Office of Science
FAQ

Publications

Publication Details

Aromaticity and Antiaromaticity in Transition-Metal Systems.

Citation

Zubarev DY, BB Averkiev, HJ Zhai, LS Wang, and AI Boldyrev.2008."Aromaticity and Antiaromaticity in Transition-Metal Systems."Physical Chemistry Chemical Physics. PCCP 10(2):257-267. doi:10.1039/b713646c

Abstract

Aromaticity is an important concept in chemistry primarily for hydrocarbon compounds, but it has been extended to compounds containing transition-metal atoms. Recent findings of aromaticity and antiaromaticy in all-metal clusters have stimulated further researches in describing the chemical bonding, structures, and stability in transition-metal clusters and compounds on the basis of aromaticity and antiaromaticity, which are reviewed here. The presence of d-orbitals endows much more diverse chemistry, structure, and chemical bonding to transition-metal clusters and compounds. One interesting feature is the existence of a new type of -aromaticity, in addition to - and -aromaticity that are only possible for main group compounds. Another striking characteristic in the chemical bonding of transition-metal systems is the multi-fold nature of aromaticity, antiaromaticity, or even conflicting aromaticity. Separate sets of counting rules have been proposed for cyclic transition-metal systems to account for the three types of -, -, and -aromaticity/antiaromaticity. The diverse transition-metal clusters and compounds reviewed here indicate that multiple aromaticity and antiaromaticity may be much more common in chemistry than one would anticipate. It is hoped that the current review will stimulate interest in further understanding the structure and bonding, on the basis of aromaticity and antiaromaticity, of other known or unknown transition-metal systems, such as the active sites of enzymes or other biomolecules, which contain transition-metal atoms and clusters.