IODINE

(Data in thousand kilograms, elemental iodine, unless otherwise noted)

<u>Domestic Production and Use</u>: lodine produced in 1998 from three companies operating in Oklahoma accounted for 100% of the elemental iodine value estimated at \$24 million. The operation at Woodward, OK, continued production of iodine from subterranean brines. A second company operated a miniplant in Kingfisher County, OK, using waste brine associated with oil production and reopened a world-class plant that was closed in 1993 because of low market prices for iodine. A third company continued production at Vici, OK, for domestic use and export to Germany. Of the consumers that participate in the annual survey, 29 plants reported consumption of iodine in 1997. Major consumers were located in the Eastern United States. Prices of crude iodine in drums, published for October, ranged between \$19.00 and \$21.00 per kilogram. Imports of iodine through September averaged \$16.45 per kilogram.

Establishing an accurate end-use pattern for iodine was difficult because intermediate iodine compounds were marketed before reaching their final end uses. The downstream uses of iodine were in animal feed supplements, catalysts, inks and colorants, pharmaceuticals, photographic equipment, sanitary and industrial disinfectants, stabilizers, and other uses.

Salient Statistics—United States:	<u>1994</u>	<u> 1995</u>	<u>1996</u>	<u> 1997</u>	1998 ^e
Production	1,630	1,220	1,270	1,320	1,340
Imports for consumption, crude content	4,360	3,950	4,860	6,380	6,000
Exports	1,200	1,220	2,410	2,760	2,800
Shipments from Government stockpile					
excesses	218	133	_	204	291
Consumption:					
Apparent	4,780	3,540	3,700	5,140	4,800
Reported	3,690	3,680	3,920	4,500	NA
Price, average c.i.f. value, dollars					
per kilogram, crude	7.56	8.88	12.90	12.82	16.45
Stocks, producer, yearend	NA	NA	NA	NA	NA
Employment, number	35	35	40	40	40
Net import reliance ¹ as a percent					
of apparent consumption	66	90	66	74	72

Recycling: Small amounts of iodine were recycled, but no data are reported.

Import Sources (1994-97): Chile, 52%; Japan, 46%; and other, 2%.

Tariff: Item	Number	Normal Trade Relations (NTR) 12/31/98	Non-NTR ² <u>12/31/98</u>
lodine, crude	2801.20.0000	Free	Free.
lodide, calcium or of copper	2827.60.1000	Free	25% ad val.
lodide, potassium	2827.60.2000	2.8% ad val.	7.5% ad val.
lodides and iodide oxides, other	2827.60.5000	4.2% ad val.	25% ad val.

Depletion Allowance: 5% on brine wells (Domestic and Foreign); 14% on solid minerals (Domestic), 14% (Foreign).

Government Stockpile:

Stockpile Status—9-30-98³

	Uncommitted	Committed	Authorized	Disposal plan	Disposals
Material	inventory	inventory	for disposal	FY 1998	FY 1998
Stockpile-grade	1,891	87	1,891	454	291

IODINE

Events, Trends, and Issues: Chile was the largest producer of iodine in the world. Japan was the second largest producer of iodine in the world. Production was primarily from underground brines associated with natural gas production. Six U.S. companies operated 17 plants with a total capacity of 9,000 tons per year. Production capacity of the plants was dependent upon the availability of brines with high iodine concentrations.

In February, the Defense National Stockpile Center (DNSC) of the Department of Defense, announced the award of 204,117 kilograms of crude iodine for a current market value of \$3.9 million. In April, the DNSC revised the Annual Materials Plan for fiscal 1998 from 204,117 kilograms to 453,593 kilograms. An industry meeting was held in June to discuss the impact of the increased amount on the market. In September, DNSC announced the award of 87,090 kilograms of stockpiled iodine to three companies for a current market value of \$1.5 million. DNSC also issued a solicitation for 1,000,000 kilograms of iodine with quarterly sales not to exceed 113,398 kilograms.

World Mine Production, Reserves, and Reserve Base:

	Mine pr	Mine production		Reserve base ⁴	
	<u>1997</u>	<u>1998°</u>			
United States	1,320	1,340	550,000	550,000	
Azerbaijan	300	300	170,000	NA	
Chile	5,000	5,600	900,000	1,200,000	
China	500	500	400,000	400,000	
Indonesia	80	80	100,000	100,000	
Japan	5,500	5,500	4,000,000	7,000,000	
Russia	150	150	NA	NA	
Turkmenistan	<u>260</u>	<u>260</u>	<u> 170,000</u>	NA	
World total (rounded)	13,100	13,700	⁵ 6,300,000	NA	

World Resources: In addition to the fields listed in the reserve base, seawater contains 0.05 part per million iodine, or approximately 76 billion pounds. Seaweeds of the Laminaria family are able to extract and accumulate up to 0.45% iodine on a dry basis. Although not as economical as the production of iodine as a byproduct of gas, oil, and nitrate, the seaweed industry represented a major source of iodine prior to 1959 and is a large resource.

<u>Substitutes</u>: Bromine and chlorine could be substituted for most of the biocide, ink, and colorant uses of iodine, although they are usually considered less desirable than iodine. Antibiotics and mercurochrome also substitute for iodine as biocides. Salt crystals and finely divided carbon may be used for cloud seeding. There are no substitutes in some catalytic, nutritional, pharmaceutical, animal feed, and photographic uses.

^eEstimated. NA Not available.

¹Defined as imports - exports + adjustments for Government and industry stock changes.

²See Appendix B.

³See Appendix C for definitions.

⁴See Appendix D for definitions.

⁵Sum excludes countries for which data are not available.