (2) 
  
With the second model, the probabilistic inversion yielded better fits; partial results are 
shown in Table 4. 
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  Scalding low 
Scalding 
Intermediate Defeathering 

 Quantile IPF PARFUM IPF PARFUM IPF PARFUM 
variable 0.05 0.05 0.05 0.04 0.04 0.02 0.05 

A_1 0.5 0.50 0.53 0.42 0.45 0.78 0.49 
 0.95 0.95 0.95 0.81 0.86 0.97 0.94 

variable 0.05 0.05 0.04 0.07 0.07 0.00 0.04 
A_2 0.5 0.50 0.41 0.70 0.65 0.14 0.38 

 0.95 0.95 0.93 0.95 0.97 0.91 0.72 
 

Table 4. Re-predictions with Model(2). 
 
The bold values indicate the solution chosen. The PARFUM solution was chosen in 3 of 
the seven cases. There is still lack of fit, in particular for defeathering. However, overall, 
the model revision has produced a better fit. It is a truism that no model is fully adequate 
to reality. Information regarding the degree and locus of misfit is extremely valuable. 
The methods discussed here provide such information. The alternative is to search for 
compliant experts who will assess model parameters directly (and often anonymously); 
this cannot lead to model improvement.  
 
5. CONCLUSIONS 
 
Iterative sample re-weighting methods are available to solve probabilistic inversion 
problems, as illustrated in the model of chicken processing lines. IPF and PARFUM are 
easy to implement and have a solid theoretical foundation. They provide useful tools for 
the practicing risk modeller.  The present study illustrates a fruitful interaction between 
the modellers and the experts made possible by querying experts on observable 
quantities and applying probabilistic inversion. 
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